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A B S T R A C T

Environmental pollutants in the air have long been a great threat to the health and life of human society and the
volume of these pollutants is rapidly increasing. Human beings spend most of their time in closed environments
which highlights the demand for appropriate indoor air quality. This favorable air quality makes sense when the
concentration of pollutants such as CO2 that have penetrated the building space is reduced. This paper aims to
predict a model for CO2 emissions and optimize it for 6 cities of the U.S with different climates. Firstly, using the
time series of GMDH type of artificial neural network, the amount of these pollutants was predicted monthly and
annually from 2020 to 2025. The results show that the amount of CO2 pollutants during this period increases by
1–3% and 1.25–1.8% on a monthly and annual basis, respectively. In this research, to solve this huge predica-
ment in the residential sector, 5 design variables are considered, which are the thermostat set point temperature
of the air conditioning system for cooling and heating, the clothing insulation level of the residents' clothes for
winter and summer seasons, and the amount of clean air that is transferred from the outside to the inside of the
building by the air conditioning system. The goal is to simultaneously minimize CO2 emissions and annual elec-
tricity consumption costs of the building and improve the thermal comfort of building occupants. Therefore, de-
sign variables and objective functions in JEPLUS software are defined. Afterward, they are analyzed based on the
building's energy performance using EnergyPlus software. The elicited data are then transferred to JEPLUS + EA
software, where they are optimized by the NSGA-II algorithm, which finally discovers the most optimal states so
that users can select any state that is in line with their goals.

1. Introduction

It can be said that optimization is necessary and needed for every
engineering system and that is why researchers tried to optimize their
systems with different inputs and outputs with different existing algo-
rithms (Jia and Wang, 2021; Srinivasareddy et al., 2021; Agarkov et al.,
2022; Chen et al., 2021; Said et al., 2022). The proper way of energy
consumption is one of the cases that has long been tried in human soci-
eties to prevent excessive energy loss (Qi et al., 2022; Liu et al., 2021;
Tu et al., 2022; Yan et al., 2020; Ahmadi et al., 2019). Owing to the
rapid industrial and economic developments in modern societies, the
role of energy becomes more undeniable (Bellos et al., 2016;
Jermsittiparsert, 2021). With the rapid development of urban housing

construction and unsuitable patterns for energy consumption, the loss
of energy resources is felt more in the world. The volume of energy loss
in different industrial, commercial and residential sectors is significant
and it is more striking in countries with severe weather conditions. Ac-
cording to US Energy Information Administration reports, from 2012 to
2040 (U. EIA, 2016), the amount of energy consumed in residential and
commercial buildings comprises 20.1% of total delivered energy. This
ratio is predicted to annually increase by 1.5% on a global scale. Fur-
thermore, more than one-third of the energy consumed in residential
buildings is for heating and cooling. On the other hand, excessive en-
ergy consumption leads to an increment in the emissions of greenhouse
gases such as carbon dioxide (Bahrami et al., 2022). IPCC reported that
the volume of greenhouse gases has more than doubled in 40 years be-
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Fig. 1. Monthly temperature variations for all cities.

Table 1
Geographical specifications of selected cities.
State City Climate Latitude

(Degree)
Longitude
(Degree)

Elevation
(m)

Alaska Cold Bay Arctic climate 55.2 −162.72 23.8
Colorado Niwot

Ridge
H-Highland (alpine)
climate

38.82 −104.72 1884

Florida Key
Biscayne

Aw-Tropical wet/
Dry season climate

24.56 −81.75 1.2

Utah Wendover Bsk-Semiarid steppe
climate

40.72 −114.04 1292

Kentucky Midway Dfa-Humid
continental (warm
summer) climate

38.03 −84.6 301

Oklahoma Rogers Cfa-Humid
subtropical climate

35.38 −97.6 398

tween 1970 and 2010, and it reached the value of 10 Gt CO2eq/yr at
the end of this period (IPCC, 2014). Many researchers have stated that
HVAC systems used for heating and cooling in buildings are the main
ground for this issue (Khoukhi, 2018; Bakos, 2000; Chwieduk, 2003;

Fig. 2. The studied residential building.

Bojic et al., 2001). With the rise of energy consumption and subse-
quently burning of fossil fuel resources, irreparable damage is impelled
to the environment, one of which is the increase in environmental pol-
lutants. These pollutants have devastating effects on all sectors and
jeopardize the health of human society (Sundell, 2004), and cause hu-
man death in some cases (Kumar et al., 2005). Because people spend a
large part of their day indoors, the risk of having indoor pollutants in-
creases (Byčenkienė et al., 2009; Dales et al., 2008; Leech et al., 2002).
The aforementioned pollutants can penetrate indoor environments in
various ways and endanger the health of residents. Scientists and re-
searchers have conducted studies to address this issue which could help
improve indoor air quality (IAQ) and reduce the effects of pollutants.
Some researchers have based their studies on the use of plants that have
air-purifying properties to help improve IAQ. Parhizkar et al. (2020)
could reduce the amount of CO2 concentration in an office building
with some preparations. They could purify the air and reduce the con-
centration of CO2 in the space by using a double-skin façade and placing
5 m2 of Azolla algae per person. Jung et al. (Jung and Awad, 2021) also
used Arka palm pots in the UAE university classroom and could amelio-
rate indoor air quality by up to 40%. Another group of researchers con-
ducted their field studies in spaces with a larger number of inhabitants
(schools, universities and office environments, etc.) to help people with
their health by challenging themselves. Korsavi et al. (2020) worked on
indoor air quality at a primary school in the UK and evaluated three fac-
tors affecting natural ventilation which are context (Santamouris et al.,
2008; Gao et al., 2014; Heebøll et al., 2018), residents (Batterman et al.,
2017) and building-related factors (Daniels and Bodkin, 2016) to
achieve optimal air quality and concluded that for the CO2 rate to be
less than 1000PPM, each person should occupy space per 2.3 square
meters. Haddad et al. (2021) experimentally worked on the air quality
in the classroom of a school in Sydney, Australia which has subtropical
climates. With the strategies they used in their research, they reduced
the CO2 concentration in the cold season from 2418 ppm to 1335. Jaber
et al. (2017) could significantly decrease the amount of CO2 concentra-
tion by changing the temperature of the thermostat in a school in Saudi
Arabia. By changing the cooling temperature from 25 to 23 and from 23
to 20, they were able to reduce the CO2 concentration from 1800 to
1000 PPM to 600PPM. Dorizas et al. (2015) worked on the role of venti-
lation rate and CO2 concentration in student learning and found that
there is a direct relationship between particle levels and CO2 concentra-
tion on student health. Coley et al. (2007) also showed this effect more
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Fig. 3. General schematic of the Packaged Terminal Heat Pump system (US
Department of Energy, 2014).

Table 2
Specifications of floor spaces of the studied building.
Zone Floor area(m2)

Bedroom 1 12
Bedroom 2 12
Kitchen 12
Hall 49
Bathroom1 6
Toilet 3
Staircase and Entrance 6
Parking 100

Table 3
Specifications of opaque construction materials.
constructions Properties Unit Value

Interior wall Total heat transfer coefficient (U) 2.58
Exterior wall Total heat transfer coefficient (U) 0.7
Floor/ceiling Total heat transfer coefficient (U) 1.45
Door Total heat transfer coefficient (U) 3.5

prominently in another study. With the rising of CO2 concentration, stu-
dents 'concentration decreases and leads to students' headaches and fa-
tigue (Australian Building Codes Board (ABCB) I.A.Q.H, 2018). Franco
et al. (Franco and Leccese, 2020) discussed the correlation between the
CO2 concentration in indoor air and the number of people employed.
Schibuola et al. (2016) investigated the effect of natural ventilation on
indoor air quality and energy-saving. Amini et al. (2021) worked on in-
door thermal comfort and indoor air quality and minimized them by us-
ing suitable glass glaze and shading. Another group of researchers con-
ducted their studies on residential buildings. Belmonte et al. (2019)
worked experimentally and simulated on 8 different apartments in Por-
tugal. They calibrated their results on indoor air quality and estimated
the root mean square error for simulated values between 5 and 10%.
They also examined the impact of a mechanical ventilation system
based on CO2 demand. Pereira et al. (2017) conducted studies in resi-
dential buildings located in temperate climates and discovered that res-
idents' behavior is effective in achieving IAQ levels and high thermal
comfort, which is influenced by several factors concurrently. Canha et
al. (2017) investigated the concentration levels of several chemical
compounds (CO2, CO, VOCs, formaldehyde, etc.) in a bedroom of a
house in Portugal. They measured the concentration of the chemical
compound for twelve consecutive days in August. Also, four different
factors of ventilation regulation with window or door open or closed
were analyzed. They also found that the air infiltration rate had a dilut-
ing effect on the concentration of internal pollutants. McGill et al.

(2015) worked on eight different buildings in the UK which were built
under the same insulation and airtight conditions. They inspected four
houses with natural ventilation and four others with a mechanical ven-
tilation system equipped with a heat recovery unit. They concluded that
four mechanically ventilated houses could maintain CO2 levels below
1000 ppm at any time in the living room and bedroom for both summer
and winter periods. Noris et al. (2013) studied the effect of energy re-
silience on indoor environmental quality in sixteen apartments. They
considered eight apartments with continuous mechanical ventilation
and eight other apartments without mechanical ventilation. They re-
ported results for a mixture of formaldehyde and nitrogen dioxide con-
centrations and found that apartments with continuous mechanical
ventilation had a greater improvement in indoor quality than apart-
ments without mechanical ventilation. Fan et al. (2021) investigated
the CO2 rate of sleeping people. They studied several men and women
sleeping in the compartment and discovered that the average CO2 rate
for women was about 11 ∓ 1.4 L per hour, and for men, it was 8%
higher than women. On the other hand, several researchers predicted
CO2 concentration and provided equations for it. The high cost of labo-
ratory work as well as the large amount of time spent for producing and
providing the sample coerces the researchers into focusing on numeri-
cal works and ultra-innovative algorithms and implementing various
machine learning methods. Researchers need a series of experimental
data to initiate numerical work and identify the factors influencing
their aims. To design this data, a random sampling should be used to
properly examine all the factors. There are several methods for random
sampling, one of the best of which is the Latin Hypercube Sampling
method (LHS) which was used by many researchers in various fields. An
ideal choice must be made from random data. In most cases, choosing
an ideal case is time-consuming and difficult, and as a result, it is better
to use the help of machine learning and optimization algorithms. One of
the useful approaches is the GMDH type of artificial neural network
(ANN-GMDH), which can offer an accurate approximation of the
model. The process of this network is to combine the input data in pairs
to form neurons, each of which contains a polynomial. By placing the
neurons next to each other, a layer is created, and in the same way, the
neurons are combined in pairs to form the next layers until achieving a
single neuron or output. The quality of the neural network is appropri-
ate when the results predicted by the neural network are close to the
simulation data. The neural network can be used to predict the goals of
research (Band et al., 2020a, 2020b; Dianati Tilaki et al., 2020; Zhang
et al., 2021; Shang et al., 2021; Lu et al., 2021; Said et al., 2021). This
prediction can be done in line with time series prediction or a predic-
tion model for data analysis. This type of neural network was used in
various fields of mechanical engineering (Zhang et al., 2022; Nabipour
et al., 2020). Shahsavar et al. (2019) investigated the effect of density
and temperature of Fe3O4 nanoparticles on the viscosity and thermal
conductivity of liquid paraffin-based nanofluids. Looney et al. (Loni et
al., 2018) focused on the Petroleum/MWCNT nanofluid, a hemispheri-
cal cavity receiver that collects solar energy. They optimized the re-
ceiver by increasing the heat absorption and increasing the collector
thermal performance by 13%. In recent years, many researchers have
used this approach specifically in the fields of renewable energy, energy
and building, etc. In previous studies, researchers focused more on re-
ducing CO2 concentrations indoors and did not consider the economic
costs of the building. This issue appears when a natural or mechanical
ventilation system is used to reduce the CO2 concentration, and the air
conditioning system should consume higher level of electricity to pro-
vide thermal comfort to the residents (Lin et al., 2022; Xie and Sun,
2022; Wang et al., 2022). However, the desired air quality and eco-
nomic costs can be reached in the case of using appropriate design vari-
ables. In this paper, the amount of CO2 is also predicted for the next few
years so that researchers can use this data to expand their studies. Using
the GMDH artificial neural network time series, the level of CO2 pollu-
tants was predicted on a monthly and annually basis from 2020 to
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Table 4
Optical specifications of window glass.
Constructions Properties Unit Value

Double-glazed windows Total heat transfer coefficient (U( 2.58
Solar heat gain coefficient – 0.703
Visible transmittance – 0.781

Table 5
Properties of the HVAC system.
Design parameter Value

Cooling set point 25 °C
Cooling airflow rate Auto size
Zone Cooling sizing factor 1.15
Cooling Coil Gross Rated Cop 3
Cooling coil Single speed DX
Heating set point 22 °C
Heating airflow rate Auto size
Zone heating sizing factor 1.15
Heating Coil Gross Rated Cop 2.75
Heating coil Single-speed DX heat pump
No-load airflow rate 0
Outdoor airflow rate Per person 0.009 m3/s

Table 6
The values of electricity consumption in different spaces of the building.
Zone Lux

Bedroom 1 100
Bedroom 2 100
Kitchen 200
Hall 200
Bathroom 100
Toilet 100
Staircase and Entrance 150
Parking 150

2025, and the growth in CO2 pollutants during these 5 years has been
calculated. These pollutants are able to be directed in the building
space from outside by air conditioning systems and impair air quality.
Hence, five design variables are examined to optimize air quality. The
design variables are the cooling and heating set point temperature of
the air conditioning thermostat, the level of the residents' clothes for
the hot and cold seasons and the amount of fresh air that is transferred
into the building by the ventilation system. These variables are selected
in order to optimize the objective functions of study, which are the
amount of CO2 concentration (to optimize indoor air quality) in the
ventilated areas of the building and the annual cost of electricity con-
sumption of the building and thermal comfort. Morris sensitivity analy-
sis was used to investigate the effect of 5 design variables on the three
objective functions. In order to have the desired air quality and eco-
nomic costs for the building, as well as the thermal comfort of the build-
ing occupants, all three objective functions must be minimized at the
same time. Therefore, design variables and objective functions in JE-
PLUS software are designed, and at the next step, they are analyzed
based on the building's energy performance using EnergyPlus software.
The elicited data are then transferred to JEPLUS + EA software, where
they are optimized by the NSGA-II algorithm. This algorithm deter-
mines the most optimal states so that users can select any state that is in
line with their goals. To select the optimal point, the weighted average
method is applied so that all three objective functions are reduced to
the desired level.

2. Materials and methods

2.1. Weather stations

In this article, 6 cities from 6 different states of the U.S are selected
according to the continental division of the United States (Abichou et
al., 2015). These 6 cities are chosen based on having different climates.
For instance, Cold Bay, Alaska is opted as it owns a polar and very cold
climate, and Rogers, Oklahoma is the targeted city that represents a hu-
mid continental climate, The rest of the cities were selected based on
having different climatic characteristics. Owing to the fact that the
United States has variety in climatic conditions and does not have a uni-
fied climate like other countries, this variety is expected to affect the
energy consumption of buildings and causes the amounts of pollutants
and their emissions to be different for each climatic condition. For this
reason, American cities are chosen to be analyzed in present study. The
climatic and geographical specifications of each city can be seen in Fig.
1 and Table 1.

2.2. Buildings and materials

In recent years, the models used by researchers are based on the
characteristics of a real building, and in this article, we have tried to use
the same model and the characteristics of a real building have been
modeled (Naderi et al., 2020; Baghoolizadeh et al., 2021; Solgi et al.,
2018; Ahangari and Maerefat, 2019; Muruganantham, 2010; Refat and
Sajjad, 2020; Alghoul, 2017). This is useful because the calculations of
a real building in the city can be done accurately enough. After all, the
characteristics of the building get closer and closer to the real state. For
example, a residential building is adjacent to other buildings in differ-
ent directions, and the building spaces are designed and built to prevent
energy loss. This residential building is adjacent to neighboring build-
ings in the directions of east and west. The building consists of four
floors, of which the lower floor is the parking lot and the upper three
floors are the residential type that has similar plans. Each floor includes
two bedrooms, a bathroom, a kitchen, and a living room. For the bed-
rooms on the north side of the building, a window is considered to re-
ceive sunlight and affect the energy of the building. The shape of the
residential building and the specifications of the residential floor spaces
are shown in Fig. 2 and Table 2 (see Fig. 3).

Although energy consumption in buildings varies in different cli-
matic conditions, many studies have shown that a building with unique
coverage and air conditioning systems can be used for different climates
(Naderi et al., 2020; Baghoolizadeh et al., 2021; Solgi et al., 2018;
Ahangari and Maerefat, 2019; Muruganantham, 2010; Refat and Sajjad,
2020; Alghoul, 2017).

Buildings’ Covering is one of the effective factors in preventing en-
ergy loss. In most previous studies, researchers considered transparent
and opaque building materials to be the same for different climates to
provide the same conditions for the simulations (Baghoolizadeh et al.,
2021; Foroughi et al., 2021; Huo et al., 2021; Synnefa et al., 2007). The
U values (Total heat transfer coefficient) of materials in the building en-
velope (opaque materials) are summarized according to Table 3 and the
building windows (transparent materials) have clear double-glazed
glass with a thickness of 6 mm and an air layer of 13 mm between, the
optical properties of which are shown in Table 4.

2.3. HVAC system and internal gain loads

A proper air conditioning system in the building can affect the en-
ergy consumption of the building. The packaged terminal heat pump
system, or PTHP for short, is one of the systems that researchers have
used experimentally and in the simulated form in their studies (Naderi
et al., 2020; Muruganantham, 2010; Refat and Sajjad, 2020; Alghoul,
2017; Wiryadinata et al., 2016). In this study, a packaged terminal heat
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Fig. 4. Occupancy fraction for the model.

Table 7
Electricity consumption costs for different US states.
State Average Price of Electricity (Cents/kWh)

Alaska 23.99
Colorado 12.84
Florida 11.71
Utah 11.09
Kentucky 10.55
Oklahoma 10.11

pump (PTHP) as the air conditioning system is applied to heat and cool
the building. This system has two direct expansion coils, one for cooling
(cooling coil (DX) and the other for space heating (heating coil) (DX).
This system can employ electricity for cooling and gas or electricity for
heating. In this study, the air conditioning system uses electricity for
both cooling and heating and also uses a fan to direct the hot or cold air
to the desired space, regulate the pressure and clean the indoor air. An-
other privilege of this system is, on the one hand, bringing fresh air into
its cycle, and removing the circulating air in the space on the other
hand. Due to the residential nature of the building, the thermostat tem-
perature is 22 °C for heating and 25 °C for constant cooling. Fig. 2 and
Table 5 describe the specifications of the ventilation system.

For the internal loads of the building, 4 individuals are considered
for each floor, and for lighting, a fluorescent lamp is utilized in each
room, the electricity consumption (per unit of lux) of which is described
in Table 6. Also, the amount of 1000 W is considered for electrical ap-
pliances. The schedule of occupancy level is shown in Fig. 4.

2.4. Electricity costs

According to the US Department of Energy (www.eia.gov.), the cost
of electricity consumption is determined for each state, which is de-
scribed in Table 7.

2.5. Group method of data handling (GMDH) neural network

Neural networks have shown to be a reliable and accurate tool for
researchers to analyze and predict results (Ivakhnenko, 1971;
Rustamovich Sultanbekov et al., 2020; Srinivasan, 2008), one type of
which is the group method of data handling (GMDH) neural networks.
Ivakhnenko (1971) first developed this type of neural network in 1971.
This type of neural network has been used in various fields of engineer-
ing (Zhang et al., 2022; Nabipour et al., 2020; Shahsavar et al., 2019;
Loni et al., 2018; Lin et al., 2022; Xie and Sun, 2022; Wang et al., 2022;

Zor et al., 2020; Rostamzadeh-Renani et al., 2022; Madandoust et al.,
2010). The technique of this type of neural network is to use the ap-
proach of self-organization and automatic optimization that receives a
large number of inputs and delivers one output. This type of neural net-
work can be used in many ways, including predicting, optimizing, mod-
eling complex systems, data mining, etc. The main purpose of the
GMDH neural network is to create and predict meaningful output data.
GMDH owns three general layers of the input layer, the hidden layer,

and the output layer. The inputs combine as compounds to form a

neuron, each of which contains a polynomial equation. In the same
way, the neurons are combined to reach the final layer or output layer.
In the GMDH type of artificial neural network, the input function is X
and the output value is y. The approximate output value predicted by
the neural network is shown with and is the approximate function
for f. In multi-input functions of M and single output function of n, the
actual values are obtained according to Eq. (1).

(1)

The values of are predicted by the function with the input vec-
tor of and their relation is according to Eq. (2),

(2)

In the next step, it is demanded to calculate the number of error
squares between the output and the output approximated by GMDH,
which must be minimized. The equation of the least-squares of error be-
tween these two outputs is calculated according to Eq. (3),

(3)

The inputs and the outputs are related by the famous Volttera series
(Farlow, 1984) according to Eq. (4),

(4)

The polynomials in Eq. (4) are regulated by Kolmogorov-Gabor
(Ivakhnenko, 1971; Farlow, 1984; Sanchez et al., 1997) polynomials as
explained in Eq. (5),

(5)

Eqs. 1 and 2 are described by Eq. (6), which must be minimized,

(6)

In the GMDH algorithm, all probabilities of two variables indepen-
dent of the sum of n input variables are considered for regression con-
struction. The polynomial in the form of Eq. (6) which best corresponds
to the dependent observations is the first hidden layer of the feed-
forward neuron network ( of yi(i = 1,2, …,M)) that means
the least squares. As a result, M can be the number of observations

for different p,q∈ {1,2,3, …,n} acquired
and using the polynomial equation of Eq. (5) in addition to

5
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Fig. 5. The formation of neurons in each layer.

Fig. 6. The positioning of neural network neurons to predict CO2 concentration.

, the matrix equation can be written for each triple

row M according to Eqs. (7)–(9),

(7)
(8)
(9)

The matrix A is then changed to Eq. (10),

(10)

The matrix c is eventually calculated according to Eq. (11),

(11)

The optimal values of the coefficients of Eq. (5) (Kolmogorov-Gabor
polynomials) is calculated through Eq. (11). In Eq. (11), the A is a ma-
trix that can be obtained through Eq. (10) and AT is the matrix trans-
pose of A. This process is performed again for all the next neurons of the
hidden layer which are associated with the configuration of the neural
network connection. Fig. 5 shows the schematic for the formation of
neurons in the layers.

2.6. Time series prediction by GMDH

There are several methods for predicting time series. A classic
method for predicting time series is to use latency or previous data

where d is the number of delays and yt is the
output and the function of yt is in the form of Eq. (12),

(12)

There is no systematic method for determining the value of d. How-
ever, two methods of adhoc and Box Jenkins (Shabri and Samsudin,
2014) can be taken into consideration. The delays obtained from the
Box Jenkins method are very important for the input layer of the GMDH
neural network. This is how the GMDH neural network makes time-
series predictions. There are two criteria for evaluating the neural net-
work model, one is R2 and the other is RMSE (root mean square error)
which are described as Eq. (13) and Eq. (14). The closer the value of R2

is to one and the closer the value of RMSE is to zero, the closer the pre-
dicted points of the neural network are to the simulation points.

(13)

(14)

2.7. Morris sensitivity analysis

Researchers use sensitivity analysis to study the effect of input vari-
ables on output variables. There are several methods for sensitivity
analysis, one of which is Morris sensitivity analysis (www.eia.gov.).
Morris sensitivity analysis (Morris, 1991) is a so-called one-time-at-one-
time (OAT) method, meaning that only one input parameter is given a
new value per run. In this method, the parameter f is first considered as
an independent input with k, which means that in
the next k space are definable. Y is also considered as the
output of the model in question, with Y = f (X) in addition to the value
of X being attributed to Ωk or X∈Ωk. If the value of Xi changes with Δ
while the values of all other inputs remain unchanged, the output is

considering
. EEi can be calculated according

to Equation (15).

(15)

Equation (15) follows the OAT method. In Morris Sensitivity Analy-
sis (Morris, 1991), mean deviation and standard deviation, known as μ
and σ, respectively, are used as the screening criteria and are calculated
according to Equations 16 and 17.

6



CO
RR

EC
TE

D
PR

OO
F

M. Baghoolizadeh et al. Journal of Cleaner Production xxx (xxxx) 134753

Fig. 7. Predicted CO2 concentration levels from 2020 to 2025.

Table 8
Values obtained from R2 and RMSE for the objective function.
Objective RMSE R2

CO2 concentration 0.87 0.985552

(16)

(17)

According to Equations 16 and 17, the higher the value of μ is, the
greater the effect of the input parameter on the output is. Moreover, if
the value of σ becomes higher, the interaction of the input parameter
with other parameters enhances.

2.8. Predicting CO2 concentration

One of the long-standing environmental problems has long been the
presence of pollutants. With the development of cities and the increase
in human population, the construction of residential and commercial
buildings has increased rapidly and the activity of power plants has
doubled to supply their energy consumption. Humans also use energy
carriers for transportation in their daily lives. All of these factors have
led to a sharp rise in environmental pollutants, including CO2. The in-
crease of pollutants, it has caused global warming, which in turn has re-
sulted in climate change. CO2 data are recorded annually by the Global
Monitoring Laboratory (https://gml.noaa.gov/.), the latest of which is
available for 2020. The purpose of this paper is to predict the amount of
CO2 pollutants in the coming years. In this paper, using time series pre-
diction by GMDH neural network, CO2 emission values are predicted by
2025 for 6 American cities. The GMDH type of artificial neural network
can predict the amount of CO2. To predict the amount of CO2 pollutants
for the coming year, the recorded data regarding the amount CO2 pollu-
tants in previous years are integrated. Fig. 6 shows how the neurons
combine and is located in each layer. Moreover, the predicted amounts

of CO2 for Niwot Ridge, the values of RMSE and R2 and the scattering of
data is shown in Fig. 7, Table 8 and Fig. 8, respectively.

According to Fig. 7, the amount of CO2 will increase significantly
during 5 years (2020–2025) as is expected. Fig. 7 and Table 8 were re-
lated to Niwot Ridge. The results for other cities are fully described in
the appendix. The percentage of CO2 increase can also be seen in Table
9 for each city monthly.

Table 9 shows that the amount of CO2 would increase by 1–3% in
the next 5 years which is a matter of concern for human society and
causes deleterious consequences for human health. One of these prob-
lems is related to the residential buildings sector, which makes unfa-
vorable air quality inside the building. Air conditioning systems use
outside air to cool and heat the building, and because of their mecha-
nism, they make the air temperature favorable for the residents and
transfer it to the spaces by the fan. Residents also emit CO2 as a result
of daily activities and respiration. All these factors reduce the desired
quality of indoor air and increase CO2 inside the building and subse-
quently decrease the oxygen in the air which causes dizziness and
headaches in residents. The purpose of the present research is to im-
prove indoor air quality along with reducing the annual cost of elec-
tricity consumption of the building, which is fully described in the fol-
lowing parts.

2.9. Design variables and objective functions

EnergyPlus is one of the most powerful software in the field of en-
ergy and building. The software was developed by the US Department
of Energy and all parts were tested experimentally before it was re-
leased (Tabares-Velasco et al., 2012; Mateus et al., 2014; Pereira et al.,
2014; Henninger et al., 2004). This software is used by researchers in
various fields of energy and building (Naderi et al., 2020; Pandey et al.,
2021; Kamal et al., 2019). Yi Zhang (Mashrae) first introduced jEPlus
software in 2012 as the parameterization tool for EnergyPlus. This soft-
ware is one of the most powerful software in the field of parameteriza-
tion that is paired with energy software and design parameters can be
set numerically or categorically for it (Zhang and Korolija, 2010;
Naboni et al., 2013). Zhang then introduced another software called jE-
Plus + EA to improve the capabilities of the software which were the
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Fig. 8. Dispersion of CO2 concentration data.

possibility for conducting optimization (NSGAII) (Said et al., 2021;
Naderi et al., 2020; Delgarm et al., 2016a), sensitivity analysis (Naji et
al., 2021; Delgarm et al., 2018; Chen and Tsay, 2021) and a variety of
random sampling methods (Said et al., 2021; Chen and Tsay, 2021; Guo
et al., 2019). The design variables of the present study are the heating
and cooling set point temperature of the thermostat, clothing insulation
value (CLO) (ANSI/ASHRAE, 2013), and the amount of fresh air
(ASHRAE 62.1 and V.f.a.i.a.q, 2016) that is transferred into the build-
ing by the air conditioning system. The objective functions are the
amount of CO2 concentration inside the building, the building's annual
cost of electricity consumption and the occupants' thermal comfort that
are targeted to concurrently be reduced. The design variables designed
in jEPlus software can be seen in Table 10.

Changes in the clothing insulation level of the residents in the cold
and hot seasons affect their thermal comfort. This thermal comfort can
also be provided with heating and cooling set point thermostat temper-
atures. Hence, with the proper design of these four parameters, the an-
nual electricity cost can be diminished and the desired thermal comfort
for the residents can be provided. As the amount of fresh air inside the
spaces increases, the air quality is affected inside the building. On the
other hand, the annual electricity consumption of the building in-
creases. Therefore, the amount of fresh air should be set to optimize the
amount of CO2 concentration and the annual electricity consumption of
the building. Statistical analysis such as Morris sensitivity analysis can
be used to show the effect of design variables on objective functions.
Table 11 shows the sampled results of the Morris sensitivity analysis
(Morris, 1991) for the objective functions and design variables.

After examining the effect of design variables on objective func-
tions, it is crucial to discover the most optimal points that minimize all
three objective functions. Parametric variables that are parametrized
by JEPLUS software must be transferred to JEPLUS + EA software for
optimization. In JEPLUS + EA software, the parametric variables are
optimized using genetic algorithm. The schematic of the energy simula-
tion to optimization process is detailed in Fig. 9.

2.10. Multi-objective optimization of the building's annual electricity
consumption cost and CO2 concentration and thermal comfort

In this study, it is targeted to reduce the electricity consumption cost
of the building as well as improving indoor air quality and thermal
comfort of residents. In recent years, researchers have focused their
studies on the feasible methods of diminishing the energy consumption
of buildings. Due to the fact that fossil fuels are burned to generate elec-
tricity in power plants, the role of household's energy reduction is be-
coming more prominent to minimize the utilization of fossil fuels. With
global increase in the electricity consumption and burning of fossil re-
sources, various pollutants are released into the environment and en-
danger human life. Polluted air is transported inside the building using
mechanical or natural ventilation, which reduces the quality of indoor
air, which subsequently endangers the health condition of residents.
Also, in the buildings, conditions should be provided for the residents to
benefit from high heating comfort. In order to accomplish these goals, a
multi-objective optimization must be performed. Researchers have
faced great challenges in selecting the right optimization algorithms
and have used different optimization algorithms for their simulated re-
sults as needed to achieve optimal choices for their research. One of the
most common algorithms for optimization purposes is the genetic algo-
rithm (Li et al., 2021). One of the most well-known algorithms in the
field of multi-objective optimization is the Non-Dominant Genetic Algo-
rithm (NSGA), the second version of which was introduced as NSGA-II
in 2002 (Deb et al., 2002). This algorithm was used in various fields of
energy and buildings (Bre et al., 2016; Carlucci et al., 2015; Rosso et al.,
2020; Yang et al., 2016). Since there are no restrictions on the selection
of continuous and discrete decision variables in this algorithm, NSGA-II
is used as an optimization method in present research. Furthermore,
since most optimization problems have more than one objective func-
tion and the objective functions are usually in conflict with each other,
it offers a set of solutions that are not superior to each other, which is
called the Pareto front (Asadi et al., 2012; Zhai et al., 2019). In this
study, JEPLUS + EA software is implemented for multi-objective opti-
mization (Zhang, 2012). JEPLUS + EA software requires JEPLUS para-
meterized data. For this purpose, in JEPLUS software, the weather data
and the simulated data are inserted as the input for this software. Then,
the design variables are created in JEPLUS software and used as the in-
puts to reach the objective functions. The file created by JEPLUS is now
transferred to JEPLUS + EA. Due to the fact that the modes of the de-
sign variables interact with each other alternately, it will face a very
large number of modes. As a result, the NSGA-II algorithm is used to
lead the model to the best points or Pareto front. For the configuration
of the algorithm with the initial analysis performed for convergence,
population size, maximum number of generations, crossover rate and
mutation rate are considered 10, 50, 100% and 20%, respectively. After
performing the optimization and receiving the Pareto front from the
NSGA-II algorithm, the best point is required to be selected. There are
many statistical methods for reaching the best possible answer. One of
the applicable methods that is commonly employed by many re-
searchers (Delgarm et al., 2016b; Karmellos et al., 2015; Ryu et al.,
2009) is the sum of weighted method. This method estimates the best
answer using Equation (18).

(18)

Where fi(x) are the objective functions, ie power consumption, ther-
mal and visual comfort, and similarly and are the mini-
mum and maximum of each objective function.ai is the weight coeffi-
cient. It means that considering that thermal comfort and co2 concen-
tration are of equal importance, the value of the weight coefficient of
these two functions is assumed to be the same. Therefore, the weight
coefficient can be calculated according to Equation (19).
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Table 9
Monthly increase in CO2 concentration during 5 years from 2020 for the cities of (a) Cold Bay (b) Niwot Ridge (c) Key Biscayne (d) Midway (e) Rogers (f) Wen-
dover.
(a)

Annual 4978.2 5003.03 0.5 4978.2 5023.75 0.915 4978.2 5027.81 0.997 4978.2 5048.12 1.405 4978.2 5067.65 1.797

Dec 419.8 421.135 0.318 419.8 422.433 0.627 419.8 422.845 0.725 419.8 424.450 1.108 419.8 425.7 1.4
Nov 417.5 418.85 0.323 417.5 420.238 0.656 417.5 420.089 0.62 417.5 420.933 0.822 417.5 421.9 1.05
Oct 414 415.464 0.354 414 416.363 0.571 414 415.212 0.293 414 416.031 0.491 414 417.2 0.77
Sep 407.3 408.939 0.402 407.3 411.114 0.936 407.3 411.756 1.094 407.3 412.553 1.289 407.3 414.3 1.73
Aug 402.8 406.324 0.875 402.8 409.411 1.641 402.8 409.617 1.692 402.8 411.159 2.075 402.8 413.6 2.67
Jul 406.1 409.266 0.78 406.1 411.796 1.403 406.1 412.617 1.605 406.1 415.433 2.3 406.1 417.8 2.88
Jun 414.1 416.623 0.609 414.1 418.677 1.105 414.1 418.986 1.18 414.1 420.813 1.621 414.1 422.7 1.75
May 418.8 420.921 0.506 418.8 422.358 0.85 418.8 422.789 0.952 418.8 424.435 1.346 418.8 426.1 1.75
Apr 419.9 421.988 0.497 419.9 423.517 0.861 419.9 424.140 1.01 419.9 425.739 1.391 419.9 427.4 1.79
Mar 420.5 422.259 0.418 420.5 423.631 0.745 420.5 424.982 1.066 420.5 426.177 1.35 420.5 427.6 1.69
Feb 419.6 421.255 0.394 419.6 422.415 0.671 419.6 423.748 0.989 419.6 425.497 1.405 419.6 427 1.76
Jan 417.8 420 0.526 417.8 421.796 0.956 417.8 423.025 1.251 417.8 424.900 1.7 417.8 426.3 2.03
Year 2020

(ppm)
2021
(ppm)

Increase
(%)

2020
(ppm)

2022
(ppm)

Increase
(%)

2020
(ppm)

2023
(ppm)

Increase
(%)

2020
(ppm)

2024
(ppm)

Increase
(%)

2020
(ppm)

2025
(ppm)

Increase
(%)

(b)

Annual 4980.68 4998.68 0.361 4980.68 5014.63 0.682 4980.68 5029.62 0.983 4980.68 5043.25 1.256 4980.68 5064.30 1.679

Dec 417.490 417.791 0.072 417.490 418.850 0.326 417.490 419.626 0.512 417.490 420.281 0.668 417.490 421.202 0.89
Nov 414.940 415.366 0.103 414.940 416.489 0.373 414.940 417.307 0.570 414.940 417.833 0.697 414.940 418.901 0.955
Oct 412.430 413.043 0.149 412.430 414.386 0.474 412.430 415.262 0.687 412.430 416.213 0.917 412.430 417.848 1.314
Sep 410.450 412.634 0.532 410.450 414.291 0.936 410.450 415.260 1.172 410.450 416.328 1.432 410.450 418.141 1.874
Aug 411.720 413.620 0.461 411.720 415.216 0.849 411.720 416.330 1.120 411.720 417.287 1.352 411.720 419.061 1.784
Jul 413.850 415.426 0.381 413.850 416.686 0.685 413.850 417.902 0.979 413.850 418.830 1.203 413.850 420.701 1.656
Jun 415.410 417.547 0.514 415.410 418.503 0.745 415.410 419.617 1.013 415.410 420.786 1.294 415.410 422.824 1.785
May 417.130 418.646 0.364 417.130 419.719 0.621 417.130 420.916 0.908 417.130 422.291 1.237 417.130 424.849 1.851
Apr 417.540 418.709 0.280 417.540 420.285 0.658 417.540 422.021 1.073 417.540 423.604 1.452 417.540 426.135 2.059
Mar 417.200 418.401 0.288 417.200 420.072 0.688 417.200 422.007 1.152 417.200 423.894 1.605 417.200 426.240 2.167
Feb 416.840 418.974 0.512 416.840 420.375 0.848 416.840 422.138 1.271 416.840 423.604 1.623 416.840 425.262 2.02
Jan 415.680 418.526 0.685 415.680 419.766 0.983 415.680 421.242 1.338 415.680 422.303 1.593 415.680 423.139 1.794
Year 2020

(ppm)
2021
(ppm)

Increase
(%)

2020
(ppm)

2022
(ppm)

Increase
(%)

2020
(ppm)

2023
(ppm)

Increase
(%)

2020
(ppm)

2024
(ppm)

Increase
(%)

2020
(ppm)

2025
(ppm)

Increase
(%)

(c)

Annual 4981.84 5005 0.465 4981.84 5020.87 0.783 4981.84 5037.73 1.122 4981.84 5052.32 1.415 4981.84 5066.54 1.7

Dec 415.320 418.186 0.690 415.320 419.025 0.892 415.320 419.939 1.112 415.320 421.488 1.485 415.320 422.916 1.829
Nov 415.860 417.637 0.427 415.860 419.205 0.804 415.860 420.407 1.093 415.860 421.671 1.397 415.860 422.942 1.703
Oct 417.230 419.167 0.464 417.230 419.688 0.589 417.230 420.533 0.792 417.230 421.586 1.044 417.230 422.929 1.366
Sep 419.330 419.690 0.086 419.330 419.971 0.153 419.330 421.121 0.427 419.330 422.031 0.644 419.330 423.067 0.891
Aug 418.520 419.712 0.285 418.520 421.603 0.737 418.520 422.161 0.870 418.520 423.000 1.070 418.520 423.696 1.237
Jul 416.730 419.416 0.644 416.730 421.430 1.128 416.730 422.030 1.272 416.730 423.231 1.560 416.730 424.231 1.800
Jun 414.240 417.291 0.737 414.240 418.972 1.142 414.240 421.211 1.683 414.240 422.988 2.112 414.240 424.393 2.451
May 411.380 414.335 0.718 411.380 416.398 1.220 411.380 419.326 1.931 411.380 421.011 2.341 411.380 422.999 2.824
Apr 409.980 412.721 0.669 409.980 414.037 0.990 409.980 416.565 1.606 409.980 418.247 2.016 409.980 420.345 2.528
Mar 411.680 412.911 0.299 411.680 414.578 0.704 411.680 416.111 1.076 411.680 417.067 1.308 411.680 418.002 1.536
Feb 414.760 416.370 0.388 414.760 417.547 0.672 414.760 418.328 0.860 414.760 419.114 1.050 414.760 419.244 1.081
Jan 416.810 417.572 0.183 416.810 418.416 0.385 416.810 419.988 0.763 416.810 420.876 0.975 416.810 421.771 1.19
Year 2020

(ppm)
2021
(ppm)

Increase
(%)

2020
(ppm)

2022
(ppm)

Increase
(%)

2020
(ppm)

2023
(ppm)

Increase
(%)

2020
(ppm)

2024
(ppm)

Increase
(%)

2020
(ppm)

2025
(ppm)

Increase
(%)

(d)

Annual 4974.89 4989.93 0.302 4974.89 5007.75 0.661 4974.89 5023.14 0.970 4974.89 5034.413 1.196 4974.89 5047.89 1.467

Dec 415.79 417.549 0.423 415.79 418.638 0.685 415.79 419.830 0.972 415.79 420.424 1.114 415.79 421.389 1.347
Nov 414.72 416.088 0.330 414.72 417.000 0.550 414.72 418.001 0.791 414.72 418.570 0.928 414.72 419.329 1.111
Oct 411.89 412.811 0.224 411.89 414.317 0.589 411.89 415.209 0.806 411.89 416.001 0.998 411.89 416.438 1.104
Sep 409.42 411.177 0.429 409.42 412.850 0.838 409.42 414.194 1.166 409.42 415.196 1.411 409.42 416.098 1.631
Aug 410.43 412.042 0.393 410.43 413.716 0.801 410.43 415.513 1.238 410.43 416.704 1.529 410.43 418.101 1.869
Jul 413.08 414.551 0.356 413.08 416.223 0.761 413.08 418.081 1.211 413.08 419.305 1.507 413.08 420.820 1.874
Jun 415.73 417.337 0.386 415.73 418.969 0.779 415.73 420.516 1.151 415.73 421.514 1.391 415.73 422.835 1.709
May 417.68 419.113 0.343 417.68 420.385 0.648 417.68 421.435 0.899 417.68 422.134 1.066 417.68 423.131 1.305
Apr 417.7 418.490 0.189 417.7 419.773 0.496 417.7 420.776 0.736 417.7 421.593 0.932 417.7 422.846 1.232
Mar 416.81 416.946 0.033 416.81 418.789 0.475 416.81 419.907 0.743 416.81 420.931 0.989 416.81 422.344 1.328
Feb 416.34 416.862 0.125 416.34 418.287 0.468 416.34 419.468 0.751 416.34 420.716 1.051 416.34 422.133 1.391
Jan 415.3 416.965 0.401 415.3 418.806 0.844 415.3 420.214 1.183 415.3 421.326 1.451 415.3 422.428 1.716

(continued on next page)
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Table 9 (continued)
(d)

Annual 4974.89 4989.93 0.302 4974.89 5007.75 0.661 4974.89 5023.14 0.970 4974.89 5034.413 1.196 4974.89 5047.89 1.467

Year 2020
(ppm)

2021
(ppm)

Increase
(%)

2020
(ppm)

2022
(ppm)

Increase
(%)

2020
(ppm)

2023
(ppm)

Increase
(%)

2020
(ppm)

2024
(ppm)

Increase
(%)

2020
(ppm)

2025
(ppm)

Increase
(%)

(e)

Annual 5006.61 5018.88 0.25 5006.61 5034.11 0.55 5006.61 5045.14 0.77 5006.61 5058.29 1.03 5006.61 5069.13 1.25

Dec 423.66 423.749 0.02 423.66 424.39 0.17 423.66 425.69 0.48 423.66 426.20 0.60 423.66 427.38 0.88
Nov 422.14 422.209 0.02 422.14 422.43 0.07 422.14 422.46 0.08 422.14 422.69 0.13 422.14 423.15 0.24
Oct 415.58 415.635 0.01 415.58 415.80 0.05 415.58 415.99 0.10 415.58 416.42 0.20 415.58 416.99 0.34
Sep 412.45 412.753 0.07 412.45 413.87 0.34 412.45 414.58 0.52 412.45 416.21 0.91 412.45 416.87 1.07
Aug 411.96 413.724 0.43 411.96 414.88 0.71 411.96 415.68 0.90 411.96 417.00 1.22 411.96 418.00 1.47
Jul 411.57 414.307 0.66 411.57 416.47 1.19 411.57 417.15 1.35 411.57 418.30 1.63 411.57 419.12 1.83
Jun 415.33 415.986 0.16 415.33 418.13 0.68 415.33 418.82 0.84 415.33 419.37 0.97 415.33 420.28 1.19
May 417.82 417.963 0.03 417.82 418.56 0.18 417.82 419.77 0.47 417.82 420.34 0.60 417.82 421.11 0.79
Apr 417.7 418.483 0.19 417.7 419.41 0.41 417.7 420.57 0.69 417.7 421.61 0.94 417.7 422.61 1.18
Mar 418.14 419.418 0.31 418.14 421.67 0.84 418.14 422.94 1.15 418.14 424.59 1.54 418.14 425.86 1.85
Feb 419.01 420.251 0.30 419.01 422.72 0.89 419.01 424.19 1.24 419.01 426.48 1.78 419.01 427.87 2.11
Jan 421.25 424.413 0.75 421.25 425.78 1.08 421.25 427.32 1.44 421.25 429.09 1.86 421.25 429.90 2.05
Year 2020

(ppm)
2021
(ppm)

Increase
(%)

2020
(ppm)

2022
(ppm)

Increase
(%)

2020
(ppm)

2023
(ppm)

Increase
(%)

2020
(ppm)

2024
(ppm)

Increase
(%)

2020
(ppm)

2025
(ppm)

Increase
(%)

(f)

Annual 4980.2 5007.33 0.54 4980.2 5020.18 0.80 4980.2 5031.33 1.03 4980.2 5046.14 1.32 4980.2 5061.35 1.63

Dec 418.86 420.28 0.34 418.86 420.86 0.48 418.86 421.48 0.63 418.86 422.02 0.75 418.86 422.57 0.88
Nov 415.46 417.14 0.40 415.46 417.61 0.52 415.46 417.94 0.60 415.46 418.82 0.81 415.46 419.27 0.92
Oct 412.11 413.53 0.35 412.11 413.91 0.44 412.11 414.81 0.66 412.11 415.98 0.94 412.11 417.52 1.31
Sep 411.28 413.24 0.48 411.28 413.98 0.66 411.28 415.13 0.94 411.28 416.48 1.26 411.28 418.24 1.69
Aug 411.04 413.55 0.61 411.04 414.84 0.92 411.04 416.08 1.22 411.04 417.52 1.58 411.04 419.23 1.99
Jul 411.13 414.56 0.83 411.13 416.14 1.22 411.13 417.42 1.53 411.13 418.86 1.88 411.13 420.38 2.25
Jun 413.31 416.79 0.84 413.31 418.03 1.14 413.31 419.12 1.41 413.31 420.23 1.67 413.31 421.40 1.96
May 416.26 418.42 0.52 416.26 419.39 0.75 416.26 420.34 0.98 416.26 421.43 1.24 416.26 422.49 1.50
Apr 417.37 419.57 0.53 417.37 420.29 0.70 417.37 420.72 0.80 417.37 422.30 1.18 417.37 423.76 1.53
Mar 417.91 419.68 0.42 417.91 420.99 0.74 417.91 421.98 0.97 417.91 423.60 1.36 417.91 425.03 1.70
Feb 418.55 420.31 0.42 418.55 422.11 0.85 418.55 423.22 1.11 418.55 424.91 1.52 418.55 426.24 1.84
Jan 416.92 420.26 0.80 416.92 422.02 1.22 416.92 423.09 1.48 416.92 424.00 1.70 416.92 425.22 1.99
Year 2020

(ppm)
2021
(ppm)

Increase
(%)

2020
(ppm)

2022
(ppm)

Increase
(%)

2020
(ppm)

2023
(ppm)

Increase
(%)

2020
(ppm)

2024
(ppm)

Increase
(%)

2020
(ppm)

2025
(ppm)

Increase
(%)

Table 10
The properties of the design variables.
Design variables Unit Type Range

Heating Set point °C Continuous (19,22.5)
Cooling Set point °C Continuous (23,26.5)
Summer clothing insulation value CLO Continuous (0.2,0.7)
Winter clothing insulation value CLO Continuous (0.7,1.2)
Fresh Air Continuous (0.0003,0.0005)

Table 11
Sensitivity analysis of design variables on objective functions.
Design variables Objective functions

Co2
concentration

Annual electricity
consumption cost

PPD

μ σ μ σ μ σ

Heating Set point 14.48 1.271 919.9 39.91 15.48 5.201
Cooling Set point 4.979 1.745 110.4 29 6.881 4.473
Summer clothing

insulation value
0 0 0 0 26.03 6.174

Winter clothing
insulation value

0 0 0 0 9.637 3.682

Fresh Air 16.68 1.183 325.5 34.97 0.04698 0.01325

(19)

Thus, a multi-objective optimization problem became a single-
objective optimization problem to determine the coefficient a1.

3. Results and discussion

After processing the optimization, JEPLUS + EA software provides
the Pareto front points to the user. These points are not superior to each
other due to the fact that the opposite objective functions are also con-
sidered. In other words, when one objective function is in the ideal posi-
tion, the other two objective functions are not in the desired state.
Therefore, a point must be considered that satisfies all the objective
functions. As a result, the method of sum of weighted method is used.
The weight factor a1, which is related to annual electricity consumption
cost, varies from 0 to 1. According to Equation (19), when a1 is consid-
ered zero, the amount of annual electricity consumed cost is at its maxi-
mum state and the other two functions, which are thermal comfort and
co2 concentration, are at their lowest. On the other hand, when the
value of a1 is equal to 1, the amount of annual electricity consumption
cost is at its minimum state, and the other objective functions are at
their highest. In order to select the best point, the value of the weight
coefficient, ie a1, is changed from 0 to 1 in steps of 0.1, and the optimal
points are introduced. Then, from the optimal 11 points, a point that
can satisfy all the objective functions is selected. The Pareto optimal
points for Niwot Ridge are shown in Fig. 10, and the values of the
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Fig. 9. Schematic of optimization steps.

Fig. 10. Optimal points of the Pareto front for Niwot Ridge city.

weight coefficients and selected points of the Pareto front are explained
in Table 12.

According to Table 12, when the weight coefficient value is zero, the
two objective functions, which are CO2 concentration and thermal
comfort, are at their lowest, while the other objective function, which is
the annual electricity consumption, is at its maximum. By increasing

the weight coefficient, the value of two objective functions that have
the same coefficients increases and the value of the other objective
function decreases until the value of the weight coefficient reaches 1.
This means that the value of the weight coefficient for other two objec-
tive functions is zero and omits their effect on the optimal choice.
Hence, at this point, the two objective functions are at their maximum,
and the third objective function, which is the amount of annual electric-
ity consumption cost, is at its lowest state. Out of these 11 optimal
points, it seems that the point with a weight coefficient of 0.5 is optimal
because it reduces the two objective functions of annual electricity con-
sumption cost of the building and the amount of CO2 concentration to a
reasonable proportion, and the third objective function, which is the
comfort temperature of the occupants, approaches a desired value. Ac-
cording to Table 12 and Fig. 11, increasing the temperature of the heat-
ing thermostat causes the amount of annual electricity consumption
cost enhances sharply, though the amount of thermal comfort and the
amount of CO2 concentration decreases. Due to the relatively cold
weather in Niwot Ridge, when the heating temperature of the thermo-
stat rises, the ventilation system must consume more electricity to bring
about the desired room temperature. On the other hand, with increase
in electricity consumption, the amount of CO2 concentration decreases,
so a temperature must be chosen that satisfies all three objective func-
tions. The temperature 21.6 °C is the point that favorably optimizes and
satisfies the objective functions of the present study. Also, for the ther-
mostat temperature, cooling temperatures above 23.5 °C will satisfy al-
most all three target functions. Because Niwot Ridge is a cold city, the
air conditioning system will produce less chilled air and the higher the
temperature of the cooling thermostat is, the less electricity is con-
sumed and the thermal comfort of the residents is fairly desirable. Ac-
cording to Fig. 12, it can be seen that the cooling thermostat tempera-

Table 12
The specifications of optimal points of the Pareto front for Niwot Ridge city.
Coefficient
(a1)

Heating set
point (°C)

Cooling set
point (°C)

Winter clothing
insulation value (CLO)

Summer clothing
insulation value (CLO)

Fresh Air CO2 Concentration
(PPM)

Annual electricity
consumption cost ($)

PPD
(%)

0 22.5 24.4 1.1 0.7 0.00049 595.2 7191.72 10.86
0.1 22.4 25.9 0.85 0.7 0.0005 593.8 7131.31 13.48
0.2 21.7 23.7 1.15 0.7 0.0005 599.2 7003.41 13.45
0.3 22.1 24.5 1.2 0.7 0.00036 608.4 6844.32 11.74
0.4 22.2 26.3 1.1 0.7 0.00031 610.26 6709.93 12.51
0.5 21.6 26.2 1.2 0.7 0.0003 613.41 6541.55 13.92
0.6 20.4 23.1 1.05 0.7 0.00031 622.13 6379.94 20.12
0.7 20 25.9 1.05 0.65 0.00033 616.66 6209 22.88
0.8 19 26.4 1.2 0.5 0.00043 612.39 6100.43 30.93
0.9 19 25.5 1.1 0.3 0.00036 618.68 6036.81 40.51
1 19 25.7 1.1 0.25 0.00033 620.72 5986.91 42.14
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Fig. 11. The effect of heating temperature of thermostat on the objective functions for the city of Niwot Ridge.

ture from a temperature of above 25 °C has a decreasing trend for all
three objective functions and the temperature of 26.2 °C results in de-
sirable values for all three objective functions. The amount of clothing
level is observed in the warm season. The increase in the clothing level
improves the thermal comfort of the building occupants, but has little
effect on the other two objective functions. Regarding the clothing level
during winter, because the climate of Niwot Ridge is colder than win-
ter, the more clothing level the occupants of the building have, the
higher level of thermal comfort can be brought about. The effect of
clothing level on the objective functions can be seen in Table 12 and
Figs. 13 and 14. The best clothing insulation levels for cooling and heat-
ing are 0.7 and 1.2, respectively. According to Table 12 and Fig. 15, in-
crease in the amount of fresh air transferred into the building by the air
conditioning system causes the amount of CO2 concentration inside the
building to be reduced, but on the other hand, the amount of electricity
consumption cost increases sharply. The reason for this decrease in CO2
is that the clean air inside the building increases, but on the other hand,
the ventilation system must consume more electricity to transfer this
amount of air, which subsequently rises electricity consumption cost.
On the other hand, the amount of fresh air does not have the same be-
havior on the thermal comfort of the residents. Based on the sensitivity
analysis, indoor air quality has little effect on the thermal comfort of
the residents. According to the optimal selection point in Table 12,
0.0003 fresh air is optimal for Niwot Ridge.

The same procedure is followed to find an optimal point for each
city. The optimal point for all cities is given in Table 13.

4. Conclusion

In this paper, the aim was to predict the growth of CO2 concentra-
tion and control its concentration in the building. The amount of CO2
concentration for 6 cities with different climates was predicted until
2025 and its growth rate was calculated during these 5 years. On the
other hand, to control the concentration of CO2 inside the building, 5
design variables were considered and the goal was to simultaneously re-
duce the concentration of CO2 inside the building and the cost of elec-
tricity consumption of the building and thermal comfort of residents.
According to the results of the present study, the following conclusions
can be deduced:

• Using the GMDH artificial neural network time series, the
amount of CO2 concentration from 2020 to 2025 was predicted
with high accuracy for 6 cities with different climates. The growth
rate of CO2 during these 5 years was predicted to be between 1
and 3% in all months of the year and 1.25 and 1.8% in the whole
year, which in turn will cause concern to human society about its
consequences, and measures must be taken to prevent its growth.

• To reduce the concentration of CO2 in the building space, the best
way is to increase the rate of fresh air in the spaces. By
appropriately ventilating the air, clean air can be brought into the
space and on the other hand, dirty air is removed from the space
and provides the desired indoor air quality is provided. Moreover,
by increasing the fresh air rate for the entry and exit of the air
conditioning system, more electricity is consumed to provide the

12
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Fig. 12. The effect of cooling temperature of thermostat on the objective functions for the city of Niwot Ridge.

ideal conditions. For this reason, the amount of fresh air through
the air conditioning system should be balanced with the ratio of
natural air entering the building to efficiently affect the economic
costs of the building. Hence, the optimal range of 0.0003–0.0005

for fresh air rates was obtained in six cities with different
climates and CO2 concentrations.

• The clothing insulation level of the residents directly affects the
thermal comfort. Thermal comfort can change and be dependent
on various factors such as psychological, climatic, etc. For cities
whose average temperature reaches below zero in the cold
season, higher clothing levels are demanded to provide thermal
comfort, and for the warmer seasons, lower clothing levels are
needed. Providing thermal comfort reduces the building's
electricity consumption, and consequently reduces the economic
costs of the building. According to the results of optimizations,
the appropriate range of clothing levels for the cold and hot
seasons is 0.7–1.2 and 0.55–0.7, respectively.

• The proper cooling and heating set point temperature of the air
conditioning system's thermostat reduces both the electricity
consumption and building costs. For cities where the temperature
is very low in winter, it is optimal to design the thermostat so that
the air conditioning system is turned on sooner to heat the building
spaces. The proper heating set point temperature of the thermostat
is approximately 19 °C for cold cities, and for cities that have a
relatively higher temperature, this value reaches between 21 and
22 °C. Similarly, the optimal design values for the cooling set point
temperature of the thermostat are between 25 and 26.5.

5. Future study

For future studies, it is suggested that the subject matter of this arti-
cle be examined experimentally and in field study form by studying sev-
eral groups of male and female from various age groups. This is due the
fact that thermal comfort, in addition to environmental factors, also de-
pends on psychological factors such as gender and people's feeling of
coldness and warmness. On the other hand, due to aging and the indica-
tion of physical diseases, the immune system and respiratory system of
individuals become weak over the time. By increasing the CO2 and de-
creasing the oxygen in the space, the possibility of breathing comfort-
ably decreases over time, and it causes headaches and dizziness, which
can be partially solved by increasing the fresh air by the air condition-
ing system. But, the increase of fresh air from the air conditioning sys-
tem consumes more electricity which imposes higher costs for the resi-
dents. Therefore, the fresh air must be transferred to the spaces with an
optimal level.
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Fig. 13. The effect of winter clothing insulation level on the objective functions
for the city of Niwot Ridge.

draft, Investigation. Reza Rostamzadeh-Renani : Methodol-
ogy, Software, Validation, Writing – review & editing, Writ-
ing – original draft, Investigation. Davood Toghraie :
Methodology, Software, Validation, Writing – review & edit-
ing, Writing – original draft, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Fig. 14. The effect of summer clothing insulation level on the objective func-
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Fig. 15. The effect of fresh air on the objective functions for the city of Niwot Ridge.

Table 13
Optimal values of design variables and objective functions for six cities with different climates.
Cites Heating set

point (°C)
Cooling set
point (°C)

Winter clothing
insulation value (CLO)

Summer clothing
insulation value (CLO)

Fresh Air CO2 Concentration
(PPM)

Annual electricity
consumption cost ($)

PPD
(%)

Cold Bay 21.2 25.7 1.2 0.7 0.00037 573.757 17957.67 19.83
Niwot

Ridge
21.6 26.2 1.2 0.7 0.0003 613.41 6541.55 13.92

Key
Biscayne

20.6 24.8 0.7 0.6 0.0005 600.5128 5238.28 7.811

Wendover 20.9 25 1.15 0.7 0.00039 607.13 5866.48 13.58
Midway 21.4 25.8 1.15 0.65 0.00038 615.11 5349.58 12.2
Rogers 19.9 25.7 1.1 0.55 0.00049 617.747 4767.55 15.72
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Appendix.

ColdBay

Objective RMSE R2

CO2 1.384 0.984442
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KeyBiscayne

Objective RMSE R2

CO2 1.114 0.982075
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Wendover

Objective RMSE R2

CO2 1.083 0.985679
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Midway

Objective RMSE R2

CO2 0.6718 0.990086
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Rogers

Objective RMSE R2

CO2 1.27 0.985
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