
0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Trace Logic Locking: Improving the Parametric
Space of Logic Locking

Michael Zuzak, Student Member, IEEE, Yuntao Liu, Student Member, IEEE, and Ankur Srivastava, Member, IEEE

Abstract—To protect against an untrusted foundry, logic lock-
ing must 1) inject sufficient error to ensure critical application
failures for any wrong key (error severity) and 2) resist any
attack against it (attack resilient). We begin our work by deriving
a fundamental trade-off between these 2 goals which exists
underlying all logic locking, regardless of construction. This
relationship forces integrated circuit (IC) designers to sacrifice
the error severity of logic locking to increase its attack resilience
and vice versa. We proceed by exploring the consequences of this
trade-off through architectural simulations of ICs incorporating
locking sweeping over the derived parametric space. We find
that the efficacy of logic locking is severely limited by this trade-
off. In response, we propose trace logic locking (TLL), a novel
enhancement of module level logic locking which enables existing
art to secure arbitrary length sequences of input minterms,
referred to as traces. Doing so injects an additional degree of
freedom into the parametric space of locking, enabling locking
techniques to overcome the limitations of our derived trade-off.
We both theoretically and empirically prove this by using TLL
to enhance cutting edge locking. In 10 large benchmarks, we
show that TLL-enhanced logic locking provides exponentially
stronger attack resilience than conventional locking with only
modest additional overhead. Finally, we demonstrate the efficacy
of TLL in a processor IC using architectural simulations. Despite
prior art being unable to secure this IC, we find that TLL
concurrently achieves strong error severity and attack resilience.

Index Terms—Trace Logic Locking, Reverse Engineering,
Logic Locking, SAT Attack, Untrusted Foundry, IP Piracy

I. INTRODUCTION

Custom IC design has become universal due to the increas-
ing use of embedded systems. As technology advances, the
cost to create and maintain the cutting edge facilities necessary
to fabricate these devices has substantially increased. As a
result, many design companies have been forced to go fabless,
relying on unaffiliated and untrusted foundries to fabricate
their ICs. This has raised security concerns as an untrusted
foundry can pirate, counterfeit, or overproduce an IC [1]–[3].

To mitigate these risks, a family of hardware security
techniques known as logic locking has been proposed [4]–
[22]. Logic locking protects ICs from unauthorized use by
inserting auxiliary combinational logic into IC modules. This
added logic is designed to link locked module functionality to
additional primary inputs, known as key inputs. By doing so,
IC functionality becomes dependent on these key inputs. Only
by applying the correct value to key inputs, known as the secret
key, can correct IC functionality be unlocked. This means that

This work was supported by the ARCS Foundation and the Air Force Office
of Scientific Research Grant FA9550-14-1-0351.

M. Zuzak, Y. Liu, A. Srivastava are with the Department of Electrical
and Computer Engineering at the University of Maryland, College Park, MD
20742, USA. Email: {mzuzak, ytliu, ankurs}@umd.edu

intellectual property (IP) security concerns can be mitigated
by withholding the key from untrusted foundries. Doing so
renders an IC functionally incorrect for any untrusted foundry.
Therefore, by inducing sufficient error within locked modules
to ensure critical application failures for any wrong key, logic
locking prevents unauthorized use. We consider this to be the
first goal of logic locking, referred to as error severity.

In response to logic locking, an oracle-based attack, known
as a SAT attack, was developed [23] and expanded [24]–[28].
SAT attacks use a Boolean satisfiability solver to iteratively
eliminate all incorrect keys from the key-space, thereby locat-
ing the secret key. These attacks proved to be quite potent,
quickly unlocking most existing locking techniques [4]–[8].
As a result, logic locking began to incorporate strong attack
resilience [9]–[18], [20], [21], [29]. This brings us to the
second goal of locking, referred to as attack resilience, which
requires a logic locking technique to resist attacks against it.

Recently, an inverse relationship between the error severity
and SAT attack resilience of logic locking has been identified
[13], [21], [30], [31]. To explore this relationship, researchers
have provided limited derivations of it for specific techniques
[13] and loose generic bounds for locking as a whole [21],
[30], [31]. Unfortunately, the specificity/weakness of these
results provides little insight into the larger ramifications of
this underlying relationship. Therefore, we begin our work by
rigorously deriving the exact relationship, rather than a loose
bound, between the average error injection rate and the number
of SAT attack iterations required to unlock logic locking,
regardless of technique. Fundamentally, this result provably
quantifies and relates the 2 goals of locking, error severity
and attack resilience, placing them into direct contention. As a
result, once a locking configuration’s error severity is fixed, the
corresponding SAT attack resilience can be directly quantified
(and vice versa). Therefore, our derivation defines provable
limits for logic locking, regardless of construction.

We continue by exploring this trade-off. To do so, we
use the ObfusGEM simulation framework [32] to simulate
9 benchmarks from the PARSEC [33] benchmark suite on a
cycle-accurate GEM5 [34] model of each locked netlist. Our
results show that the identified trade-off prevents logic locking
configurations with feasible area, delay, and power overheads
from achieving error severity and attack resilience. Because
this trade-off exists regardless of logic locking scheme, these
results not only identify limitations of existing art, but also
indicate that novel logic locking techniques (that remain
bounded by this same trade-off) will also experience these
limitations. This motivated us to explore methods to expand
the parametric space of locking.

To do so, we developed trace logic locking (TLL), a novel

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

enhancement to module level logic locking art which alters
existing techniques to secure arbitrary length sequences of
input cubes, referred to as traces. By doing so, TLL provably
injects an additional degree of freedom, namely trace length,
into the parametric space of locking. This additional degree
of freedom allows existing art to overcome the limits of the
derived trade-off between error severity and attack resilience.
Our contributions can be summarized as follows:

1) A derivation of the exact relationship between error sever-
ity and SAT attack resilience which exists underlying
all logic locking techniques. This result quantifies the
provable security of locking, regardless of construction.

2) An exploration of logic locking at the architecture level.
We show that locking with feasible design overheads
cannot achieve both error severity and attack resilience.

3) A logic locking enhancement, trace logic locking (TLL),
which alters existing combinational locking techniques to
expand their parametric space. Doing so allows prior art
to overcome the error severity/attack resilience trade-off.

4) A formalized construction of TLL. With this, we provide:
a) A SAT resilience derivation proving that TLL injects

a degree of freedom into locking’s parametric space.
b) An analysis of TLL’s resilience to structural attacks.
c) An empirical analysis of TLL’s expanded design space.
d) A quantification of TLL’s design overhead.

5) An evaluation of TLL through architectural simulations of
a TLL-secured processor IC. TLL, unlike prior art, simul-
taneously achieved error severity and attack resilience.

II. PRELIMINARIES

A. Attacker Model

For this work, we use a SAT-capable adversary common in
recent logic locking research [9]–[27], [35], [36]. Specifically,
we consider an adversary who takes some strategy utilizing:

1) A locked netlist of the IC, C, obtained through reverse
engineering the GDSII file.

2) A correctly-keyed, black-box oracle IC, Co, obtained
through the open market or IC testing facilities. The
adversary can query the black box oracle with an input
and record the correct output, denoted as y ← Co(x).

The attacker’s goal is to find a key, k, that produces a
functional IC. For theoretical derivations, success is defined
as locating a key, k, such that {∀x,C(x, k) = Co(x)}.

B. SAT-Based Attacks

In response to logic locking, a Boolean satisfiability attack
(SAT attack) was proposed which quickly unlocked most
existing logic locking art [23]. The goal of this attack was to
locate a key (k) that when applied to the locked IC (C), yielded
identical output (y) to an unlocked oracle IC (Co), regardless
of input (x). Hence, a key satisfying {∀x,C(x, k) = Co(x)}.

To perform this attack, we must convert the locked circuit
to conjunctive normal form (CNF): Ccnf (x, k, y). This form
evaluates to true only if an assignment of x, k, and y can be
found such that y = C(x, k). By using a CNF-SAT solver on
the CNF circuit, the attack proceeds as follows:

1) An input (xdi) and two keys (k1, k2) must be found such
that when this input is applied to the locked circuit, each
key produces a different output (y1, y2).

Ccnf (xdi, k1, y1) ∧ Ccnf (xdi, k2, y2) ∧ (y1 6= y2) (1)

This input, xdi, is called a distinguishing input (DI).
2) The DI is applied to Co and the output, ydi, is recorded.
3) During each iteration, a pair of keys k1, k2 must be found

which produce correct output for all previously located
DIs (xj) along with an additional new DI, xdi.

Ccnf (xdi, k1, y1) ∧ Ccnf (xdi, k2, y2) ∧ (y1 6= y2)
i−1∧
j=1

(Ccnf (xj , k1, yj) ∧ Ccnf (xj , k2, yj))
(2)

4) The SAT solver operates on (2) until it is unsatisfiable.
This indicates that no further DIs remain. A final key is
found which matches the oracle’s output on all tested DIs.
This key is functionally equivalent to the correct key.

C. Stripped Functionality Logic Locking (SFLL)

SFLL is currently a prominent gate-level locking scheme
under the SAT attack model [13]–[15], [22]. At the core of
SFLL is the idea of functionality stripping, defined as the in-
correct and permanent alteration of the output produced when
specific inputs are applied to a locked module. This stripped
functionality is then corrected by some added logic, known as
the restore unit, when a correct key is applied. By functionality
stripping more or smaller minterms, the wrong key error rate
of an SFLL construction can be modified. This makes SFLL a
uniquely tunable locking construction. The work in [13]–[15],
[22] introduces multiple locking constructions, however, we
focus on SFLL-Fault [15].

SFLL-Fault [15] is a fault injection and ATPG driven strat-
egy to implement the SFLL-Flex construction outlined in [13].
The construction of SFLL-Fault consists of a functionality
stripped module and a tamper-proof look-up table (TPLUT) as
the restore unit. In SFLL-Fault, the TPLUT is indexed by the
secret key. When the input to the locked module matches the
index of the TPLUT (secret key), a restore signal is provided
which inverts the locked module’s output. In the presence of a
correct key, the restore signal will correct output errors induced
by stripped functionality. In the presence of a wrong key, the
restore signal will corrupt correct outputs, causing more error.

III. DERIVING THE PARAMETRIC SPACE OF LOCKING

We begin our work by identifying and deriving a parametric
space which exists underlying every logic locking technique.
Specifically, we show that an increase in the wrong key error
rate of a fixed logic locking construction, while improving
error severity, must reduce the average number of SAT queries
required to find an unlocking key. As a result, an IC secured
with logic locking that simultaneously achieves the highest
error severity and SAT resilience can be shown to be to have
an infeasible design overhead (Section IV).

While prior work has identified this trade-off for specific
techniques [13] or as loose asymptotic bounds applying to
more generic logic locking constructions [21], [30], [31], it has

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

not yet been precisely quantified. Hence, our work constitutes
the first derivation that directly quantifies, without reliance on
asymptotic bounds, the wrong key error rate (error severity)
and SAT attack resilience of any logic locking construction.

Let the input and key of an arbitrary locked module be of
length n and |k| bits respectively (2n total inputs and 2|k| total
keys). There exists c correct keys for the locking construction,
therefore, 2|k|−c incorrect keys exist which corrupt the output
corresponding to q inputs on average. Each of these inputs,
on average, produces corrupt output for x wrong keys. This
implies that the average wrong key error rate, ε, is ε = q/2n.
With this notation, we define Lemma 1.

Lemma 1. The average number of wrong keys corrupting the
output of each input minterm, x, is defined as x = (2|k|− c)ε.

Proof. Given the arbitrary logic locked module which we have
defined, let us refer to (xj , ki) as a minterm-wrong key pair
(MWP) if the input minterm xj produces corrupt output for
the wrong key ki. Based on this, we can write the equation:
|MWP | = (2|k| − c)q = 2nx, so, x = (2|k| − c)ε

Theorem 1. The expected number of SAT attack queries
required to unlock an arbitrary logic locked module, λ, is:

λ =


log

(
2|k| − c− ε(2|k| − c)
ε(2|k| − c)(2|k| − c− 1)

)
log

(
2|k| − c− ε(2|k| − c)

2|k| − c− 1

)
 (3)

Proof. A SAT-based adversary attacking an arbitrary technique
will locate the unlocking key when all wrong keys within
the key-space are eliminated. To accomplish this, we assume
the SAT-based attacker randomly samples the input space for
DIs1. The merits of this assumption are discussed in Section
VII-A. Therefore, in each SAT query, the attacker selects a DI
and removes all wrong keys that corrupt the output for this
DI that have not previously been eliminated. Let ai be the
expected total number of wrong keys eliminated up to iteration
i. Hence, the expected number of wrong keys eliminated by
SAT iteration i is ai − ai−1.

Lemma 1 indicates that each DI enables x wrong keys to
be eliminated on average. However, some portion of these x
keys could have been eliminated during prior SAT iterations
and cannot be eliminated again. This must be addressed. By
definition, a DI selection must eliminate at least 1 undis-
covered wrong key to be valid. Therefore, a given SAT
iteration eliminates 1 wrong key and a fraction of the x − 1
remaining wrong keys that have not been eliminated by prior
DIs. Because DIs are randomly selected from the input-space,
excluding the 1 wrong key we are guaranteed to eliminate,
the likelihood for any wrong key not having been eliminated
equals the ratio of # wrong keys that have not been eliminated,
(2|k| − c − aa−1 − 1), to # total wrong keys, (2|k| − c − 1).
Therefore, ai − ai−1 is defined by:

ai − ai−1 = 1 + (x− 1) · 2
|k| − c− ai−1 − 1

2|k| − c− 1
(4)

1An input is not a DI if it does not produce corrupt output for any wrong
key. So, if locking never corrupts the output for some input, that input should
be excluded from the input space for this derivation as it is not a valid DI

We continue by simplifying the above form:

ai = β · ai−1 + x where β = 1− x− 1

2|k| − c− 1
(5)

Let us create an intermediate variable, δ, defined as x =
δ − βδ, which can be substituted into the above equation:

ai − δ = β · (ai−1 − δ) where δ =
x

1− β (6)

Let us define the expected number of SAT queries necessary
for a successful attack as λ. Using this, we can form the
following set of equations that define the expected number
of eliminated keys after each SAT query.

a1 − δ = β(a0 − δ)
a2 − δ = β(a1 − δ)

...
aλ − δ = β(aλ−1 − δ)

(7)

Prior to launching a SAT attack, no wrong keys are elim-
inated. This provides an initial condition, a0 = 0, enabling
induction to be applied. By induction, we arrive at:

aλ = δ + βλ · (a0 − δ) = (1− βλ)δ (8)

For a successful SAT attack, all wrong keys must be
eliminated, therefore, aλ = 2|k| − c.

2|k| − c = δ + βλ · (a0 − δ) = (1− βλ)δ (9)

We substitute for the intermediate terms, β and δ, and solve
for λ. λ is a positive integer so we require a ceiling function.

λ =


log

(
2|k| − c− x
x(2|k| − c− 1)

)
log

(
2|k| − c− x
2|k| − c− 1

)
 (10)

Finally, we apply Lemma 1 to arrive at the final form:

λ =


log

(
2|k| − c− ε(2|k| − c)
ε(2|k| − c)(2|k| − c− 1)

)
log

(
2|k| − c− ε(2|k| − c)

2|k| − c− 1

)
 (11)

Let us briefly explore an approximate form of this result.
Assume that the total number of keys (2|k|) is much greater
than the number of correct keys (c). If this were not the case,
there is a sizable probability that a random key guess would
produce a functional IC, making these configurations largely
useless. This allows us to assume 2|k| − c ≈ 2|k|. Similarly,
let us assume 2|k| � 1, so 2|k| − 1 ≈ 2|k|. This yields:

λ ≈ 1− log(ε · 2|k|)
log(1− ε) (12)

However, as ε(2|k| − c) → 1, the removed c and −1
terms become increasingly relevant, degrading Equation 12.
Equation 12 should be avoided in this case.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

A. Understanding the Derived Parametric Space

Prior to analyzing this result, we emphasize its fundamental
nature. Because the key length and the number of correct keys
are generally fixed locking constraints, Theorem 1 quantifies a
direct relationship between 2 primary goals of locking: wrong
key error rate (error severity) and SAT resilience. Therefore,
in addition to proving that these 2 primary goals are in direct
contention, this also enables an IC designer to directly quantify
the provable security of their locking technique regardless of
construction. By doing so, one can consciously trade between
the error severity and SAT attack resilience of locking to
ensure the design of a provably secure locking configuration.

To analyze the derived result, we visualize the parametric
space created by Theorem 1 as a line in Figure 1. In the figure,
we have fixed the key length (|k|=16) and number of correct
keys (c=1). This was done because key length is generally
determined by the allowable design overhead and number of
correct keys is determined by the locking construction utilized.
We note, however, that the shape of the plot is nearly identical
regardless of the value selected for these parameters. Finally,
note that the number of SAT attack iterations cannot be larger
than the size of a locked module’s input space. As described
in Section II-B, a SAT-based attacker selects specific input
combinations as DIs which are used to eliminate all incorrect
keys. Once all possible inputs have been selected, the SAT
attack has provably eliminated all incorrect keys. Therefore,
regardless of the key length, the number of SAT iterations
will never exceed the size of the locked module’s input space.
These restrictions produce the parametric space in Figure 1.

Despite the opacity of the form of Theorem 1, the resulting
parametric space is quite intuitive. The trade-off between error
severity and SAT attack resilience can be characterized by a
monomial inverse relationship. We note that point-function-
based locking techniques (such as [10], [19]) reside at the
far right of Figure 1, achieving the maximum possible SAT
resilience and minimum possible wrong key error rate. This is
unsurprising as these techniques were introduced to maximize
SAT attack resilience. On the other hand, high error rate logic
locking techniques (such as [4]–[8]) reside at the far left side
of Figure 1, achieving a high error rate and an extremely low
SAT attack resilience. Once again, this is unsurprising as these
techniques were designed prior to the SAT attack [23] and
therefore did not consider SAT attack resilience.

Finally, we have evaluated several locking configurations
to experimentally support Theorem 1. To this end, we locked
an 8-bit adder (n=16) using Anti-SAT [9] and SARLock [10].
Each netlist was then attacked with the open-source SAT attack
from [23]. The resulting number of SAT queries to unlock each
netlist was compared to the expected number of SAT queries
from Theorem 1. We have plotted this comparison in Figure
1. The empirical SAT queries closely match the expected SAT
queries. Hence, Theorem 1 appears to correctly quantify the
relationship between average error rate and SAT resilience.

B. Understanding SAT Attack Iteration Runtime

Theorem 1 quantifies the number of SAT attack iterations
necessary to unlock logic locking. Prior research, such as

101 102 103 104 105

Expected SAT Queries to Locate Secret Key
(SAT Attack Resilience)

10 5

10 4

10 3

10 2

10 1

Av
g.

 W
ro

ng
 K

ey
 E

rr
or

 R
at

e
(E

rr
or

 S
ev

er
it

y)

Anti-SAT(= 2 2)
Anti-SAT(= 2 4)

Anti-SAT(= 2 6)
Anti-SAT(= 2 8)

SARLock(= 2 16)

Theoretical
Anti-SAT
SARLock

Fig. 1: Inverse relationship between error severity and SAT
resilience for logic locking (|k| =16, c=1) from Theorem 1.

[9], [10], [12]–[15], [18], [21], has relied upon this metric
to demonstrate SAT resilience. However, recent works, such
as Full-Lock [20], have taken an alternative approach to SAT
resilience, attempting to make the runtime of successive SAT
iterations scale exponentially. To consider this, we expand
our view to total SAT attack runtime, modeled by TSAT =∑λ
i=1 T (i), where T (i) is the runtime of SAT iteration i.
Each SAT attack iteration must solve an NP-complete

problem. Hence, no efficient algorithm to solve each SAT
query exists, only a variety of heuristics. Thus, the time to
solve each SAT query (T (i)) is variable and specific to 1)
the design topology, 2) the Boolean SAT solver algorithm,
and 3) the specifications of the machine running the attack.
Hence, the runtime of each SAT query is unpredictable and
empirically dependent. Regardless, the derivation in Theorem
1 holds true, even for Full-Lock-style schemes.

An analysis of SAT iteration runtime is necessary for a full
view of prior art. However, due to the empirical nature of
this metric, we must rely on experimental analysis. So, we
have implemented Full-Lock in the ∼ 10k gate b14 benchmark
from ITC’99 [37]. The resulting SAT attack runtime for each
configuration is in Figure 2. Notice that the SAT runtime did
increase exponentially in the size of Full-Lock. However, we
still unlocked each configuration within 10 minutes, despite
the presence of large keys, up to 384 bits. So, despite expo-
nentially increasing SAT runtime, Full-Lock did not exhibit
significant SAT resilience for reasonably sized configurations.

We also calculated the overhead of each Full-Lock con-

144 288 384
Full-Lock Key Length (Bits)

0

200

400

600

SA
T

Ru
nt

im
e

(s
)

144 288 384
Full-Lock Key Length (Bits)

0

100

200

Lo
ck

in
g

Ov
er

he
ad

 (%
)

Area Delay Power

Fig. 2: SAT attack runtime with corresponding area, delay, and
power overhead for Full-Lock [20] in b14 netlist.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

figuration using the Cadence Encounter RTL Compiler and
the Synopsys 90nm SAED library. Full-Lock showed large
overheads, with nearly a 200% increase in power and 60%
increase in area for the largest tested scheme. This supports our
assertion in Section IV that design overhead restricts locking
from simultaneously being error severe and SAT resilient.
However, both iteration count and time scaling are likely
needed for optimal SAT resilience. Our proposed TLL scheme
can be paired with either style of locking, so we consider a
Full-Lock-style approach to be particularly relevant to TLL.

IV. EXPLORING THE DESIGN SPACE OF LOGIC LOCKING

Figure 1 shows that our derived trade-off creates a rigid
parametric space between 2 primary goals of locking, error
severity and SAT resilience, placing them in contention. Be-
cause effective locking must achieve both goals, this raises
major security concerns. In this section, we empirically ex-
plore the consequences of this trade-off on logic locking art.
To do so, we use the tunability of SFLL-Fault [13]–[15] to
lock processor ICs with locking that sweeps over our derived
parametric space. By evaluating the security of each locking
configuration, we explore the resulting design space. We find
that the trade-off between error severity and SAT resilience
renders logic locking with a feasible design overhead unable
to thwart an untrusted foundry attacker.

A. Methods for Architectural Design Space Exploration

To arrive at this assertion, we locked victim netlists with
a variety of locking configurations. To select victim netlists,
we aggregated the benchmarks used by several logic locking
works and assessed commonality [9], [10], [13]. In these
works, processor logic constituted 74% of evaluated netlists.
Of the processor logic tested, data and control path netlists
were roughly equally represented. Therefore, we evaluated
both control and data path locking. Specifically, we locked the
control and data path of a RISC (MIPS) and CISC (80186)
core to provide a cross-section of processor logic.

Locking Location: Within the control path, we locked the
instruction decoder because it was the largest control path
module in both processors. Within the data path, we locked the
adder circuit. This was due to the prevalence of ALU netlists
evaluated by prior art (57% of data path benchmarks).

Locking Configuration: Each netlist was locked using
SFLL-Fault [13]–[15]. Using the tunability of SFLL-Fault, we
incorporated a series of constructions within each benchmark
that swept over the derived parametric space. Because this
same design space exists underlying all logic locking tech-
niques, this experiment allows us to characterize the design
space of logic locking as a whole.

B. Logic Locking Attack Methodology

After locking each netlist, we evaluated their security with
respect to both error severity and attack resilience (specifically
SAT resilience). To evaluate error severity, we must quantify
the usability of each IC in the case of a wrong key. To
do so, we used the ObfusGEM simulator [32] to simulate

9 benchmarks from the PARSEC [33] benchmark suite on
a cycle-accurate GEM5 [34] model of each locked netlist.
We outline our experimental setup in greater detail in Section
IX-C. A high failure rate for these benchmarks indicates that
a locked IC is thoroughly unusable when a wrong key is
applied and therefore exhibits strong error severity guarantees.
To measure SAT resilience, we attacked each netlist using an
open-source SAT attack [23]. By measuring the iterations and
execution time required to recover the secret key, we quantify
the SAT susceptibility of each locking configuration.

Control Path: We launched a SAT attack on the locked
netlist with the lowest achievable wrong key error rate SFLL-
Fault configuration. The evaluated MIPS controller had 16
primary inputs and the evaluated x86 controller had 15 primary
inputs (after removing pass-through inputs). Therefore, the
evaluated SFLL-Fault constructions utilized a 16-bit and a 15-
bit key that stripped a single 16-bit and 15-bit input minterm.
This locking configuration corresponds to the highest possible
SAT attack resilience achievable by stripping a single minterm
with SFLL-Fault. Despite being the largest control circuit, the
decoder is small, allowing it to be unlocked via SAT attack.

The runtime of each attack against the control path is in
Table I. Each attack successfully located the key within 48
hours. We note that even a worst-case, non-logic-locking-type
approach, such as removing and replacing the netlist with a
LUT, could only require a maximum of 216 and 215 SAT
attack iterations to unlock the circuit based on Theorem 1. This
corresponds to the case that each input must be selected as a
DI. While not ideal, it is entirely possible to brute-force this
number of SAT iterations given the small size of the controller
logic. Therefore, because we selected the largest control path
circuitry for locking and incorporated the most SAT resilient
SFLL-Fault configuration of this form, it appears that SFLL-
Fault is unable to protect the control path against a SAT attack.

Data Path: The adder circuit’s input size enables extremely
low error rate SFLL-Fault configurations. Because SAT re-
silience is inversely related to wrong key error rate, this implies
that extremely strong SAT resilience can be achieved by lock-
ing. However, the goal of locking is two-fold. Alongside SAT
resilience, locking must also achieve error severity. Because
these 2 goals are in contention, we must locate an SFLL-Fault
configuration sufficient to achieve both.

To do so, we used our simulation framework to identify
the minimum wrong key error rate SFLL-Fault construction
capable of achieving error severity. This minimum error rate
locking construction corresponds to the maximum achievable
SAT resilience for a locking configuration exhibiting error
severity. Therefore, if this construction can be unlocked using a
SAT attack, a locking configuration capable of simultaneously
achieving SAT resilience and error severity does not exist.

We aggregated the results of these simulations for the locked

SAT Runtime
Locked Circuit Control Path Data Path
MIPS (RISC) 108493 sec 893.2 sec
80186 (CISC) 95193.4 sec 993.4 sec

TABLE I: SAT attack runtime for processor logic.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

20 23 26 29 212 215 218 221 224 227 230 233

Average SAT Attack Queries to Unlock
(Higher Indicates More SAT Attack Resilience)

0

50

100

%
 B

en
ch

m
ar

k
Ru

ns
wi

th
 U

nr
ec

ov
. E

rro
r

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

blackscholes
bodytrack
dedup

ferret
fluidanimate
freqmine

streamcluster
swaptions
x264

Fig. 3: Empirically derived relationship between error severity
and SAT attack resilience in locked 80186 processor data path.

80186 netlist in Figure 3. To visualize the parametric space
between the failure rate of common workloads (error severity)
and SAT resilience, we have related the workload failure rate
of each SFLL-Fault construction to the average number of
SAT queries required to unlock it. This results in a map of the
parametric space between error severity and SAT resilience.
For both netlists, a non-zero workload error rate occurs at
a wrong key error rate of 0.02%, corresponding to a 4096
(212) query SAT attack in Figure 3. This indicates that a
minimum error rate exceeding 0.02% is necessary to achieve
any error severity. To accomplish this, we designed an SFLL-
Fault configuration to strip a 13-bit input using a 13-bit key.

We launched a SAT attack against each netlist configured
with this minimal error rate SFLL-Fault construction which
still achieved error severity. The runtime of each attack is
in Table I. Each attack found the secret key within 1 hour,
indicating that a logic locking configuration of this form that
is capable of providing both SAT resilience and error severity
within the data path of either IC likely does not exist. Note that
security could be achieved by greatly increasing the number
of stripped inputs, however, doing so requires added restore
logic for each stripped input. This makes such an approach
infeasible in terms of area, delay, and power overhead. Prior
work also notes the infeasibility of this approach [35]. Hence,
our results indicate that a logic locking configuration capable
of both error severity and SAT attack resilience with a feasible
design overhead likely does not exist for this core.

C. Limitations Imposed by the Parametric Space of Locking

Evaluated SFLL-Fault configurations could not achieve both
error severity and SAT resilience in either the control path or
the data path. This was due to the trade-off between these two
objectives. While each netlist was only locked with SFLL-
Fault, we have proven that this trade-off between error severity
and SAT resilience exists underlying every logic locking
technique2 (Section III). Additionally, we used the inherent

2Logic locking could achieve security by sufficiently scaling key length.
For example, portions of the circuit can be replaced with re-configurable logic
(e.g. an FPGA), or SFLL-Fault can strip a sizable portion of an IC’s inputs.
These approaches are a theoretically viable way to achieve error severity/SAT
resilience. This can be confirmed by Theorem 1. However, this does not
weaken our assertion. These approaches are infeasible due to their tremendous
design overhead. Prior work, such as [35], arrives at a similar conclusion.

tunability of SFLL-Fault to design locking configurations
which swept throughout the parametric space. Therefore, our
result is not a limited example in which cutting edge logic
locking was insecure, but a demonstration of the underlying
limits imposed on logic locking by its rigid parametric space.
As a result, simply proposing novel logic locking constructions
(which remain bounded by this trade-off) will do little to
overcome these limits. Instead, we must explore ways to
expand this parametric space, rather than operate within it.

V. TRACE LOGIC LOCKING (TLL)
To counter the rigidity of logic locking’s parametric space,

we developed trace logic locking (TLL), a novel logic locking
enhancement which injects an additional degree of freedom
into the parametric space of locking. TLL achieves this by
locking a sequence, or trace, of inputs. This differs from
conventional locking which locks a set of inputs. Because
both a set and a trace of inputs can be locked simultaneously
and independently, TLL can be integrated into any conven-
tional logic locking technique. As we show both theoretically
and experimentally in Section VII-A/IX, doing so causes
the SAT attack resilience of a TLL-enhanced technique to
vary exponentially in locked trace length. This is a major
contribution. The derived parametric space of logic locking
requires a reduction in error severity for an improvement in
SAT attack resilience. However, by utilizing TLL, SAT attack
resilience can be achieved by scaling locked trace length,
thereby disentangling error severity and attack resilience.

A. Foundations of TLL

Prior to detailing a construction of TLL, let us formalize
its notation and intended functionality. Let us assume that
conventional locking (e.g. SFLL-Fault) has been applied to
some arbitrary combinational module in an IC which receives
an input (x ∈ X) on each clock cycle. Additionally, let us
assume that some incorrect key (ki) has been provided to the
incorporated locking. In this case, logic locking will corrupt
the output of some subset of the input space, Xi ⊆ X , such
that a fixed incorrect output is produced whenever an input,
x ∈ Xi, is applied. The inputs in Xi depend only on ki.

In this work, we refer to a set of inputs occurring over l
clock cycles as a trace of length l. TLL is designed to modify
a conventional locking construction (e.g. SFLL-Fault) to lock
a trace of length l. We refer to this as l-state TLL. To do so,
TLL-enhanced locking must corrupt the output of a different
set of inputs, Xi ⊆ X , on l different clock cycles. This is
achieved by injecting the notion of state into conventional
locking. Hence, l-state TLL incorporates an l state finite state
machine (FSM) within the locking construction where each
state corresponds to a unique Xi. Therefore, the FSM’s state
determines the currently locked inputs. We refer to the set of
inputs locked in FSM state m as Xm

i . Hence, when using
TLL, Xm

i depends on both ki and the FSM’s state.

B. TLL as a Logic Locking Enhancement

As noted, conventional locking secures a set of inputs (Xi)
which are dependent only on the value of ki. This functionality

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

is combinational, entirely lacking a sequential component.
TLL, on the other hand, is entirely sequential in nature as it
secures input traces. Therefore, because conventional locking
lacks a sequential component, TLL can be integrated alongside
any conventional locking technique. Doing so introduces a
sequential component to locking without altering the under-
lying combinational functionality of the conventional locking
technique. We refer to this as enhancing a locking technique
with TLL. By doing so, a locking construction is created where
Xm
i is dependent on both the value of ki, determined by the

conventional locking technique, and the current state of the
locking construction (m), determined by TLL.

Presenting TLL as a logic locking enhancement, rather than
a unique locking construction, is quite advantageous. It allows
TLL to leverage the strongest existing conventional techniques,
while still expanding the parametric space of locking. In fact,
because TLL only adds a sequential component to a conven-
tional locking construction, it does not modify the underlying
combinational functionality of conventional locking at all. This
means that TLL expands the parametric space of locking,
thereby exponentially improving SAT resilience, while main-
taining any other security guarantees (e.g. removal resistance)
of the underlying locking technique. However, because TLL
is a locking enhancement, its construction depends on the
technique it enhances. Moving forward, we utilize SFLL-Fault
[13]–[15] to formalize a construction of TLL.

SFLL-Fault was chosen as it is currently the most prevalent
logic locking technique which remains unbroken. However,
there are limitations to the SFLL family. For example, struc-
tural traces unique to SFLL have been shown to be exploitable
to reconstruct the secret key [38], [39]. While these traces have
not yet been used to successfully unlock SFLL-Fault, they have
been used to unlock SFLL-HD, indicating some limitations.
While other techniques, such as [11], [16]–[18], [20], have
been shown to be strong alternative locking constructions, they
have not yet gained the prevalence of SFLL. Therefore, we
present a locking construction for TLL based on SFLL-Fault.
However, any alternative conventional locking technique could
have been utilized as an equally valid backbone for TLL.

C. Comparison of TLL and FSM-Based Locking

Despite TLL’s sequential nature, it differs substantially from
FSM-based locking schemes, such as [40]–[44]. To distinguish
TLL and sequential locking, we note 2 key differences:
1) Target Circuitry: FSM-based locking obfuscates an IC

by altering its control FSM. To do so, a series of key
authentication states are added to the control FSM to
validate the key. For a wrong key, the controller enters a
permanent obfuscation mode utilizing dummy states with
incorrect functionality. For a correct key, the controller
enters the intended FSM region, enabling correct func-
tionality. Hence, FSM-based locking schemes obfuscate
IC control flow. Rather than modifying the control path,
TLL instantiates a separate FSM that directly modifies
a combinational logic locking scheme. When the key is
incorrect, rather than inducing errant control flow, TLL
induces combinational errors in the logic locked module.

2) Intended Use: FSM-based locking achieves stand-alone
security. While these schemes can be paired with other
locking art, they operate independently. TLL must be
closely integrated with a logic locking scheme because it
cannot induce error on its own. TLL relies on the underly-
ing locking scheme for error, making TLL an enhancement
for logic locking, rather than a stand-alone scheme.

This leads to 2 key advantages over FSM-based schemes:
1) Exponential Improvement in SAT Resilience: While

FSM-based locking can be integrated alongside logic lock-
ing, it operates separately, allowing it to be attacked
separately. For example, automated reverse engineering
attacks [44] can isolate the control FSM to infer the key of
FSM-based locking. Similarly, a logic locked module can
be isolated and SAT attacked separately from the locked
control FSM. TLL integrates tightly into logic locking. As
derived in Thm. 2, this requires both schemes be attacked
together, exponentially improving SAT resilience.

2) Reverse Engineering Attack Resilience: FSM-based
locking is susceptible to reverse engineering. In [44], the
authors outline these attacks on prominent FSM-based
schemes [40]–[43]. These attacks are potent due to the ease
of identifying and reverse engineering FSMs, enabling the
authors to infer errant control flow, thus the secret key.
However, TLL 1) does not target an IC’s control FSM and
2) does not rely on errant control flow for security. So,
unlike FSM-based locking, TLL’s FSM topology does not
encode the key, thus FSM reverse engineering is irrelevant.

Therefore, we consider TLL-enhanced and FSM-based lock-
ing to be fundamentally different hardware security schemes.

VI. ENHANCING SFLL-FAULT WITH TLL
In this section, we formalize a construction of TLL to

enhance SFLL-Fault (TLLSFLL−Fault) [13]–[15]. For the
remainder of this work, we rely on this construction to evaluate
TLL. We begin by introducing a limited example of 2-state
TLL which we later generalize to a fully tunable construction.

A. Enhancing SFLL-Fault With 2-State TLL

Assume an arbitrary combinational module receives input,
i ∈ I , on each clock cycle. We refer to a sequence of l inputs
applied over l clock cycles as a trace of length l. Therefore,
2-state TLL locks a trace of length 2. We emphasize that the
intended functionality of a TLL locked module must remain
combinational despite the sequential nature of TLL’s locking.

For the 2-state TLL construction which we introduce in this
section, let us assume that we intend to corrupt the output of
a single cube within the locked module for each of the 2 TLL
states. To illustrate this, let us arbitrarily refer to the locked
trace inputs as i0 followed by i1. In this case, i0 or i1 produces
incorrect output in the locked module for a given clock cycle,
never both. The currently locked input switches between i0
and i1 whenever the input to the module matches a portion of
the secret key. This yields functionality such that the order of
locked inputs in the trace is critical, but the number of cycles
between locked inputs is irrelevant. Figure 4A shows a block
diagram of 2-state TLL.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

Restore
Multiplexer

(RM)

SELECT
Stripped Functionality SelectionC

1100
R.U.

State 0

R.U.
State 1

1101

1111
1110

110x

111x

Initial
Compress Final Cubes

Stripped Functionality Circuit

0 1

K0

Current State

Restore
Unit Restore

Restore
Signal

4

Original NetlistB TLL-Secured NetlistD

i0→X
i1→X

X→F(i1)

X→F(i0)

Restore
Mux
(RM)

TLL Block DiagramA

0 1Restore Unit

Stripped
Functionality

Circuit

TLL Restore
Paths

Current
State

Restore

Identical intermediate value (X = '11')
induced for stripped functionality.

o1

i1

i3

i2
i4

o2

0011 0011

0011
0011

i1
i2

i4
i3

1

2

2

2

TLL Restore Paths

Current State

o1
o2

K1

K2 Restore
SignalK3

in == K0 | R0

in == K1 | R1

in == '111' | 11
in=='0011' | 10

in == '110' | 11
in=='0011' | 10

TPLUT0

TPLUT1

110x
0011

111x
0011

Fig. 4: 2-state TLL-secured module. A) Block diagram of 2-state TLL for input sequence “i1, i0”. B) Original c17 netlist. C)
Stripped functionality selection and compression for TLL. D) C17 netlist secured with 2-state TLL.

From the block diagram, notice that 2-state TLL consists
of a stripped functionality (SF) module, a restore unit, and an
XOR gate. The functionality of these components relies on a
secret key, denoted as the concatenation of two independent
subkeys, k = (k1, k0). The correct secret key corresponds to
the locked inputs of the trace, k = (i1, i0). For the remainder
of the section, we describe the functionality of TLL in depth
by considering each of its 3 components.

SF module: SF is defined as the re-design of a given set
of inputs within a combinational module to produce incorrect
output. In 2-state TLL, the SF module contains 2 SF inputs
corresponding to the locked trace, namely the inputs i0 and
i1. However, we note that 2-state TLL only has 1 SF input
enabled within the design during each clock cycle. To achieve
this, both SF inputs in the module are mapped to a common
intermediate value, X , rather than two separate and unrelated
incorrect outputs as is done by [13]. This intermediate value is
then mapped to the correct output for either i0 or i1. Finally,
because both inputs are mapped to the same intermediate, X ,
it is impossible for both inputs to have correct output during
a given clock cycle. To select between mapping X to the
correct output for i0 or i1, additional logic called the “restore
multiplexer” (RM) is added. Specifically, the select line of the
RM determines whether i0 or i1 is mapped to correct output.
This select line is controlled by the restore unit state.

Restore Unit: The restore unit is located below the SF
module in Figure 4A and consists of a 2-state finite state
machine (FSM). As noted, the current state of this FSM
controls the select line of the RM, hence, the restore unit
determines the current SF inputs within the locked module.
State transitions occur within this FSM when the current input
to the locked module matches one of the two secret subkeys
(k0 or k1), with k0 used in state 0 and k1 used in state 1.
Hence, the state sequencing of this FSM is determined by
the secret subkey corresponding to TLL’s restore unit state.
Building upon the foundation built by SFLL-Fault [15], this
secret subkey should be stored within a tamper-proof look-up
table (TPLUT) for protection. This TPLUT, as defined in [13],
contains a secret subkey (k0 or k1), acting as the index, and a
restore signal, acting as the output. Additionally, when a state
transition occurs (i.e. when the currently active secret subkey
matches the input to the locked module), a restore signal (Rs)

is applied to TLL’s XOR gate, altering the module’s output.
When properly keyed, the TLL restore unit will correct

output corruption induced by SF inputs by applying the restore
signal to the XOR gate located at the output of the SF module.
In the case of a wrong key, the restore unit will inject error
by applying a restore signal which corrupts otherwise correct
outputs corresponding to non-SF inputs. In this case, output
corruption is present in the locked IC not only for SF inputs,
but also for these non-SF inputs.

XOR Gate: The final component of 2-state TLL is the XOR
gate on the output of the locked module. As noted previously,
when a restore unit state transition occurs, a restore signal is
applied to this XOR gate which modifies module output.

Note that a TLL-secured module remains combinational.
Only the restore unit is sequential. Additionally, only 1 input in
the trace has SF on a given clock cycle. The SF input switches
when the currently enabled secret subkey matches the input to
the module, thus transitioning the restore unit FSM to the next
state. This allows 2 separate locked inputs to exist without any
increase in the wrong key error rate of the locked module for a
given clock cycle. As we show in Section VII, by utilizing TLL
to enhance SFLL-Fault, locking constructions can be created
which exhibit equivalent error rates and exponentially stronger
SAT resilience than SFLL-Fault alone. This allows TLL to
expand the parametric space of SFLL-Fault. We summarize
our construction of TLL-enhanced SFLL-Fault below.

1) TLL protects a sequence of 2 inputs, i0 followed by i1
2) At any given time, only a single SF input is locked
3) The RM select line dictates which SF input is locked
4) The restore unit corrects SF errors when the secret subkey

matches the current SF input

B. Example TLLSFLL−Fault Implementation

To clarify TLL’s implementation, we have locked the c17
circuit from ISCAS’89 [45] in Figure 4B-D. The un-locked
c17 circuit is shown in Figure 4B. To implement 2-state TLL,
the designer first selects candidate SF inputs for each TLL
restore unit state. In Figure 4C, we have selected 3 candidate
SF minterms for each state: (1100, 1101, 0011) and (1111,
1110, 0011) for restore unit state 0 and 1, respectively. Notice
that the same inputs can be selected as SF inputs in multiple

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

states (e.g. 0011). Now, we can optionally compress these
minterms into smaller cubes to reduce design overhead. In
Figure 4C, the minterms (1100, 1101) and (1111, 1110) are
compressed into single cubes during this compression step.

Given our list of SF cubes, we can implement TLL in
the c17 netlist with the following process. First, each SF
input must be mapped to some identical intermediate value
(‘X’). In this case, ‘X’ is ‘11’. With ‘X’ defined, we can
perform standard combinational optimization to synthesize
the SF circuit. The resulting SF circuit is labeled “Stripped
Functionality Circuit” in Figure 4D. Now, 2 restore paths, one
for each restore unit state, must be added to the output of
the SF circuit to correct the SF inputs. Hence, in restore unit
state 0, the intermediate value, ‘11’, must be mapped to the
intended output ‘01’ and in restore unit state 1, ‘11’ must be
mapped to ‘10’. These paths are denoted “TLL Restore Paths”
in Figure 4D. At their output, a 2-input multiplexer, called the
“Restore Multiplexer”, connects these 2 paths to an XOR gate
added at the output of the module.

Finally, we add TLL’s restore unit. To do so, an FSM with
a single state for each trace index must be included (i.e. 2
states). In Figure 4D, we have labeled TLL’s restore unit
as “Restore Unit”. The state of the restore unit dictates the
currently active restore path by driving the select line of the
RM. Notice that the secret subkeys applied to the restore unit
dictate its functionality. Whenever the active subkey matches
the primary input, the restore unit FSM changes its state and
applies a restore signal to the XOR gate at the module’s output.
For a correct key, this signal corrects errant outputs due to SF.
For a wrong key, this signal corrupts otherwise correct outputs.

C. Example 2-State TLL Functionality

Assume that the 2-state TLL configuration in Figure 4A is
used to lock a 2-bit input module. Therefore, the possible input
space can be represented by i3, i2, i1, i0. Within this module,
the trace i0 followed by i1 is locked. This configuration would
yield correct functionality with the key k = i1, i0 and incorrect
functionality otherwise. An error map exhaustively describing
this 2-state TLL-secured circuit is in Table II.

The top row of this table enumerates the possible TLL secret
keys as a combination of 2 subkeys. Below this row, each key
combination is enumerated in the form: {subkey for restore
unit state 1, subkey for restore unit state 2}. On the side of
the table, each possible restore unit state and primary input
combination is enumerated. As an example, let us assume
we want to know TLL’s output in the following situation:
the restore unit is in state 1, the applied key is i2, i0, and
the primary input is i2. To do so, we find the intersection of
the row for the current restore unit state/primary input value
and the column corresponding to the current secret key. This
intersection is a green-shaded cell in Table II. The 7 in this
cell indicates that TLL would produce an errant output in this
scenario. Alternatively, if the primary input i3 were applied,
instead of i2, the corresponding a X symbol indicates that
TLL provides correct output for this scenario.

R.U. key input k = k1,k0

State in i0, i0 i0, i1 i0, i2 i0, i3 i1, i0 i1, i1 i1, i2 i1, i3

0 i0 X 7 7 7 X 7 7 7
0 i1 X 7 X X X 7 X X
0 i2 X X 7 X X X 7 X
0 i3 X X X 7 X X X 7
1 i0 7 7 7 7 X X X X
1 i1 7 7 7 7 X X X X
1 i2 X X X X X X X X
1 i3 X X X X X X X X

R.U. key input k = k1,k0

State in i2, i0 i2, i1 i2, i2 i2, i3 i3, i0 i3, i1 i3, i2 i3, i3

0 i0 X 7 7 7 X 7 7 7
0 i1 X 7 X X X 7 X X
0 i2 X X 7 X X X 7 X
0 i3 X X X 7 X X X 7
1 i0 X X X X X X X X
1 i1 7 7 7 7 7 7 7 7
1 i2 7 7 7 7 X X X X
1 i3 X X X X 7 7 7 7

TABLE II: Error map for a module with a 2-bit primary input
secured with 2-state TLL. The locked trace is in = i1, i0.
Correct key functionality is denoted with highlighted cells.

D. A Generalized Construction of TLLSFLL−Fault

We initially presented a simplified construction of TLL-
enhanced SFLL-Fault as a special case. A more generalized
form offers the IC designer scalability in both wrong key error
rate and locked trace length. Expanding to the generalized
TLLSFLL−Fault construction relies on the same principles of
functionality stripping and a sequential restore unit. We discuss
the modifications necessary to tune each of these parameters
separately, but present a unified TLLSFLL−Fault construction
that enables scaling in both trace length and error rate. A block
diagram of SFLL-Fault enhanced with TLL is in Figure 5.
Scaling TLLSFLL−Fault Error Rate

The IC designer can scale the error rate of this TLL
construction by incorporating additional SF inputs within the
locked module for a restore unit state. The functionality
stripping of additional inputs leads to a higher error rate which
yields increased output corruption in an improperly keyed IC.
To compensate for the added SF inputs, the restore unit must
be modified to locate and restore newly locked inputs.

To modify the restore unit, we incorporate additional sub-
keys to match the additional SF inputs. In the worst case, a
new subkey must be included for each SF input. However,
combinational optimization techniques can be applied to com-
bine subkeys or reduce the number of bits and hence reduce
hardware overhead. See [13]–[15], [46] for proposed security
aware synthesis algorithms which enable the combinational
optimization of TLL.

Error rate can also be scaled by decreasing the length of the
subkey. A shorter subkey matches fewer bits of the primary
input thereby increasing the percentage of locked inputs within
the module. Because we now consider the possibility of a
subkey length (s) less than the length of the primary input
(n), error rate becomes slightly more complex. We define the
number of subkeys currently being compared to the primary
input to be c throughout the remainder of this work. This
means the error rate of the locked module is c · 2n−s/2n.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

i4→X2,i5→X3
i6→X2,i7→X3

MUX

0 1
Current

State

Restore23

i0→X0,i1→X1
i2→X0,i3→X1

MUX

X0→F(i2),X1→F(i3)
X2→F(i6),X3→F(i7)

MSB

LSB

RM1 RM2

X0→F(i0),X1→F(i1)
X2→F(i4),X3→F(i5)

MUX

Stripped Functionality Circuit

Restore Unit

in==K4|R4
in==K5|R5

in==K0|R0
in==K1|R1

in==K2|R2
in==K3|R3

in==K6|R6
in==K7|R7

Fig. 5: 4-state TLL configuration with 2 locked primary inputs
per cycle. Secured input sequence: i0∨i1, i2∨i3, i4∨i5, i6∨i7.

The described modifications have been applied within Fig-
ure 5. Notice that during any given restore unit state, 2
primary inputs are stripped within the locked module. This
modification provides double the error rate of 2-state TLL in
case of a wrong subkey for any state.
Scaling TLLSFLL−Fault Trace Length

The length of the trace secured by TLL can be expanded
from the presented 2-state case as well. Note that by expanding
the trace length, exponentially stronger security guarantees
against SAT-based attackers can be provided. See Section VII
for proof of this claim. In order to expand locked trace length,
our construction must include more restore unit states. The
number of states and the length of the restricted trace must
be equal. dlog2(l)e restore multiplexers (RM1 and RM2 in
Figure 5) must be included in the design as well. These RMs
determine the currently exposed SF inputs in the module.

By combining these 2 modifications, we create a variable
trace length TLL construction. An example of a TLL con-
struction for a locked trace of length 4 is presented in Figure
5. Notice that the most significant bit (MSB) of the restore
unit’s state dictates which SF inputs are currently exposed in
the module (i0, i1, i2, i3 with state 0/1, or i4, i5, i6, i7 with
state 2/3). The least significant bit (LSB) of the state controls
RM2. Depending on the select line of RM2, half of the
stripped functionality created by RM1 is restored. Whenever
any secret subkey matches the current input to the module,
a state transition occurs. This causes a restore signal to be
applied to the XOR gate which either corrects or corrupts the
output depending on whether the secret subkey is correct.
Generalized Tunable TLLSFLL−Fault Construction

A block diagram of a TLLSFLL−Fault construction scaled
in both trace length and error rate is contained in Figure 5. It
differs from the 2-state case contained in Figure 4 in 3 ways:

1) Increased states in restore unit (trace length scaling)
2) Additional restore multiplexer, RM1 (trace length scaling)
3) Additional SF inputs in locked module (error rate scaling)
By modifying these details, both the wrong key error rate

and the locked trace length of our TLL construction can be
altered yielding tunable security guarantees.

VII. MATHEMATICAL FOUNDATIONS OF TLLSFLL−Fault

The goal of TLL is to expand the parametric space of
locking. As shown in Section III, this parametric space is
created by the trade-off between wrong key error rate (error
severity) and SAT attack resilience. To this point, we have
argued TLL achieves this by injecting trace length into this
trade-off, thereby disentangling the direct relationship between
error severity and SAT resilience. In this section, we prove
this claim for our presented TLL construction. Specifically,
we show that the SAT resilience of our presented construction
varies in both wrong key error rate (as is the case with all
conventional locking) and trace length. Proving this assertion
means that wrong key error rate can be increased (improving
error severity) without degrading SAT resilience by increasing
locked trace length. Hence, TLL injects trace length into the
parametric space of locking, thereby expanding it.

The secret key for our TLL construction, k =
kl−1, kl−2, ..., k0, is a concatenation of several independent
keys corresponding to separately locked primary inputs within
the locked trace of length l. We will refer to each of these
concatenated keys as subkeys of length c · s bits, where c is
the number of locked inputs for each position in the trace and
s is the length of each locked input. Each of these subkeys
correspond to a particular position within the locked trace.
Additionally, each position in the locked trace corresponds to
a state within the TLL restore unit. Without loss of generality,
we will assume that k0 corresponds to restore unit state 0, k1
corresponds to restore unit state 1, and so on. For brevity, each
TLL construction is presented as a triplet, TLL(s,l,c).

A. SAT Resilience of TLLSFLL−Fault

The SAT resilience of a logic locking technique is defined
as the probability of a SAT attack successfully recovering the
secret key within q queries. To derive this, we assume that the
attacker uniformly samples the input space for DIs. Previous
research in logic locking has relied upon this assumption in
attack resilience proofs such as [12], [13], [21]. We experimen-
tally verify our resulting derivations in Section IX to ensure
these assumptions are reasonable. Note that despite a focus
on the SAT attack presented in [23], our result holds against
a series of other SAT-based attackers such as [24]–[28].

The goal of a SAT-based attacker is to select all c SF inputs
within the locked module as DIs for each of the i = 1..l
indices of the trace. By selecting each of the c SF inputs
for a given trace index, all possible wrong subkeys for that
trace index are eliminated from the keyspace. If the attacker
does this for all l subkeys, corresponding to the l trace indices
(restore unit states), all wrong subkeys will be eliminated. By
concatenating the remaining subkeys, the adversary constructs
the correct secret key. We note this approach constitutes a
so-called “unrolling” attack where TLL’s state machine is
unrolled into a series of combinational locking configurations
which are then solved by a SAT attack.

We begin characterizing SAT resilience with a derivation of
the probability of selecting all c SF inputs within q selections
for a given trace index by uniformly sampling the input space.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

This corresponds to the necessary SAT queries to locate a
secret subkey by the above methodology.

Lemma 2. The probability of selecting all c SF inputs from
an input-space of size 2s within q queries is P =

(
2s−c
q−c
)
/
(
2s

q

)
Proof. We have a budget of q queries. An input combination of
length s constitutes a query. Any input combination is sampled
with equal probability. Therefore, there are

(
2s

q

)
possible ways

of doing this. A successful attack is the case in which all c
SF inputs are selected in these q queries. Regardless of which
order these c inputs are selected, c out of the q queries must be
SF inputs. Hence, q−c must be from the set of non-SF inputs.
The number of possible non-SF inputs is 2s − c. The number
of ways in which q − c selections can be made from these
2s− c non-SF choices is

(
2s−c
q−c
)
. Therefore, the probability of

locating all c SF inputs within q queries is:

P =

(
2s − c
q − c

)/(
2s

q

)
, (q ≥ c) (13)

Using this result, we derive the SAT resilience of TLL(s,l,c).

Theorem 2 (SAT Resilience of TLL). The probability of an
adversary unlocking a TLL(s,l,c) locked module within q SAT
queries per restore unit state is P = (

(
2s−c
q−c
)
/
(
2s

q

)
)l.

Proof. As discussed, the goal of a SAT-based attacker is to
select all c SF inputs as DIs for each of the i = 1..l indices of
the trace. This process recreates the entire secret key. This is
because selecting all c SF inputs for each trace index, i, as a DI
eliminates all possible wrong subkeys for all i. The remaining
subkeys can be concatenated to yield the correct secret key.
To accomplish this, the attacker proceeds as follows.

1) Within the locked module, initialize the restore unit state to
0. Note that the restore unit state corresponds to a specific
index of the trace. Additionally, all the SF minterms, c, for
each trace index, i, are independent. Hence, the SAT attack
for each index can occur independently of other indices.

2) The attacker applies a SAT attack against the module in
restore unit state 0. On termination, the attack returns the
secret subkey for restore unit state 0. The probability of
finding the correct subkey in q0 SAT queries is given by
Lemma 2: P0 =

(
2s−c
q0−c

)/(
2s

q0

)
.

3) The remaining l− 1 restore unit states must be attacked to
find the remaining l − 1 secret subkeys. This unlocks the
circuit as a whole. For each remaining restore unit state
(i = 2 . . . l), the adversary will initialize the restore unit to
that state and repeat the attack. The probability of finding
the correct subkey in qi SAT queries for the i-th trace index
is given by Lemma 2: Pi =

(
2s−c
qi−c

)/(
2s

qi

)
.

This methodology reconstructs the secret key for a TLL
locked module. Therefore, the probability of reconstructing
the secret key of a TLL(s,l,c) locked module within q SAT
queries per restore unit state is:

P =
∏l−1
i=0 Pi =

∏l−1
i=0

(
2s−c
qi−c

)
/
(
2s

qi

)
or, equivalently:

P =

((2s−c
q−c
)(

2s

q

))l, q = q0 = ... = ql−1 (14)

Theorem 3. The probability of an adversary unlocking a
TLL(s,l,c) locked module in q SAT queries per restore unit
state exponentially decays in the length of the trace, l.

Proof. From Theorem 2, the probability of unlocking
TLL(s,l,c) within q queries per restore unit state is:

P =

((
2s − c
q − c

)/(
2s

q

))l
(15)

We can expand this form:

=

(
(2s − c)!(2s − q)!q!
(q − c)!(2s − q)!(2s)!

)l
=

ql(q − 1)l...(q − c+ 1)l

(2s)l(2s − 1)l...(2s − c+ 1)l

For a successful SAT attack, c ≤ q ≤ 2s. Hence, q/2s ≤ 1,
(q−1)/(2s−1) ≤ 1,...,(q−c+1)/(2s−c+1) ≤ 1. Therefore,

q(q − 1)...(q − c+ 1)

(2s)(2s − 1)...(2s − c+ 1)
≤ 1 (16)

This means that Equation (15) exponentially decays in l.

Let us approximate Theorem 2 for clarity. To do so, assume
that the number of SF inputs (c) is small. Large numbers of SF
inputs quickly yield infeasible design overheads. This means
q!/(q − c)! ≈ qc and (2s − c)!/2s! ≈ 2−c·s, yielding the form:

P ≈
(
q

2s

)c·l
(17)

With this result, we return to our motivation: the trade-
off underlying logic locking between error severity and SAT
attack resilience requires locking configurations capable of
protecting ICs from an untrusted foundry attacker to have an
infeasible design overhead. This is because the SAT resilience
of logic locking only scales efficiently in wrong key error
rate (Section IV). As shown by Theorem 1, this result applies
to all logic locking. However, we designed TLL to inject
another parameter, trace length, into logic locking schemes
that otherwise lack this parameter. When we consider the
impact of TLL’s trace length in Theorem 2, we find that it
yields a locking scheme where SAT resilience is dependent on
both wrong key error rate and trace length. Because the SAT
susceptibility of TLL exponentially decays in the length of the
trace, it can be used to efficiently achieve SAT attack resilience
and error severity. This ensures that when an IC designer fixes
some wrong key error rate necessary for error severity, they
can always choose a value of l where SAT resilience is also
guaranteed. This constitutes an expansion of the parametric
space of logic locking and is the primary contribution of TLL.

To conclude, we note that our derivations are specific to
the TLLSFLL−Fault construction. However, any conventional
locking enhanced with TLL will exhibit the same functionality.
Namely, a locking construction whose currently locked inputs
depend on both the restore unit state and the applied wrong
key. Because the underlying functionality is identical, the

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

ramifications of TLL will also be identical. Hence, TLL will
create the same increase in SAT attack resilience for any trace
length scaling, expanding the parametric space of locking.

B. Removal Resistance of TLLSFLL−Fault
There have been several proposed removal-type attacks

against logic locking techniques such as [46], [47]. When
considering TLLSFLL−Fault, these attacks can be split into
2 categories: SF removal and restore unit removal. In deriving
the resistance of TLL to each of these attacks, we assume the
designer has incorporated TLL into the locked module using
a security aware synthesis algorithm, such as [46].

First, we consider a removal attack on the SF module.
Because SF is added to a module through re-design, it cannot
be removed through logic removal. A re-design attack is
needed. We defer our analysis of this more complex attack
to Section VII-C. Next, we consider TLLSFLL−Fault(s,l,c)’s
security against a restore unit removal attack. In this attack,
the attacker has located and removed TLL’s restore unit.

Theorem 4 (Restore Unit Removal Attack Resistance of TLL).
In the case of a restore unit removal attack, c · 2n−s errors
remain in a TLL(s,l,c) locked module.

Proof. Assume that an adversary has found and removed all
restore unit logic within a TLL-secured module. The remaining
circuit contains any errors induced through SF minterms.
There exists l · c SF minterms in the locked module which
induce lc · 2n−s errors. (l− 1)c · 2n−s of these errors are cor-
rected by the current RM state yielding c ·2n−s errors present
within the module after a restore unit removal attack.

Finally, we consider the case in which TLLSFLL−Fault’s
state is fixed (e.g. by removing alternate states). We note that
any active SF in the circuit can only be corrected by a restore
unit state transition. Hence, an attack which fixes TLL into a
single state is unable to restore any SF inputs in the circuit.
This means that Theorem 4 applies in this case as well and
c·2n−s errors are present in the module. Additionally, because
TLL cannot restore errors without changing states, these errors
cannot be recovered, regardless of the secret key applied.

C. Re-Design Resistance of TLLSFLL−Fault
Let us address a re-design attack on TLLSFLL−Fault, where

the adversary alters the logic of a locked gate-level netlist to
unlock it. Note that this attack is outside of the scope of a more
traditional SAT-based attacker model, such as ours (or those
proposed in [9], [10], [18], [21]), as it requires significant
alteration of the IC’s underlying logic. We discuss such an
approach because it can be used to weaken TLLSFLL−Fault,
but it cannot fully unlock the circuit and is costly.

Let us consider an adversary who has located TLL’s FSM
using the semi-automated reverse-engineering techniques out-
lined in [44]. Removing this FSM results in c · 2n−s unrecov-
erable errors (Theorem 4). To correct these errors, the attacker
can re-design the gate-level netlist to include additional restore
logic. Without loss of generality, let us assume a LUT is
added with an entry for each of the c SF inputs. This yields

i0→X
i1→X

X→F(i1)

X→F(i0)

SF Circuit TLL Restore PathsA

B
i0→X
i1→X

Anti-SAT1

Anti-SAT2

Restore
Mux
(RM)

0 1Restore Unit

SF Circuit TLL Restore Paths

Current
State

Restore

TPLUT0: in == K0 | R0

TPLUT1: in == K1 | R1

Fig. 6: A) Configuration of structural miter attack on
TLLSFLL−Fault B) Miter-attack-resistant TLLSFLL−Fault.

a topology consistent with SFLL-Fault [15]. Hence, if the
c SF inputs are located, they can be corrected through this
added LUT. This approach bypasses the sequential aspect of
TLLSFLL−Fault, but there remains 3 key limitations:
1) The circuit is not unlocked. c · 2n−s SF-induced errors re-

main. To correct these errors, each SF input must be located
and entered in the added LUT. A SAT attack can locate
these SF inputs, but its complexity scales exponentially.

2) This attack requires netlist modification. After removing
TLL’s FSM, a LUT must be added. Gate-level changes
force the attacker to layout, close timing, verify, etc. the
IC. Performing a new tape-out is resource intensive.

3) A new mask must be created to overbuild/counterfeit the
IC. This is costly. If the modified mask is used to fabricate
ICs for the design house, device tampering is obvious both
1) functionally, through the presence of logically irrelevant
key-bits, and 2) visually (i.e. de-layering), through major
changes in key logic. This provides a watermark and allows
the designer (or any future IP user) to detect tampering.

Thus, the limited and costly nature of such an attack against
TLLSFLL−Fault makes its utility and profitability doubtful.

D. Structural Resilience of TLLSFLL−Fault
Now, we consider a structural attack against

TLLSFLL−Fault launched as follows: 1) locate the restore
multiplexer (RM), 2) replace it with a XOR gate to create a
miter, and 3) use a SAT tool to locate differences between
restore paths. These differences are SF inputs, which can
be used to construct secret subkeys. Notice that this attack
exploits the fact that one can infer the key of SF-based locking
constructions through knowledge of SF inputs. Hence, such
an attack is only valid against TLL extensions of SFLL-style
techniques. This attack is shown in Figure 6A.

In a base TLLSFLL−Fault locking configuration, such an
attack is successful. To ward against it, a designer can incor-
porate additional combinational locking within each restore
path. Let us consider replacing each restore path with a buffer
locked by an Anti-SAT block [9], as shown in Figure 6B. In
this case, the key applied to each Anti-SAT block determines
the functionality of each restore path. Hence, the suggested
miter attack now only identifies currently corrupted inputs for
each Anti-SAT block, rather than the SF inputs in the circuit.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

0 1

TLL Restore Unit

Anti-SAT 1
(K0) Anti-SAT 2

(K1)

Restore
Mux
(RM)

in0
in1

Original Circuit

Anti-SAT Error
Injection Gate

...

Original Logic Gate

RU state cycles on
arbitrary inputs (in0, in1)

in out

Fig. 7: 2-state TLL-enhanced Anti-SAT construction.

This modified design no longer encodes SF inputs in restore
paths, hence, no longer leaks the SF minterms.

To unlock this modified configuration, the adversary still
must determine all SF inputs. With this knowledge, they can
1) determine a correct key for each Anti-SAT block, which
restores the necessary SF inputs for each restore path and 2) set
each TLL subkey to restore the remaining SF cubes. Thus, the
SAT resilience derived in Thm. 2 holds and TLLSFLL−Fault
maintains security against this miter-based structural attack.

VIII. ENHANCING ALTERNATIVE TECHNIQUES WITH TLL

TLL is an enhancement of existing logic locking art. How-
ever, to this point, we have only provided a single concrete
TLL construction, TLLSFLL−Fault. Therefore, to show how
TLL can be used to achieve equivalent functionality in al-
ternative locking techniques, we present another example of
TLL-enhanced logic locking, TLLAnti−SAT . A block diagram
of TLLAnti−SAT is included in Figure 7.

In the figure, 2 Anti-SAT blocks are incorporated within
the circuit. These blocks serve as the core element of Anti-
SAT locking, injecting error within the circuit for a specific,
key-driven minterm [9]. Note that each Anti-SAT block has
been provided an entirely independent subkey (K0, K1),
which serves as the secret key of TLLAnti−SAT . A restore
multiplexer has been incorporated to select the Anti-SAT block
currently injecting error within the circuit. This multiplexer is
controlled by the current state of the TLL restore unit, which
switches between states on 2 arbitrary (e.g. randomly selected)
input minterms (in0, in1).

This construction uses 2 Anti-SAT blocks to lock a trace
of length 2. Because each Anti-SAT block employs an inde-
pendent key, each index in the trace corresponds to a different
secret subkey. By applying the approach in Theorem 2, we
can show that increases in trace length exponentially scale the
SAT resilience of Anti-SAT. At the core of each presented
construction is the same underlying principles and structures,
which allow TLL to provably expand the parametric space
of the underlying locking scheme. To enhance an arbitrary
locking scheme the following criteria must be met:
1) l independent logic locking configurations with indepen-

dent keys must be integrated into a single module.
2) An FSM must be integrated into this same netlist, which

enables only 1 of the l independent locking configurations
for each state. Each of the l locking configurations must
be enabled in at least one state.

Notice that the 2 presented TLL schemes meet these criteria:

• TLLSFLL−Fault: 1) l complete SFLL-Fault configurations
are integrated. Each of the l configurations use an inde-
pendent subkey and separate SF inputs. 2) Each TLL state
enables a separate subkey and set of SF inputs.

• TLLAnti−SAT: 1) l Anti-SAT blocks are added to the
circuit with independent keys. 2) Each TLL state enables
only one of the l Anti-SAT blocks present in the design.
By the approach in Theorem 2, a logic locking scheme that

meets these criteria can be shown to exponentially increase
SAT resilience as trace length is scaled. Thus, a scheme that
meets these criteria has been successfully enhanced by TLL.

IX. EXPERIMENTAL ANALYSIS OF TLLSFLL−Fault
We provide an experimental analysis of TLLSFLL−Fault.

This analysis is broken into 3 components. First, we demon-
strate that TLL expands the parametric space of logic locking
by validating its theoretical SAT resilience in a series of bench-
marks. Our results show that the empirical SAT resilience of
TLL-locked circuits closely match the theory derived in Sec-
tion VII. Second, we use the same benchmarks to characterize
TLL’s overhead and the effects of trace length scaling. Based
on our experiments, we found that TLL achieves exponentially
stronger security than a comparable SFLL-Fault configuration
while only incurring an overhead of +3.8%, -0.8%, and +3.5%
for area, delay, and power. Finally, we provide an architectural
example of TLL by locking the 80186 processor netlist that
was un-securable using prior art. Using our locking method-
ology, we show that TLL can simultaneously achieve both
error severity and SAT resilience with detailed architecture-
level simulations of the locked IC. For these experiments, we
used the 10 largest benchmarks of ISCAS’89 [45] and ITC’99
[37] to evaluate TLL. These netlists are identical to those used
by SFLL [13] to enable a direct comparison.

A. Experiment 1: SAT Resilience of TLLSFLL−Fault
We characterized the SAT resilience of TLL within our 10

benchmark circuits to experimentally verify the theory derived
in Section VII-A. Specifically, we aimed to evaluate whether
the probabilistic derivation in Theorem 2 is indeed practically
valid, thereby empirically verifying TLL’s ability to expand the
parametric space of locking. To this end, we experimented with
3 TLL instances, TLL(s=11,l={1,2,3},c=1). For each TLL
instance, we constructed 4 different locking configurations by
randomly selecting alternative sets of minterms to lock. Hence,

1 2 3
Trace Length (l)

10 2

10 1

100

P(
SA

T
Qu

er
ie

s <
 q

)

Theory q=2048
Observed q=2048

Theory q=1024
Observed q=1024

Theory q=512
Observed q=512

Fig. 8: Comparison of theoretical and experimental SAT
resilience of TLL(s=11,l={1,2,3},c=1).

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

s35
93

2

s38
41

7

s38
58

4
b1

4
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
Avg

.
5
0
5

10
15
20
25

Lo
ck

in
g

Ov
er

he
ad

 (%
) Area/Delay/Power Overhead of SFLL-Flex Secured Module

s35
93

2

s38
41

7

s38
58

4
b1

4
b1

5
b1

7
b1

8
b2

0
b2

1
b2

2
Avg

.
SF

LL
Avg

.
5
0
5

10
15
20
25

Lo
ck

in
g

Ov
er

he
ad

(%
)

Area Overhead Delay Overhead Power Overhead

Fig. 9: ADP overhead of TLL(s=128,l=2,c=2). The average
ADP overhead of an equal error rate SFLL(s=128,c=2) con-
struction is shown for reference.

for each trace length we had 40 (4 locking configurations
* 10 benchmarks) unique TLL netlists. We SAT attacked
each netlist using the SAT attack from [23] and recorded the
number of SAT queries required to unlock each TLL instance.
With this data, we computed the probability of a SAT attack
terminating within q SAT queries per restore unit state. Figure
8 displays the observed SAT resilience alongside the theoret-
ical derivation from Theorem 2. The experimental/theoretical
results closely match, supporting our derived results. Notice as
trace length is increased, the experimental SAT susceptibility
of TLL exponentially decays. This supports Theorem 3 which
proves that the SAT resilience of TLL exponentially improves
for a linear increase in trace length.

B. Experiment 2: ADP Overhead of TLLSFLL−Fault
We characterized the area, delay, and power (ADP) overhead

of our presented TLL construction. To do this, we incorpo-
rated TLL(s=128,l=2,c=2) within each benchmark circuit. The
corresponding post-mapping overhead was determined using
the Cadence Encounter RTL Compiler with the Synopsys
90nm SAED library. Additionally, we evaluated an SFLL-
Fault implementation with the same error rate (s=128,c=2)
for comparison. The ADP overhead for each benchmark is
in Figure 9. On average, we found the ADP overhead of TLL
to be 9%, 1.1%, and 7.2%, respectively. When compared to
an equivalent error rate implementation of SFLL-Fault, TLL
demonstrated a modification of +3.8%, -0.8%, and +3.5% in
ADP overhead. Therefore, when SFLL-Fault is enhanced with
TLL, exponentially stronger SAT resilience is achieved with
only a small additional ADP overhead.

We have characterized the overhead associated with trace
length scaling as well. To do so, we calculated the design
overhead of TLL(s=128,l={2,3,4},c=2) within each of our 10
benchmark circuits. These results have been aggregated in
Figure 10. Notice that the average design overhead of TLL
increased by +2%, +0.8%, and a +1% for area, delay, and
power as trace length was increased from l=2 to l=3. As
we further increased trace length from l=3 to l=4, a slightly
smaller ADP overhead increase of +1.8%, +0.9, and +0.7%
was observed. This small reduction in added area and power
overhead was due to the increased combinational optimization
made possible as more functionality was stripped from the
circuit. This implies that as trace length continues to scale,
the overhead due to added TLL logic (i.e. LUT entries and
restore unit states) will be increasingly offset by additional

2 3 4
Trace Length (l)

0

5

10

15

Av
g.

 O
ve

rh
ea

d
(%

) Area Delay Power

Fig. 10: Average ADP overhead of trace length scaling for
TLL(s=128,l={2,3,4},c=2).

combinational optimization. To conclude, this experiment indi-
cated that a linear increase in trace length yields a slightly sub-
linear increase in ADP overhead. However, for this increase in
overhead, TLL was shown to provide an exponential increase
in SAT resilience. Hence, TLL provides an efficient trade-off
between ADP overhead and security.

C. Experiment 3: Architectural TLL Security

We used TLL to lock the 80186 core found to be un-
securable by logic locking in Section IV. By evaluating TLL
in this netlist, we explore its ability to secure real-world ICs.
TLL Configuration:

We began by designing a TLL construction capable of
achieving security within the data path of our 80186 netlist.
Note that conventional logic locking was unable to achieve
security in this netlist (Section IV). Using the design space
exploration in Figure 3, we were able to quantify the wrong
key error rate necessary for error severity. From the figure,
this corresponds to the wrong key error rate of an SFLL-Fault
configuration requiring between 1024 and 4096 SAT queries to
unlock on average. According to Theorem 1, this corresponds
to an error rate of 0.02% and 0.08%, respectively.

We designed 2 TLL constructions, TLL(s=17,l=?,c=16) and
TLL(s=17,l=?,c=64), to exceed an error rate of 0.02% and
0.08%. Next, we selected a trace length which allows TLL
to achieve strong SAT resilience given each wrong key error
rate. To do so, we aggregated the SAT resilience of TLL
for varying trace lengths in Figure 11. Given a trace length
of 8, there exists a negligible probability (2−128 and 2−512

respectively) of a SAT attack locating a correct subkey in
< 216 queries per restore unit state. This constitutes extremely
strong SAT resilience. Therefore, we used a trace length of
8 for each construction. Finally, we randomly selected input
minterms for locking and incorporated TLL(s=17,l=8,c=16)
and TLL(s=17,l=8,c=64) into the data path of the 80186
netlist. To evaluate each IC, we the ObfusGEM simulator [32].
Simulation Framework:

Using the ObfusGEM simulator, we performed cycle-
accurate simulations of locked ICs to quantify the rate with
which a given locking construction induced critical failures in
IC workloads. This failure rate serves as a measurement of
the error severity of a given locking configuration. For these
simulations, we chose 9 PARSEC benchmarks [33] to serve as
a reasonable cross-section of common computing applications.

We performed architectural IC simulations by modeling
and simulating both a locked and unlocked processor core in

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 15

1 2 3 4 5 6 7 8 9 10
Trace Length (l)

2 512
2 384
2 256
2 128

20

P(
SA

T
Qu

er
ie

s <
 q

)
TLL(s = 17, l, c = 16) :
TLL(s = 17, l, c = 64) :

q=216

q=216
q=215

q=215
q=214

q=214

Fig. 11: SAT attack resilience of a locked 80186 netlist with
varying trace length TLL constructions.

GEM5 [34]. In the locked simulation instance, locked input
cubes, located via a fault analysis of a locked and keyed
netlist, were mapped to a deterministic error state within the
simulated IC. As these locked cubes were provided as input
to the simulated IC, a multi-bit fault was injected into the
simulation instance by forcibly overwriting the output of the
locked module with the output of the locked and wrongly
keyed netlist. Error severity was classified by comparing the
processor state of a locked and unlocked GEM5 simulation
over a variable number of clock cycles. A divergence of a
locked core from an unlocked core which was not corrected in
the variable window was classified as an unrecoverable error.
Experimental Results:

We quantified the error severity of each TLL construction
with our simulation framework. Specifically, we performed 40
Monte Carlo simulations of each PARSEC benchmark with a
different, randomly-selected wrong key for each trial. Hence,
each Monte Carlo trial induced output corruption for a differ-
ent set of input minterms in the processor. The percent of PAR-
SEC benchmark runs with unrecoverable errors for each TLL
configuration is in Figure 12 alongside the corresponding ADP
overhead in Table III. Based on the simulation results, both
TLL configurations achieved error severity. The first configu-
ration, TLL(s=17,l=8,c=16), achieved an average benchmark
failure rate of over 80%. This result implies that an untrusted
foundry pirating this locked IC would find 80% of workloads
to fail. The second TLL configuration, TLL(s=17,l=8,c=64),
showed even stronger error severity, causing 97% of workloads
to fail given a wrong key. We now turn our attention to
SAT resilience. In Figure 11, we have aggregated the SAT
resilience achieved by each TLL construction over varying
trace lengths. Because the SAT resilience of TLL-enhanced
locking techniques grows exponentially in trace length, rel-

TLL
(s=17,l=8,c=16)

TLL
(s=17,l=8,c=64)

0.0

0.25

0.5

0.75

1.0

%
 B

en
ch

m
ar

k
Ru

ns
wi

th
 U

nr
ec

ov
. E

rro
r blackscholes

bodytrack
dedup
ferret
fluidanimate
freqmine
streamcluster
swaptions
x264
Average

Fig. 12: Experimentally derived error severity for TLL-secured
80186 netlist running PARSEC workloads.

atively short trace lengths achieved extremely strong SAT
resilience. Given our selected trace length of 8, there exists
a negligible probability (2−128 and 2−512 respectively) of a
SAT attack successfully locating a subkey in less than 216

SAT queries per restore unit state. This indicates strong SAT
resilience within each netlist.

TLL Construction Area Delay Power
TLL(s=17,l=8,c=16) 3.30% 0.00% 3.42%
TLL(s=17,l=8,c=64) 12.40% 6.43% 15.6%

TABLE III: ADP overhead for TLL-secured 80186 core.

Finally, we note that the first TLL configuration,
TLL(s=17,l=8,c=16), achieved security with minimal de-
sign overhead, with only a ∼3% degradation in area/power
and no delay overhead. The second TLL configuration,
TLL(s=17,l=8,c=64), exhibited a higher overhead, however,
provided much stronger security guarantees to compensate for
this additional overhead. Therefore, both TLL constructions si-
multaneously achieved strong error severity and SAT resilience
guarantees with only modest design overhead degradation. The
conclusions of this experiment can be summarized as follows:
1) Due to the identified parametric space, logic locking tech-

niques with a feasible overhead were unable to achieve
error severity and SAT resilience in this netlist (Sec. IV).

2) By enhancing conventional locking with TLL, a lock-
ing configuration was designed and empirically shown to
achieve both error severity and SAT resilience. Therefore,
through trace length scaling, TLL expanded the parametric
space of locking, overcoming the limits of prior art.

X. CONCLUSION

We began our work by deriving a fundamental theoretical
trade-off which directly related 2 primary goals of logic
locking, error severity and SAT resilience, regardless of con-
struction. To quantify the ramifications of the parametric space
created by this trade-off, we performed extensive architectural
simulations of 2 real logic locked ICs. These experiments
showed that there did not exist a logic locking configuration
capable of achieving both error severity and SAT resilience
concurrently due to the rigidity of the derived parametric
space. This led us to investigate methods to expand upon this
trade-off. As a result, we proposed trace logic locking (TLL).
TLL is a provably secure and scalable enhancement to existing
logic locking techniques which locks a sequence of primary
inputs, known as a trace. By locking traces, TLL expands
the parametric space of logic locking. This allows an IC
designer to achieve both error severity and SAT resilience by
varying trace length. We provided a theoretical and empirical
demonstration of this. The low overhead nature of TLL was
verified as well in 10 benchmark circuits. Finally, TLL was
used to secure a real-world 80186 core. Through architectural
simulations, we showed that TLL achieved both error severity
and SAT resilience simultaneously.

REFERENCES

[1] A. Chakraborty et al., “Keynote: A disquisition on logic locking,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 09 2019.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.3025135, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 16

[2] M. Rostami et al., “A primer on hardware security: Models, methods,
and metrics,” Proceedings of the IEEE, 2014.

[3] K. Shamsi et al., “Ip protection and supply chain security through
logic obfuscation: A systematic overview,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2019.

[4] A. Baumgarten et al., “Preventing ic piracy using reconfigurable logic
barriers,” IEEE Design & Test of Computers, pp. 66–75, 2010.

[5] S. Dupuis et al., “A novel hardware logic encryption technique for
thwarting illegal overproduction and hardware trojans,” in 2014 IEEE
20th International On-Line Testing Symposium (IOLTS). IEEE, 2014.

[6] J. Rajendran et al., “Security analysis of logic obfuscation,” in
Proceedings of Design Automation Conference, 2012.

[7] ——, “Fault analysis-based logic encryption,” IEEE Transactions on
computers, vol. 64, no. 2, pp. 410–424, 2013.

[8] J. A. Roy et al., “Epic: Ending piracy of integrated circuits,” in
Conference on Design, automation and test in Europe, 2008.

[9] Y. Xie et al., “Mitigating sat attack on logic locking,” in Conference on
Cryptographic Hardware and Embedded Systems, 2016.

[10] M. Yasin et al., “Sarlock: Sat attack resistant logic locking,” in Intl.
Symposium on Hardware Oriented Security and Trust, 2016.

[11] M. Zuzak et al., “Memory locking: An automated approach to pro-
cessor design obfuscation,” in 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2019, pp. 541–546.

[12] M. Yasin et al., “Ttlock: Tenacious and traceless logic locking,” in Intl.
Symposium on Hardware Oriented Security and Trust, 2017.

[13] ——, “Provably-secure logic locking: From theory to practice,” in
Conference on Computer and Communications Security, 2017.

[14] A. Sengupta et al., “Truly stripping functionality for logic locking: A
fault-based perspective,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2020.

[15] ——, “Atpg-based cost-effective, secure logic locking,” in IEEE 36th
VLSI Test Symposium (VTS). IEEE, 2018.

[16] S. Roshanisefat et al., “Srclock: Sat-resistant cyclic logic locking for
protecting the hardware,” in Great Lakes Symposium on VLSI, 2018.

[17] A. Rezaei et al., “Cycsat-unresolvable cyclic logic encryption using
unreachable states,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference. ACM, 2019, pp. 358–363.

[18] B. Shakya et al., “Cas-lock: A security-corruptibility trade-off resilient
logic locking scheme,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 175–202, 2020.

[19] M. Yasin et al., “On improving the security of logic locking,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2016.

[20] H. M. Kamali et al., “Full-lock: Hard distributions of sat instances for
obfuscating circuits using fully configurable logic and routing blocks,” in
Proceedings of the 56th Annual Design Automation Conference, 2019.

[21] Y. Liu et al., “Strong anti-sat: Secure and effective logic locking,” in
International Symposium on Quality Electronic Design (ISQED), 2020.

[22] A. Sengupta et al., “Customized locking of ip blocks on a multi-million-
gate soc,” in International Conference on Computer-Aided Design, 2018.

[23] P. Subramanyan et al., “Evaluating the security of logic encryption algo-
rithms,” in 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2015, pp. 137–143.

[24] Y. Shen et al., “Double dip: Re-evaluating security of logic encryption
algorithms,” in Great Lakes Symposium on VLSI 2017, 2017.

[25] K. Shamsi et al., “Appsat: Approximately deobfuscating integrated
circuits,” in 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2017, pp. 95–100.

[26] K. Z. Azar et al., “Smt attack: Next generation attack on obfuscated
circuits with capabilities and performance beyond the sat attacks,”
Transactions on Cryptographic Hardware and Embedded Systems, 2019.

[27] H. Zhou et al., “Cycsat: Sat-based attack on cyclic logic encryptions,” in
IEEE/ACM International Conference on Computer-Aided Design, 2017.

[28] M. El Massad et al., “Reverse engineering camouflaged sequential cir-
cuits without scan access,” in 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2017, pp. 33–40.

[29] D. Zhang et al., “Dynamically obfuscated scan for protecting ips against
scan-based attacks throughout supply chain,” in 2017 IEEE 35th VLSI
Test Symposium (VTS). IEEE, 2017, pp. 1–6.

[30] H. Zhou, “A humble theory and application for logic encryption.” IACR
Cryptology ePrint Archive, vol. 2017, p. 696, 2017.

[31] H. Zhou et al., “Resolving the trilemma in logic encryption,” in
International Conference on Computer-Aided Design (ICCAD), 2019.

[32] M. Zuzak et al., “Obfusgem: Enhancing processor design obfuscation
through security-aware on-chip memory and data path design,” in
International Symposium on Memory Systems. ACM, 2020.

[33] C. Bienia et al., “The parsec benchmark suite: Characterization and
architectural implications,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, 2008.

[34] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[35] K. Shamsi et al., “On the impossibility of approximation-resilient circuit
locking,” in 2019 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2019, pp. 161–170.

[36] ——, “On the approximation resiliency of logic locking and ic camou-
flaging schemes,” Trans. on Information Forensics and Security, 2018.

[37] F. Corno et al., “Rt-level itc’99 benchmarks and first atpg results,” IEEE
Design & Test of computers, vol. 17, no. 3, pp. 44–53, 2000.

[38] D. Sirone et al., “Functional analysis attacks on logic locking,” in
Design, Automation & Test in Europe Conference & Exhibition, 2019.

[39] F. Yang et al., “Stripped functionality logic locking with hamming
distance based restore unit (sfll-hd)–unlocked,” IEEE Transactions on
Information Forensics and Security, 2019.

[40] R. S. Chakraborty et al., “Harpoon: an obfuscation-based soc de-
sign methodology for hardware protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2009.

[41] Y. Alkabani et al., “Active hardware metering for intellectual property
protection and security.” in USENIX security symposium, 2007.

[42] J. Dofe et al., “Novel dynamic state-deflection method for gate-level
design obfuscation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 2, pp. 273–285, 2017.

[43] A. R. Desai et al., “Interlocking obfuscation for anti-tamper hardware,”
in Proceedings of the eighth annual cyber security and information
intelligence research workshop, 2013, pp. 1–4.

[44] M. Fyrbiak et al., “On the difficulty of fsm-based hardware obfuscation,”
Transactions on Cryptographic Hardware and Embedded Systems, 2018.

[45] F. Brglez et al., “Combinational profiles of sequential benchmark cir-
cuits,” in IEEE international symposium on circuits and systems, 1989.

[46] M. E. Massad et al., “Logic locking for secure outsourced chip fabri-
cation: A new attack and provably secure defense mechanism,” arXiv
preprint arXiv:1703.10187, 2017.

[47] M. Yasin et al., “Removal attacks on logic locking and camouflaging
techniques,” Transactions on Emerging Topics in Computing, 2017.

Michael Zuzak (S’19) received his M.S. and B.S.
in Electrical Engineering from the University of
Maryland, College Park, MD, USA in 2016 and
2014, respectively. He is currently pursuing his
Ph.D. in Electrical Engineering from the University
of Maryland, College Park, MD, USA. His current
research interests include hardware security, com-
puter architecture, and electronic design automation.

Yuntao Liu (S’16) is a Ph.D. candidate with the
University of Maryland, College Park, advised by
Prof. Ankur Srivastava. His research focus is hard-
ware security, including physical unclonable func-
tions, security in emerging fabrication technologies,
logic locking, and the security of machine learning
hardware.

Ankur Srivastava (S’00, M’02, SM’15) Dr. Srivas-
tava received his B.Tech in Electrical Engineering
from Indian Institute of Technology Delhi in 1998
and PhD in Computer Science from UCLA in 2002.
He was awarded the prestigious Outstanding Disser-
tation Award from the CS department of UCLA in
2002. His primary research interests lie in the field of
high performance, low power and secure electronic
systems and applications such as computer vision,
data and storage centers and sensor networks.

Authorized licensed use limited to: UNIVERSITY OF BATH. Downloaded on November 02,2020 at 06:30:49 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com

