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Abstract
Inspired by the massive surge of interest in the Internet of Things (IoT), this work focuses on the kinetics of its security. By

automating everything, starting from baby monitors to life-saving medical devices, IoT brought convenience to people’s

lives and rapidly became a trillion-dollar industry. However, the future of IoT will be decided on how its security and

privacy concerns are dealt with. It is a fact that at present, the security of IoT is lacking in coherent and logical

perspectives. For example, the researchers do not adequately accommodate the uncertainty and insider attacks while

developing the IoT security procedures, even though most security concerns related to IoT arise from an insider and

uncertain habitat. This paper provides a critical analysis of the most recent and relevant state-of-art methods of IoT security

and identifies the parameters that are crucial for any security posture in IoT. Considering all the intricate details of IoT

environments, this work proposes a Generic and Lightweight Security mechanism for detecting malicious behavior in the

uncertain IoT using a Fuzzy Logic- and Fog-based approach (GLSF2IoT). It is developed on the principle of ‘‘zero trust,’’

i.e., trust nothing and treat everything as hostile. While Fuzzy Logic has been used to remove uncertainties, the Fog-IoT

architecture makes GLSF2IoT inherently better than the cloud-IoT. Once the malicious activity is detected, GLSF2IoT

automatically limits the network access against the IoT device that initiated this activity, preventing it from targeting other

devices. We evaluated GLSF2IoT for blackhole, selective forward, collusion and DDoS attacks, i.e., attacks which can

invalidate any IoT architecture. Besides yielding better accuracy results than the existing benchmarks, we found that

GLSF2IoT puts extremely low pressure on the constrained nodes, is scalable, supports heterogeneity, and uncertainty of the

IoT environments.
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1 Introduction

IoT quickly moved from being a buzzword to reality by

making people’s lives a bit more pleasing and comfort-

able [1]. However, at present, IoT security, considering the

very real and increasing security threats, is woefully

inadequate at best and non-existent at worst [2]. Due to

their limited storage and processing capacity, and the

‘‘walled off’’ nature of their architecture, most IoT devices

cannot run anti-viruses or other security patches, turning

them into sitting ducks for cyber-attackers [3]. Recent

attacks like Mirai, Wicked, Hajime, Katana, and Amnesia:

33 vouches for the credibility of this statement [4, 5].

In the last phase of 2019, we woke up to headlines like

‘‘ring camera hacked by a man in 8-year-old girl’s room,

taunted her by saying that I am Santa Claus [6],’’ and

‘‘Ring safety camera hacks see home-owners exposed to

racial violence and requests for ransom [7].’’ Researchers

have been warning about the vulnerabilities of smart TV’s

and cameras right from the early days of IoT, i.e., 2013 [8].

Today after 7 years, the attackers and, as such, the attacks

are more sophisticated, and yet, the individuals hacking
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into ring cameras were not highly technical or using Arti-

ficial Intelligence (AI). They were people who discovered

the credentials on the dark-web by chance and bought them

to attack insecure IoT devices [9]. That is, these criminals

did not hack-in but simply logged-in using stolen or

phished credentials. With this, we can only imagine what a

qualified cyber-attacker can do to a ‘‘billion-device large’’

insecure IoT network [10]. As per the verified market

research [11, 12], the magnitude of the global IoT market

was estimated at USD 212.1 billion in 2019, and is pro-

jected to hit USD 1.6 trillion by 2025. The research

established the expense of IoT hacks to account for 13.4

percent of annual revenue among businesses with under $5

million in revenue [13]. Users of KrebsOnSecurity lost

$323 K when the Distributed Denial of Service attack

(DDoS) was launched on the website. In addition to the

loss of an 8% customer base of Dyn, the revenue loss

caused by the Mirai botnet stands at a staggering $110-

million [3].

Many attempts have been in the literature to address the

Security and Privacy (S&P) concerns of IoT. A major

weakness in most state-of-art security mechanisms is that

they put intense pressure on the outsider attacks, i.e., they

follow a ‘‘castle and moat’’ mentality [14], often ignoring

the terrible insider attacks. If the most recently launched

high-profile attacks have taught us anything, it is that

insider attacks can render any secure surface-implementing

encryption and authentication schemes meaningless [14].

Insider attacks are defined by negligent or corrupt

employees and credential thieves [15]. According to the

research conducted by Ponemon Institute, a total of 159

organizations from North America (The United States and

Canada), Europe, the Middle East, Africa, and Asia–Pacific

regions experienced a gigantic 3269 insider attacks over

12 months [15]. These companies focused on securing

their parameters while presuming that everything inside is

‘‘trustworthy.’’ Figure 1 demonstrates the revenue loss

caused by these insider profiles for various activity centers.

These statistics tell us that in order to save the enormous

sector of IoT from a total catastrophe, the need of the hour

is to quickly deal with its S&P concerns [2, 16]. To

acknowledge the concern of insider attacks, a security

solution should use the approach of zero-trust, i.e., it must

see the insider/authenticated nodes and outsider nodes with

equal doubt until they earn that trust.

Besides insider attacks, one of the most neglected

among IoT’s S&P challenges is the uncertainty of the IoT

environment. Humans reason in approximate terms rather

than precise [17]. For example, the answers to questions

like Ali are slimmer than most of his colleagues. How slim

is Ali? 68.8% of India’s population live on less than $2 per

day [18]. Ambani lives in India. What can be said about

Ambani’s income? In which manner will a child crawl to

reach its toy? Shall all be uncertain and approximate. The

information is always incomplete and imperfect in an

ecosystem created by humans [19]. Hence, it also applies to

the world of IoT.

Some illustrations from the world of IoT include; 70%

of IoT devices are insecure [20], abc is one such device.

How secure is abc? Similarly, their pattern of mobility has

uncertainty about their position or membership in any

particular group/cluster. A mobile IoT device can belong to

multiple groups/clusters simultaneously. Moreover, how

IoT consumers express their privacy concerns is also

uncertain. For instance, inquire of the owner of a smart

camera or a TV how frequently they modify their device’s

password. A response such as ‘‘often’’ or ‘‘rarely’’ is

insufficient, because a normal person’s idea of security

may be warped, and s/he may lack the qualifications to

refer to any number as ‘‘frequently’’ or ‘‘rare.’’ That

instance, where two password changes each month may

appear to be ‘‘frequent’’ to the average user, they may be

‘‘rare’’ in actuality. In general, the IoT world is fraught

with such uncertainties. This is because, in most IoT situ-

ations, we see a partiality of fact and partiality of possi-

bility. The IoT environment is dynamic, because the

information here can sometimes be imperfect, incomplete,

or contradictory. Therefore, the answers cannot be precise

and drawn by logical systems using precise reasoning [21].

Hence, until we follow our viewpoint on IoT adjustments,

an approach where the S&P of IoT is deliberated a critical

necessity in the planning stage itself, any attack should

only come as a shock and not a surprise.
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Fig. 1 Revenue loss caused by insider attacks in different activity

centers [15]
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1.1 Fuzzy logic and fog computing

In this study, we have tried to address the uncertainty of

IoT environments by using Fuzzy logic, which is essen-

tially a precise logic of imprecision and approximate rea-

soning. More precisely, we chose to use fuzzy logic to deal

with uncertain IoT, because it is possible to interpret fuzzy

logic as an effort to mechanize two extraordinary human

capabilities. First, it can converse, think, and make logical

choices in an imprecise, imperfect, and ambiguous envi-

ronment [22]. Secondly, it can execute a massive range of

physical and mental jobs without requiring complex esti-

mations, and calculations [23, 24]. For example, in the

password dilemma stated above, a fuzzy logic foundation

can be used to fuzzify data, determining whether it is fre-

quently or seldom modified depending on a numerical

value provided by the owner. In the query of IoT device

security, an answer yielded by fuzzy logic might be

expressed as: the possibility of abc to be vulnerable to an

attack is 0.7. The application can then decide if 0.7 vul-

nerability is acceptable to it or not. To this end, we propose

using Generic and Lightweight Security Mechanism for

Detecting Malicious Behavior in the Uncertain IoT using a

Fuzzy Logic- and Fog-based Approach (GLSF2IoT). Apart

from fuzzy logic, we propose the use of fog nodes in

between the edge and cloud nodes. This, in addition, to

branching out the workload from the cloud, helps in

bringing support to geographical diversities, time-con-

strained, mobility, and location-aware S&P applications of

IoT. All these inherent advantages are missing from the

cloud-based IoT architectures [16]. As such, Fog-based IoT

provides a distributed, decentralized, and heterogeneous

computing environment, pushing the cloud services closer

to the network’s edge devices. As a result, fog-based IoT

brings cloud services closer to network edge devices. Most

S&P approaches offered by researchers ignore these

considerations.

1.2 Contribution and structure of paper

The distinguishing characteristics of GLSF2IoT that make

it different from other IoT security approaches are sum-

marized as follows:

• It tolerates the diversity of IoT devices. Most of the

work from the literature on IoT security is inspired by

Wireless Sensor Networks, making them inadequate for

IoT.

• The security function is pushed away from the

constrained edge nodes to let them perform their

intended functions and save their crucial resources. It

is mainly implemented on cloud and fog layers, thus

making it lightweight for edge devices.

• It gives better results for detecting blackhole, selective

forwarding, collusion, and DDoS attacks in the IoT

environment.

• One of the inherent features of IoT networks is that they

are ubiquitous. The overwhelming majority of security

procedures, although proposed for IoT, are not scalable

to it. GLSF2IoT has been tested on this parameter and

has yielded consistent results.

• Most IoT devices use a single-threaded microcontroller

with a 2 MB Random Access Memory (RAM) that is

insufficient to run a full-fledged operating system or

even a simple anti-virus [3] (common-touch requires

128 MB RAM). GLSF2IoT puts negligible memory

overhead on them.

• By using fog-based IoT architecture, it can handle the

breaches that a mobile node may create.

• Using Fuzzy logic, it is the first of its kind to deal with

uncertainties in the IoT atmosphere.

• GLSF2IoT initially assigns zero trust to all the nodes,

i.e., insider (authenticated) and outsider nodes, to resist

the insider attacks. The monitoring procedures run

continuously to identify any misbehavior (an authorized

and authenticated node can become corrupt at any

time.)

The remainder of the paper is organized as follows:

Sect. 2 identifies the motivation for choosing the attacks

studied in this paper. To extrapolate the significance of our

work, it also presents a critical analysis of the most recent,

and relevant state-of-art methods discussing their advan-

tages and shortcomings from an uncertain IoT environment

perspective. Section 3 provides a detailed description of

our proposed security posture, i.e., Generic and Light-

weight Security Mechanism for Detecting Malicious

Behavior in the Uncertain IoT using a Fuzzy Logic- and

Fog-based Approach (GLSF2IoT). Section 4 analyzes the

efficiency of GLSF2IoT under the effect of blackhole,

selective forward, collusion and DDoS attacks. It weighs its

performance on the parameters of heterogeneity, scalabil-

ity, architecture employed, energy overhead, memory

overhead. In Sect. 5, we have evaluated the suitability of

GLSF2IoT to other IoT attacks. Section 6 extracts the

conclusion and predicts an immediate future direction for

research.

2 Significance of launching the chosen
attacks and related work

In this section, we briefly explain the motivation for

choosing the blackhole, selective forwarding, collusion and

DDoS attacks in accessing the performance of our pro-

posed security posture, i.e., GLSF2IoT. The most recent
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and relevant state-of-art solutions proposed for these

attacks and the problems linked with those solutions are

also discussed.

2.1 Motivation for choosing blackhole
and selective forwarding attacks

In IoT application areas like healthcare, intelligent trans-

portation systems, incident response systems, etc., reliable

data delivery is important. If this objective is nullified, the

whole purpose of having it is lost [25]. Both blackhole and

selective forwarding attacks can cause such downfalls to

the systems, and as such, they can invalidate any IoT

architecture.

In a blackhole attack, for example, an attacker node

broadcasts that it has the shortest path to the destination.

Lured by this temptation, the source node sends the data.

On reception, the attacker node drops all of its data instead

of forwarding it to the destination [26]. A blackhole

intruder can also imitate the wireless router that links the

rest of the network to the IoT devices. Then, with an

authorized wireless router, it can redirect the traffic.

In a selective forwarding attack, an attacker node sits

somewhere in the selected path. The attack can be launched

in two ways, viz. simple and cooperative [27]. A selective

forwarding attack can be simple where one malicious node

pretends to sit at the median of the shortest path to the

destination. It forwards some data packets and drops others

just to confuse the source about its credibility. In a coop-

erative selective forwarding attack, different attacker nodes

work in tandem to launch the attack. To gain trust, the first

attacker node forwards the data packets, showing a Packet

Delivery Ratio (PDR) of 100%, to the other malicious node

that drops all of them on reception.

2.2 Motivation for choosing collusion attack

Multiple devices conspire together to bring down the rep-

utation of a particular node. Nodes that conspire to forge a

specific object’s trust value can do so by falling into one of

four potential classifications, viz. Same owner, same

geography (all reside in the same place), same workplace

(different owners, same workplace), or same social circle

(different owners, similar interests, i.e., one community)

[28].

It is incredibly challenging to handle collusion attacks in

IoT because of the myriad of connected devices in its

uncertain and dynamic landscape. The groups keep on

changing because of the continuous mobility of the devices

[29, 30]. As such, the nodes on which detection procedures

run do not get enough time to detect the attack. The use of

close and powerful fog nodes in GLSF2IoT help to monitor

and detect these attacks as the nodes are scanned every

time, no matter where they reside.

2.3 Motivation for choosing DDoS attack

Among the most intriguing cyber-attacks, DDoS attack

tries to cause a capacity overload of the server by flooding

it with incessant requests, and make it ignore the legitimate

customer requests. Several security systems have evaluated

their effectiveness on DoS, but it is insufficient and paltry

for an IoT network that provides the attackers with a huge

attack surface. That is, several devices are likely to be

utilized to assault a network, necessitating validation of the

framework against a DDoS attack to ensure its relevance.

Moreover, many IoT applications are based on real-time

inputs, such as autonomous vehicles, industry, etc. In such

situations, the unavailability of a server is catastrophic. For

example, when an autonomous vehicle is on the road, and

an IoT DDoS attack is launched on the server, it may stop

being steered by sensory inputs. The massive IoT network,

resource constraints, and diversity of IoT devices make it a

duck soup for professional intruders to launch the IoT

server DDoS attack [8]. IoT resource constraints make

cryptography less suitable due to the time, power, pro-

cessing cycles, and memory needed to run these

algorithms.

2.4 Critical analysis of state of art methods

Over the years, many researchers have attempted to address

the S&P issues of IoT networks and devices. Here, we

critically examine a considerable number of such security

postures to highlight their contributions and clarify how the

provided work advanced the state-of-the-art. We also point

out their major shortcomings from IoT’s S&P perspective.

The major achievement of Seyedi [26], for example, is

that they developed a smart agent-based mechanism for

blackhole attack that gave less than 19.4% False Positive

Rate (FPR), a False Negative Rate (FNR) of less than

22.2% and a Detection Accuracy of 80.5%. [31] Identify

blackhole attacks that occur during wireless communica-

tion between the base station and nodes with a Detection

accuracy of 87.72%. [32] uses genetic programming for

detection of Hello flood, Version number, sinkhole, and

blackhole attacks. It provides a Detection Accuracy of 92%

for the Blackhole Attack with a True Positive Rate (TPR)

of 94.7% and FPR of 0.7%. However, it uses the inherent

security advantages of Routing Protocol for Low Power

and Lossy Networks (RPL) to detect attacks. If a protocol

disruption attack happens, the entire scheme gets nullified.

The authors of [27] employed a cryptographic authen-

tication mechanism for identifying the selective forward

attack. Their mechanism gave a Detection Accuracy of
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94.5%, an FPR of 14.1% and an FNR of 17.5%. To identify

the blackhole and selective forward attacks, the authors of

[33] developed a lightweight heartbeat protocol. They

claim it to be the best approach for detecting these attacks.

However, it simples works on ICMPV6 echo requests. If

the response isn’t received, it implies a blackhole attack. If

ICMPV6 is filtered, it identifies selective forward. A very

basic application is used, and that too gives a 10% com-

munication overhead. To detect collusion attacks, Yaseen

[29] uses SDN to collect data and claims to detect mali-

cious devices during their movement among clusters. It is

also scalable to IoT networks.

Svelte, given in [34], is the first Intrusion Detection

System (IDS) designed for IoT networks with a TPR of

85% for selective forward and sinkhole attacks. [35] Aims

to promote the minimization of FPR for DoS and Botnet

attacks, increase the detection rate under distributed

attacks, and minimize the workload for the end host. It

shows less memory overhead and less power consumption.

[36] Detects DDoS and Collusion threats at a faster rate by

using the ELM-based Semi-supervised Fuzzy-C Means

mechanism (ESFCM). It has a Detection time of 11 ms and

an Accuracy of 86.53%. It doesn’t take the real-time data

traffic, but instead works on the NSL-KDD dataset.

ESFCM is just a post-attack observation.

An IDS was designed by Haripriya [37] using fuzzy

logic with an FPR of 0.66%. It was implemented for the

DDoS attack in IoT setup. However, it gives no clue about

how Connection Message Ratio (CMR) and Connection

Acknowledgment Message Ratio (CAMR) input parame-

ters were set. Finally, [38] used Fuzzy & Taylor-elephant

herd optimization. Three intrusion detection search data-

bases (Db) are used viz. KDD cup, Db-1, and Db-2. The

system gives a Detection Accuracy of 93.8% for DDoS

attack, but it did not deal with the real attack scenarios.

The critical analysis of these methods is tabulated in

Table 1. It identifies the major shortcomings of these

procedures.

It is observed that mostly the solutions are developed to

identify one type of attack only. This is insufficient and

scarce for an IoT network that provides the attackers with a

massive extortion landscape. Heed must be paid that any

attack is not being launched by the authenticated insiders.

It was seen that most articles have missed dealing with this

dimension also.

It was also observed that none of the studied approaches

consider uncertainty of the IoT landscape while recom-

mending a security mechanism. Also, very few postures

ensure that edge devices do not lose all their energy in

guaranteeing security, i.e., lightweight. Besides, it is

essential to remember that in IoT scenarios, sensors are not

viewed as parts of the sensor network connected to the

Internet using gateways, as in WSNs. Sensor nodes are

instead considered as nodes of the Internet [28, 39, 40].

Therefore, the solutions designed for WSN architectures

won’t fit the heterogeneous IoT models. The symbols pro
(*p) or con (*c) are placed to refer to the existence of the

parameter addressed concerning its collective worth.

GLSF2IoT is developed to address these issues on the lines

of the crucial parameters (listed in Table 1) that are

expected of a security procedure meant for IoT.

3 Proposed system

If the recently launched cyber-attacks like SolarWinds

[41], Amnesia: 33, etc., have anything to say, it is that there

is a continuous rise in the determination and sophistication

of attackers. Till the time we establish a solid and reliable

security cover to build cyber resilience, there exist illu-

minated paths to the downfall of IoT. In essence, it

becomes imperative to develop a security posture that is

built, keeping in view all the essential parameters of IoT

security. Built on this ground, Fig. 2 demonstrates the

general structure for the proposed GLSF2IoT.

GLSF2IoT architecture is built on 3 layers, viz. edge

device layer, fog layer, and cloud layer. The devices in

each layer perform specific security tasks in sync to

achieve high and real-time detection of attackers. For

example, the cloud layer nodes run a hybrid of fuzzy logic-

based trust management and anomaly-based detection

methods for identifying malicious behavior in the fog layer

of the IoT network and to identify the most trusted fog

nodes. Also, before operating the security measures, it is

critical to group multiple edge nodes with trusted fog nodes

to reduce load and boost the system efficiency. For the

reasons already described in the study, the grouping has

been done to cover the belonging of a device to multiple

groups at one time. The trusted fog nodes run unknown

attack detection and flag generation procedures. Each layer

consults its specific defense library for making various

decisions. The following sub-sections go into detail about

all the mechanisms that our GLSF2IoT architecture

employs.

3.1 Fuzzy logic-based trust management
mechanism

Malicious nodes sometimes behave normally to trick the

neighbors into believing that they are honest, or to escape

the punishment of being thrown out of the network. That is,

an attacker displays uncertainty or irregularity in its

behavior. To deal with this irregularity, we employ fuzzy

logic in our trust management mechanism. This procedure

is used to identify the most reliable fog nodes that can build

up the local anomaly detection system of GLSF2IoT.
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Table 1 Review of the related schemes

Reference Architecture

employed

Insider

attacks

considered?

Scalable to IoT? Uncertainty dealt? Zero-trust

policy?

Generic? Lightweight?

Seyedi [26] WSN{*c} No{*c} No.{*c}

IoT architecture

not considered.

The pressure of

security put on

IoT nodes

No

Routing-protocol-

based approach.
{*c}

No.

Intermediate

nodes are also

trusted for

calculating

trust. {*c}

No{*c} No.{*c}

Resource-

constrained

edge devices

perform the

calculations

Srinavas

[31]

IoT-Cloud{*p} No{*c} Yes{*p} No.{*c}

Protocol-based

approach

No{*c} No.{*c}

Developed for

IoT-based

civil

construction

systems

No.{*c}

Pressure of

security on

constrained

edge devices

Qureshi

[32]

IoT-Cloud{*p} No.{*c} Yes{*p} No.{*c}

It considers the

static topology

of 40 nodes,

which is hardly

the case with

IoT

No.{*c} No

Performs

evaluation on

the static

sky-motes

only. {*c}

Yes.{*p}

It cashes the

security

features of RPL

only

Mabodi

[27]

Architecture not

described{*c}
No.{*c} No. Architecture

not defined. {*c}
No.{*c}

Works on black

and white

principle

No.{*c}

Once

authenticated,

full trust is

levied on

nodes

No.{*c}

Not tested

under

heterogeneity

No.{*c}

Running

authentication

procedures on

resource-

constrained

edge devices is

resource-

intensive

Ribera [33] Single-layer

IoT{*c}
No.{*c} No.{*c}

Complexity of

IoT

architecture not

considered

No.{*c}

Doesn’t even

model a real IoT

environment

No.{*c}

Trusts

everything if

ICMPV6

response is

obtained

No.{*c}

Not tested

Yes.{*p}

Very basic

Doesn’t talk

about the

efficiency of

the result

Yaseen

[29]

IoT-fog{*p} No.{*c}

It doesn’t

monitor

the fog

nodes

Yes{*p} No{*c} No.{*c}

Complete trust

is put on the

insider fog

nodes

Yes{*p} Yes{*p}

Raza [34] IoT-cloud{*p} No{*c} Medium.{*p}

Developed for

static networks

Dynamism is the

essence of IoT

networks

No{*c} No{*c} No{*c} Yes{*p}

Arshad

[35]

IoT-Cloud{*p} No{*c} Yes{*p} No{*c} No{*c} Yes{*p} Yes{*p}
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Table 1 (continued)

Reference Architecture

employed

Insider

attacks

considered?

Scalable to IoT? Uncertainty dealt? Zero-trust

policy?

Generic? Lightweight?

Rathore

[36]

IoT-Fog. {*p}

Detection load

shared

No.{*c} Yes{*p} No.{*c}

It is never possible

to assess the

reliability of a

data set when

attacks are not

launched in real-

time

Real-time attack

has a lot of

uncertainty

No.{*c} NA{*c} NA{*c}

Haripriya

[37]

Single-layer

IoT{*p}
No.{*c} Yes{*p} No.{*c}

Doesn’t explain

how anomaly

detection crisp

values were

obtained

No definition is

given for high

and low

No{*c} No{*c} No{*c}

Velliangiri

[38]

Cloud computing

environment{*c}
No.{*c} No.{*c}

Computationally

extensive

Calculations

made in 21

hidden layers

No.{*c} No{*c} No{*c} No{*c}

IoT Device 1 IoT Device 2 IoT Device 3 IoT Device 4 IoT Device 5 Malicious 
Traffic 

Generator

Cloud 
Layer

Fog
Layer

End-nodes 
Layer

Fuzzy Logic based 
Energy Consumption 

Analysis

Fuzzy Logic based 
Change in Control 

Packets

Rank 
Inconsistency

Fuzzy Logic based Trust 
Management Mechanism, 

Anomaly Detection and Attack 
Recovery mechanisms 

Runs

Runs

Unknown Attack Detection 
and Attack Flag Generation 

Procedures

 Unknown Attack Library 
(UAL)

Grouping Algorithm 1 
Executed

Grouping Algorithm 1
Executed

Counter Mechanism 
Knowledge Base 

(CMK)

Consults Defense 
Database

Consults Defense 
Database

Analyzes various 
discrepancies

Creates groups of 
edge nodes with the 

trusted fog nodes

Fig. 2 GLSF2IoT architecture
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By creating groups around the reliable fog nodes, the

devices will be monitored from the network perimeter

itself, and the malicious activities, if detected, will be dealt

with quickly. Such a quick remedy is not possible if the

cloud is monitoring the entire network [42]. GLSF2IoT can

formulate the overall final trust values of different fog

nodes by aggregating the trust values received from mul-

tiple cloud nodes. It uses a combination of mutual inter-

action and anomaly-based methods, as shown in Fig. 3.

• Mutual Interaction Method It analyzes three parameters

for any discrepancies: energy, rank, and control pack-

ets. In a network, nodes transmit, forward and receive

packets, send routing updates, etc. In GLSF2IoT, the

cloud layer nodes monitor these interactions with the

fog nodes, detect the inconsistencies (if any) and

calculate their trust values. These disparities in inter-

actions are seen by comparing the characteristics of

recorded interactions (past) with the present interac-

tions. The past-trust at a time ‘‘t;’’ i.e., Tp tð Þ; is

calculated using Eq. (1).

Tp tcð Þ ¼
Pi¼t�1

i¼1 TI
i;j tð Þ

tc � 1
ð1Þ

where TI
i;j tð Þ is the trust of node i calculated by node j at

present using the method ‘‘I,’’ i.e., Mutual Interaction.

p refers to the past. The summation is over the trust

calculated previously from the beginning to time ‘‘t–1,’’

i.e., one less than the current time. For example, if trust

is calculated after every one interval and currently the

system is in the fourth interval. For the sake of under-

standing, if we assume that the trust value at t = 1 was

0.9, at t = 2 was 0.8 and at t = 3 was 0.7, then the

current past trust value will be equal to 0:9þ0:8þ0:7
3

¼ 0:7.

By doing this, we are taking all the values into con-

sideration that helps in observing the discrepancies

minutely and accurately. As such, the past trust at any

moment is calculated by taking the average of all the

previously recorded trust values for a particular node.

Moreover, as this function is executed by the cloud,

computation, and storage of all of these values was not

a complex task.

• Also, to calculate the trust values of fog nodes using

anomaly detection, the rules given in Table 2 are used.

All the reported anomalies are integrated, and depend-

ing on the overall sum of detected anomalies, the cloud

layer nodes calculate the trust value TA
i;j tð Þ for different

fog layer nodes.

Mathematical Formulation The trust value calculated by

a node 0i0 at cloud layer for a particular fog layer node 0j0 is

the weighted sum of trust values calculated with the help of

analyzing mutual-interaction with fog nodes TI
i;j tð Þ and the

anomalies detected TA
i;j tð Þ: Consequently, we get Eq. (2).

Ti;j ¼ w1 � TI
i;j tð Þ þ w2 � TA

i;j tð Þ ð2Þ

where w1 and w2 are the weights associated with respective

trust values calculated using mutual-interaction analysis

and anomaly detections. These are chosen in a way that the

value of Ti;j at a particular instant of time ‘‘t’’ always lies in

the range 0; 1½ �. Therefore,Ti;j ¼ 1, indicates complete trust

and Ti;j ¼ 0, depicts complete distrust. The individual trust

values in Eq. (2) are calculated as in Eq. (3):

TZ;direct
i;j tð Þ is the trust value calculated by node 0i0 with

the help of method 0Z 0 using direct communication with the

node 0j0, 0Z 0 can take values 0I0 or 0A0 depending upon the

method used for trust calculation. TZ
k;j tð Þ is the trust cal-

culated for node 0j0 due to 0Z 0 by some other node 0k0 in the

Fig. 3 Fuzzy logic-based trust management mechanism

TZ
i;j tð Þ ¼

d � TZ
i;j t � d tð Þð Þ þ 1 � dð Þ � TZ;direct

i;j tð Þ
h i

if i and j are immediate neighbors directð Þ

d � TZ
i;j t � d tð Þð Þ þ 1 � dð Þ � TZ

k;j tð Þ
h i

otherwise indirectð Þ

8
<

:
ð3Þ
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network. In other words, it is a combination of direct,

indirect, and past trust values. d tð Þ is the update interval for

trust and 0d
0
is the system parameter whose value lies in the

range 0; 1½ �. Lesser value of 0d0 indicates more dependence

on direct and current values for trust calculation. TI
i;j is

calculated using discrepancies in interactions.

• Fuzzification process For mapping the crisp input

variables (direct trust, indirect trust and past-trust) into

fuzzy sets, we define triangular and trapezoidal mem-

bership functions for trust as (Eqs. 4–6);

lH x; a; bð Þ ¼
0; x\a
x� a

b� a
; a� x� b

1; x[ b

8
<

:
ð4Þ

lA x; c; d; eð Þ ¼

0; x\c
x� c

d � c
; c� x� d

e� x

e� d
; d\x\e

0; x� e

8
>>>><

>>>>:

ð5Þ

lL x; f ; gð Þ ¼
0; x[ f
f � x

f � g
; g� x� f

1

x\g

8
><

>:
ð6Þ

here lR xð Þ where R ¼ H;A;Lf g is not a probability value,

but a subjective judgment of grade-a membership. It says

to what degree the element x in R belongs to a fuzzy set

(H;A orL). These functions are chosen, because they are

proved to be computationally less intensive for sensor

nodes.

The values for direct, indirect, and past trusts are cal-

culated using the region boundaries (Table 3), and as such,

are classified into three degrees, viz. high, average, and

low.

• Development of Fuzzy rule base The membership

functions for demonstrating the trust values and the

legitimacy of the obtained overall trust for a fog node

are represented by three linguistic labels: Normal, less

trusted, and malicious, as shown in Fig. 4. Conse-

quently, the fuzzy rule base is developed as follows:

If direct trust is low, indirect is low, and the past is

low, then the overall trust of a fog node is malicious.

If direct is high but indirect and past trusts are low,

then the overall trust is malicious.

Likewise, 27 different trust values can be obtained for

fog nodes. Among these, we choose the fog nodes whose

trust values lie in the range of 0.8–1 (highly trusted).

• Defuzzification The mean of centroids of gravity gives

the crisp value of overall trust for every membership

function (Eq. 7)

overall trust ¼
Pb

x¼a lR xð Þ � x
Pb

x¼a lR xð Þ
ð7Þ

Table 2 Anomaly detection rules for trust management module

Rules Description

Multiple connection rule An Anomaly is detected if the node sends multiple connection establishment requests

Recursive packet flow

rule

An Anomaly is detected if small-sized messages are received repeatedly from a particular fog node

Collision rule An Anomaly is detected if the majority of packets in the IoT network pass or get forwarded through a particular fog

node

Table 3 Region Boundaries for membership functions

Trust inputs a b c d e f g

Tz
i;j 0.6 0.8 0.1 0.5 0.8 0.5 0.1

Tz
k;j 0.5 0.8 0.1 0.4 0.8 0.5 0.1

Tp 0.6 0.8 0.1 0.5 0.8 0.5 0.1

Fig. 4 Membership function for trust
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3.2 Grouping technique employed in GLSF2IoT

Once the trusted fog nodes are identified, our grouping

mechanism creates groups of edge nodes with the trusted

fog nodes. Algorithm 1 depicts how grouping has been

done. The grouping algorithm breaks the uncertainty of one

node (edge or fog node) belonging to one crisp group at a

time. Because of its mobile nature, a node can belong to

multiple groups also. In that case, it will just be monitored

by multiple trusted fog nodes.

3.3 Fuzzy logic-based energy consumption
analysis

This is a known fact that IoT edge devices are constrained

by energy. If the pressure of security is not taken away

from the edge layer, then the purpose for which these

devices are actually created is defeated, because their entire

energy is lost in doing the security calculations. As such, if

a security posture is proposed for an IoT network, one of its

prime objectives should be to detect attacks in the network

without increasing the burden on edge devices. While

designing GLSF2IoT, we have acknowledged this

requirement and made sure that it puts negligible energy

overhead on the edge devices.

To extrapolate the procedure of fuzzy logic combination

in this mechanism, we consider two metrics, viz. Total

energy spent by nodes for exchanging information (ETÞ and

a total number of transmissions countð Þ required to suc-

cessfully transmit a packet.

Let the total energy consumed by source and destination

nodes be represented by ET. It is given by Eq. (8).

ET ¼ 1 � Prð Þ � ES þ ED ð8Þ

where ES is the energy drained by the sender node, and ED

is the energy exhausted by the destination node. Pr is the

probability that the data packets transmitted to a particular

destination fail to reach it. 1 � Prð Þ is the probability of

successful transmission. The energy consumed by sender

node ES is calculated using Eq. (9).

ES ¼ Tcont � Esensing þ TTA � Esensing þ TD � ETX

þ TTA � Esensing þ Tack � ERX

i:e:;ES ¼ Esensing � Tcont þ 2TTAð Þ
þ TD � ETX þ Tack � ERX

ð9Þ

where Tcont is the time spent in sensing the carrier;

Esensing is the energy spent by a node to sense the chan-

nel,TTA is the Turn-around-Time, i.e., a fixed duration for

which the device waits on sensing a free channel, TD is the

time spent by device for transmitting data, ETX is the

energy spent by a node to transmit the data packet, Tack is

the time spent by the receiver to send the acknowledgment,

and ERX is the energy spent by the node for receiving a

packet. Figure 5 provides a visual description of these

times.

Also, the energy spent by a destination node is calcu-

lated as (Eq. 10):

ED ¼ TD � ERX þ TTA � Esensing þ Tack � ETX ð10Þ

where TD is calculated using Eq. (11).

Sensing 
Carrier Data Transmission

Transmit 
AcknowledgementData Reception

Source Node

Destination Node

time

time

Tcont TD Tack

TTA TTA

Fig. 5 Times spent by source and destination nodes for various

processes
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TD ¼ no of slots � no of bits per slot

packet transmission rate
ð11Þ

The count is defined by three linguistic variables viz.

Small (transmission successful in the first attempt), med-

ium, and large (transmission successful after maximum

transmissions). The variation in total number of transmis-

sions is categorized into three sets, as shown in Fig. 6.

Likewise, we have classified ET into three sets shown in

Fig. 7

• Fuzzification Table 4 demonstrates the development of

fuzzy rules for identifying the routes with the most

reliable nodes. It indicates lesser the count, the lesser

will be the ET, and hence better will be the route.

Where Good, Very Good, Average, Poor, and Very Poor

are the output link qualities. Link Quality refers to the

amount of energy consumed by it. Count; and ET mem-

bership functions can be used to detect the link quality.

Mamdani model helps in calculating the medium link

quality [43] as follows (Eq. 12);

For composing, it uses minimum operator, and for

aggregation, it uses maximum operator.

• Defuzzification The crisp output value is obtained by

calculating the mean of centroids of gravity as in

Eq. (7). Figure 8 shows the defuzzified output.

After analyzing the packets transmitted in 6LoWPAN

networks, we have deduced that the usual period for a

single symbol is 16 lsec, and a single slot consists of

approximately 20 symbols. To sense a carrier, a 12 symbol

slot is used, each comprising of 4 bits. Moreover, we

obtained TTA = 192 lsec and Tcount = 128 lsec

3.4 Rank-inconsistencies

RPL is a de-facto IPv6 routing protocol for low power and

lossy networks used to find the optimal routing path

between source and destination nodes in an IoT network. It

constructs a Destination-Oriented Directed Acyclic Graph

(DODAG) that depicts the graphical position of all nodes

in the network. The Rank of a node defines its position in a

DODAG with respect to the root node and relative to other

nodes in the network. Some attacker nodes can produce

Fig. 6 Membership function for count

Fig. 7 Membership function for total energy

Table 4 Development of fuzzy rules and output fuzzy matrix

Count=ET Low Medium High

Small Very Good Good Average

Medium Good Average Poor

Large Average Poor Very Poor

Fig. 8 Defuzzified output for energy variation of a node

median Qualð Þ ¼ maximum

minimum Small countð Þ; High ETð Þð Þ
minimum Median countð Þ; Median ETð Þð Þ

minimum Large countð Þ; Small ETð Þð Þ

8
<

:
; ð12Þ
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wrong information regarding the ranks of different IoT

nodes connected to each other, thereby causing inconsis-

tency in the network. These attacker nodes can also prop-

agate wrong information regarding their ranks to attract

data traffic towards themselves, and then cause harm to

received data. We have proposed algorithms 2 and 3 for

detecting rank discrepancies.

3.5 Fuzzy logic-based change in control packet
anomaly detection

We assume that the IoT nodes use TCP to provide transport

layer services and all the data packets pass through a

trusted fog node. Since the edge devices are deployed to

provide a particular service, therefore only the traffic with

specific characteristics should be being transmitted

between the edge node and the trusted fog node. The

malicious node, however, has to send more packets (to

communicate with its command and control center) and

packets lengths larger than usual (to launch an attack).

Using the characteristics of normal IoT network traffic, we

calculated the average length of packets transmitted, and

used it as a threshold limit to detect an anomaly. Any

deviation in the number or length of packets from a

threshold detects a malicious node. The fuzzy rule base for

this mechanism is given in Table 5. Input variables form

the precedent part of the rule, and output forms the sub-

sequent part. Figure 9 shows the mechanism.

3.6 Cloud’s attack recovery mechanism

Using these mechanisms, the cloud identifies the most

trusted and malicious fog nodes. Once it detects a mali-

cious fog node, it puts its id in the blacklist and warns the

network about it. It is to be noted that these procedures run

continuously. That is, a fog node can be the most trusted at

a particular time, but it can become corrupt later to launch

an insider attack. GLSF2IoT doesn’t trust any node forever.

If a previously trusted node is observed to behave mali-

ciously, cloud directs the nodes falling in its group to break

their connection with it, group with some other trusted fog

node, or communicate directly with the cloud. It is asso-

ciated with a database called Counter-Mechanism Knowl-

edgebase (CMK). It consults CMK for making decisions as

given in Eq. (13).

CMK ¼ Bid;Mid;Mname;Mf�base;Aid; lay; ser
� �

ð13Þ

where Bid is the list of blacklisted node id’s, Mid, Mname;

and Mf�base are the id, name, and fuzzy-logic rule base of

the mutual-interaction method. Aid is the attack id already

known to the cloud. lay and; ser refer to the layer and

service that are responded to by the cloud. The dynamic

nature of CMK is ensured by continuous updates con-

cerning new attacks identified by fog layer. The CMK

update is described in the following sub-section.

3.7 Anomaly-based detection

The responsibility of detecting blackhole, selective for-

ward, collusion, and DDoS attacks was levied on the
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trusted fog nodes. To achieve this, we have added two sub-

segments to the fog layer, viz. Unknown Attack Detection

segment (UAD) and Attack Flag Generation segment

(AFG).

• Unknown Attack Detection segment (UAD) This seg-

ment identifies the threats by consulting the fuzzy logic-

based Unknown Attack Library (UAL) given in

Eq. (14).

UAL ¼ Aid; name; def ; lay; serf g ð14Þ

where Aid is the attack ID,name denotes the name of the

attack, def gives its description,lay; ser identifies the layer

and service type set off by the attack. UAD constantly

screens network’s working through Forward Packet Ratio

(FPR), Average Destination Sequence Number (ADSN),

Average Packet Drop Rate (APDR), Internal Resemblance

(IR), External Resemblance (ER), and Signal-to-Noise

Ratio (SNR) to calculate the Degree of Attack (DoA). This

choice of parameters was made, because the literature

points out that they can identify any variation of the

respective attacks for which they are chosen [40, 44, 45].

Table 6 shows how the parameters have been calculated for

the nodes.

Research indicates that every new attack that is tossed is

just a 1–2% variation of the existing ones, i.e., zero-day

attacks are just the mutated versions of classical attacks

Table 5 Fuzzy rule base for

detecting anomalies in control

packets

Precedent part of the rule Subsequent part of the rule

Number of packets (per second) Length of packets (bytes) Possibility of attack

Large ([ 12) Large ([ 240) High (73–100)

Large ([ 12) Average (220 to 245) High (73–100)

Large ([ 12) Low (\ 223) Medium (45–83)

Medium (8–13) Low (\ 223) Medium (45–83)

Medium (8–13) Average (220–245) High (73–100)

Medium (8–13) Large ([ 240) High (73–100)

Small (\ 10) Low (\ 223) Low (23–50)

Small (\ 10) Average (220–245) Medium (45–83)

Small (\ 10) Large ([ 240) Medium (45–83)

IP Network Data 6LoWPAN Network Data

IP Network Stack 6LoWPAN Network Stack

ID of Packet
Source Address

Destination Address
TCP Header

Packet Length

Traffic Analyzer:
- Check the traffic pattern
- Calculate packet length 

and number of control 
packets transmitted under 

normal conditions
- Consult Fuzzy Rule 
Base given in Table 5

Place the malicious node (if 
detected) in CMK’s Bid

Fig. 9 Fuzzy logic-based change in control packet anomaly detection

Table 6 Performance

parameters for GLSF2IoT
Parameter Calculation

FPR No: of packets forwarded=No: of packets received

ADSN Destinationseq�no tið Þ � Destinationseq�no ti�1ð Þ=no: of destination sequence numbers

APDR No: of packets dropped=No: of packets received

IR median rwc n1½ �; rwc n2½ �; rwc n3½ �. . .. . .. . .; rwc nm½ �
��

� � Rc wð Þj
Rc wð Þ is the recommended trust for node 0w0 in community 0C0

rwc n1½ � denotes the recommended trust of node n1 for 0w0 in community 0C0

Median—The median of trust recommendations for 0w0

ER sum=count
� �

� Rc wð Þ
�
�

�
�

sum ¼ sum þ median Rc wð Þf g
count ¼ count þ 1

Initially, sum and count = 0

SNR Signal power=Noise Power
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[46]. Therefore, by using the knowledge of experts, the

fuzzy rule base for detecting these attacks is developed

(table 7) for threat detection in IoT. Using a conjunction

(AND) operator, these fuzzy rules are executed partly and

in parallel. However, if the execution of more than one rule

results in the same outcome, the operator of a disjunction is

used. Consulting UAL, UAD can classify DoA into 3

degrees viz. Low, medium, and high.

• Attack Flag Generation segment (AFG) When the

trusted fog node detects a threat, it sends an instant

update to the cloud using a Flag function, defined as

(Eq. 15):

Flag tð Þ ¼ Attack;Attacker; freqh i ð15Þ

where Attack refers to the type of attack that is launched,

Attacker defines the malicious node (its id and the id of

trusted fog node in whose group it currently falls), and freq

is the number of times the attack was initiated by this node.

The cloud, on receiving the Flag tð Þ, updates its CMK

and propagates this information among all the other trusted

fog nodes, and orders them to halt communication with

these malicious nodes. The CMK update occurs as per

Eq. (16).

CMK tð Þ ¼ c0; c1; c2; . . .. . .. . .; cnð Þ; t ¼ 0

CMK t � 1ð Þ [ CMKnew tð Þ; t[ 0

�

ð16Þ

whereðc0; c1; c2; . . .. . .. . .; cn) is the cloud’s primary coun-

ter-mechanism knowledgebase, and CMKnew tð Þ is the

updated one.

4 Simulation results

The GLSF2IoT was instantiated on the open-source Con-

tiki hybrid operating system optimized for IoT, using a

workstation equipped with 64 GB RAM and an Intel Xeon

processor running at 3.60 GHz. Evaluation was conducted

Table 7 Development of fuzzy rule base for blackhole, selective

forward, collusion, and DDoS attacks

Black hole attack

Precedent part of the rule Subsequent part of the rule

FPR ADSN DoA

Low (\ 17) Low (0–5) High (73–100)

Medium (2.5–7.5) High (73–100)

High (5–10) Medium (45–83)

Medium (12–32) Low(0–5) Medium (45–83)

Medium (2.5–7.5) Low (23–50)

High (5–10) Low (23–50)

High ([ 23) Low (0–5) Medium (45–83)

Medium (2.5–7.5) Low (23–50)

High (5–10) Low (23–50)

Selective forward attack

Precedent part of the rule Subsequent part of the rule

APDR FPR DoA

Low (\ 17) Low (\ 17) Medium (45–83)

Medium (12–32) High (73–100)

High ([ 23) High (73–100)

Low (\ 17) Medium (12–32) Medium (45–83)

Medium (12–32) High (73–100)

High ([ 23) High (73–100)

Low (\ 17) High ([ 23) Low (23–50)

Medium (12–32) Medium (45–83)

High ([ 23) Medium (45–83)

Collusion attack

Precedent part of the rule Subsequent part of the rule

IR ER DoA

Low (0–0.5) Low (0–0.5) Low (0–0.5)

Medium (0.2–0.7) High (0.5–1)

High (0.5–1) High (0.5–1)

Medium (0.2–0.7) Low (0–0.5) Medium (0.2–0.7)

Medium (0.2–0.7) High (0.5–1)

High (0.5–1) High (0.5–1)

High (0.5–1) Low (0–0.5) High (0.5–1)

Medium (0.2–0.7) High (0.5–1)

High (0.5–1) High (0.5–1)

DDoS attack

Precedent part of the rule Subsequent part of the rule

SNR FPR DoA

High ([ 15) Low (\ 17) High (73–100)

High ([ 15) Medium (12–32) High (73–100)

High ([ 15) High ([ 23) Medium (45–83)

Table 7 (continued)

DDoS attack

Precedent part of the rule Subsequent part of the rule

SNR FPR DoA

Medium (1–18) Low (\ 17) High (73–100)

Medium (1–18) Medium (12–32) Medium (45–83)

Medium (1–18) High ([ 23) Low (23–50)

Low (- 1 to 2.5) Low (\ 17) Medium (45–83)

Low (- 1 to 2.5) Medium (12–32) Low (23–50)

Low (- 1 to 2.5) High ([ 23) Low (23–50)
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using Cooja, Contiki’s simulation tool. Cooja is a flexible

simulator conceived to simulate sensor and IoT networks

running the Contiki operating system. The properties of

Tmote-sky IoT devices were exploited to initiate the

attacks. A lossy environment is considered because; the

6LoWPAN protocol used in IoT networks is inherently

lossy [16, 34].

Figure 10 shows one of the experimental setups. The

Cooja network simulator contains five windows that are

studied for calculating the performance metrics of a sys-

tem. The Network window shows the physical organization

of the motes. To construct a topology, the physical posi-

tions of the motes could be changed. In the network win-

dow, each type of mote has a different color based on its

purpose. For example, in Fig. 10, i.e., in the implementa-

tion of GLSF2IoT, the cloud node is green, the fog nodes

are blue, the edge motes are pink, and the malicious nodes

are yellow. Mote properties, radio environment of each

mote, mote kind, and radio communication between the

motes could all be seen graphically in the network window.

The simulation control window allows us to modify the

simulation speed as well as pause, restart, and reload the

currently running simulation. The note window is used to

write the theories and key points of the simulation and store

them. The Cooja network simulator also displays a timeline

for each sky mote (in our case, 65 motes). IoT networks’

power consumption and network traffic could be seen with

the timeline. The mote output also displays the similar

information but in a different format. It tells what every

mote is doing at a particular instant of time with a message.

Transmitting radio signals are displayed in blue, receiving

radio signals in green, and radio interference in red.

The key parameters concerning the experiments are

given in Table 8.

4.1 Simulation environment

Figure 10 shows that GLSF2IoT can detect the attackers in

real-time. The edge nodes are normal sky motes with a

modified client.c file. The modification was made to allow

these devices to send and receive data like normal IoT

devices. The sky motes available in Cooja otherwise work

only on the control packets. The IoT network with no

malicious nodes is shown in Fig. 11 scenario-1. The fog

nodes have been created by modifying the udp-server.c file.

The cloud node is running the udp-server.c file. In sce-

nario-2 of Fig. 11, we have launched the attacks (by

modifying the edge node client files) at the edge layer only.

In Scenario-3, a more aggressive attack landscape is cre-

ated by having attackers at both the edge and fog layers.

Fig. 10 Experimental set-up
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4.2 Performance of comparative analysis
of GLSF2IoT under various attacks

The parameters chosen for analyzing the performance of

GLSF2IoT below the impact of blackhole, selective

forward, collusion, and DDoS attacks are given in Table 9,

and the performance of GLSF2IoT is tabulated in Table 10.

The detailed TPR analysis of GLSF2IoT is given in

Figs. 12, 13, 14 and 15.

Table 8 Parameters for experimental evaluation

Parameter Value

Access level of the attacker Active

Attackers approach 1. Target extensive attack landscape

2. Compromise software of vulnerable devices

3. Attack MAC and Network layers

Network area 500 9500 m2

Maximum simulation time 50 min

Maximum number of edge IoT nodes 200

Maximum number of fog IoT nodes 40

Maximum number of cloud nodes 1

Number of attack scenarios 3 (60 edge, 10 fog, 1 server, and 20 attacker nodes; 120 edge, 25 fog, 1 server, and 40 attacker

nodes; 200 edge, 40 fog, 1 server, and 85 attacker nodes.)

Maximum number of iterations for checking

the result accuracies

10

No. of trust recommendations sent (for

collusion attack)

100

Max. no of false recommendations sent 50

Node type emulated Tmote-sky

Radio Medium used Unit Disk Graph Medium (UDGM) Distance loss

Network environment Lossy

Ranges of nodes Rx and Tx: 50 m, Interference: 100 m

PYH and MAC Layer IEEE 802.15.4

Duty cycle ContikiMAC

Transport layer UDP

Network layer uIPv6, 6LoWPAN

Objective function ETX

(Scenario-1) (Scenario-2) (Scenario-3)

Fig. 11 Scenario-1: no malicious nodes (Green—Server node,

Yellow—Fog node, Blue—Edge node), Scenario-2: malicious nodes

at edge layer only (Green—Server node, Yellow—Non-malicious Fog

node, Blue—Non-malicious Edge node, Red—Malicious Edge node)

and Scenario-3: malicious nodes at fog layer as well as at edge layer

(Green—Server node, Yellow—Non-malicious Fog node, Blue—

Non-malicious Edge node, Encircled-Red—Malicious Fog node,

Red—Malicious Edge node) (color figure online)
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Table 9 Parameters for performance analysis

Parameter Definition Calculation

True positive rate (TPR) No. of malicious nodes that GLSF2IoT correctly detects as malicious TP
TPþFN � 100

True negative rate (TNR) No. of non-malicious nodes that GLSF2IoT correctly detects as normal TN
TNþFP � 100

False positive rate (FPR) No. of non-attacker nodes falsely detected as attackers FP
FPþTN � 100

False negative rate (FNR) No. of attacker nodes falsely detected as non-attackers FN
FNþTP � 100

Detection accuracy Percentage of attacks detected by the system TPþTN
TPþTNþFPþFN � 100

Table 10 Performance of

GLSF2IoT under various attacks

and uncertain attack scenarios

Attack launched Performance of GLSF2IoT in Scenario-2 Performance of GLSF2IoT in Scenario-3

Blackhole Max TPR = 98%

Max FPR = 1.4%

Max FNR = 0.5%

Max Detection Accuracy = 96%

Max TPR = 96%

Max FPR = 1.6%

Max FNR = 0.62%

Max Detection Accuracy = 96.5%

Selective Forward Max TPR = 96%

Max FPR = 1.8%

Max FNR = 0.8%

Max Detection Accuracy = 96.5%

Max TPR = 94%

Max FPR = 1.9%

Max FNR = 1%

Max Detection Accuracy = 94.5%

Collusion Max TPR = 92%

Max FPR = 0.9%

Max FNR = 0.85%

Max Detection Accuracy = 92.5%

Max TPR = 91%

Max FPR = 0.95%

Max FNR = 1.5%

Max Detection Accuracy = 92%

DDoS Max TPR = 99%

Max FPR = 2%

Max FNR = 0.75%

Max Detection Accuracy = 99%

Max TPR = 97.5%

Max FPR = 2.5%

Max FNR = 0.79%

Max Detection Accuracy = 98%
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Fig. 12 TPR for blackhole attack in scenario’s 2 and 3
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Fig. 13 TPR for selective forward attack in scenario’s 2 and 3
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It is seen from the graphs that no output is obtained until

five minutes. It must be realized that this is the set-up time

of the network, i.e., the time required for all units to syn-

chronize. As soon as that is achieved, GLSF2IoT detects

the attacks in real-time. Moreover, the fluctuations in the

results are due to uncertainty in the time intervals when the

attacks get launched. The uncertainty is introduced to make

the simulated network closer to the realistic/physical IoT

network scenario.

Also, Fig. 16 orchestrates the detection accuracy of

individual attacks and the cumulative accuracy of GLSF2-

IoT under the influence of all the attacks launched together.

The results obtained indicate that GLSF2IoT’s success

in detecting these attacks is impressive and admirable,

because even in the highly aggressive attack environment,

when all the attacks are launched together, the cumulative

attack detection accuracy remains more than 90%. Fig-

ure 17 compares the detection accuracies of GLSF2IoT

with various contemporaries, and it is observed that it gives

far better results.

4.3 Performance of GLSF2IoT in heterogeneous
and scalable IoT

Heterogeneity is the classical characteristic of IoT. Diver-

sity in software, hardware, and process requirements is

justified by the range of functions performed by IoT

devices. To show that the performance of GLSF2IoT in

detecting malicious nodes remains unaffected under

heterogeneity and scalability, we implemented an IoT

network (Fig. 11 scenario-3) initially with 60 edge nodes.

Out of these 55 nodes, we configured 30 as sky-motes and

the remaining 25 as Z1-Zolertia motes. For testing the

scalability of GLSF2IoT, the number of nodes was

smoothly increased from 60 (20 attacker nodes; 12 at edge

and 8 at fog) to 120 (40 attackers; 30 at the edge, 10 at the

fog), and finally to 200 (85 attackers; 70 at the edge, 15 at

the fog).

Sky-motes have 8 MHz Texas Instruments, MSP430

low power microcontroller, 10 KB RAM and 48 KB flash

memory, 16-pin expansion support and optional SMA

antenna connector [47], whereas Z1-Zolertia motes are

equipped with 16 MHz MSP430F2617 low power micro-

controller, 8 KB RAM, and 92 KB flash memory, 52-pin

expansion support [48]. As such, there is heterogeneity in

the capabilities and feature sets of the nodes.

With negligible (1.5%) variation in the detection accu-

racies of various attacks (Fig. 18), it is proven that

GLSF2IoT works efficiently for larger IoT networks and
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Fig. 14 TPR for collusion attack in scenario’s 2 and 3
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Fig. 15 TPR for DDoS attack in scenario’s 2 and 3
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Fig. 17 GLSF2IoT against state-of-the-art attack detection strategies
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scalable IoT networks
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performs the same for both heterogeneous and non-

heterogeneous IoT networks, i.e., it is scalable and generic.

4.4 Performance comparison of GLSF2IoT
and cloud-based security architectures

The State-of-art techniques proposed by [31, 32, 34, 35]

use cloud-based IoT architectures for providing security

against various threats. Although the cloud provides mas-

sive storage and processing capabilities to IoT networks, it

suffers from inherent disadvantages [49–51], viz. (a) being

located at a distance from the edge IoT devices, (b) Huge

bandwidth utilized for device-cloud communication, and
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Fig. 20 Network overhead comparison between GLSF2IoT and

cloud-based security architectures for detecting Collusion attack in

IoT networks
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Fig. 21 Network overhead comparison between GLSF2IoT and

cloud-based security architectures for detecting DDoS attack in IoT

networks
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Fig. 22 Comparison of attack detection accuracy between GLSF2IoT

and cloud-based security architectures for detecting blackhole and

selective forwarding attacks in IoT networks
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Fig. 23 Comparison of attack detection accuracy between GLSF2IoT

and cloud-based security architectures for detecting Collusion attack
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(c) latency in furnishing the requested service. Fog-based

IoT architecture, on the other hand, offers cloud services to

the edge devices from the perimeter of the network, sharing

the load of the network as all the devices don’t need to

connect directly with the cloud server [16].

To compare the two architectures, i.e., GLSF2IoT and

cloud-based security, we compare the overhead laid on the

edge devices. The overhead is calculated by analyzing the

energy consumption of the edge nodes. This parameter is

affected by the number of retransmissions required for

establishing a connection with the cloud. The comparison

is shown in Figs. 19, 20 and 21.

Figures 19, 20 and 21 orchestrate that the fog-based

GLSF2IoT security posture puts considerably less overhead

on the edge devices than its cloud-based contemporaries

[31, 32, 34, 35]. This is because all devices are directly

connected to the cloud in cloud-based security designs.

Because of the limited bandwidth, more energy is con-

sumed for packet transmission and re-transmission

attempts. The edge devices have to perform some security
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Fig. 24 Comparison of attack detection accuracy between GLSF2IoT

and cloud-based security architectures for detecting DDoS attack in

IoT networks
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functions themselves. In contrast, GLSF2IoT shares the

load of providing services and attack detection among

multiple fog nodes, thereby sparing edge devices. As such,

less number of retransmissions, and almost no pressure of

attack detection is put on the edge nodes, which ultimately

leads to less overhead.

Also, the number of devices being monitored by every

single fog node is far less than the entire network moni-

tored by a single cloud. Figures 22, 23 and 24 compare the

detection accuracies of GLSF2IoT and cloud-based security

designs [31, 32, 34, 35]. It is seen that there is a massive

gap between the accuracies of these architectures. Hence-

forth, fog-based architecture must be used for providing

security to IoT environments where less latency, less

bandwidth, and consideration to real-time analytics are

needed.

4.5 GLSF2IoT and energy overhead

To calculate the energy overhead on the edge devices in the

presence of GLSF2IoT security posture, we first calculated

the average energy consumed by edge devices under nor-

mal conditions (scenario-2 of Fig. 11). Then we simulated

scenario-3, instantiated GLSF2IoT, and noted the average

energy consumed by edge devices. The results are shown in

Fig. 25. The energy value was calculated using the power-

trace tool available in cooja. It gives the time taken by

motes for transmission, reception, sleep, and processing of

data. Using these values, we calculate the expression for

energy as (Eq. 17):

E ¼ Voltage

� tT � 19:5 þ tR � 21:8 þ tS � 0:0545 þ tP � 1:8ð Þ
ð17Þ

And Power as (Eq. 18):

Power mWð Þ ¼ E mJð Þ=Time sð Þ ð18Þ

where tT; tR are the times spent by motes for transmission

and reception of packets, respectively, tS is time spent

during sleep mode or low power mode, and tP is the time

spent by mote during the processing of data. For checking

the working conditions, i.e., voltage and current supplied in

various modes of Tmote-sky motes, refer to [47]. Figure 25

shows the comparison of average energies consumed by

edge IoT devices under normal and malicious

environments.

Figure 25 shows a nominal variation in the average

energy consumed by edge nodes while comparing a non-

malicious IoT network with the malicious one. The overall

energy and packet transmission overheads are depicted in

Figs. 26 and 27. This proves that GLSF2IoT is lightweight,

i.e., for providing security, it doesn’t rely on the already

scarce energy of edge nodes.

Figures 26 and 27 indicate that the overall energy or

extra packet transmission overhead in the presence of

GLSF2IoT on edge devices is 5%. Moreover, this overhead

on cloud and fog nodes is not more than 30% of the energy

consumed or other resources used by the devices.

4.6 GLSF2IoT and memory overhead

IoT edge devices are constrained by storage space [52].

Therefore, the security posture designed for IoT must put

less memory overhead on the edge devices. We calculated

the overall memory overhead on network devices to

implement GLSF2IoT. It was seen that it uses 4.89 KB of

Table 11 Memory overhead on various IoT network devices for implementing GLSF2IoT

IoT device type ROM overhead (in Bytes) RAM overhead (in Bytes) Overall memory overhead (%age)

Server node 4832 538–637 1.12

Fog node 3348 298–321 0.75

Edge device 213 138 0.072
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Fig. 28 Memory overhead comparison in implementing GLSF2IoT

and other state-of-art security mechanisms to detect malicious

attackers in IoT networks
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ROM for the implementation. From the detailed memory

overhead shown in Table 11, it is evident that GLSF2IoT

puts negligible memory overhead on the devices. Figure 28

compares the memory overhead of GLSF2IoT with those of

two crucial state-of-art methods [34, 35].

The results in Fig. 28 are calculated by varying the

number of IoT network devices and implementing

Table 12 Applicability of GLSF2IoT to other cyber attacks

Type of attack Can

GLSF2IoT

tackle it?

Has GLSF2IoT

tackled it?

How has GLSF2IoT tackled it?

Insider attacks 4 4 It honors the protocols of authentication and

authorization but, it works on the principle of zero-

trust, conducting an unceasing watch on the

complete network to monitor both insider and

outsider node activities

Data theft attacks 9 9 GLSF2IoT was not developed on this level

Increased rank attack (attacker raises its rank to force

its neighbors to choose another parent. Done to

cause resource depletion and fragmentation in the

network)

4 4 GLSF2IoT constantly monitors rank inconsistencies

in the network

Decreased rank attack (attacker advertises a smaller

rank to attract more traffic. Done to disrupt the

network traffic and launch attacks like blackhole,

etc.)

4 4 GLSF2IoT constantly monitors rank inconsistencies

in the network

Worst Parent attack (attacker chooses the node with

the highest rank for forwarding the packets of its

children. These increase count; and delay in the

network

4 4 GLSF2IoT constantly monitors rank inconsistencies

in the network

Impersonation (stolen credentials like username,

passwords, etc.)

4 4(indirectly) By doubting every node, GLSF2IoT can identify this

attacker even when s/he gains legal access to the

otherwise secure network and becomes an insider

Compromised software (device’s software is altered

for launching the attack.)

4 4 For launching our chosen attacks, we have

compromised the software of Tmote-sky motes

Compromised hardware 9 9 GLSF2IoT was not developed on this level

Protocol deviation (attacker detours from the

standard working of the protocol)

4 9 Proper fuzzy rule-base needs to be created

Jamming attack (attacker blocks the channel and

other resources by transmitting radio signals

inappropriately)

4 4(indirectly) As GLSF2IoT continuously monitors the SNR,

hiding of a jamming attacker is not possible

Eavesdropping (hearing the in-transit messages) 9 9 GLSF2IoT was built on the active level. This is a

passive attack

Tampering (altering, dropping or delaying the

transmission)

Partly Partly If the attacker is modifying the contents of a

message, GLSF2IoT cannot identify the attack, but

any other type of tampering will be identified

Man-in-the-middle (a corrupt node replaces a fog

node and hijacks the secret information that was

being shared)

4 Partly (because the

replacement has

not been made)

GLSF2IoT’s fuzzy logic-based trust management

mechanism keeps a watch on all the fog nodes. As

and when it detects any malicious activity, it puts

that node in the blacklist

Flooding (transport layer attack that drains the

memory resources of its victim)

4 4 The legitimate PDR of a node drops when it forwards

illegal packets. Since GLSF2IoT continuously

monitors PDR, it can detect this attack

De-synchronization (bars the end-points from

achieving the sync by modifying sequence

numbers)

4 4 By monitoring the ADSN, this attack can be

identified as well

Overwhelming (flooding of application-layer traffic) 4 4(indirectly) GLSF2IoT keeps any kind of overwhelming under

check
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GLSF2IoT and security mechanisms given in [34, 35]

separately. This is done to resonate with the methods used

for comparison. While [34] uses a maximum of 32 nodes,

[35] creates a 15 node topology. To this end, we used a

total of 9 nodes (1-server, 2- fog nodes, and 6-edge devi-

ces), 32 nodes (1-server, 4-fog nodes, and 27-edge devi-

ces), and 65 nodes (1-Server, 9-fog nodes, and 55-edge

devices) for the first, second and third readings. In each

scenario, we calculated the overall memory overhead for

the mentioned security mechanism. Figure 28 indicates

that GLSF2IoT puts the least memory overhead than other

benchmark security mechanisms.

5 Suitability of GLSF2IoT for other IoT
attacks

Although we have used the blackhole, selective forward-

ing, collusion, and DDoS attacks for validating the effi-

cacy, and credibility of GLSF2IoT, we do not in any way

contend that only these attacks are worth tackling in an IoT

set-up, but that they are dangerous, have high-impact, and

can beat the purpose of any IoT network [25–27]. It is,

however, critical that its validity against other attacks that

could be launched in an IoT-fog set-up be pointed out.

Table 12 reveals GLSF2IoT’s applicability to other IoT

attacks.

6 Conclusion and future work

The paper analyzed the inevitability of digital annihilation

without cyber-security. It was ascertained that if the shar-

ing of data and information is needed beyond the ‘‘stand-

alone’’ closed model, then security cannot be layered as an

afterthought. As IoT brings more devices online, incorpo-

rating modern technologies into historically analog envi-

ronments, increased security risks are preordained. This

article studies the most dangerous attacks in the uncertain

IoT environment and proposes GLSF2IoT that incorporates

the advantages of fog computing and fuzzy logic into the

modeling of a lightweight security system for IoT. The

work in this paper is the first that has dealt with the

heterogeneity and uncertainty of the IoT environment.

With the four procedures, and two layers working in tan-

dem, it detects most of the attacks tossed in a constrained,

heterogeneous, scalable and uncertain IoT landscape. Per-

formance results affirm GLSF2IoT ’s optimality in attain-

ing greater accuracy rates. Our work also helps to maintain

the vital IoT component, i.e., people in the form of expert

knowledge included in maintaining security. GLSF2IoT

operates in real-time, in contrast to the bulk of attack

detection systems now available in the literature, which

operate in post-attack mode.

In immediate future, we would like to attempt an

extension to GLSF2IoT for hardware compromise attacks.

Efforts will be made to further reduce the false alarms,

energy, and memory overheads in the overall network.

Also, a ransomware attack in an IoT setting can be extre-

mely dangerous given that the IoT devices have come very

near to the personal lives of people. It can not only cause

monetary loss, but lead to critical information breach and

life risks. It has the potential to have an effect on the entire

spectrum of security services, including transparency,

confidentiality, and availability. For handling these ran-

somware attacks, we intend to use honeypot and Deep

Learning-based method. A honeypot will lure the attacker

to itself to analyze its modus operandi. The deep neural

network will be trained to identify ransomware attacks and

will be deployed on the honeypots. Consequently, we will

be able to detect the ransomware attacks in real-time.

However, given the extreme sophistication of cyber

attackers today, detection of honeypots by them is also a

huge challenge. To ensure the honeypots remain unde-

tectable, we will investigate and evaluate potential strate-

gies for detecting SSH and telnet honeypots. Also, we will

check the applicability of unsupervised Deep Learning

models and Reinforcement Learning to ransomware attack

detection. Due to the intrinsic complexity of ransomware

attacks, there are scenarios that cannot be characterized by

a simple label. As a result, unsupervised Deep Learning-

based approaches and Reinforcement Learning could per-

form well even if no prior knowledge of attack is available,

which is an obvious advantage.
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