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Abstract— Hub location problem is a NP-hard problem that
frequently arises in the design of transportation and distribution
systems, postal delivery networks, and airline passenger flow.
We propose a simple but effective genetic algorithm (GA)
for the uncapacitated single allocation hub location problem
(USAHLP). Our main contribution is two new simple chromo-
some encoding schemes based on indirect representation and
two crossover operators. We performed an empirical study to
evaluate the effectiveness of the proposed GA using well-known
benchmark problems from the Civil Aeronautics Board (CAB)
and Australian Post (AP) data sets. The GA found all best-
known solutions for the 80 CAB problems and introduced new
solutions for the larger problem instances for AP data. The
proposed GA can easily be extended to other variants of location
problems arising in network design planning in transportation
and distributed systems.

I. INTRODUCTION
Hub Location Problems (HLPs) are classical combinatorial

optimization problems that arise in telecommunication and
transportation networks where nodes send and receive com-
modities (i.e., data transmissions, passengers, express pack-
ages, mail, etc.) through special facilities or transhipment
points called hubs. Hubs consolidate flows from origin nodes
and re-route them to destination nodes sometimes via other
hubs. The sending and receiving nodes in such networks are
called spokes. The networks are called hub-spoke networks.
The assumption in hub-spoke networks is that, hubs are fully-
connected through low-cost high-volume pathways that allow
a discount factor to be applied to the transportation cost of the
flow between a given hub pair. Another assumption in these
networks is that, all the internodal flow takes place through at
least one hub and at most two.

Due to their wide applicability and economic importance
in determining efficient distribution strategies to reduce op-
erational costs, variants of HLPs have been studied with
increased interest. A comprehensive survey on HLPs and
their classification can be found in Kara et. al. [8]. In this
paper, we focus on hub-and-spoke networks which have wide
applicability in many areas including passenger airlines [9,
10, 11], express package delivery firms [12], message deliv-
ery networks [13], trucking industry [14], telecommunication
systems [21], supply-chain of chain stores such as Wallmart
[22], and many other areas.
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A hub-and-spoke network typically involves three simulta-
neous decisions: deciding the optimal number of hub nodes,
their locations and the appropriate allocation of the non-hub
nodes to the hubs [6] with an overall objective of minimizing
the total flow cost which consists of both fixed and variable
costs. Although different variants of hub-and spoke networks
exist, a common goal in all variants is to establish the location
of hubs, and the allocation of spokes such that the total flow
cost is minimized. Generally, the variations arise due to various
considerations such as, imposing capacity limits on the amount
of volume at a given hub, allowing single or multiple allocation
of non-hub nodes to the hubs, and whether the number of
selected hubs is known a priori or is left as decision variable.

In this paper, we focus on the uncapacitated single Al-
location hub location problem (USAHLP) which places no
capacity constraints on hubs, assigns each non-hub node to
exactly one hub, and all traffic flows via the hub nodes. If
the number of hubs is fixed a priori, e.g., is equal to p, the
problem is then known as the uncapacitated single allocation
p-hub median problem (USApHMP). Surveys on different
applications related to USAHLP, and the classifications of its
variants are found in [5], [15], [16] and [17]. Although the
USAHLP is more commonly encountered in practice [1], the
USApHMP has attracted more attention than the USAHLP,
and thus, one aim of our work is to bridge this gap by
proposing an application of genetic algorithms approach for
USAHLP.

The SAHLP, whether the capacitated or uncapaciated ver-
sion is NP-hard [8]. The combinatorial explosion is obvious,
and obtaining exact optimal solutions for this type of prob-
lems is computationally intractable [23]. Thus, we can rarely
accomplish optimal networks within reasonable time for large
problems, and meta-heuristics which do not guarantee optimal
solutions, but seek good approximate solutions within practical
time are often relied on. Due to their usefulness and economic
importance, both the capacitated and uncapacitated versions
of SAHLP have received a good amount of research attention
where both exact and heuristic methods have been proposed
to tackle them. Some of these methods include a quadratic
integer programming formulation [17] and its linearization [8]
, Genetic Algorithm (GA) [3], a hybrid heuristic combining
GA and Tabu Search [2], and a Simulated Annealing (SA) and
Tabu Search (TS) based hybrid solution method [4] for the
USAHLP. The recent work [1] by M. R Silva and C.B. Cunha
using a two-stage tabu search approach offer a comprehensive
empirical analysis for the USAHLP which other researchers
(including our work) can compare their work against.
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Although a few papers exist in the literature proposing GAs
for USAHLP, the performance of the published GA work
has been outperformed by other meta-heuristics, such as tabu
search [1]. Abdinour-Helm [2] proposed a hybrid approach
based on GA and Tabu Search to solve the USAHLP. The
GA was used to determine the number and location of hubs
and the Tabu Search (TS), to assign spokes to hubs. They
reported an improvement over their earlier GA-approach that
used distance-based assignment of spokes to hubs. However,
their stand-alone GA results are not available. Topcuoglo et
al. [3] developed a GA-based approach to the USAHLP. They
found improved solutions to some Civil Aeronautics Board
(CAB) problems. They also used Australian Post (AP) data
in their experiments that had not been previously used in any
study on USAHLP. Another GA-based study on the USAHLP
cited by Kara et al. [8] is a hybrid approach by Cunha and
Silva [18] that employed GA and Simulated Annealing.

The non-GA heuristics applied to the USAHLP include two
hybrid approaches by Chen et al. [4] and Silva et. al. [1].
Chen et al. [4] combined SA with Tabu List(TL) to solve
USAHLP. This approach involves applying Simulated Anneal-
ing to determine an upper-bound for the number of hubs and
then using restricted single location exchange procedure to
locate the hubs. Non-hub nodes are first allocated to nearest
hubs followed by an improvement procedure for allocation that
iteratively re-allocates nodes with less flow to other hubs until
no improvement is possible.

In this paper, we propose a new simple but effective GA
approach for the uncapacitated SAHLP. We employ an indirect
solution encoding based on two schemes. Furthermore, we
propose two problem-specific crossovers for the USAHLP. The
approach adopted in these crossovers treat clusters, i.e., a hub
with associated spokes, as units of gene exchange between the
mating parents instead of individual nodes as in the existing
GAs for the USAHLP. We probabilistically employed three
mutation operators in the GA, i.e., the shift mutation, the swap
mutation, and the change hub mutation. The shift and swap
mutations have been used in previous GA studies on SAHLP.
We perform an empirical study to evaluate the effectiveness of
our GA by using two sets of well-known benchmark problems
derived from real-world applications.

The performance of the GA on both sets of the benchmark
problems is encouraging. The performance of the proposed GA
is better than that of GA [3] and GATS [2] on CAB problems
and comparable with that of MSTS-3 [1] and HubTS [1] and
SATLUHLP [4] on AP problems. The remainder of this paper
is organized as follows: Section II gives a formal description
of the USAHLP. The details of the proposed GA is given in
Section III, followed by experimental discussions in Section
IV. Finally the concluding remarks and future work is provided
in Section V.

II. UNCAPACITATED SINGLE ALLOCATION HUB
LOCATION PROBLEM

The uncapacitated single allocation hub location problem is
a special type of hub location problem in which no capacity

limits are associated with hubs and a spoke can be assigned to
only a single hub. Moreover, the number of hubs is a decision
variable in SAHLP and a fixed cost for establishing a hub is
also included in the overall transportation cost.

Fig. 1. A single allocation hub-spoke network

The objective in the SAHLP is to minimize the cost of
establishing hubs and cost of transportation. This is subject
to the constraints that a spoke must be assigned to only a
single hub, and flows must be routed only through hubs (at
least one and at most two). The transportation cost in the
USAHLP has the following three components.

• The Collection cost, χ, is the cost incurred on flow from
a given spoke to a hub, i.e., cost of spoke-to-hub flow.

• The Transfer cost, α, represents the cost of the flow
between hubs, i.e., cost of hub-to-hub flow.

• The Distribution cost, δ, denotes the cost of the flow from
a hub to a spoke, i.e., cost of hub-to-spoke flow.

All the cost types are per unit distance of flow volume
between nodes. For example, assume that in Figure 1, Wij

volume of a commodity is sent by node i to node j. Wij is
first transported from node i to hub k, then from hub k to hub
l, and finally from hub l to the destination node j. The net
transportation cost Cijkl is,

Cijkl = Wij (χdik + αdkl + δdlj)

Where dik is the distance between node i and hub k, dkl is
distance between hubs k and l, and dlj is the distance between
hub l and node j. In order to find the transportation cost of
the entire network, Cijkl is calculated for all the node pairs
in the network. The cost of establishing the required hubs is
also included in the total cost. Mathematical formulation for
the USAHLP was first given by O’Kelly [6] as a quadratic
0-1 optimization problem with linear constraints. Other mixed
integer programming (MIP) formulations were also proposed
[5,7]. This work uses the quadratic integer programming
formulation by O’Kelley, which is given below.
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(WijXijkl +WjiXjilk)

= (Oi +Di)Zik ∀i, k ∈ NN , (3)

Zik ∈ {0, 1}, ∀i, k ∈ NN , (4)

0 ≤ Xijkl ≤ 1, ∀i, j, k, l ∈ NN , (5)

Where:

Oi =
∑
j∈NN

Wij

Di =
∑
j∈NN

Wji

N is the number of nodes.
NN = {0, 1, 2, ..., N − 1}
Wij is the flow between the origin i and destination j.
χ is the collection cost (from origin spoke to hub).
α is the transfer cost (between hubs).
δ is the distribution cost (from hub to destination spoke).
dik represents the distance between nodes i and hub k.
dkl is the distance between hubs k and l.
dlj is the distance between hub l and node j.
Xijkl is the decision variable that represents the fraction of
traffic between origin node i to destination node j through
hubs k and l.
Fi is the cost of establishing node i as hub.
Zij is 1 if node i is assigned to hub j, otherwise it is 0.
Zkk is 1 if node k is also a hub, otherwise it is 0.

Constraint (1) ensures that all the traffic between an origin-
destination pair has been routed via the hub sub-network.
Constraint (2) prevents non-hub nodes from being allocated
to other non-hub nodes while Constraints (3) restricts the
commodity flow through each hub. For some hub-spoke
networks, e.g., a mail delivery system, the flow may not be
symmetric, i.e., Wij 6= Wji. Additionally, a node may route
flow to itself, i.e., Wii > 0. In this work, both symmetric and
non-symmetric flows are considered.

III. GA METHODOLOGY FOR THE USAHLP

This section presents the details of the chromosome repre-
sentation, fitness evaluation and genetic operators used. In the
GA, each chromosome in the randomly generated population

pool is transformed into a hub-spoke network. The chromo-
somes are then subjected to an evolutionary process until a
minimal cost hub-spoke network is evolved or the termination
condition is met. The evolutionary process is carried out like
in ordinary GA using genetic and selection operators on chro-
mosomes as depicted in Figure 2. Tournament selection with
elite retention is used to perform fitness-based selection. Two
new solution representation schemes and two new problem-
specific crossover operators are proposed in this section for
the USAHLP. The GA also probabilistically employs three
mutation operators.

Read problem instance data
Set GA parameters
Generate an Initial Population

while(not termination)
GenerateSolutionsNetwork()
Evaluate()
Selection()
Reproduction()
Mutation()

end while
end procedure

Fig. 2. An Outline of the genetic Meta-Heuristic for USAHLP

A. Chromosome Encoding and Initial Population Creation

We propose two indirect representation schemes, i.e., List-
based Representation and Set-based Representation, to encode
the solution structure of the USAHLP. Note that the words
List and Set are used here for differentiation purpose, and do
not necessarily represent an actual list or set, as traditionally
known. For both approaches, an indirect chromosome rep-
resenting a hub-spoke network is given an integer string of
length N, where N is the total number of nodes in a given
problem instance.

1) Set-based Representation: Figure 3 shows how a chro-
mosome is created from a set of initial N nodes, and its
corresponding hub-spoke network solution. This hub-spoke
network has three clusters, i.e., C1 = {12, 5, 10, 2}, C3 =
{1, 6, 3, 4, 11}, and C2 = {8, 9, 7, 0} .

The first and bolded numbers in each set is a hub and
the remaining nodes are spokes associated with the hub. The
creation of an individual is performed in three steps. In the
first step, m, number of hubs is determined randomly with the
GA’s initial maximum number of hubs being half the number
of nodes in the network and the minimum is 2 (future work
will let the GA evolve the number of hubs without starting with
a determined upper limit). In the second stage, i.e., Location
Step, m hubs are randomly chosen from N nodes (N is the
total number of nodes in the network). In this way, any node



from 1 to N has the chance to become a hub. Lastly, i.e., in
the Allocation Step, the remaining N −m nodes are allocated
to the selected hubs using the distance-based assignment rule,
i.e., a given node is assigned to a hub that has the shortest
(Euclidean) distance from the hub-node. The above process is
applied iteratively to create the entire initial population.

Fig. 3. Set-based chromosome creation with corresponding hub-spoke
network

2) List-based Representation: In the list-based encoding,
a solution is represented by a list with n hub entries, where
n is the number of nodes in the network. The entries are
also implicitly indexed by numbers from 0 to n − 1 that
represent spokes. Thus a hub entry in the list is indexed by
one of the spokes assigned to the hub. This representation
scheme is illustrated in the Figure 4. The network in the
Figure 4a has 13 nodes including pre-designated hubs, i.e. 1,
8, and 12. Thus its list representation contains 13 entries as
shown in Figure 4b . Every list entry is a hub i.e., either 1,
8, or 12. The hub entries are numbered 0 to 12, such that
0 serves as an index to the first value in the list, 1 to the
second value, 2 to the third value, and so on. The hub entry
at position 0 of the list is 8, which means spoke 0 is assigned
to hub 8. Similarly, hub at position 1 is 1 meaning spoke 1
is assigned to hub 1 and at position 2 is 12 indicating that
spoke 2 is allocated to hub 12, etc. In SAHLP formulation,
a hub is considered to be assigned to itself. This is indicated
by storing values 1, 8, and 12 at positions 1, 8, and 12 of the
list.

B. Chromosome Fitness Evaluation

Once each chromosome has been transformed into a fea-
sible hub-spoke network topology the fitness value of each
chromosome is determined by using a weighted-sum fitness
function. The fitness of an individual F (x) is returned as:

F (x) =
X
i∈N

X
l∈N

X
k∈N

X
j∈N

Wij(χdik +αdkl + δdlj)Xijkl +
X
k∈N

FkZkk

Fig. 4. List-based chromosome

In the above function, the first term represents the cost
incurred on the internodal flow and the second term the cost
of establishing the selected nodes as hubs. The function as a
whole represents the total transportation cost of the network.

C. Reproduction

At every generational stage, the GA selects parents for
mating and reproduction. The tournament selection strategy
with elite [24] retaining model is used to generate a new
population. The tournament selection strategy is a fitness-
based selection scheme that works as follows. A set of K
individuals are randomly selected from the population. This
is known as the tournament set, and the tournament size
employed here was 4. An elite model is incorporated to ensure
that the best individual is carried on into the next generation.

D. Recombination phase

An important aspect for the successful use of a genetic
algorithm is the role that the recombination (usually in the
form of a crossover operator) plays. In the Single Allocation
Hub Location Problem, combinations of hubs and hub-spoke
assignment patterns constitute the building blocks of the
solution. Further, the fitness contribution of a cluster in terms
of minimizing the objective function depends on the distance
and flow between spokes and the hub in the cluster.

Based on the above observations, two problem-specific
crossovers were designed for the SAHLP that process clusters
instead of individual nodes. A cluster in this context is a hub
and its allocated spokes. In these crossovers, one or more
clusters are exchanged between the mating parents to produce
feasible offspring.

1) Multi-Cluster Exchange Crossover(MCEC): In the
Multi-Cluster Exchange Crossover (inspired by the crossover
used in vehicle routing by Ombuki-Berman et al. [20]),
children solutions are produced by swapping one or more
randomly selected clusters between the mating parents. The
swapping process is followed by a re-adjustment process in
which infeasible solutions are corrected. If a hub in a cluster
from one parent (i.e., the source parent) is also a hub in a



Fig. 5. Multi-Cluster Exchange Crossover (MCEC)

cluster of the other parent (i.e. the destination parent), then
both clusters are merged. Duplicate or missing nodes in a
child solution resulting from this process are re-assigned based
on distance, i.e., a node is assigned to the nearest hub. For
illustration, consider two parent solutions P1 and P2 with their
respective networks in Figure 5 selected for cross-breeding.
Multi-Cluster Exchange Crossover (MCEC) is applied to P1

and P2 to produce two children solutions Ch1 and Ch2 as
shown in Figure 5.

2) Double-Cluster Exchange Crossover(DCEC): In
Double-Cluster Exchange Crossover (DCEC), two random
clusters are iteratively selected from one parent solution and
shifted to the other. The same operation is repeated for the
other parent. Duplicate nodes in the offspring resulting from
the recombination operation are detached from their present
hubs and re-assigned to other hubs of the same offspring
according to distance i.e., a node is assigned to the closest
hub. Likewise, nodes lost by an offspring due to the swap
operation are re-inserted in it based on distance.

The process is illustrated In Figure 6. There are two parent
solutions, P1 = {{3, 1, 2} , {4, 5, 8, 9} , {7, 6}} with hubs 3,
4, 7 and P2 = {{1, 9, 8} , {2, 7, 6, 5} , {3, 4}} with hubs 1,2,
and 3 are crossbred using Double-Cluster Exchange Crossover
(DCEC).

IV. MUTATION

The Shift Node[2][3], Swap Nodes[2][3], and Change-Hub
mutations are used probabilistically. In the Shift Node muta-
tion, a random node is detached from one cluster and inserted
into another random destination cluster. The shift mutation
operation can be performed only for clusters with more than
one node. In Swap Node mutation, two clusters are randomly
selected from the given solution and one random node from
the first cluster is shifted to the second cluster. Likewise, from
the second cluster, a randomly selected node is shifted to
the first cluster. In the Change-Hub mutation, the hub from
a randomly selected cluster of a solution is demoted as spoke

whereas a spoke from the same cluster is promoted as hub.
The operations are illustrated in the Figure 7.

Fig. 6. Mutation Operations

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed GA which was implemented in Java 1.3,
on a Pentium IV 1.5 GHz PC with 512 MB memory on
Windows 2007. To evaluate the computational effectiveness
of the proposed GA, an empirical study with two versions of
the GA, i.e., GA-1 and GA-2 was performed. Each version
was based on one of the crossovers introduced in Section 3,
that is: GA-1 based on Double-Cluster Exchange Crossover
(DCEC) and GA-2 based Multi-Cluster Exchange Crossover
(MCEC).

A. Data Sets

Two benchmark data sets for hub location problems, i.e.,
Civil Aviation Board (CAB) data set [17] and Australian Post
(AP) data set [19] were used.

B. CAB Data Set

The CAB benchmark data set by O’Kelley [17] is based
on air traffic between 25 cities in USA and has been used
extensively as benchmark for the uncapacitated hub location
problems. The data set contains test problem instances of 10,
15, 20, and 25 nodes for uncapacitated hub location problems.
Unlike the AP data with asymmetric flows between nodes,
the internodal flow (Wij) in CAB data set is symmetric i.e.,
Wij = Wji and is scaled by division with the total network
flow, i.e.,

i=n,j=n∑
i=1,j=1

Wij

The unit collection cost χ and unit distribution cost δ in
the data set are both fixed at 1.0 [2][3][4]. The transfer cost
α i.e., the cost for hub-to-hub flow, is varied between 0.2
and 1.0 to provide discount factors for bulk transportation
between hubs [2][3][4].



C. AP Data

The AP data set was introduced by Ernst et. al. [19]
and is based on a real application to postal delivery system
in Australia. AP data is the only data benchmark data set
available for capacitated hub location problems. It has also
been used by some studies for uncapacited problems [3][4],
and we also adopt it here. The set contains problems of up
to 200 nodes with each node representing a postal district.
The problem sizes are 10, 20, 25, 40, 50, 100, and 200
nodes. The internodal flows in AP data set are asymmetric,
i.e., Wij 6= Wji. The data set contains hub costs and hub
capacities for capacitated hub location problems. The unit
collection and distribution costs i.e., χ and δ, in the data set
are 3.0 and 2.0 respectively and the discount factor, α, is 0.75.

The AP data set [1] for the SAHLP involves two types of
problems. The loose-cost (L) problems have less variation in
the hub-cost whereas the tight-cost (T) problems have more
variation in the hub-cost. Tight-cost (T) problems tend to be
more difficult than the loose-cost (L) problems. These two
types of problems have been denoted here by the notation
nF where n stands for the number of nodes in the problem
and F denotes the cost-type i.e., loose, ”L” or tight, ”T”. For
example, notation ”10L” denotes the loose-cost (L) problem
with 10 nodes.

D. Parameter Setting

Obtaining good parameter settings for a given problem is a
crucial factor in the performance of a GA. It is now generally
accepted that optimum parameter settings may be problem
specific, implying that the GA being designed must first be
parameterized in the context of a particular problem [20]. The
parameter settings for the GA-1 and GA-2, shown in Table 1
were empirically established. The experiments were based on
30 runs of each of the above GA versions. The execution of
the GA was terminated after 1000 generations or when there
was no change in fitness for 150 generations. Furthermore,
after a mutation decision was made according to the mutation
rate in the table above, probabilities of 0.2, 0.6, and 0.2 were
used to select one of the mutation types i.e., shift, swap, or
replace-hub mutation respectively.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter GA-1 GA-2
population size 500 500
population generational

√

chromosome initialization random
√

generational span 1000
√

probability of crossover 0.55 0.60
probabliity of mutation 0.2, 0.4 0.4, 0.2

The tick marks in the following tables means a best-known
solution has been found by the proposed GA, while the bolded
values in tables indicated a new best solution has been found.
Table II compares the performance of GA-1 and GA-2 in

terms of solution quality for both set based and list based
representation using the AP data. The results show that both
GA-1 and GA-2 are quite efficient for the USAHLP since not
only did they find all the best currently known solution, they
also found improved solutions for the larger problem instances
of 200. In conclusion, we can say based on Table II, that both
the proposed crossovers are equally suitable for use with any
of the proposed chromosome encoding for the USAHLP, even
though the GA-2 seems to perform slightly better than GA-1
for the list representation.

TABLE II
COMPARISON OF GA-1 AND GA-2, AP DATA

GA-1 GA-2 GA-1 GA-2
Problem Known Set Set List List

best [1]
10L 224250.05

√ √ √ √

20L 234690.95
√ √ √ √

25L 236650.62
√ √ √ √

40L 240986.23
√ √ √ √

50L 237421.98
√ √ √ √

100L 238016.28
√ √ √ √

200L 233803.02 233802.97 233802.97 233837.42 233802.97
10T 263399.94

√ √ √ √

20T 271128.18
√ √ √ √

25T 295667.84
√ √ √ √

40T 293164.83
√ √ √ √

50T 300420.98
√ √ √ √

100T 305097.96
√ √ √ √

200T 272237.78 272188.11 272188.11 272193.55 272188.11

TABLE III
COMPARISON WITH OTHER METHODS, SET REPRESENTATION, AP DATA

Known MSTS-3 HubTS GA-1 GA-2
Problem best[1] [1] [1] Set Set

10L 224250.05
√ √ √ √

20L 234690.95
√ √ √ √

25L 236650.62
√ √ √ √

40L 240986.23
√ √ √ √

50L 237421.98
√ √ √ √

100L 238016.28
√ √ √ √

200L 233803.02
√ √

233802.97 233802.97
10T 263399.94

√ √ √ √

20T 271128.18
√ √ √ √

25T 295667.84
√ √ √ √

40T 293164.83
√ √ √ √

50T 300420.98
√ √ √ √

100T 305097.96
√ √ √ √

200T 272237.78
√ √

272188.11 272188.11

Figure 8 shows that the proposed GA outperforms other
published work by introducing two new improved solutions.
The detailed solution quality of the proposed GA as compared
to published work is given in Tables III and IV for set based
and list based solution representations, respectively.

As can be seen from Tables V to VIII the proposed GA
found optimal or the best-known solution for all the problem
instances given for CAB data. Based on the performance of
the proposed GA for both the available AP and CAB data, we
can thus conclude that this GA has been effective in handling
the USAHLP. Lastly Figure 8 shows the performance of the
proposed GA compared with other published work. Due to
space limitation, we do not include the averages of the 30
runs for both the AP and CAB data in this paper.



TABLE IV
COMPARISON WITH OTHER METHODS, LIST REPRESENTATION, AP DATA

Known MSTS-3 HubTS GA-1 GA-2
Problem best[1] [1] [1] List List

10L 224250.05
√ √ √ √

20L 234690.95
√ √ √ √

25L 236650.62
√ √ √ √

40L 240986.23
√ √ √ √

50L 237421.98
√ √ √ √

100L 238016.28
√ √ √ √

200L 233803.02
√ √

233837.42 233802.97
10T 263399.94

√ √ √ √

20T 271128.18
√ √ √ √

25T 295667.84
√ √ √ √

40T 293164.83
√ √ √ √

50T 300420.98
√ √ √ √

100T 305097.96
√ √ √ √

200T 272237.78
√ √

272193.55 272188.11

Fig. 7. AP Data: Comparison with other methods in terms of known-best
or new-best solutions found

VI. CONCLUSIONS

Hub location forms an important line of research because
of its high complexity and intractable nature, as well as its
importance in distribution and transportation management.
A literature review showed that although the single allo-
cation hub Location problem (SAHLP) is more commonly
encountered in practice, the single allocation p-hub median
problem (SApHMP) has attracted more attention than the
USAHLP. Secondly, the literature review showed that although
there exists published work focusing on the development of
heuristics for related distribution and transportation problems,
little work is reported on the use of GA for the SAHLP. Thus,
we aim to further contribute to the development of efficient
meta-heuristics for the SAHLP and related problems.

This paper presented the preliminary results of the proposed
genetic algorithm for the uncapacitated SAHLP. Our main
contribution was to focus on efficient chromosome represen-
tation and genetic operators. We proposed two new simple,
but efficient solution encoding schemes and two crossover
operators. Our proposed genetic algorithm found all best
known solutions for the 12 AP problems and improved upon

TABLE V
USAHLP: COMPARISON WITH OTHER APPROACHES, n = 10, CAB DATA

GA [3]
α f Optimal GATS [2] GA-1 GA-2 GA-1 GA-2

Cost SATLUHLP[4] Set Set List List
MSTS-3 [1]
HubTS [1]

0.2

100 791.93
√ √ √ √ √

150 915.99
√ √ √ √ √

200 1015.99
√ √ √ √ √

250 1115.99
√ √ √ √ √

0.4

100 867.91
√ √ √ √ √

150 974.30
√ √ √ √ √

200 1074.30
√ √ √ √ √

250 1174.30
√ √ √ √ √

0.6

100 932.62
√ √ √ √ √

150 1032.62
√ √ √ √ √

200 1131.05
√ √ √ √ √

250 1181.05
√ √ √ √ √

0.8

100 990.94
√ √ √ √ √

150 1081.05
√ √ √ √ √

200 1131.05
√ √ √ √ √

250 1181.05
√ √ √ √ √

1.0

100 1031.05
√ √ √ √ √

150 1181.05
√ √ √ √ √

200 1131.05
√ √ √ √ √

250 1181.05
√ √ √ √ √

TABLE VI
USAHLP: COMPARISON WITH OTHER APPROACHES, n = 15, CAB DATA

GA [3]
α f Optimal GATS [2] GA-1 GA-2 GA-1 GA-2

Cost SATLUHLP[4] Set Set List List
MSTS-3 [1]
HubTS [1]

0.2

100 1030.07
√ √ √ √ √

150 1239.77
√ √ √ √ √

200 1381.28
√ √ √ √ √

250 1481.28
√ √ √ √ √

0.4

100 1179.71
√ √ √ √ √

150 1355.09
√ √ √ √ √

200 1462.62
√ √ √ √ √

250 1556.66
√ √ √ √ √

0.6

100 1309.92
√ √ √ √ √

150 1443.97
√ √ √ √ √

200 1506.66
√ √ √ √ √

250 1556.66
√ √ √ √ √

0.8

100 1390.76
√ √ √ √ √

150 1456.66
√ √ √ √ √

200 1506.66
√ √ √ √ √

250 1556.66
√ √ √ √ √

1.0

100 1406.66
√ √ √ √ √

150 1456.66
√ √ √ √ √

200 1506.66
√ √ √ √ √

250 1556.66
√ √ √ √ √

two of these solutions while it found the optimal results for
all the 80 publicly available problems for the CAB data.
This work suggests that there is much potential to extend the
GA to other variants of the SAHLP and related problems.
Preliminary work shows that this can be extended to the
capacitated SAHLP. Future work involves further evaluating
the GA’s effectiveness using larger problems, and a thorough
statistical analysis of the performance of the proposed GA.
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