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Abstract
The price variation of the correlated fractal transmission system is used to deduce the frac-
tional Black–Scholes model that has an α-order time fractional derivative. The fractional
Black–Scholes model is employed to price American or European call and put options on a
stock paying on a non-dividend basis. Upon encountering fractional differential equations, the
efficient and relatively reliable numerical schemes must be obtained for their solution due to
fractional derivatives being non-local. The present paper is aimed at determining the numeri-
cal solution of the time fractional Black–Scholes model (TFBSM) with boundary conditions
for a problem of European option pricing involved with the method of radial basis functions
(RBFs), which is a truly meshfree scheme. The TFBSM is discretized in the temporal sense
based on finite difference scheme of order O(δt2−α) for 0 < α < 1 and approximated with
the help of the RBF in the spatial derivative terms. In addition, the stability and convergence
of the proposed method are theoretically proven. Numerical results illustrate the accuracy
and efficiency of the presented technique which is examined in the present study.
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1 Introduction

Option selection is one of the most commonplace derivative financial instruments in financial
products from theoretical and practical points of view. It is hence necessary to achieve a solid
grasp of the schemeswhere onemust undertake the task of pricing options. In 1973, Black and
Scholes (1973) and Merton (1973) introduced a model, known as the Black–Scholes (B–S)
model, for describing the approximate behavior of the underlying assets in pricing options.
It has been extensively used by options traders and is known to result in considerable growth
in options trading due to its effectiveness and accuracy in predicting the options prices. More
recently, some techniques have been proposed for numerically approximating the B–Smodel
such as Farnoosh et al. (2015, 2016, 2017), Golbabai and Mohebianfar (2017a, b), Golbabai
et al. (2012, 2014), Rad et al. (2015), Rashidinia and Jamalzadeh (2017a, b), and Sobhani
and Milev (2018).

The fractional Brownian motion involved in the classical model has been replaced with
fractional Brownianmotionwhich is based on introducing the fractal assembly in the stochas-
tic process and financial field to implement fractional partial differential equations and
fractional calculus in financial theory. Due to fractional Brownian motion not being a semi-
martingale, one cannot directly implement the Itô theory of stochastic integrals in it. It is
possible to use a variation of the path-wise Riemann–Stieltjes integral instead of the Itô
integral. However, the resulting option value model accepts arbitrage, as shown by Rogers
(1997). Therefore, under a frictionless and complete setting, there are chances for arbitrage
in the fractional Black–Scholes model. During recent years, the B–S equation has been gen-
eralized by more researchers (Björk and Hult 2005; Meerschaert and Sikorskii 2012) due to
fractional order integrals and derivatives being powerful tools for explaining the hereditary
and memory characteristics of different substances. As a result, using a model via fractional
order processes is one way of taking into account the high volatility of the stock exchange
market.

As an example, the pricing was performed for the European call option using a time
fractional Black–Scholes model (TFBSM), as is mentioned by Wyss (2017). The TFBSM
is itself a special case of the bi-fractional B–S model proposed recently by Liang et al.
(2010). Cartea (2013) led a further investigation into this model and showed that the value of
derivatives of the European style could be described by a partial-integral-differential equation
and include a non-local time-to-maturity operator named the Caputo fractional derivative.
Moreover, powerful explicit solutions have been provided by the authors of Leonenko et al.
(2013), implementing spectral techniques in fractional Pearson diffusions that are based on
the corresponding diffusion model of the time-fractional type that has been successfully
applied to expand the B–S formalism. The authors also used a non-Markovian inverse stable
time variation to offer stochastic solutions.

It is considerably difficult to obtain an accurate solution for this problem, owing to the
memory trait of fractional derivatives. As a result, numerous researchers have tried techniques
for approximating such problems (Golbabai and Nikan 2015a, b; Golbabai et al. 2019; Keshi
et al. 2018; Moghaddam and Machado 2017a, b; Moghaddam et al. 2018, 2019; Vitali et al.
2017; Zaky and Machado 2017; Zaky 2018). The following are among the analytical meth-
ods used to solve the TFBSM: the separation of variables method (Chen 2014), the hybrid
methods based on wavelets (Hariharan et al. 2013), the Fourier–Laplace transform method
(Duan et al. 2018), the homotopy analysis and homotopy perturbation methods (Kumar et al.
2016), and the integral transform methods (Chen et al. 2015a; Kumar et al. 2012). The solu-
tions obtained via the said methods are usually in the form of an infinite series with an
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integral or a convolution of some functions, making them difficult to solve. For this reason,
more attention has been paid to develop computationally effective numerical methods to
solve fractional B–S models. Some of these methods will be reviewed in the following. The
FLMS process with the spatial fractional derivatives were solved numerically in Cartea and
del Castillo-Negrete (2007) via backward difference techniques and the shifted Grünwald–
Letnikov scheme. The numerical comparisons and investigations mentioned in Marom and
Momoniat (2009) have been evaluated for the CGMY, KoBoL, and FMLS models and were
used to analyze the corresponding convergence conditions for the mentioned models. A
solution for pricing options was obtained by the authors of Song and Wang (2013); Zhang
et al. (2014) under a TFBSM that employs a θ finite difference scheme with second-order
accuracy along with an implicit finite difference arrangement with first-order accuracy. The
TFBSMwas approximated numerically in Koleva and Vulkov (2017) using a weighted finite
difference arrangement.

Bhowmik (2014) approximated the partial integro-differential equation that leads to the
hypothesis of option pricing by utilizing a finite difference method that is a low-convergence-
order explicit–implicit numerical technique. In addition, this method has been shown to be
conditionally stable. American options pricing was investigated by Chen et al. (2015b) using
a predictor–corrector via the method of finite moment log-stable model. A discrete implicit
numerical approach was proposed by Zhang et al. (2016a) for European option pricing
using the TFBSM with a temporal accuracy order of 2 − α and a spatial accuracy of the
second-order. A similar operation was undertaken in Zhang et al. (2016b) for applications
involving case-tempered fractional derivatives. De Staelen and Hendy (2017) improved the
capability and potential of the proposed scheme of spatial fourth-order while maintaining
a temporal 2 − α order. Furthermore, they performed a convergence and stability analysis
on the aforementioned numerical scheme. Golbabai and Nikan (2019) adopted the moving
least-squares method for determining the approximate solution of the TFBSM. Currently, the
following is suggested as the TFBSM corresponding to the value of an option model with
final and boundary (barrier) conditions:
⎧
⎪⎨

⎪⎩

∂αC(S,t)
∂tα + 1

2σ
2S2 ∂2C(S,t)

∂S2
+ (r − D)S ∂V (S,t)

∂S − rC(s, t) = 0, (s, t) ∈ (0,∞) × (0, T ),

C(0, t) = p(t), C(∞, t) = q(t),

C(S, T ) = v(S),

(1)

where 0 < α ≤ 1, T is the expiry time, r is the risk-free rate, D the dividend rate and σ(≥ 0)
is the volatility of the returns from the holding stock price S and ∂αC(S,t)

∂tα denotes a modified
right Riemann–Liouville derivative (Podlubny 1999) defined as follows:

∂αC(S, t)

∂tα
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Γ (1−α)

d
dt

t∫

0

C(S, η) − C(S, T )

(η − t)α
dη, 0 < α < 1,

∂C(S,t)
∂t , α = 1.

(2)

For the special case α = 1, the model (1) converts to the classical B–S model. Suppose
t = T − τ, for 0 < α < 1, we get
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∂αC(S, t)

∂tα
= 1

Γ (1 − α)

−d

dτ

T∫

t

C(S, η) − C(S, T )

(η − (T − τ))α
dη

= 1

Γ (1 − α)

−d

dτ

T∫

T−τ

C(S, η) − C(S, T )

(η − (T − τ))α
dη

= −1

Γ (1 − α)

d

dτ

τ∫

0

C(S, T − ξ) − C(S, T )

(η − ξ)α
dξ.

The model (1) can be rewritten by supposing x = ln S and definingU (x, τ) = C(ex , T − τ)

according to the following expression:
⎧
⎪⎨

⎪⎩

∂αU (x,τ)
∂τα = 1

2σ
2 ∂2U (x,τ)

∂x2
+ (r − 1

2σ
2 − D

)
∂U (x,τ)

∂x − rU (x, τ),

U (−∞, τ) = p(τ),U (∞, τ) = q(τ),

U (x, 0) = u(x),

(3)

where the fractional derivative

0D
α
τU (x, τ) = 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η) −U (x, 0)

(τ − η)α
dη, (0 < α < 1). (4)

To well approximate the numerical solution of the above-mentioned model, it is essential to
work in a constrained interval. Therefore, we truncate the interval of variable x in Eq. (1) to
a finite domain (Id , Iu). Therefore, we consider the following dimensionless model:

⎧
⎪⎨

⎪⎩

0Dα
τU (x, τ) = γ1

∂2U (x,τ)

∂x2
+ γ2

∂U (x,τ)
∂x − γ3U (x, τ) + f (x, τ),

U (Id , τ) = p(τ),U (Iu, τ) = q(τ),

U (x, 0) = U (x),

(5)

where γ1 = 1
2σ

2 > 0, γ2 = r − D − γ1, γ3 = r > 0. For the objectives of validation in
Sect. 5, a source term f (x, τ) is added.

1.1 A general insight of themeshless methods

A mesh is defined as a net resulting from connecting nodes in a prescribed manner. It is
synonymous with grid, elements, or cells. In a meshless technique, one is not required to
have a predefined mesh, and it is not required to generate a mesh to solve the problem. In
contrast, conventional methods such as finite volume, finite element, and finite difference
methods need a mesh to be generated to solve the problem. This mesh generation involves
triangulating the problem domain. Problems that are involved with moving boundaries, steep
gradients, and sharp corners demand more flexibility in some regions. For such problems,
meshless techniques are can be superior to grid-based techniques. Numerous research areas
in approximation theory and computational science have recently found interest in meshless
schemes. These areas include numerical solution and optimization of partial differential
equations, image processing, computer graphics, and artificial intelligence. These techniques
have exhibited a promising prospective as partial differential equation (PDE) solvers in
irregular and complicated domains. The radial basis function (RBF) technique is not grid-
based and belong to a class of techniques named meshless methods. The RBF method has
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turned into the foremost means of interpolating multidimensional scattered data. The RBF
technique in very general settings via creating a univariate function with the Euclidean norm
which converts a multidimensional problem into a virtually one-dimensional one. Among
the many advantages of RBF techniques are spectral convergence, dimension insensitivity,
lack of need for node connectivity, and simple implementation. The choice of the basis
function determines the spectral convergence. The RBF technique originated from such
fields as metrology, mapping, geophysics, and geodesy. Subsequently, further applications
were found in other fields such as optimization, finance, statistics, sampling theory, signal
processing, neural networks, learning theory, artificial intelligence, and PDEs.

The attention of many researchers in engineering and science has been drawn in the
recent decade to the development of RBF as a real meshless technique that can be used
to approximate the solution of PDEs. The RBF is a significant subject for mathematical
research in solving PDEs, with numerous real-world implementations such as in quantum
mechanics, astrophysics, and geophysics (climate and weather modeling). Hardy (1971)
introduced the multiquadric (MQ) RBF in 1971, although his MQ interpolation did not
come into attention until 1979. Franke (1982) demonstrated the superiority of MQ method
as a method for solving scattered data interpolation problems. Madych and Nelson (1990)
also showed that the convergence rate of the MQ interpolation method is spectral. It was
shown by Hardy (1990) that MQ RBFs correspond to a consistent solution belonging to the
biharmonic potential problem. Kansa (1990) first used the MQ method in 1990 for solving
differential equations. Fasshauer (1996) formulated the RBF method for solving PDEs in
domains of irregular shape. Subsequent to the first use of the MQ technique for solving
PDEs (Larsson and Fornberg 2003), the method experienced a rapid growth in popularity
and found numerous applications. The existence, uniqueness, and convergence of the RBFs
approximation was discussed in detail by Franke and Schaback (1998), Madych and Nelson
(1990), and Micchelli (1986).

1.2 The background and overview of current research

The objective of the current paper focuses on extending RBF-based collocation approach to
approximate the TFBSM. The present work is outlined as follows: Sect. 2 introduces a brief
summary of several definitions for efficiently understandingRBF. In Sect. 3,wefirst discretize
the time fractional derivative of the TFBSM using finite deference scheme and then we will
approximate the spatial derivatives based on RBF meshless methods. Section 4 analyzes the
stability and convergence of the proposed temporal discrete scheme. Section 5 reports the
numerical results of solving the TFBSM to show the high accuracy and efficiency of the
method and confirm the theoretical prediction. Finally, Sect. 6 contains a brief conclusion.

2 Approximation based on radial basis function

2.1 Definition of the space radial basis functions

Definition 1 A function Φ(r) : R
d −→ R is defined as a radial if there is a univariate

function φ : [0,∞) −→ R, such that Φ(x) = φ(r) , where ||r || = ||x||, and || · || is some
norm on Rd which is typically the Euclidean norm.
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Table 1 Definition of some types of RBFs

Name of RBF (abbreviation) φ(r), r ≥ 0 Smoothness

Gaussian (GA) e−cr2 Infinite

Generalized multiquadric (GMQ) (c2 + r2)β Infinite

Inverse multiquadric (IMQ) 1√
c2+r2

Infinite

Inverse quadratic (IQ) (c2 + r2)−1 Infinite

Multiquadric (MQ)
√
c2 + r2 Infinite

Cubic (CU) r3 Piecewise

Linear (LI) r Piecewise

Monomial (MN) r2k−1 Piecewise

Thin plate spline (TPS) r2 log(r) Piecewise

Definition 2 Let X = {x1, . . . , xN } ⊆ R
d , and data f (xi ), i = 1, . . . , N , be given. The

scattered data interpolation problem is to find a function s : Rd −→ R with dataset xi , such
that s(xi ) = fi , for i = 1, . . . , N .

Definition 3 A radial basis function, Φ(r), is a one-variable, continuous function defined
for r ≥ 0 that has been radialized by composition with the Euclidean norm on R

d . If one
chooses N points {xi }Ni=1 in R

d then by custom s(x) = ∑N
i=1 λ jφ(||x − x j ||); λ j ∈ R is

called a radial basis functions as well (Baxter 2010) (See Table 1).

The standard RBF can be classified into two main categories (Khattak et al. 2009):
Category 1. Infinitely smooth RBFs (Khattak et al. 2009):
These basis functions are infinitely differentiable and rely on the shape parameter c, e.g.,
Hardy multiquadric (MQ), Gaussian (GA), inverse multiquadric (IMQ), and inverse quadric
(IQ)
Category 2. Infinitely smooth (except at centers) RBFs (Khattak et al. 2009):
The basis functions of this calss are not infinitely differentiable. These basis functions are
shape parameter free and have comparatively less accuracy than the basis functions listed in
the Category 1. For example, thin plate spline, etc.

2.2 RBF collocationmethod

Considering a finite set of scattered nodes χ = {x1, x2, . . . , xN } ⊂ R
d with corresponding

value u : Ω → R, the basic RBF interpolant S(x) is expanded as :

u(x) 
 S(x) =
N∑

j=1

λ jφ(||x − x j ||) + p(x), (6)

where ‖.‖ is the Euclidean norm and φ is a radial function. In addition, p(x) is a linear
combination of polynomials on Rd of total degree at most m − 1 as follows:

p(x) =
M∑

k=1

γk pk(x), M =
(
d + m − 1

m − 1

)

. (7)
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From the definition of (m−1)-unisolvent, we are guaranteed a unique solution for the above
interpolation problem and M is dimension of linear space Πm−1(R

d) of total degree less or
equal tom−1 in s variables. To calculate the coefficients

{
λ j
}N
j=1 and

{
γ j
}M
k=1, the collocation

method is used. However, in addition to the N equations resulting from collocating Eq. (6)
at the N points, an additional condition (extra M conditions) for the polynomial part is
required to guarantee a unique solution of the N linear equations. Imposing the interpolation
conditions on the interpolant S(·) and mimicking the natural conditions gives the following
additional condition:

⎧
⎪⎨

⎪⎩

s(x j ) = u j , ∀ j = 1, . . . , N ,
N∑

j=1
λ j pk(x j ) = 0, ∀k = 1, 2, . . . , M, ∀pk ∈ Πm−1(R

d).
(8)

In view of Eqs. (6) and (8), one can obtain the following matrix form:
[

A P
PT 0

] [
λ

γ

]

=
[
u
0

]

, (9)

where

A j,k = φ(‖x j − xk‖), j, k = 1, . . . , N , P = pk(x), k = 1, . . . , M, j = 1, . . . , N ,

λ = [λ1, . . . , λN ]T , u = [u1, . . . , uN ]T , γ = [γ1, . . . , γM ]T . The value of u(x) can be
estimated as below:

u(x) ≈
∑

x j∈χ

λ jφ(||x − x j ||) + p(x), (10)

and any for partial differential operator L,Lu can be exhibited by

Lu(x) ≈
∑

x j∈χ

λ jLφ(||x − x j ||) + Lp(x). (11)

Substituting the equality into the original equation helps to determine the unknown coeffi-
cients λ j (Cheney and Light 2009; Fasshauer 2007). Suppose {x j }Nj=1 are N nodes in Ω

which is convex, the radial distance is

hΩ,x = max
x∈Ω

min
1≤i≤N

||x − xi ||2,
then, we get:

‖uN (x) − u(x)‖ ≤ O(ηβ/η),

where 0 < η < 1 is a real number and η = exp(−θ) with θ > 0. From above relation, it is
clear that the convergence relies on parameter β and radial distance h the rate of convergence
(Franke and Schaback 1998; Madych and Nelson 1990; Micchelli 1986).

3 Numerical implementation

In current section, we explain the approximation method for the numerical approximation of
Eq. (1). First of all, we define N nodes {x j = jh| j = 1, 2, 3, . . . , N } in the bounded interval
[a, b] such that x1, xN are the boundary nodes, and the grid nodes in the time interval [0, T ]
are tagged as τn = nδt, n = 0, 1, 2, 3, . . . , M , where h = (Iu − Id)/N , δt = T /M and
Un(xi ) = U (xi , τn) .
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3.1 Time fractional derivative discretization

Wewill indicate that the time derivative ∂αU (x,τ)
∂τα appearing in relation (5) coincides with the

α-order Caputo fractional derivative. Let U (x, τ) ∈ C (1) in the time sense τ, for 0 ≤ α < 1,
the modified Riemann–Liouville derivative:

0D
α
τU (x, τ) = 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η) −U (x, 0)

(τ − η)α
dη

= 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η)

(τ − η)α
dη − 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, 0)

(τ − η)α
dη

= 1

Γ (1 − α)

d

dτ

τ∫

0

U (x, η)

(τ − η)α
dη −U (x, 0)

τ−α

Γ (1 − α)

= 1

Γ (1 − α)

τ∫

0

∂U (x, η)

∂η
(τ − η)−αdη = C

0 D
α
τU (x, τ), (12)

where the operator C
0 D

α
τU (x, τ) is the Caputo derivative (Podlubny 1999). Now, based on

the finite difference scheme, Eq. (12) can be approximated as below:

0D
α
τU (xi , τ) = 1

Γ (1 − α)

∫ τn+1

0

∂U (x, η)

∂η
(τ − η)−αdη

= 1

Γ (1 − α)

n∑

k=0

(k+1)δt∫

kδt

[
Uk+1(xi ) −Uk(xi )

δt
+ O(δt)

]

[(τ − η)−α]dη

= 1

Γ (1 − α)

n∑

k=0

[
Uk+1(xi ) −Uk(xi )

δt
+ O(δt)

] (k+1)δt∫

kδt

[(n + 1)δt − η)−α]dη

= 1

Γ (1 − α)

n∑

k=0

[
Uk+1(xi ) −Uk(xi )

δt
+ O(δt)

]

×
[

(n + 1 − k)1−α − (n − k)1−α

1 − α

]

(δt)1−α + O(δt2−α)

= δt−α

Γ (2 − α)

n∑

k=0

[Un+1−k(xi ) −Un−k(xi )][(k + 1)1−α − (k)1−α] + O(δt2−α)

= aα

[

(Un+1(xi ) −Un(xi )) +
n∑

k=1

bk(U
n+1−k(xi ) −Un−k(xi ))

]

+ O(δt2−α),

(13)

where aα = δt−α

Γ (2−α)
, bk = (k + 1)1−α − (k)1−α . The time discretization procedure of

TFBSM can be described by substituting Eqs. (13) into (5) between successive two time
steps n and n + 1 as the following scheme:

123



Numerical analysis of time fractional Black–Scholes European option... Page 9 of 24   173 

aαU
n+1 − γ1∇2Un+1 − γ2∇Un+1 + γ3U

n+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aα

[

Un −
n∑

k=1
bk(Un+1−k −Un−k)

]

+ f n+1, n ≥ 1,

aαU 0 + f 1, n = 0,

+ Rk+1, (14)

where ∇ is the gradient differential operator and f n+1 = f (x, τn+1); n = 0, 1, . . . , M . In
addition the truncation error Rk+1 satisfy

Rk+1(x) ≤ Cδt2,

where C is a positive constant. The semi-discrete scheme is obtained by denoting un as the
approximation of Un and omitting the small term Rn+1 as:

aαu
n+1 − γ1∇2un+1 − γ2∇un+1 + γ3u

n+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aα

[

un −
n∑

k=1
bk(un+1−k − un−k)

]

+ f n+1, n ≥ 1,

aαu0 + f 1, n = 0.

(15)

Now, we will apply the meshless methods based on RBFs for discretizing the spatial terms
in the next two subsection in details.

3.2 Discretization in space: the RBFmeshless method

To apply RBFs approximation scheme based on Kansa’s approach, we collocate N different
points {x j | j = 1, . . . , N } where x1 and xN are boundary nodes and the other (N − 2) points
are inner nodes {x j | j = 2, . . . , N − 1}. The numerical approximation of u(xi , τn+1) at a
nodes of interest xi may be expanded as:

un+1
i = u(xi , τn+1) =

N∑

j=1

λn+1
j φ(ri j ) + λn+1

N x j + λn+1
N+1, (16)

where {λnj } are unknown coefficients of the nth time layer φ(ri j ) radial basis function, ri j =
|xi − x j |. In addition to N equations which have been resulted from collocating Eq. (16) at
N points, two extra equations are needed by the following regularization conditions:

N∑

j=1

λn+1
j =

N∑

j=1

λn+1
j x j = 0. (17)

Equations (16) and (17) together can be restated in the following matrix form:

{u}n+1 = A{λ}n+1, (18)

where {u}n+1 = [un+1
1 , . . . , un+1

N , 0, 0]T , {λ}n+1 = [λn+1
1 , . . . , λn+1

N+2]T and the matrix
A = (ai j )(N+2)×(N+2) is defined as:

A =
[

Φ PN×2

PT 02×2

]

,
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where Φ = [φ(ri j )]N×N and P =
⎡

⎢
⎣

x1 1
...

...

xN 1

⎤

⎥
⎦

N×2

. Rewriting Eq. (14) can be illustrated in

the matrix form as below:

B{λ}1 = {b}1, (19)

in which

B =
[
L(Φ) L(P)

PT 0

]

(N+2)×(N+2)
,

where L represents an operator by

L(∗) =
{

[aα + γ3 − γ2∇ − γ1∇2](∗), 1 < i < N ,

(∗), i = 1 or N ,
(20)

and {b}1 = [b11, . . . , b1N , 0, 0]T where b11 = g11, b1N = g12 and b1i = aαu0i + f 0i , i =
2, 3, . . . , N − 1.
In addition, for n ≥ 1

B{λ}n+1 = {b}n+1, (21)

{b}n+1 = [bn+1
1 , . . . , bn+1

N , 0, 0]T are achieved by Eq. (14) as:

bn+1
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

gn+1
1 , i = 1,

aα

[

uni −
n∑

k=1
bk(u

n+1−k
i − un−k

i )

]

+ f n+1
i , 1 < i < N ,

gn+1
2 , i = N .

(22)

The solution can be constructed using Eq. (18) subsequent to the solution of the algebraic
system of equations B{λ}n+1 = {b}n+1 at each time step.

3.3 Discretization in space: the RBF-PSmeshless method

Fasshauer (2005) linked the RBFs collocation scheme to the pseudo-spectral (PS) approach,
known asRBF-PSmethod. Fasshauer adopted the RBF-PS scheme to approximate theAllen–
Cahnmodel, 2DLaplacemodel and 2DHelmholtzmodelwith piecewise boundary conditions
(Fasshauer and Zhang 2007). Ferreira and Fasshauer (2006) formulated the RBF-PS scheme
for analyzing plates, beams and shells problems. Roque et al. (2010) adopted the RBF-PS
method for composite and sandwich plates problems. Uddin andAli (2012) andUddin (2013)
proposed RBF-PS method to approximate some wave-type PDEs. Now, we will develop the
scheme of Dehghan et al. 2015; Fasshauer 2005 for solving Eq. (5). First, we introduce the
properties of differentiation matrices (DM). Let us assume φ j , j = 1, 2, . . . , N to be an
arbitrary linearly independent set of smooth functions acting as thebasis for the approximation
space, and let us assume χ = {x1, x2, . . . , xN } to be a collection of distinct points in Ω .
The approximate solution is assumed to be in the form below:
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uh(x) =
N∑

j=1

λ jφ j (x), x ∈ R, (23)

where h = hx,Ω := sup
x∈Ω

min
1≤ j≤N

‖x − x j‖2. Evaluating Eq. (23) at the nodes xi yields

uh(xi ) =
N∑

j=1

λ jφ j (xi ), i = 1, 2, . . . , N . (24)

Equation (24) can be simplified in the matrix-vector from as follows:

u = Aλ, (25)

where

λ = [λ1, λ2, . . . , λN ]T ,

and A is the evaluation matrix with elements Ai j = φ j (xi )

u = [uh(x1), uh(x2), . . . , uh(xN )]T .

The derivative of uh can be obtained by differentiating the basis function in (23) as:

∂uh(x)

∂x
=

N∑

j=1

λ j
∂φ j (x)

∂x
. (26)

Now, we collocate Eq. (26) at the grid nodes xi in the following form,

ux = Axλ, (27)

where matrix Ax has elements
∂φ j (x)

∂x . In fact, we require to certify invertibility of the eval-
uation of matrix A for obtaining the differentiation matrix D. This relies on both the basis
functions chosen and the location of the grid nodes xi . Based on Bochner’s theorem, the
invertibility of the matrix A for any set of distinct grid points xi is guaranteed using the
positive definite RBFs. Now, from (25) one gets:

λ = A−1u.

Based on Eq. (27) and the above result, we get:

ux = AxA−1u. (28)

The approximation solution of Eq. (5) is defined at xi as:

un+1(xi ) =
N∑

j=1

λ jφ(ri j ), i = 1, 2, . . . , N , (29)

Equation (29) can be expressed in the matrix form as:

un+1 = Aλ, (30)

where

λ = (λ1, λ2, . . . , λN )T un+1 = (un+1
1 , un+1

2 , . . . , un+1
N )T .
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Differentiating Eq. (29) with respect to x and evaluating it at the nodes (xi ), the matrix-vector
form is obtained as:

un+1
xx = Axxλ, (31)

where

un+1
xx =

(
∂2un+1

1

∂x2
,
∂2un+1

2

∂x2
, . . . ,

∂2un+1
N

∂x2

)T

,

and elements of matrix Axx are Axx,i j = ∂2φ(‖xi−x j‖)
∂x2

. Regarding Eq. (30), we get:

λ = A−1un+1,

and from Eq. (31) results

un+1
xx = AxxA−1un+1, (32)

Now, by substituting Eqs. (28) and (32) in Eq. (15) yields

aαun+1 − γ1AxxA−1un+1 − γ2AxA−1un+1 + γ3un+1 (33)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aα

[

un −
n∑

k=1
bk(un+1−k − un−k)

]

+ f n+1, n ≥ 1,

aαu0 + f 1, n = 0.

(34)

The above relation also can be rewritten in a compact matrix form as follows:

Dun+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aα

[

un −
n∑

k=1
bk(un+1−k − un−k)

]

+ f n+1, n ≥ 1,

aαu0 + f 1, n = 0,

in which

D = (aα + γ3)I − γ1AxxA−1 − γ2AxA−1,

where I is the identity matrix and finally we can obtain the numerical solution after solving
this linear system at each time level.

4 Error analysis of the time-discrete scheme

To evaluate the error estimation of our approximation, we present some functional spaces
endowed with the standard norms and inner products that will be used hereafter.

4.1 Notation about functional analysis

Let Ω define a bounded and open domain in R2 and let dx be the Lebesgue measure on R2.
For p < ∞, we define by L p(Ω) the space of the measurable functions u : Ω −→ R such
that

∫

Ω

|u(x)|pdx ≤ ∞. In addition, recall that the Banach space is given by
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||u||L p(Ω) =
(∫

Ω

|u(x)|pdx
) 1

p

.

The space L p(Ω) is a Hilbert space with the inner product

(u, v) =
∫

Ω

u(x)v(x)dx,

with the endowed norm in L2,

||v|| = [(v, v)] 1
2 =

⎡

⎣

∫

Ω

v(x)v(x)dx

⎤

⎦

1
2

.

Moreover we assume that Ω is an open domain in R
d , γ = (γ1, . . . , γd) is a d-tuple of

nonnegative integers and |γ | =∑d
i=1 γi and let us consider

Dγ v = ∂ |γ |v
∂xγ

1 ∂xγ
2 . . . ∂xγ

d

.

With this regard, one can define:

H1(Ω) = {v ∈ L2(Ω),
dv

dx
∈ L2(Ω)},

H1
0 (Ω) = {v ∈ H1(Ω), v|∂(Ω) = 0 },

Hm(Ω) = {v ∈ L2(Ω), Dγ v ∈ L2(Ω), for all positive integer |γ | ≤ m}.
Now, we introduce the definition of the inner product in Hilbert space:

(u, v)m =
∑

|γ |≤m

∫

Ω

Dγ u(x)Dγ v(x)dx,

which induces the norm

||u||Hm (Ω) =
⎛

⎝
∑

|γ |≤m

||Dγ u||2L2(Ω)

⎞

⎠

1
2

.

The Sobolev space W 1,p(I ) is defined to be

W 1,p(I ) =
⎧
⎨

⎩
u ∈ L p(I ); ∃g ∈ LP (I ) :

∫

I

uϕ
′ =

∫

I

gϕ
′
,∀ϕ ∈ C1(I )

⎫
⎬

⎭
.

For this target, the inner product and the associated energy norms in L2 and H1 are defined

||v|| = (v, v)1/2, ||v||1 = (v, v)
1/2
1 , |v|1 =

(
∂v

∂x
,
∂v

∂x

)1/2

,

by making use of the inner products of L2(Ω) and H1(Ω),

(u, v) =
∫

u(x)v(x)dx, (u, v)1 = (u, v) +
(

∂u

∂x
,
∂v

∂x

)

,

respectively.
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4.2 Stability and convergence

In this section, we will comprehensively analyze the stability and convergence of the time-
discrete scheme in the presented numerical solution. The relation (15) can be restated as
follows:

uk+1 − μ1∇2uk+1 − μ2∇uk+1 = (1 − b1)u
k +

k∑

j=1

(b j − b j+1)u
k− j + bku

0 + Fk+1,

(35)

where μ1 = (aα + γ3)
−1γ1, μ2 = −(aα + γ3)

−1γ2, F = (aα + γ3)
−1 f . First, let us

introduce three lemmas for discretization of the time fractional derivative.

Lemma 1 (See Sun and Wu 2006) Let g(τ) ∈ C2[0, τk], and 0 < α < 1, then
∣
∣
∣
∣

1

Γ (1 − α)

∫ tk

0

g(τ)

(x − τ)α
dt − δt−α

Γ (2 − α)

×
[

(1 − b0)g(τk) +
k−1∑

j=1

(bk− j−1 − bk− j )g(τ j ) + bk−1g(τ0)

]∣
∣
∣
∣

≤ 1

Γ (2 − α)

[
1 − α

12
+ 22−α

2 − α
− (1 + 2−α)

]

max
0≤τ≤τk

|g′′
(τ)|δt2−α

where b j = ( j + 1)1−α − j1−α.

Proof For the evidence, look at the reference part (Sun and Wu 2006). ��

Lemma 2 The coefficients b j ( j = 0, 1, 2, . . .), defined by (35) satisfies the following:

• b0 = 1, b j > 0, j = 0, 1, 2, . . . , bn → 0 as n → ∞;
• we have

b j > b j+1, j = 0, 1, 2, . . . ;
k−1∑

j=0

(b j+1 − b j ) + bk = (1 − b1) +
k−1∑

j=1

(b j+1 − b j ) + bk = 1;

• there exists a positive constant C > 0 such that

δt < Cb jδt
α, j = 0, 1, 2, . . . ,

k∑

j=0

b jδt
α = (k + 1)αδtα ≤ T α.

Proof One may verify it as is clear from the definition b j = ( j + 1)1−α − j1−α , where
0 < α < 1. ��

Lemma 3 If uk(x) ∈ H1(Ω) k = 0, 1, . . . , M is the solution of Eq. (35), then

‖uk‖ ≤ ‖u0‖ + b−1
k−1 max

0≤l≤M
||Fl ||.
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Proof We will verify the result by the principle of induction. When k = 0, we obtain

u1 = μ1∇2u1 + μ2∇u1 + u0 + F1. (36)

Multiplying both sides of above equation by u1 and integrating on Ω , we have

||u1||2 − μ1(∇2u1, u1) − μ2(∇u1, u1) = (u0, u1) + (F1, u1).

Using the Cauchy–Schwarz inequality and uk(x) ∈ H1(Ω) yields

||u1|| ≤ ||u0|| + ||F1|| ≤ ||u0|| + max
0≤l≤M

||Fl ||,

which holds obviously. Now suppose

||u j || ≤ ||u0|| + b−1
j−1 max

0≤l≤M
||Fl ||, j = 1, 2, . . . , k. (37)

Multiplying Eq. (35) by uk+1 and integrating on Ω , one can conclude that

||uk+1||2 − μ1(∇2uk+1, uk+1) − μ2(∇uk+1, uk+1) = (1 − b1)(u
k, uk+1)

+
k∑

j=1

(b j − b j+1)u
k− j + bk(u

0, uk+1) + (Fk+1, uk+1).

The use of the Cauchy–Schwarz inequality, uk(x) ∈ H1(Ω) and b j+1 < b j < 1 concludes
that

||uk+1|| ≤ (1 − b1)||uk || +
k∑

j=1

(b j − b j+1)||uk− j || + bk ||u0|| + ||Fk+1||2. (38)

Using Eq. (37), the above relation can be stated as:

||u j || ≤ ||u0|| + b−1
j−1 max

0≤l≤M
||Fl || ≤ ||u j || + b−1

j max
0≤l≤M

||Fl ||. (39)

Noting Lemma 2, we have b j < bi < 1; 1 ≤ i ≤ j . Therefore, one can obtain:

(1 − b1)||uk || +
k∑

j=1

(b j − b j+1)||uk− j || =
k−1∑

j=0

(b j − b j+1)||uk− j ||

≤
k−1∑

j=0

(b j − b j+1)

[

||u0|| + b−1
k− j−1 max

0≤l≤M
||Fl ||

]

≤ (1 − bk)||u0|| + (1 − bk)b
−1
k max

0≤l≤M
||Fl ||

= (1 − bk)||u0|| + (b−1
k − 1) max

0≤l≤M
||Fl ||. (40)

Consequently, from Eqs. (38)–(40), we obtain the following inequality:

||uk+1|| ≤ ||u0|| + b−1
k max

0≤l≤M
||Fl ||.

Therefore, the Lemma 3 is proven by induction on k. ��
Theorem 1 The fractional implicit numerical method defined by Eq. (35) is un-conditionally
stable.
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Proof We suppose that ûk(x), k = 0, 1, . . . , M, is the solution of the method (35) with the
initial condition û0 = u(x, 0), then the error function εk = uk(x) − ûk(x) satisfies

εk+1 − μ1∇2εk+1 − μ2∇εk+1 = (1 − b1)ε
k +

k∑

j=1

(b j − b j+1)ε
k− j + bkε

0,

and εk |∂Ω = 0. In virtue of Lemma 3, we obtain:

‖εk‖ ≤ ‖ε0‖, k = 0, 1, . . . , M,

and the proof of Theorem 1 is completed. ��
Theorem 2 Suppose that {U (x, τk)}Mk=1 is the exact solution of Eq. (5) and {uk(x)}Mk=1 be
the time-discrete solution of Eq. (35) with initial condition u0(x) = U (x, 0). Then, we have
the following error estimates:

||U (x, τk) − uk(x)|| ≤ Cδt2−α,

where C is a positive constant.

Proof We assume that the error term is ρk = U (x, τk) − uk(x) at τ = τk, k = 1, 2, . . . , M .
Now, by subtracting Eq. (14) from Eq. (15) gives

ρk+1 − μ1∇2ρk+1 − μ2∇ρk+1 = ρk −
k∑

j=1

b j (ρ
k+1− j − ρk− j ) + Rk+1,

ρ0(x) = 0 and ρ0(x)|∂Ω = 0. Regarding Lemma 3, we arrive at

||ρk || ≤ b−1
k−1 max

0≤l≤M
||Rl || ≤ b−1

k−1δt
2.

Since b−1
k−1δt

α is bounded (Liu et al. 2007), we have

||ρk || = ||U (x, τk) − uk(x)|| ≤ Cδt2−α,

which finishes the proof. The convergence order in the time approximation will be tested by
extracted numerical results in the next section. ��

5 Numerical results and discussions

In this part, two examples that demonstrate an exact solution are put forth to show the
solution accuracy and the convergence order of the numerical method proposed in Sect. 4.
In addition, the previously mentioned method that is utilized for pricing the European option
under a TFBMS, one of the most interesting models in the financial market, is implemented.
To measure the accuracy of method, we compute the following errors norm:

L∞ = max
1≤i≤N−1

|U (xi , T ) − u(xi , T )|,
‖Error‖∞ = max

1 ≤ i ≤ N − 1
1 ≤ j ≤ M − 1

| U (xi , τ j ) − u(xi , τ j )|.
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Table 2 Time order of convergence (TCO) by MQ-RBF at T = 1, N = 100 and α = 0.7 for Example 1

δt c Present method Method of Zhang et al. (2016b)

L∞ C1-order CPU time(s) L∞ C1-order

1/10 0.50 2.756E − 03 − 0.0525 3.7000E − 03 –

1/20 0.50 1.103E − 03 1.3211 0.1135 1.5000E − 03 1.2700

1/40 0.50 4.428E − 04 1.3167 0.3140 6.2714E − 04 1.2900

1/80 0.50 1.753E − 04 1.3368 1.9720 2.5377E − 04 1.3100

1/160 0.65 6.935E − 05 1.3379 3.4207 1.0063E − 04 1.3300

TCO 1.3 1.3

CPU central processing unit

The computational orders are checked using the following formulas (Cui 2009; De Staelen
and Hendy 2017):

C1 − order = log2

( ||L∞(2δt, h)||
||L∞(δt, h)||

)

,

C2 − order = log2

(‖Error‖∞(16δt, 2h)

‖Error‖∞(δt, h)

)

,

in time variable and in space variable, respectively.
It is worth noting that the selection of the optimal shape parameter in RBF is so far gener-
ally considered an open problem. Determination of appropriate shape parameter is obtained
experimentally for the each types of RBFs. The optimal value for c in these experiments
must be determined numerically for each individual temporal step. We would like to mention
that the numerical experiments have been calculated by help of MATLAB 7 software on a
Pentium IV, 2800 MHz CPU machine with 2 GB of memory.

Example 1 First, we consider the following TFBSM:

⎧
⎪⎨

⎪⎩

0Dα
τU (x, τ) = γ1

∂2U (x,τ)

∂x2
+ γ2

∂U (x,τ)
∂x − γ3U (x, τ) + f (x, τ),

U (0, τ) = 0,U (1, τ) = 0,

U (x, 0) = x2(1 − x),

(41)

where the source term f = ( 2τ2−α

Γ (3−α)
+ 2τ1−α

Γ (2−α)
)x2(1− x) − (τ + 1)2[γ1(2− 6x) + γ2(2x −

3x2) − γ3x2(1 − x)] is selected so that the exact solution of (41) is U = (τ + 1)2x2(1 − x)
(De Staelen and Hendy 2017; Zhang et al. 2016b). The aforementioned related parameters
can be chosen with values as r = 0.05 D = 0, σ = 0.25, γ1 = 1

2σ
2, γ2 = r − γ1 − D,

γ3 = r and T = 1. The obtained results are displayed in Tables 2, 3, 4 and 5.

Example 2 Consider the following TFBSM with homogeneous boundary conditions:

⎧
⎪⎨

⎪⎩

0Dα
τU (x, τ) = γ1

∂2U (x,τ)

∂x2
+ γ2

∂U (x,τ)
∂x − γ3U (x, τ) + f (x, τ),

U (0, τ) = (τ + 1)2,U (1, τ) = 3(τ + 1)2,

U (x, 0) = x3 + x2 + 1,

(42)

such that the source term f = ( 2τ2−α

Γ (3−α)
+ 2τ1−α

Γ (2−α)
)(x3+x2+1)−(τ+1)2[γ1(6x+2)+γ2(3x2+

2x)−γ3(x3+x2+1)] is selected so that the exact solution of (42) isU = (τ+1)2(x3+x2+1)
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Table 3 Time order of convergence (TCO) by MQ-RBF at T = 1, N = 150 and α = 0.7 for Example 1

δt c Present method Method of De Staelen and Hendy (2017)

L∞ C1-order CPU time (s) L∞ C1-order

1/10 0.55 5.821E − 03 − 0.0631 3.5000E − 03 –

1/20 0.50 2.304E − 03 1.3372 0.1272 1.4400E − 03 1.3300

1/40 0.50 9.081E − 04 1.3421 0.4075 5.9000E − 04 1.3150

1/80 0.75 3.572E − 04 1.3461 2.5240 2.4000E − 04 1.3400

1/160 0.65 1.411E − 04 1.3400 4.5321 9.5000E − 05 1.3600

1/320 1.00 5.387E − 05 1.3892 19.542 3.8000E − 05 1.3800

TCO 1.3 1.3

CPU central processing unit

Table 4 Space order of convergence with c = 0.5 and MQ-RBF for Example 1

N M α = 0.2 α = 0.7

‖Error‖∞ C2-order ‖Error‖∞ C2-order

4 4 3.128E − 02 − 2.056E − 02 −
8 64 6.791E − 04 5.525 4.159E − 04 5.630

16 1024 2.503E − 05 4.761 1.672E − 05 4.640

8 8 1.381E − 02 − 1.016E − 02 −
16 128 5.246E − 04 4.719 3.218E − 04 4.980

32 2048 2.307E − 05 4.507 1.273E − 05 4.660

Table 5 The condition number and errors obtained using proposed schemes with δt = 1/100 for Example 1

h MQ-RBF(c = 0.55) MQ-RBF-PS (c = 0.55)

L∞ Cond (M) L∞ Cond(M)

1/5 3.351E − 03 1.1235E + 03 3.352E − 03 1.3241

1/10 8.764E − 04 9.2830E + 05 8.761E − 04 4.9112

1/15 5.421E − 04 5.4281E + 06 5.423E − 04 3.4627

1/20 4.254E − 04 8.8748E + 09 4.254E − 04 5.0461

1/25 2.167E − 04 4.5471E + 11 2.165E − 04 6.3715

(De Staelen and Hendy 2017; Zhang et al. 2016b). The aforesaid related parameters can be
chosen with values as r = 0.5, D = 0, γ1 = 1, γ2 = r − γ1 − D,γ3 = r and T = 1. The
obtained results are shown in Tables 6, 7, 8 and 9.

Tables 2, 3, 4, 5, 6, 7, 8 and 9 illustrate the numerical errors, comparisons and their corre-
sponding computational orders, which indicate the high accuracy and efficacy of proposed
methods. Asmentioned in Sect. 3, both examples confirm the theoretical results established in
Theorem 2. Based on the comprehensive comparisons in Tables 2, 3, 6 and 7, it is concluded
that the numerical results are relatively in good agreement with the implicit finite deference
method (Zhang et al. 2016b) and compact finite deference method (De Staelen and Hendy
2017). The consumed CPU time of the scheme is illustrated for various temporal discretiza-
tion steps. It gives high accurate results with very low CPU time. In addition, as shown in
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Table 6 Time order of convergence (TCO) with MQ-RBF at T = 1, N = 100 and α = 0.7 for Example 2

δt c Present method Method of Zhang et al. (2016b)

L∞ C1-order CPU time(s) L∞ C1-order

1/10 0.50 4.235E − 03 − 0.0492 5.5000E − 03 –

1/20 0.50 1.703E − 03 1.3143 0.1025 2.2000E − 03 1.3200

1/40 0.50 6.837E − 04 1.3166 0.2937 8.9427E − 04 1.3000

1/80 0.50 2.742E − 04 1.3313 1.9352 3.5167E − 04 1.3500

1/160 0.65 9.965E − 05 1.3822 3.2251 1.3065E − 04 1.4300

TCO 1.3 1.3

CPU central processing unit

Table 7 Time order of convergence (TCO) with MQ-RBF at T = 1, N = 150 and α = 0.7 for Example 2

δt c Present method Method of De Staelen and Hendy (2017)

L∞ C1-order CPU time(s) L∞ C1-order

1/10 0.50 6.345E − 03 − 0.0648 5.2000E − 03 –

1/20 0.50 2.507E − 03 1.3397 0.1425 2.0700E − 03 1.3300

1/40 0.50 9.957E − 04 1.3322 0.3576 8.3000E − 04 1.3150

1/80 0.50 4.011E − 04 1.3170 2.4521 3.3000E − 04 1.3400

1/160 0.65 1.591E − 04 1.3340 4.7602 1.3000E − 04 1.3600

1/320 1.00 6.274E − 05 1.3425 18.017 5.0000E − 04 1.3800

TCO 1.3 1.3

CPU central processing unit

Table 8 Space order of
convergence with c = 0.5 and
MQ-RBF for Example 2

N M α = 0.2 α = 0.7

‖Error‖∞ C2-order ‖Error‖∞ C2-order

4 4 4.035E − 02 − 3.260E − 02 −
8 64 7.860E − 04 5.681 8.325E − 04 5.290

16 1024 4.361E − 05 4.172 3.672E − 05 4.503

8 8 1.484E − 02 − 1.853E − 02 −
16 128 5.513E − 04 4.750 7.529E − 04 4.620

32 2048 2.468E − 05 4.481 3.164E − 05 4.573

Table 9 The condition number and errors obtained using proposed schemes with δt = 1/100 of Example 2

h MQ-RBF(c = 0.65) MQ-RBF-PS (c = 0.65)

L∞ Cond (M) L∞ Cond (M)

1/5 2.018E − 03 2.1253E + 03 3.015E − 03 1.8726

1/10 6.728E − 04 1.4261E + 07 6.728E − 04 2.5261

1/15 4.526E − 04 2.1564E + 09 4.521E − 04 2.7650

1/20 5.602E − 04 1.2365E + 10 5.605E − 04 4.1291

1/25 3.451E − 04 2.6310E + 13 3.451E − 04 5.8643
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Tables 4 and 8, we conclude that the convergence order of our proposed numerical approach
in space is good agreement with (De Staelen and Hendy 2017). According to Tables 5 and 9,
the RBF collocation technique has an error close to that of the RBF-PS collocation method,
although the RBF-PS collocation technique has amore well-posed coefficient matrix than the
RBF collocation technique. It is worthy of mention that “Cond(M)” illustrates the coefficient
matrix related to the proposed methods.

Example 3 Lastly, we consider the following TFBSM governing European option: (Kumar
et al. 2016)

∂αC(S, t)

∂tα
= ∂2C(S, t)

∂S2
+ (k − 1)

∂C(S, t)

∂S
) − kC(S, t), 0 ≤ S ≤ 2, t ∈ [0, 2],

with initial condition C(S, T ) = v(S) = max(eS − 1, 0). It is to be noticed that that
this system of equations contains just two dimensionless parameters k = 2r

σ 2 , in which k
demonstrates the balance between the rate of interests and the variability of stock returns and
the dimensionless time to expiry 1

2σ
2T , however, there are four dimensional parameters, K ,

T , σ 2 and r , in the original statements of the problem. When α = 1, the analytical solution
of this model is

C(S, t) = max(eS, 0)(1 − e−kt ) + max(eS − 1, 0)e−kt .

We consider the vanilla call option with parameter σ = 0.2, r = 0.04, D = 0. We solve this
model with the method exhibited in this paper with values of h, δt, c at t = 2. In the case
where α = 1, the approximation in this paper differs little from the corresponding option
price governed by the B–S model. A comparison between the numerical solution of this
paper and that of the corresponding B–S solution is shown in Fig. 1. Furthermore, it is seen
in Fig. 1 that as α approaches 1, the numerical solution corresponding to the fractional partial
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Fig. 1 Comparison of numerical solution at α = 1 with the B–S solution (left) and different α (right) for
h = 0.05, δt = 0.01, c = 0.9
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Fig. 2 Solutions of call option for α = 1 (left) and α = 0.8 (right) with h = 0.05, δt = 0.01, c = 0.9

differential equations determined by the MQ-RBF arrangement converges to the solution
of the partial differential equation of integer order. The graphs of the approximate solution
corresponding to α = 1 and α = 0.8 with k = 2 are displayed in Fig. 2.

6 Conclusion

As a matter of fact, the TFBSM can be interpreted as the generalized template of the classical
B–Smodel in the area ofmathematical finance.The “non-local” characteristic of the fractional
order derivative, which influences the function variation rate near a point by property of the
function all over entire calculation domain instead of just near the point itself, causes trouble
for solving both exact and numerical solutions in comparison with the integer-order model.
In the present study, a variable transformation is used to obtain a Caputo fractional derivative
from the modified Riemann–Liouville fractional derivative. First, a description of how the
issue is discretized in a temporal sense via thefinite difference technique (2−α order accuracy)
is provided. Then, a full discrete scheme is obtained using the meshless method based on the
RBF collocation method and RBF-PS method. It is worth reminding that the renowned RBF-
PS scheme is none other than a generalized finite difference method, and that the numerical
outcomes of using the RBF collocation method and the RBF-PS method are equivalent.
However, the condition number of the coefficientmatrix of theRBF-PSmethod is smaller than
that of the coefficient matrix of the RBF collocation technique. Moreover, a discussion of the
convergence analysis of the present technique is made along with obtaining the convergence
rate. To demonstrate the convergence order and accuracy of the numerical technique, two of
the aforementioned numerical examples that have analytical solutions are chosen. It is shown
via experimental data that the obtained results are acceptable when considered together with
the theoretical analysis. For conclusion, the TFBSM and the proposed numerical method are
utilized for the pricing of European options from an application-based viewpoint. It is the
belief of the authors that the numerical techniques proposed herein may also be applied in
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other similar fractional simulations to price various European options in the fractional B–S
market.
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