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 
Abstract—Typical microwave tomographic techniques 

reconstruct the real part of the permittivity with much greater 
accuracy as compared to the imaginary part. In this paper, we 
propose a method to mitigate the imbalance between the 
reconstructed complex permittivity components and increase the 
accuracy of the overall image recovery. To do so, the complex 
permittivity in the imaging domain is expressed as a weighted 
sum of a few preselected permittivities, close to the range of the 
expected values. To obtain the permittivity weights, a Gauss-
Newton algorithm is employed. Image reconstructions from 
simulated and experimental data for different biomedical 
phantoms are presented.  Results show that the proposed method 
leads to excellent reconstruction with balanced real and 
imaginary parts, across different scenarios. 
 

 Index Terms—Complex permittivity, Gauss-Newton 
algorithm, inverse problems, microwave tomographic imaging. 

I. INTRODUCTION 

ICROWAVETomographic Imaging (MTI) is a potential 
imaging modality for a variety of applications, such as 

non-destructive industrial monitoring [1], structural imaging 
[2], breast cancer diagnosis [3] and other biomedical 
applications [4]-[7]. Depending on the application, MTI can 
be an alternative or complementary option to popular imaging 
modalities such as X-ray Computed Tomography (X-ray CT), 
Magnetic Resonance Imaging (MRI), optical tomography, 
electrical capacitance tomography (ECT), etc.  
In MTI, the imaging domain is surrounded by an array of 
antennas that transmit low power microwave signal. Typically, 
only one antenna is excited at a time while the others act as 
receivers to measure the scattered signals. This process is 
repeated for all the antennas to construct a data vector for 
image reconstruction. The later entails the prediction of the 
dielectric properties across the imaging domain. This 
estimation of dielectric properties is carried out on a discrete 
mesh, composed of electrically small elements [8]-[12]. To 
start the iterative image reconstruction process, an initial 
dielectric permittivity distribution of the imaging domain is  

 
Manuscript received Jan 09, 2019, revised May 20, 2019, accepted Aug 12, 

2019.  
M. A. Islam is with the Electrical and Electronic Engineering Department, 

Bangladesh University of Engineering and Technology, Dhaka 1205, 
Bangladesh, A. Kiourti is with the ElectroScience Laboratory, Electrical and 
Computer Engineering Department, The Ohio State University, Columbus, 
OH 43212, USA, J. L. Volakis is with the College of Engineering and 
Computing, Florida International University, Miami, FL 33174, USA. (e-
mails: maislam@eee.buet.ac.bd, kiourti.1@osu.edu, jvolakis@fiu.edu). 

 

 
assumed [8]-[14]. But if the actual permittivity distribution is 
significantly different from the assumed initial reference, 
nonlinear iterative algorithms should be used [14]-[17]. For 
example, in [16] a nonlinear image reconstruction method for 
breast cancer detection was proposed combining the Gauss-
Newton and Conjugate Gradient Least Square (CGLS) 
methods.  Of course, MTI image reconstruction is more easily 
carried out [4] when the permittivity distribution is not 
significantly different from the reference distribution 
(differential imaging).  As an example to this, the MTI method 
was successfully used to recover the permittivity during an 
interstitial thermal therapy in a human head [5]. MTI was also 
employed in [6] to reconstruct a weak scatterer representing a 
microwave absorber. In [8], MTI was used to carry out real-
time monitoring of dielectric contrast materials in an 
otherwise homogeneous domain. A subspace-based variational 
Born iterative method for differential microwave imaging is 
reported in [9]. However, all these MTI-based methods can 
reliably reconstruct the real part of the permittivity, but not the 
imaginary part. Of course, the latter is a key parameter for 
biological media. The real and imaginary part convey different 
information depending on the application. For example, in 
industrial flow imaging, the relative permittivity distribution is 
related to the flow pattern, whereas the conductivity 
distribution may convey information about the impurity in the 
domain [18]. Alternatively, in biomedical applications, the 
real part of the permittivity is more related to the bound water 
content [19]. Bound water may be a potential indicator of 
pathological conditions like cancer, edema etc. [19]. On the 
other hand, conductivity (imaginary part of the permittivity) 
distribution in a biological domain may be used for 
noninvasive temperature sensing for therapeutic applications 
[4].  
    Based on past experience [7]-[8] and extensive literature 
search, we conclude that the accuracy in extracting relative 
permittivity (real part)of the imaging domain outperforms that 
of conductivity (imaginary part) [16]-[17], [20]-[22]. But, very 
few attempts have been made to address this issue. As an 
example, in [17],a pre-scaling approach is employed. 
However, the robustness of this approach is not clear. To 
maximize the information obtained from microwave 
tomographic imaging, it is essential to develop an algorithm 
capable of producing images of both the relative permittivity 
and conductivity with similar accuracy. 
    As a remedy to the imbalanced reconstruction of relative 
permittivity and conductivity, in this paper, a new approach is 
presented. Our approach uses fraction parameters instead of 
the complex permittivity directly. These fraction parameters 
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represent the weights of the preselected permittivities to 
reconstruct the imaging domain. Notably, use of the fraction 
parameters has been done previously for other applications 
[24]-[25]. Unlike those works, our goal of fraction imaging is 
to mitigate the imbalance between real and imaginary portion 
of the complex permittivity. To do so, we developed an 
iterative algorithm based on the Gauss-Newton (GN) method 
to calculate the fraction parameters. Both the relative 
permittivity and conductivity images are then obtained from 
the fraction parameters once they are available. It is shown 
that our method overcomes the imbalance between the relative 
permittivity and the conductivity. Preliminary results for 2D 
cases were already presented by the authors [26]. In this paper, 
we present the details of the method and present images 
employing both synthesized (simulated) and experimental data 
using biomedical phantoms. Specifically, numerous imaging 
scenarios for small to moderate permittivities found in 
reference distributions are investigated and reconstructed. 
Overall, the proposed method has the potential to mitigate the 
long-standing permittivity/conductivity image imbalance for 
microwave tomography. As this issue mostly affects cases 
where the imaging medium is lossy, our analysis focuses only 
on MTI applications for biological media. 

II. COMPLEX PERMITTIVITY RECONSTRUCTION METHOD 

A. Permittivity Representation Using Fraction Parameters  

An example domain to be imaged is shown in Fig. 1. From the 
set of dipole transceivers placed around the domain, one 
antenna is excited at a time while the others are used as 
receivers. This process is repeated until all antennas are 
excited one-by-one. Scattering parameters are collected from 
all receiver antennas and stacked in one vector, {𝑺}௠௘௔௦ to 
form the M×1 measurement vector, M being the number of 
measurements.  
We define the complex relative permittivity of the domain of 
interest (DOI) shown in Fig. 1 as 
 

{𝜺} = {𝜀௡; 𝑛 = 1, 2, 3, … . , 𝑁ா}                   (1)  
 
In this, NE refers to the total number of pixels subdividing the 
DOI. A key aspect of the fraction method is to express the 
permittivity of the n-th pixel as 
 

 

𝜀௡ = ∑ 𝑟௧,௡𝑒௧
𝑁𝑑𝑖𝑒𝑙𝑒𝑐
௧ୀଵ                                 (2) 

 

In this, 𝑟ଵ,௡, 𝑟ଶ,௡,….., 𝑟ே೏೔೐೗೐೎,೙,௡represent the permittivity 
fractions selected a priori to synthesize the pixel’s 
permittivity, 𝜀௡. That is, 𝜀௡ is a weighted linear sum of the 
preselected permittivities 𝑒ଵ, 𝑒ଶ, … , 𝑒ே೏೔೐೗೐೎

 where 𝑁ௗ௜௘௟௘௖ = 
no. of preselected permittivities. Obviously, as r’s are 
fractions 
 

෍ 𝑟௧,௡

𝑁𝑑𝑖𝑒𝑙𝑒𝑐

௧ୀଵ

= 1 

with,              0 ≤ 𝑟௧,௡ ≤ 1                                    (3) 
 

We remark that the permittivity values 𝑒ଵ, 𝑒ଶ, … , 𝑒ே೏೔೐೗೐೎
 are 

selected a priori and the inverse problem involves the finding 
of the unknown fractions 𝑟ଵ,௡, 𝑟ଶ,௡,….., 𝑟ே೏೔೐೗೐೎,೙,௡ for each pixel. 
Notably, this kind of a priori information is typically available 
(or at least can be estimated) for practical biomedical domains. 

B. Reconstruction of Fraction Parameters 

In conventional microwave imaging methods, the goal is to 
find {𝜺} using the measured scattering data, {𝑺}௠௘௔௦. To do so, 
one proceeds to solve the following optimization problem [8] 
 

𝐶({𝜺}) = argmin 
ଵ

ଶ
(

{𝜺}

‖{𝑺}௠௘௔௦ − 𝐹({𝜺})‖ଶ + 𝜇 ฮ[𝑅]൫{𝜺} − ൛𝜺𝟎ൟ൯ฮ
ଶ
)            

(4) 
where {𝑺}௠௘௔௦ is the measurement vector and F({𝜺}) is the 
forward problem solution for a set of given {𝜺}. That is, 
F({𝜺})={𝑺}௖௔௟௖for the given {𝜺}) and || ∙ || is the L2 norm of a 
vector. The second term in (4) is referred to as the 
regularization functional with[R] denoting an appropriate 
regularization matrix, 𝜇 is a chosen scalar controlling the level 
of regularization (user specified) and {𝜺𝟎} is any assumed 
initial permittivity distribution. 
    Instead of solving for the desired {𝜺}, in this paper, we 
propose to only solve for the fraction parameters. To do so, the 
optimization process is revised as follows  
 

𝐶({𝒓෤}) = argmin 
ଵ

ଶ
(

{𝒓}

‖{𝑆}௠௘௔௦ − 𝐹({𝒓෤})‖ଶ + 𝜇 ቛ𝑅 ቀ{𝒓෥} − ቄ𝒓𝟎෪ቅቁቛ
ଶ

)     (5) 

 
with, {𝒓෤} = {𝒓෤}𝑡                                   (6) 

 
From (3), {𝒓෥}௧represents an NE×1 vector of the fraction 
parameters for all the pixel elements in the DOI. For the sake 
of avoiding repetition, the subscript ‘t’ will be omitted 
hereafter. As was the case of {𝜺𝟎}, ൛𝒓𝟎෩ ൟis any assumed 
initialvalue (typically set to the same real number for all the 
pixels) of the fraction parameters. 
    The optimization problem in (5) can be solved via the 
conventional Gauss-Newton method. As reported in [8], a fast 
implementation of the Gauss-Newton method can be carried 
out, avoiding the forward solution in each iteration, by 
introducing the Taylor series expansion 

 
 

Fig. 1. Geometrical configuration of the imaging domain. 
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Fig. 2. Image reconstruction process when three fraction parameters (𝑁ௗ௜௘௟௘௖ = 3) are used. The x and y axes are in meters. 
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𝐹൫൛𝒓𝒌෪ൟ൯ ≈ 𝐹൫൛𝒓𝟎෪ൟ൯ + [𝐽௥̃](൛𝒓𝒌෪ൟ − ൛𝒓𝟎෪ൟ)             (7) 
 

Here, [𝐽௥̃] is the M×NE Jacobian matrix with the superscript ‘k’ 
denoting the k-th iteration. MTI using the proposed method in 
fully nonlinear inverse scattering [16] will be pursued in some 
future work. It is noted that, unlike typical microwave imaging 
where the Jacobian matrix is calculated with respect to the 
permittivities [4]-[6], [8], [16]-[17], here we calculate the 
Jacobian matrix with respect to the fraction parameters. 
Specifically, an element of the Jacobian matrix is given by 

𝐽௥೟,௠௡ =
డி೘

డఌ೙

డఌ೙

డ௥೟,೙
                           (8) 

 
and, from (2) 

𝐽௥೟,௠௡ =
డி೘

డఌ೙
𝑒௧ = 𝐽ఌ𝑒௧                            (9) 

 
In this, ‘m’ refers to the m-th measurement point among the 
total M number of measurements, ‘n’ is the n-th pixel and ‘t’ 
is the t-th preselected permittivity used in (2) to calculate the 
pixel’s actual permittivity. In (9), 𝑒௧ is a constant and 𝐽ఌ is 
calculated using the adjoint method [16]. 
 
By using the Gauss-Newton iterative method to solve (5), we 
get, 

൛𝒓𝟏
𝒌ା𝟏ൟ = ൛𝒓𝟏

𝒌ൟ − 𝛼(𝐵ଵ
௞)ିଵ𝐺ଵ

௞  

൛𝒓𝟐
𝒌ା𝟏ൟ = ൛𝒓𝟐

𝒌ൟ − 𝛼(𝐵ଶ
௞)ିଵ𝐺ଶ

௞  
. 
. 
. 

൛𝒓𝑵𝒅𝒊𝒆𝒍𝒆𝒄

𝒌ା𝟏 ൟ = 1 − ൫൛𝒓𝟏
𝒌ା𝟏ൟ + ൛𝒓𝟐

𝒌ା𝟏ൟ … + ൛𝒓𝑵𝒅𝒊𝒆𝒍𝒆𝒄ି𝟏
𝒌ା𝟏 ൟ൯ 

(10) 
In the above,[𝐺௧

௞] and [𝐵௧
௞]are the gradient and Hessian 

matrices calculated from (5) with respect to 𝑟௧ at the k-th 
iteration and 𝛼 is the step size [27]. Notably, the last equation 
of (10) is due to the condition (3).Another important condition 
enforced at each iteration is (3). This condition ensures the 

stability of the iterative algorithm. Notably, conventional 
algorithms used to reconstruct the permittivity do not typically 
employ such bound check. 
    In (10), [𝐺௧

௞] and [𝐵௧
௞]are calculatedfrom (5) as follows 

 

[𝐺௧
௞] = ൣ𝐽௥೟

൧
்

ቀ{𝑺}௠௘௔௦ − 𝐹൫൛𝒓𝒕
𝒌ൟ൯ቁ + 𝜇[𝑅்𝑅]൫൛𝒓𝒕

𝒌ൟ − {𝒓𝒕
𝟎}൯ 

(11) 
 

[𝐵௧
௞] = ൣ𝐽௥೟

் 𝐽௥೟
൧ + 𝜇[𝑅்𝑅]                              (12) 

 

Here, ൣ𝐽௥೟
൧

்

ேಶ×ெ
 is the transpose of the Jacobian matrix for 

the known permittivity and [𝑅்𝑅] = [𝐼], where [𝐼] is an 
identity matrix. Notably, different kinds of regularization 
matrices can be employed [27], depending on the application. 
To solve for {𝒓෤}, (10) is iterated until convergence is 
achieved. The resulting   fraction parameters {𝒓𝒕} are then 
used to obtain the complex permittivityacross the DOI.The 
process of obtaining relative permittivity and conductivity 
from the reconstructed fraction parameters is explained in Fig. 
2.For this example, we used a set of three(𝑁ௗ௜௘௟௘௖ = 3)known 
permittivities e1, e2 and e3, viz. t=1, 2, 3, to construct pixel 
permittivities in the DOI. We set e1= 60 −
𝑗8.7(conductivity=0.6 S/m), e2 = 20 − 𝑗2.88(conductivity=0.2 
S/m) ande3= 40 − 𝑗5.75(conductivity=0.4 S/m). Hence, (5) 
needs to be solved for the unknown fraction parameters {𝒓෥}ଵ, 
{𝒓෥}ଶ and {𝒓෥}ଷ. Once {𝒓෥}ଵ, {𝒓෥}ଶ and {𝒓෥}ଷ are reconstructed, as 
shown in Fig. 2, they can be used to obtain the complex 
permittivity across the DOI from 

𝑒ଵ{𝒓෥}ଵ + 𝑒ଶ{𝒓෥}ଶ + 𝑒ଷ{𝒓෥}ଷ = {𝜺෤}௥௘ −  𝑗{𝜺෤}௜௠ 
 
In the above,{𝜺෤}௥௘ , {𝜺෤}௜௠ are NE×1 vectors of the real and 
imaginary parts of the complex permittivity, respectively, for 
each pixel. In Fig. 2, all the NE×1 vectors {𝒓෥}ଵ, {𝒓෥}ଶ, {𝒓෥}ଷ and 
{𝜺෤}௥௘ , {𝜺෤}௜௠ are plotted as 2D images to better explain the 
concept. 
    We remark here that the accuracy of reconstruction for both 
the relative permittivity and conductivity parts of the complex 
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permittivity is excellent (quantitatively assessed using (14) 
later). We believe that this improved accuracy is due to two 
key reasons: 1) use of the preselected permittivities to better 
predict the domain’s permittivity (notably, if any one of the 
preselected permittivity elements is non-existing in the actual 
imaging domain, the fraction parameter of that element will be 
zero), and 2) significant reduction of the search space for 
finding the fraction parameters, r, implying a more robust 
solution.  

III. IMAGING RESULTS USING SYNTHETIC DATA 

    For validation, we present several imaging scenarios 
employing biological phantoms. As is well-known, biological 
media are substantially lossy at microwave frequencies and 
hence, the issue of image imbalance between the relative 
permittivity and conductivity parts of the complex permittivity 
can be more pronounced. Hence, the proposed method to 
mitigate this imbalance would be particularly beneficial for 
biomedical applications.  

A. Simulation Set-up 

The simulation set-up was shown in Fig. 1.This is a glass 
cylinder with relative permittivity, 𝜀௥=2.4, diameter=20cm and 
height=10cm. As transceivers, we chose a set of 8dipole 
antennas placed around the cylinder on the outer surface as 
shown in Fig. 1.If possible, the transceiver antennas could be 
placed on the inside surface of the glass cylinder to minimize 
mismatches. However, for our initial testing, we chose to 
place them on the outer surface. We used a suitable operating 
frequency to ensure reasonable spatial resolution and 
sufficient penetration into the imaging domain. All dipoles 
were identical and terminated by 50Ωmatched load. We set the 
background and anomaly relative permittivity so that the 
values represent typical biological media as obtained from 
[29]-[30]. 
    As already mentioned in Section II, data measurements are 
carried out by exciting one antenna at a time while all others 
are receiving. For collecting synthetic data, Ansys HFSS full-
wave simulation is carried out. It should be noted, however, 
that unlike most other microwave imaging approaches [13]-
[16], we use a full wave forward solver taking into account all 
the antennas. Hence, all wave phenomena and inter-antenna 
couplings are accounted for. This, in turn, yields more 
accurate solution for the forward problem to reduce the so 
called model error [16].Using the scattering matrix obtained 
from the simulation, we get the necessary transmission 
coefficients, 𝑆௤௠, where ‘q' and ‘m’ refer to two different 
antennas, for every possible pair of antennas. The scattering 
matrix takes the following form [7], 

 

[𝑆]௦௖௔௧ = ቎

𝑆ଵଵ ⋯ 𝑆ଵொ

⋮ ⋱ ⋮
𝑆ொଵ ⋯ 𝑆ொொ

቏                           (13) 

 
In (13), only the upper or lower triangular elements of 
[𝑆]௦௖௔௧provide unique transmission coefficients (as the 
medium is reciprocal). We collected two sets of data, with and 

without the anomalies present in the DOI, and obtained the 
two scattering matrices, [S]tot and [S]inc, respectively. Then the 
elements of the𝑆௤௠,௦௖௔௧matrix were calculated from, 
𝑆௤௠,௦௖௔௧ = 𝑆௤௠,௧௢௧ − 𝑆௤௠,௜௡௖.The lower/upper triangular 
elements of [S]scat, were employed in (10) to solve the imaging 
problem.  

B. Imaging Results  

    Now, to demonstrate the efficacy and robustness of the 
method, we will show imaging results using the proposed 
fraction based imaging method for several different scenarios. 
 

Case-1:  
    Firstly, we consider an imaging domain with three 
anomalies, each being a 2.25 cm diameter cylinder with 

relative permittivity 𝜀௥,௔௡௢௠ = 60 − 𝑗
଴.଺

௪ఌబ
 and placed in the 

background of𝜀௥,௕ = 40 − 𝑗
଴.ସ

௪ఌబ
. For image reconstruction, we 

have utilized Ndielec = 2 with a priori info e1=40 − 𝑗
଴.ସ

௪ఌబ
, e2= 

60 − 𝑗
଴.଺

௪ఌబ
. 

    As is well known, actual data can be potentially corrupted 
by measurement noise and also model error [28]. Combinedly, 
we refer to them as ‘measurement error’. Hence, to assess the 
performance of the proposed imaging algorithm in the 
presence of measurement error, we perform an analysis of the 
dependence of the same in the presence of additive Gaussian 
white noise with different signal-to-noise ratio (SNR) as 
shown in Fig. 3. The reconstructed image quality severely 
degrades for SNR=10dB, as shown in Fig. 3(d). On the other 
hand, the image quality is acceptable for SNR=20dB as shown 
in Fig. 3(b). Hence, we will use this SNR in the following part 
of this paper while showing image reconstruction employing 
synthetic data. 
    Now, to compare the efficacy of the proposed method with 
that of a standard MTI method, image reconstruction has been 
shown in Figs. 4(a)-(b) using ‘direct’ method (‘direct’ means 
minimizing the cost function of Eq. (4) as opposed to (5)) and 
in Fig. 4(c)-(d) using proposed fraction imaging method. 
Again, we employed the modified Gauss-Newton algorithm, 
previously reported by the authors [8], to solve the ‘direct’ 
imaging problem. As seen from Figs. 4(a)-(b), the image 
reconstruction accuracy using ‘direct’ method is different for 
the relative permittivity and conductivity (see Table I). By 
contrast, the accuracy of the relative permittivity and 
conductivity is balanced while using the proposed method (see 
Table I). The fact that the relative permittivity is better 
reconstructed than the conductivity has been reported in the 
past [16]-[17], [20]-[22]. Here, it is shown that the proposed 
method drastically improves the accuracy of the conductivity 
reconstruction as shown in Figs. 4(c)-(d). Also, the overall 
image quality is better with our proposed method. 
    The accuracies of the reconstructions for different imaging 
scenarios including that in Fig. 4 are quantitatively assessed 
using an error metric [31] 
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𝑒𝑟𝑟𝑜𝑟 =
∑ หఌೖ,ೝ೐೎೚೙ೞ೟ೝೠ೎೟೐೏ିఌೖ,೐ೣೌ೎೟ห

ಿಶ
ೖసభ

∑ หఌೖ,೐ೣೌ೎೟ห
ಿಶ
ೖసభ

                     (14) 

 
where 𝜀௞,௥௘௖௢௡௦௧௥௨௖௧௘ௗ  refers to the reconstructed relative 
permittivity/conductivity and 𝜀௞,௘௫௔௖௧ refers to the exact 
permittivity/conductivity of the k-th pixel. Table I shows 
𝑒𝑟𝑟𝑜𝑟 values from (14) for the images shown in Figs. 4-8.  
 
Case-2:  
    Next, we consider a more complex scenario where we have, 
as shown in Fig. 5, two relative permittivity anomalies and 
one conductivity anomaly in the imaging domain. Though this 
type of scenario (where relative permittivity and conductivity 
anomalies have different locations) is not encountered in 
practice, we present it here to demonstrate the capabilities of 

the proposed algorithm. Also, the two anomalies have 
different relative permittivity as opposed to Case-1 where all 
the anomalies have the same permittivity. For image 
reconstruction, we have utilized Ndielec = 3 with a priori info 

e1=40 − 𝑗
଴.ସ

௪ఌబ
, e2= 50 − 𝑗

଴.ସ଼

௪ఌబ
 and e3= 60 − 𝑗

଴.ସ

௪ఌబ
. Successful 

image reconstruction (see error in Table I) is shown in Fig. 5 
where 3 fraction parameter images are shown at the top (Fig. 
5(a)) and corresponding relative permittivity (Fig. 5(b)) and 
conductivity (Fig. 5(c)) at the bottom. Overall, the image 
quality was good with minor artifacts present. Notably, in this 
case, the a priori info chosen are identical to the actual 
permittivities present in the domain. Table II summarizes all 
the imaging cases with the dielectrics present in the imaging 
domain along with the a priori info employed in the 
reconstruction process. 
 

Case-3:  
    To further assess the performance of the algorithm, in this 
example, we increased the number of anomalies from 3 to 5 
(see Table II). Also, the chosen a priori permittivities are the 
same as those actually present in the domain. The imaging 
domain is similar to a typical breast cancer imaging scenario 
where the breast is immersed in a matching liquid. This is 
evident from the actual permittivity plot (in Fig. 6) where the 
deep blue region along the circular periphery represents 
matching liquid and inside of it, there exists permittivity 
typically found in breasts. The maroon circular region found 
inside the yellow rectangular region represents a tumor. Fig. 
6(a) shows the 5 fraction parameter images and Fig. 6(b)-(c) 
presents the corresponding reconstructed images of both 
relative permittivity and conductivity. From Fig. 6(a), we see 
that the highest a priori permittivity takes part in the 
reconstruction the most. Also, Fig. 6(b)-(c) show that though 
the reconstructed values are lower than the actual ones, the 
high relative permittivity/conductivity tumor can be clearly 
identified in the reconstructed images. Again, the accuracy of 
both the relative permittivity and conductivity images are 
similar (see Table I). 
 
Case-4: 
    The imaging domain in this case is the same to the one used 
in case-3. The only exception is that we employed 3 a priori 
permittivities (instead of 5) for the image reconstruction as 
listed in Table II. The goal is to show the efficacy of the 
 

TABLE I 
RECONSTRUCTION ERROR FROM (14) FOR DIFFERENT IMAGING SCENARIOS 

Image 𝑒𝑟𝑟𝑜𝑟 (relative 
permittivity) 

𝑒𝑟𝑟𝑜𝑟 (conductivity) 

Fig. 4 
0.183 (direct), 

0.088 (proposed) 
0.247 (direct), 

0.088 (proposed) 

Fig. 5 0.091 0.110 

Fig. 6 0.338 0.343 

Fig. 7 0.318 0.325 

Fig. 8 0.258 0.267 

Fig. 11 
0.195 (Fig. 11(a)), 

0.105 ((Fig. 11(b))), 
0.098 ((Fig. 11(c))) 

0.256 (Fig. 11(a)), 
0.105 ((Fig. 11(b))), 
0.098 ((Fig. 11(c))) 

 
 

Fig. 4. Reconstructed images in presence of three anomalies using simulation 
data (SNR 20dB) for Case-1: (a) relative permittivity (direct), (b) conductivity 
(direct), (c) relative permittivity (fraction method), (d) conductivity (fraction 
method). The dashed circular lines indicate the actual position of the anomaly. 
The x and y axes are in centimeters.  

 

(a)

(b)

(c)

(d)

 
 

Fig. 3. Reconstructed relative permittivity images in presence of three 
anomalies using proposed algorithm employing (a) SNR=60 dB, (b) SNR=20 
dB, (c) SNR=15 dB, (d) SNR=10dB. The x and y axes are in centimeters. 

(a)

(b)

(c)

(d)

(c)
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TABLE II 

DIFFERENT IMAGING SCENARIOS AND USE OF A PRIORI INFO 

Image 
Dielectrics Present in 

Imaging Domain 

A Priori 
Permittivities 

Employed 
Comment 

Case-1 
(Fig. 
4(c)-
(d)) 

𝜀ଵ = 40 − 𝑗
0.4

𝑤𝜀଴

 

𝜀ଶ = 60 − 𝑗
0.6

𝑤𝜀଴

 

𝑒ଵ = 40 − 𝑗
0.4

𝑤𝜀଴

 

𝑒ଶ = 60 − 𝑗
0.6

𝑤𝜀଴

 

Same actual 
and a priori 

permittivities 

Case-2 
(Fig. 5) 

𝜀ଵ = 40 − 𝑗
0.4

𝑤𝜀଴

 

𝜀ଶ = 50 − 𝑗
0.48

𝑤𝜀଴

 

𝜀ଷ = 60 − 𝑗
0.4

𝑤𝜀଴

 

𝑒ଵ = 40 − 𝑗
0.4

𝑤𝜀଴

 

𝑒ଶ = 50 − 𝑗
0.48

𝑤𝜀଴

 

𝑒ଷ = 60 − 𝑗
0.4

𝑤𝜀଴

 

Same actual 
and a priori 

permittivities 

Case-3 
(Fig. 6) 

𝜀ଵ = 10 − 𝑗
0.83

𝑤𝜀଴

 

𝜀ଶ = 12 − 𝑗
1.0

𝑤𝜀଴

 

𝜀ଷ = 24 − 𝑗
2.0

𝑤𝜀଴

 

𝜀ସ = 35 − 𝑗
3.0

𝑤𝜀଴

 

𝜀ହ = 5 − 𝑗
0.41

𝑤𝜀଴

 

𝑒ଵ = 10 − 𝑗
0.83

𝑤𝜀଴

 

𝑒ଶ = 12 − 𝑗
1.0

𝑤𝜀଴

 

𝑒ଷ = 24 − 𝑗
2.0

𝑤𝜀଴

 

𝑒ସ = 35 − 𝑗
3.0

𝑤𝜀଴

 

𝑒ହ = 5 − 𝑗
0.41

𝑤𝜀଴

 

Same actual 
and a priori 

permittivities 

Case-4 
(Fig. 7) 

𝜀ଵ = 10 − 𝑗
0.83

𝑤𝜀଴

 

𝜀ଶ = 12 − 𝑗
1.0

𝑤𝜀଴

 

𝜀ଷ = 24 − 𝑗
2.0

𝑤𝜀଴

 

𝜀ସ = 35 − 𝑗
3.0

𝑤𝜀଴

 

𝜀ହ = 5 − 𝑗
0.41

𝑤𝜀଴

 

𝑒ଵ = 10 − 𝑗
0.83

𝑤𝜀଴

 

𝑒ଶ = 35 − 𝑗
3.0

𝑤𝜀଴

 

𝑒ଷ = 5 − 𝑗
0.41

𝑤𝜀଴

 

Actual and a 
priori 

permittivities 
are different 

Case-5 
(Fig. 8) 

𝜀ଵ = 10 − 𝑗
0.83

𝑤𝜀଴

 

𝜀ଶ = 12 − 𝑗
1.0

𝑤𝜀଴

 

𝜀ଷ = 24 − 𝑗
2.0

𝑤𝜀଴

 

𝜀ସ = 5 − 𝑗
0.41

𝑤𝜀଴

 

𝑒ଵ = 10 − 𝑗
0.83

𝑤𝜀଴

 

𝑒ଶ = 35 − 𝑗
3.0

𝑤𝜀଴

 

𝑒ଷ = 5 − 𝑗
0.41

𝑤𝜀଴

 

Actual and a 
priori 

permittivities 
are different 

 
algorithm when we don’t have exact knowledge of the number 
of permittivities present in the imaging domain. We employed 
only one a priori permittivity (which has the highest value 
among the 5 used in Case-3) higher than the background value 
as opposed to Case-3 where 3 a priori permittivities were 
employed higher than the background. This is inspired by the 
fact that as shown in Fig. 6(a), the highest a priori permittivity 
tends to take part in the reconstruction the most. As shown in 
Fig. 7, the reconstructed fraction parameters and consequently, 
the relative permittivity and conductivity of the domain have 
similar accuracy (even better than Case-3, as shown in Table 
I). So, we can conclude that, we don’t necessarily have to 
employ the same number of permittivities as a priori ones 
compared to the number of permittivities present in the 
imaging domain. This will reduce the complexity of the 
algorithm significantly. 
Case-5: 
    The imaging domain in this case is the same to the one used 

 
 

in Case-3 and Case-4 except that the circular high permittivity 
region inside the rectangular region is absent. This represents 
a case where there is no tumor in the breast. We still use the 
same set of 3 a priori permittivities to assess the robustness of 
the algorithm in imaging a scenario with or without tumors. 
As shown in Fig. 8, the reconstructed images are consistent 
with the actual domain and as expected, both relative 
permittivity and conductivity are recovered with similar 
accuracy (Table I). Importantly, it can be deduced from this 
case that we may assume higher a priori permittivity than the 
highest actual permittivity present in the domain. As 
reconstructed permittivity (relative permittivity or 
conductivity) cannot be higher than the assumed maximum  a 
priori value, it is safer to assume at least one a priori 
permittivity value high enough so that we don’t miss the 
highest permittivity present in the imaging domain. 

In summary, the following points are deduced from the 
cases shown above: a) the highest (or lowest) a 
priori permittivity/conductivity takes part in the reconstruction 
process the most, and consequently, b) it is better to keep the 
number of a priori complex permittivities the least to make 
the algorithm simple, c) the level of the highest (or lowest) a 
priori permittivity/conductivity should be chosen in such a 
way that the highest (or lowest) permittivity/conductivity of 
the domain is reconstructed successfully. 

IV. SENSITIVITY ANALYSIS 

    As can be realized, the choice of a priori permittivities, 𝑒௧ 
may impact the accuracy of the recovered images. It is 
therefore important to examine any dependence of 𝑒௧ in the 
reconstructed images. For this analysis, we consider an 

Fig. 5. Reconstructed images (using SNR=20dB) for Case-2: a) images of the 
three reconstructed fraction parameters, b) corresponding relative permittivity 
image (right) and actual relative permittivity (left), c) corresponding 
conductivity image (right) and actual conductivity (left). 

 

+ +

×(40-j
଴.ସ

௪ఌబ
) ×(50-j

଴.ସ଼

௪ఌబ
) ×(60-j

଴.ସ

௪ఌబ
)

(a)

(b)

(c)
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imaging domain where we have one rectangular and one 

circular anomalies, both having 𝑒௔௡௢௠ = 60 − 𝑗
଴.଺

௪ఌబ
 lying in 

the background of 𝑒௕ = 40 − 𝑗
଴.ସ

௪ఌబ
, as shown in Fig. 9(a)-

10(a). Also, we employ two a priori permittivities (Ndielec = 2) 

for this sensitivity analysis. The value, 𝑒ଵ = 40 − 𝑗
଴.ସ

௪ఌబ
 is kept 

fixed and 𝑒ଶ is varied. In particular, Figs. 9(b) and 10(b) 

shows reconstructed images when 𝑒ଶ = 70 − 𝑗
଴.଻

௪ఌబ
 and Figs. 

9(c), (d) and 10(c), (d) show images for 𝑒ଶ = 58 − 𝑗
଴.଻

௪ఌబ
, 

46 − 𝑗
଴.଻

௪ఌబ
 and for 𝑒ଶ = 70 − 𝑗

଴.ହ଼

௪ఌబ
, 70 − 𝑗

଴.ସ଺

௪ఌబ
, respectively. 

For Figs. 9(c)-(d), as the selected a priori relative 
permittivities are all lower than the maximum relative 
permittivity present in the actual domain, the algorithm cannot 
recover the domain perfectly. Hence, an attempt to reconstruct 
the relative permittivity (Fig. 9(c)-(d) top) has resulted in an 
overestimation of the reconstructed conductivity (Fig. 9(c)-(d) 
bottom). For similar reason, we can see over-estimation of the 
reconstructed relative permittivity in Figs. 10(c)-(d) top. 

 

 

 
Hence, to faithfully recover both the relative permittivity and 
conductivity, we need to make sure that high enough a priori 
values for both of them are employed in the reconstruction. 
 

 
Fig. 8. Reconstructed images (using SNR=20dB) for Case-5: a) images of the   
three reconstructed fraction parameters, b) corresponding relative permittivity 
image (right) and actual relative permittivity (left), c) corresponding 
conductivity image (right) and actual conductivity (left). 

 

+ +

×(10-j
଴.଼ଷ

௪ఌబ
) ×(35-j

ଷ.଴

௪ఌబ
) ×(5-j

଴.ସଵ

௪ఌబ
)

(a)

(b)

(c)

 
Fig. 7. Reconstructed images (using SNR=20dB) for Case-4: a) images of the   
three reconstructed fraction parameters, b) corresponding relative permittivity 
image (right) and actual relative permittivity (left), c) corresponding 
conductivity image (right) and actual conductivity (left). 

 

+ +

×(10-j
଴.଼ଷ

௪ఌబ
) ×(35-j

ଷ.଴

௪ఌబ
) ×(5-j

଴.ସଵ

௪ఌబ
)

(a)

(b)

(c)

 
(a) 

 
Fig. 6. Reconstructed images (using SNR=20dB) for Case-3: a) images of the   
five reconstructed fraction parameters, b) corresponding relative permittivity 
image (right) and actual relative permittivity (left), c) corresponding 
conductivity image (right) and actual conductivity (left).  

 

×(10-j
଴.଼ଷ

௪ఌబ
) ×(12-j

ଵ.଴

௪ఌబ
) ×(24-j

ଶ.଴

௪ఌబ
)
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ଷ.଴

௪ఌబ
) ×(5-j

଴.ସଵ

௪ఌబ
)

𝒓 𝟐
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Fig. 9. Sensitivity analysis by varying relative permittivity value of a priori permittivity: a) actual imaging domain, b) reconstructed image for 

𝑒ଵ = 40 − 𝑗
଴.ସ

௪ఌబ
 and 𝑒ଶ = 70 − 𝑗

଴.଻

௪ఌబ
, c) reconstructed image for 𝑒ଵ = 40 − 𝑗

଴.ସ

௪ఌబ
 and 𝑒ଶ = 58 − 𝑗

଴.଻

௪ఌబ
 , d) reconstructed image for 𝑒ଵ = 40 − 𝑗

଴.ସ

௪ఌబ
 

and 𝑒ଶ = 46 − 𝑗
଴.଻

௪ఌబ
. Top row: relative permittivity, bottom row: conductivity.  

(a) (b) (c) (d)

 

 
 
Fig. 10. Sensitivity analysis by varying conductivity value of a priori permittivity: a) actual imaging domain, b) reconstructed image for 𝑒ଵ = 40 −

𝑗
଴.ସ

௪ఌబ
 and 𝑒ଶ = 70 − 𝑗

଴.଻

௪ఌబ
, c) reconstructed image for 𝑒ଵ = 40 − 𝑗

଴.ସ

௪ఌబ
 and 𝑒ଶ = 70 − 𝑗

଴.ହ଼

௪ఌబ
, d) reconstructed image for 𝑒ଵ = 40 − 𝑗

଴.ସ

௪ఌబ
 and 𝑒ଶ =

70 − 𝑗
଴.ସ଺

௪ఌబ
. Top row: relative permittivity, bottom row: conductivity. 

 

(a) (b) (c) (d)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. IMAGING RESULTS USING EXPERIMENTAL DATA 

A. Experimental Set-up 
    To validate the proposed imaging method, we employed a 
glass cylinder of diameter = 20 cm and height=10cm, filled 
with a biological tissue phantom inside it (see Fig. 11, left 
side). This cylinder and phantom mimics the set-up employed 
in Fig. 1(a). As was for the simulations, we used a set of 8 
transceiver antennas placed around the cylinder. All dipoles 
are identical, 6 cm long and matched to 50 Ω. We chose the 
operating frequency 1.25 GHz with inserted anomalies of 
diameter, d = 2.25 cm. The background medium was prepared 
following the procedure in [32], viz. by adjusting the 
ingredients to achieve 𝜀௥

௕௔௖௞ = 39.8 − 𝑗5.4 (conductivity=0.38 
S/m) at 1.25 GHz. The anomaly medium was prepared by 

mixing water and glycerin to achieve 𝜀௥
௔௡௢௠௔௟௬

= 60.2 −
 𝑗9.1(conductivity = 0.63 S/m). 
    The dielectric permittivity of the materials was measured 
using the Agilent 85070D dielectric probe kit and S-parameter 
measurements were carried out with a 2-port network analyzer 
Agilent N5230A. The two ports were connected to the two 
dipole antennas, one being the transmitter and the other being 
the receiver. All other dipoles were terminated with 50 Ω 
loads to minimize reflections. 
B. Imaging Results  
    The images using the measured data are shown in Fig. 11. 
Again, we observe that the traditional ‘direct’ method leads to 
pronounced imbalance between the relative permittivity and 
conductivity images (see Fig. 11(a)). By contrast, the fraction 
method yields much better balance (for quantitative accuracy, 
see Table I). Here, Fig. 11(b) is generated by employing   
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𝑒ଵ = 40 − 𝑗
଴.ସ଴

௪ఌబ
 and 𝑒ଶ = 60 − 𝑗

଴.଺଴

௪ఌబ
 as a priori permittivities. 

Conversely, Fig. 11(c) is generated by employing  eଵ = 40 −

j
଴.ସ଴

୵கబ
 and eଶ = 70 − j

଴.଻଴

୵கబ
 as a priori permittivities. The later 

(Fig. 11(c)) results slightly better image recovery as shown in 
Table I. As expected, due to model error [27], overall image 
reconstruction quality is somewhat degraded using the 
experimental data as compared to that using the synthetic data 
(see Fig. 4). The slightly lower reconstructed anomaly 
permittivity and conductivity (see Figs. 11(b), 11(c)) than the 
expected values are due to the possible measurement error 
using Agilent 85070D dielectric probe kit while preparing the 
phantom. Notably, the overall image quality is much better 
using the proposed method, which is presumably due to the 
stable nature of the algorithm attributed to the bound check 
(eqn. (10)). 

VI. CONCLUSION 

    We proposed a new method to improve the accuracy in 
reconstructing the imaginary part of the complex permittivity 
using microwave tomography. Specifically, our method 
corrects the imbalance between the real and imaginary 
permittivity images. The proposed method is based on 
constituting the image using a set of a priori complex 
permittivities chosen from the knowledge of the biological 
domain to be imaged. However, precise knowledge of the 
domain permittivity is not needed, rather, use of a nominal set 
of a priori values is adequate. The dielectric (relative 
permittivity and conductivity) is then constructed using a 
weighted sum (fraction method) of the chosen permittivities. 
The weights (fractions) are found after applying a standard 
optimization algorithm, such as, the Gauss-Newton method. 
To demonstrate the efficacy and robustness of the fraction 
imaging method, numerous imaging examples involving 
biological phantoms were used and successful image recovery 
has been shown. Given that biological media have a strong 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
imaginary permittivity (conductivity), the proposed method 
could have a significant impact in the effectiveness of 
microwave tomography for applications, such as, tumor 
detection, stroke evolution monitoring etc. among others. 
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