
Computer Communication Networks
(5300G)

Project Design Document
Distributed Denial-of-service attacks (Ddos)

Team members

● Sara Al Hajj Ibrahim (100861802)
● Salonee Bhatt (100878149)
● Melika Abdollahi (100849722)
● Maryam NorooziBenmaran (100848857)

1. The network topology/topologies you plan to simulate (number of switches, hosts
and links):
The simulation environment can be customized to accommodate varying numbers of hosts and

links, based on the requirements. We will be simulating a network topology consisting of 3

switches and multiple hosts (h1 to h5) connected through ethernet links. We add 11 ethernet

links and a controller connected to the switches. The virtual network can handle as much data

as the computer it's running on can handle according to mininet. So, to make the experiment

easier we can limit the data bandwidth capacity for each link in the topology. To support our

network topology, we have created a diagram using draw.io, which can also be created through

mininet cmd or python code for the technical aspect of the simulation.

2. The controller you would be using:

We have decided to utilize the Ryu controller, an open-source software-defined networking

(SDN) controller. We have chosen Ryu due to its user-friendly interface and extensive range of

melika

melika



features. Another key advantage of using Ryu is its compatibility with Mininet, a network

topology simulation tool. This compatibility allows us to develop and test sophisticated network

applications using the Python programming language within a simulated environment using

both Mininet and Ryu (https://ryu.readthedocs.io/en/latest/api_ref.html ).

3. High-Level Modular Design:

Our software will be designed to monitor network activity and identify any unusual patterns

that could indicate a DDoS attack. The modular structure will consist of the following scripts:

● The first script will be responsible for implementing our network topology.

● In the second script, all normal events will be monitored and tracked (Packet Catch

Module).

● The third script will be used to launch the attacks (Attack Module), we also need to

launch normal requests as part of ML training, note that these steps could be done via

cmd.

● The fourth script will gather the necessary data to train the model (Training Module).

● The fifth script will use the data to feed the ML model for testing purposes (Module for

inspecting packets). If an attack is found, this will trigger an alert (Alert Module).

4. External Applications:

● Wireshark: Real-time capture and analysis of network traffic will be done with

Wireshark.

● Pycharm/Spyder: Could be used to run python scripts rather than cmd.

Libraries/APIs:

● Telegraf: For collecting the data to feed into the ML model

(https://docs.influxdata.com/telegraf/v1.13/).

● Influxdb: For storing the data generated (https://docs.influxdata.com/influxdb/v1.7/ ).

● Hping3: For flooding the network with ICMP packets

(https://www.kali.org/tools/hping3/ )

5. Test Plan:

1. Design the network topology according to the specifications.

2. Launch the controller to manage the network devices.

3. Test the network connectivity by performing a ping test on the hosts using ICMP.

4. Generate network traffic by flooding the network with hping3 (Attack Module) while

also conducting normal ping tests. Both types of tests are necessary for training the ML

model.

https://ryu.readthedocs.io/en/latest/api_ref.html
https://docs.influxdata.com/telegraf/v1.13/
https://docs.influxdata.com/influxdb/v1.7/
https://www.kali.org/tools/hping3/


5. Capture the required data using telegraf (Packet Catch Module). The data should include

changes within the network and the number of ICMP messages with their corresponding

flags (0 for normal and 1 for attack).

6. Store the collected data in the Influxdb database for easy retrieval.

7. Convert the data retrieved from Influxdb into a readable format, and use a pre-trained

model to detect and flag any attacks (Module for inspecting packets).

8. Trigger an alert when an attack is detected by the machine learning model (Alert

Module).

9. Block requests from the source IP address running the pings to prevent further attacks.

10. Compare the accuracy of various machine learning models to select the best model for

the task.

Note that the AI algorithm will continually analyze new packets and repeat steps 5-9.


