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The design of resilient food supply chain networks

prone to epidemic disruptions
Abstract
Food supply chains are nowadays perturbed by aeased supply and demand uncertainty, and moremame
suffering from unexpected disruptions. In the sfeciontext of food supply chains (FSC) for perisleaproducts,
these could be linked to natural hazards, indusagaidents or epidemics and their impact could lea huge
economic losses. The case of epidemic events hes life studied in the existing literature, altigh there are
numerous cases reported in practice. At the siategel, this requires a novel risk modeling agmio to tackle the
correlation and propagation features and advantethastic multi-period models to design the FSGvoet. Our
interest in this research is to propose a compshenwo-stage scenario-based mathematical modeesagn a
resilient food supply chain under demand uncenaamd epidemic disruptions. In order to adequatblyracterize
epidemic disruptions, they are modeled as a congpstothastic process and a Monte Carlo procedutevisloped
to generate plausible scenarios. The modeling @gpreovers the special characteristics of FSC, asgbroducts
perishability in time and discount prices basedporduct’'s age. In addition, a number of resiliestategies are
incorporated into the core model to enhance thitaese level of the FSC network design. The depetbmodels
are solved through an efficient solution approaetyimg on scenario reduction technique and Benders

decomposition. Numerous problem instances are tseédlidate the modeling approach and to derive agarial
insights.

Keywords: Food Supply Chain, Resiliency, Epidemic Disrupsiodncertain Demands, Stochastic Programming
1. Introduction

There is no aspect of everyday life more crititart the means by which the world is fed (Bourlakid/eightman
2004). The food supply chain (FSC) is consideredbe¢oone of the main infrastructures as its contisufiow
provides welfare and security for customers anditpfor companies involved. The optimization of FS@as
extensively studied in the last decade from efficie(Mohan et al., 2013), sustainability (Validiadt 2014), quality
(Rong et al, 2011), and robustness (Vlajic et @1,2) facets. At the strategic level, the desighr8€s involves the
location of a set of capacitated production anttitistion facilities and the determination of theiission in order
to serve efficiently and durably a customer baséelvfood products are considered, the problem ocaxitplis
usually raised because it deals additionally wihited shelf-life of products, safety requirememisicing issues
and an increased concern for resiliency (Dani & De&910; Behzadi et al., 2017). Here, perishabdityroducts
imposes a geographical and temporal traceabilithefporoduct flow and age along the SC. In additiba price of
a product is dependent on product age in orderotdral demand and increase revenue (Goh, 1992; &oh
Sharafali, 2002; Wang & Li, 2012; Kaya & Polat, Z01Grillo et al., 2017). Moreover, from an inventor

management perspective, the inventory holding alsst is linked to the effort required to keep theeintory safe



and to preserve its freshness (San-José et al,).2818/pical example is meat or poultry supply chavhere
preservation methods along time are critical. Aflde elements make the design of FSCs a worthydy sontext

but a challenging optimization problem, especiatger uncertainty.

Moreover, it is well established that SCs evolveam uncertain environment prone to business-as-uswh to
disruptive events (Ponomarov; 2012, Klibi et alQ1@, Tang; 2006). FSCs are subject to businesse-u
uncertainty typically related to market demand aondts caused by internal and external factors (&gihet al.,
2018, Vlajic et al., 2012). Additionally, FSCs anereasingly exposed to multiple derivers of disiums posed by
various type of uncertainties such as natural thsasextreme weather, economic and political grisidustrial
accidents, and so on (Tendall et al. 2015, StonBakimifard, 2018). Further, in the food contextlbgical
deliberate acts and epidemic outbreaks could béiawmia sources of unavoidable SC disruptions (Magret al.
2005, Tendall et al. 2015, Gonzalez, 2011, Toralzl.e 2016). According to the World Economic For@WwiEF)
risk report in 2019, the world has entered a newoérepidemic risk (Brende, 2019). This report utided that past
outbreaks indicate important contributions from Hreas of supply chain and logistics in an effectdpidemic
readiness. However, a lack of anticipation was nteskas we are still moved by the dramatic dedoriptfrom the
past (Schwab & Brende, 2018). The COVID-19 cridisven the vulnerability of agro-food products beaits
provoked farmers’ and workers’ illness and thusical losses in productivity and in production obfl products in

the USA (https://ag.purdue.edu/agecon/Pages/Foddpfunerabilitylndex.aspx). A well-known example ef

food epidemic disruption is the Salmonella outbréalough peanut butter in the USA (Terreri, 2008hother
noticeable example is Avian Influenza crisis thif¢eted the whole poultry chain in several courstr@ad incurred
losses of about 200 million Euros to the Frenchltppundustry in 2006 (Le Hoa Vo & Thiel, 2011). iEemic
outbreaks may occur in the context of natural cejusach as the outbreak of novel influenza A (H1Mtys
(WHO, 2010) or linked to a deliberated act suclsmsllpox and anthrax that are considered as bicdbgigents
(Henderson, 1999). When inspecting closely all ¢heases, it is clear that such disruptions are pewgd and
highly impacting events for the FSC which arguetfar necessity to anticipate, at the design lelelr impact on
the business continuity. It is also noticeable tbpidemic events are characterized by a specificdB@iption
profile and propagation behavior (Dasaklis et 2012), and thus the consideration of the spreatispfiptions on
the FSC network facilities and inventories is calicAlthough their increasing threat, only few sasdmodeled the

risk of epidemic disruptions and investigatedritpact on FSCs.



Furthermore, to cope with disruptions in SCs, tieédfof resiliency has aroused interest worldwidethie last
decade. The resiliency concept enhances the abfliBCs to quickly return to their normal performarevel after
disruption (Sheffi, 2007). Examples of resilientetegies include multiple-sourcing, capacity exgan, product

substitution, backup facilities and so on (Tang&OKlibi and Martel 2012a). Tendall et al. (201%fided food
system resilience as‘the capacity over time of a food system and itssuai multiple levels, to provide sufficient,
appropriate and accessible food to all, in the fatesarious and even unforeseen disturbahceResiliency
strategies could be reactive or proactive: proactsirategies are applied before disruption occuoegetike
preservation methods, staff training, vaccinatipositioning and strengthening, etc., while reacStmategies are
applied in the aftermath of disruptions. Recentiewws of supply chain resilience approaches are doim
Kamalahmadi & Parast, (2016) and in Tukamuhabwva. e€2015). In fact, when a food epidemic disroptoccurs,
a series of actions are often taken that includepshg the propagation and identifying its souncd eause (Terreri,
2009). These result in shutting down infected apstious facilities in the supply chain networkr Fastance, the
author reported that during the Salmonella outbiragke USA, one of the main reasons for the buoyamas the
continued production of peanut products. Accordinghe design of FSCs prone to epidemic disruptions
necessitates the inclusion of modeling construcatsaecing the resilience of the SC network designough
advanced stochastic multi-period modeling and epideisk modeling approaches. Despite the growiffigres to
design resilient SC networks, more work needs taldree to quantify resilience (Klibi et al. 2018)dato model
resilience-seeking strategies (lvanov et al. 20L8)the best of our knowledge, no specific epidernsk modeling

approach was developed in the FSC context andegpiplia stochastic setting to design resilient 8tvarks.

With this in mind, the aim of this paper is to posp a comprehensive modeling approach to desigasiléent food
supply chain network prone to epidemics. The modehpproach presents a multi-period setting to rcole
special characteristics of FSCs, such as produetshability and product's age-based discount pride also
proposes a novel scenario-based approach in ardaotlel the stochastic processes characterizingriheal and
the impact of epidemic disruptions on the FSC neltwas well as the risk of propagation. To copehvgtich
uncertainties, we incorporate a number of resiljestcategies into the core model to enhance thkerese level of
the SC network. All these features lead to a tvegest multi-period stochastic program with a chaliegg
solvability. To this end, an efficient solution apach combining a Monte-Carlo procedure, a scerradioiction
method and accelerated Benders decompositionpoped to solve a bench of problem instances. @steof this
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article proceeds as follows. Section 2 is dedic#bed literature review. Section 3 presents the ehddvelopment
including the problem description, notations anddeioformulation and the epidemic risk modeling azmh.
Section 4 presents the modeling approach to intedree resiliency strategies into the core modék $olution
approach is provided in Section 5. Section 6 piss#me model validation, numerical results and rgenal

insights. Section 7 presents some concluding resnark

2. Literature Review

This section presents key related work in the @iéareas of resilient SC network design and FSfisnzation
under uncertainty. In a generic way, several pap#empted to cover the supply chain network de$®@ND)
problem under disruptions. A critical review of SBproblems under uncertainty is provided in Klibiag (2010)
where major disruptions provoking SC network deficiies are listed, and the resilience strategiesteider at the
design level are discussésoh et al. (2007) investigated supply, demand asdiption risk in a multi-stage global
SCND dealing with location and distribution decigo Qi et al. (2010) investigated SCND with supgilsruptions
with a model providing location of facilities andlogation of customers to retailers. Klibi & Marté2012a)
proposed different distribution strategies to desigresilient SCND and integrated them into a sietth multi-
period setting.

The concept of network resilience has importantlicagions in understanding supply chain networkru$ions
(Sheffi, 2007) and the current literature trendfirams the growing interest by academics and priactidrs (Wagner
& Neshat, 2010; Chopra & Sodhi, 2004). Resilienttategies aim to mitigate disruptions threateniogtinuity of
operations in SCs. These strategies could be a@tedoas proactive or reactive and from anothesgestive they
could be flexibility, robustness or redundancy teigges (Faturechi & Miller-Hooks, 2014). Sawik (3012014)
applied redundancy and flexibility by keeping safstock. However, these studies merely focus orrdlsgdiency
strategies and do not deeply investigate typedss@ipgtions and their behavior. Some of the recesearch in the
related literature is summarized in Table 1. Bdbicéhere are two inclusion criteria consideredsiecting the
papers to be reviewed in Table 1. First, papers lthae studied resilient SCND with mathematical siscand
second, papers that have considered food SC nettasign models. One should notice that other rebesireams
related to SC reliability (Du et al., 2020) andrijople effect (Ivanov et al., 2014, Ilvanov et &019) in the SC,

covered to some extent the notions of resilienak disruptions using alternative modeling approachéss table



shows that most of the studies present generic lmgdapproaches (i.e. not industry/sector spegifid)ich in the
case of the food supply chain is limiting becaustoesn’t necessarily include critical functionapansions related
to limited shelf-life of products, safety requiremt® pricing issues and resiliency to epidemics.

From another perspective, disruptions can be divid® two categories: single and multiple. By $ndisruption,
when a facility is affected, it can recover aftarestain period, while in multiple disruptions difeated facility may
be disrupted again before full recovery. To thet lséour knowledge and according to Table 1, masties have
only discussed single disruptions and only a fewdists consider multiple disruptions. By single dfgions,
generally, a facility is disrupted fully or partialjust once in the planning horizon consideredibK& Martel
(2012b) studied multiple disruptions occurringimé and space. They assumed that natural disaatetsndustrial
accidents could happen at the facilities accordmgheir vulnerability and risk exposure level. el single
disruption setting, these disruptions could happamcurrently at the same facilities of the netwarkl more than
once during the planning horizon. Moreover, cotegladisruptions are special cases in multiple g@isons category
that no research has been conducted on it as itienajg disruptions. It is clear that disruptions amulti-phase and
their modeling makes sense through a multi-perettirgy. However, as highlighted in Table 1, onlyfstudies
have implemented disruption behavior through a irpatiod time horizon. Finally, it is worth mentiog that
disruption occurrence may affect different SC netwesources and regarding Table 1, most studies Aasumed
that it will affect the facility capacity, while w@ntory drop out has been neglected so far.

Table 1 A summary of resilient supply chain netwdesign literature

. -
e % 2 Uncertainty type ?T?eltjrt]lgg
E=S I : : . -
Authors Year qq’- x| 8 . Disruption effect é Modellngk = % AeslEney Application area
= g G | Business- 83 Framewor| 8 = strategies
5| © | &| as-usuallinventory Capacity _g = o
Amiri-Aref et al. 2018 | « | 3 | - . - - - SP - - Ms general
An & Ouyang 2016 | - | 3 . - - - RO - - - grain
Azad et al. 2012 | - | 2 | - - - . S - . - - general
Baghalian et al. 2013 | - | 3 | - . - . S SP - - - general
Fahimnia &
Jabbarzadeh 2016 | - 3| - . - . S SP - - - general
Fattahi et al. 2017 | 1 - . - . S RO - - F,B general
Hassani & Khosrojerdi | 2016 | 3 - . - . S RO - . F,B,D,A general
Ivanov et al. 2016 | o 3| - - - . S - - - B,F,CP general
Jabbarzadehet al. 2016 | - | 2 | - . - . S RO . - F general
Kamalahmadi &
Mellatparast 2015 | - | 2| - N - y S SP - - C general
Keizer et al. 2017 | - | 2 | . . - - - - - - - general
Klibi & Martel 2012 | . 2 - . - . S, M SP - - B,Ms,Co general
Mohammed & Wang | 2017 | - | 3 | - . - - - FO - - - meat
Nooraei &
Mellatparast 2016 | « | 5 | - - - - S SP - . B general
Qin et al. 2013 - 2 - - - . S SP . - FP general




Rong et al. 2011 | « | 3 | - - - - - - - - food
Sawik 2018 | o | 2 | - . - . S SP . - B general
Shishebori & Babadi | 2015 | - | 3 | - . - . S SP - - - general
Soysal et al. 2014 4 | - - - - - - - - - beef
Validi et al. 2014 | o | 2 | . - - - - - - . - dairy
Zahiri et al. 2017 | . 4 - . - - - FO - . B,N pharmaceutical
Zahiri et al. 2018 | « | 3 | . - - - FO - - - pharmaceutical
This research . 3 | e . . . S, M SP . - F,B,C,Ms food
S: single disruption SP: stochastic programming| F: fortification P: prepositioning N: network complexity
M: multiple disruptions RO: robust optimization D: facility dispersion  Co: coverage formulation A: alternative BOM
FO: fuzzy optimizatio B: backup suppliers  C: capacity expansions  Ms: multiple assignme

The other stream of literature relevant to thiglgtis FSCs under uncertainty. Much progress has bresle in the
field of food supply chain management (Mohan et2013; Soysal et al., 2015, De Keizer et al., 2017). Rengl.
(2011) incorporated food quality into the multi-jper production and distribution planning problemaofwo-stage
network. They developed a mixed integer linear mogning (MILP) model minimizing total costs includj
production, transportation, inventory and wast@alsl along with the cooling cost of transportagguipment and
storage facilities. Additionally, Validi et al. (2@) presented a multi-objective model for the desifja capacitated
distribution network for a two-echelon Irish daimarket supply chain. Bortolini et al. (2016) deyad a linear
programming model to deal with the tactical optiatian problem of fresh food distribution networR$hey were
concerned with carbon footprint and delivery tintgeatives as well as considering producers andleetaalong
with constraints on food quality, production capyeind market demand. Mohammed & Wang (2017b) deesl a
three-echelon meat supply chain network design madach includes number and location of facilitits be
established. Besides minimizing associated costr@mental objective function is also consideretgh a fuzzy
multi-objective approach. Mogale et al. (2018) stigated food grain supply chain network desigintia using a
multi-period deterministic modeling approach.

Recently, Mohammed & Wang (2017ahd Mohammed et al. (2017) studied meat supply chatwaeor& design
investing on RFID for tracing the product throudite tnetwork. Traceability of food products is a venportant
issue for most food manufacturing companies sinmergial risks such as contaminations could be ggated.
Although extensive research has been conductddsimegard (Dupuy et al., 2005; Rong & Grunow, 2040ng &
Chang, 2014), it is not integrated in current SBwoek design frameworks. Vlajic et al. (2012), Esteet al., (2018)
and Stone et al. (2018) proposed a conceptual fx@nketo design robust food supply chains, but nadeting
approach is proposed. They defined sources of R&erability and redesign strategies to achieveusbd and
resilient SC performance. An & Ouyang (2016) depetb a bi-level robust optimization model for profit

maximization and post-harvest loss minimizatioradbod company by considering farmers, storagditiasi and




export markets. Regarding the inventory modelsia tontext, there are several researches that ddweted the
specific features of food products (Jaggie et 2017; Tiwari et al., 2018). However, they did nansider the
network design and disruption simultaneously.

Motivated by these studies and numerous casesattipe, this paper bridges a gap in resilient feodply chain
network design (RFSCND) with novel SC risk and desmodeling approaches. Although some papers have
addressed related aspects (Table 1), to the besirdénowledge, none of them has investigated S@ND food
products’ characteristics, such as perishabilitpdpct age-dependent price, and epidemic disruptidre believe
that the integration of these specific charactiessinto the design model promote the robustnesth@fsolution
produced.

3. Problem context:

In this paper, a food processing and distributietwork design problem is studied, inspired from tieat supply
chain. The food supply chain network design (FSCNB)blem modeled here focuses on finding the optima
configuration of a three-echelon network for pesisle products, consisting of processing centers)Riistribution
centers (DCs)/refrigerated warehouses and retadsrshown in Figure 1. The proposed model ainmmagimize
the total expected profit of the company along dtinperiod planning horizon. The main decisions rdded by the
proposed FSCND model involve the number, locatiod eapacity of PCs and DCs and material flow plagni
decisions at each facility to open. Locations ofsPdhd DCs are chosen from a set of candidate attéke

beginning of the planning horizon, since thesesiens are strategic.

Design Level Potential Processing % % %
Location Decisions Centers

Allocation Decisions | e ial Distribution !

Capacity Decisions Centers % o - Q
b S SR A

User Level Retailers

Production Decisions
Transportation Decisions
Inventory Decisions

=3

=1

Figure 1 Design and planning levels of the multiipe FSC network



The main characteristics of the food supply chainsadered here are described as follows.

Producing food products involves small to largecpssing industry facilities. Here, raw materials eollected
from farms, crops and other sources, and are twemsf, packed, and made ready for storage or lalision.
This step could also involve preservation methad$ sas dehydration and using preservatives. Thetkous
increase the durability of products mainly by reingvwater and moisture from products or increasing
concentration of salt or acids. A set of capaatyels, expressed in throughput, is consideredct patential
PC, and only one can be set.

Distribution of perishable products involves wanesiag in refrigerated platforms (i.e. controlledhfgerature),
and then transportation to retailers. These DCseawe, store and consolidate the products recdiroad the
PCs. Refrigerated warehouses preserve the pershaiolducts from decay and postharvest maturation
behavior, and monitor their deterioration. At teishelon, we assume that a number of DCs may bbliskted

in a set of potential locations and that the thigaug capacity level of each DC must be determined.

Retailers in the FSC are the final actors that di@&ctly with the consumers, who are widely disgerin a
geographical area. They are replenished by DCscamthot be replenished directly by the PCs. It is no
mandatory to satisfy all demand, and unmet demanmassumed to be lost. A penalty cost for each ainit
unsatisfied demand is therefore imposed to thectiisgefunction.

Products considered here have a predeterminednemaihelf life for consumption, as they must bastoned
within specific limited period. It is assumed thmbducts produced/processed earlier should beptosiesl to
DCs and next to retailers sooner. Hence, the stasggtem applies a ‘first expire, first out’ (FEF@3tribution
rule. If there are some products in warehousesithr ngtailers whose remaining shelf life period keapired,
they must be disposed of. Here, we suppose thatifthéime or shelf life of a product begins whenis
produced in the PCs. According to the time, tempeeatolerance (TTT) theory presented by Zwietpih al.
(1996), the rate of deterioration accelerates adithe period goes on.

The price of the product is a function of its freehs (Wang & Li, 2012), which is modeled hereafitging a
step-wise price discounting function, as shownigufe 2. This figure illustrates how the produdtisg price

is estimated according to the age of the produsts Tatter is measured based on the difference dmatvits
processing period and consumption time in orden&ke the model as general as possible. Since tuigr

has a predefined shelf life (SL), this means thiaémvthe product age becomes more than its SL, ribdupt



status is changed to expired. In this case, aipghepproach to manage sale revenues is to engpdpswise
price discounting similar to the one in Figure 2endr is the production period of the product drid the time

period in which the product is consumed.

>
>

Product’s Sale Price @

>

Product age ¢-r)

ersus p

3.1.Scenario-based FSC design approach

Based on the previous problem definition and caréig the following indices, parameters and deanisiariables,
a single-product perishable food production-disttitn problem is formulated over the planning honizas a two-
stage programming approach via mixed integer lipeagramming (MILP). It is assumed that the degigrizon is
composed of a set of discrete time periods in whiekkly or monthly decisions related to productMlare made.
The first stage of the model addresses the her@mawdstrategic decisions on the location and capémiel of PCs
and DCs among the candidate sites, and assignmeisiahs between the facilities of the SC netwditie second
stage of the model corresponds to the tacticalnianlevel where the network material flow, invenytéevel and
demand fulfillment decisions are fixed, once eanteny scenario is realized. A scenario is the caration of a
possible sequences of events over the planningzdroriAn event is a measurable (i.e. having obsézvab
consequences) incident influencing the businesgr@mment of the SC network during a given time périThe
model’s objective function is maximization of expet profit, which is equal to total expected revemuinus total
expected cost. Total cost includes facilities’ fx®pening cost, production cost, inventory holdiogst,
transportation cost, lost sales cost and costadymt expiration. The main set of constraints ef phoposed model
are associated to retailers and DCs assignmengmtsatisfaction, production and inventory balaacg, capacity

levels.

Sets and indices
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= Set of PCs indexed bp (p O P)
D Set of DCs indexed byl (d O D)
I Set of retailers indexed by (i O1)
T Set of time periods indexed y& r(t & r OT)
N Set of possible capacity levels for each PC indéxed (n N )
K Set of possible capacity levels for each DC inddxed (k 0K )
S Set of plausible scenarios indexed $ys 0 S)
Parameters
f pn Establishment cost of PR with capacity leveln
f Establishment cost of DA with capacity levelk
Capy, Maximum throughput of P@at leveln for the time period
CaPgk Maximum throughput capacity of DA at levelk for the time period
cap; Maximum inventory holding capacity of retailérfor the time period
dp Production capacity of PPfor the time period
Chd Unit transportation cost associated with going fie@ Pto DC d
Cai Unit transportation cost associated with going fio® d to retaileri
Cp Unit production cost at P@
hp Unit inventory holding cost for PQfor the time period
hy Unit inventory holding cost for D@ for the time period
hy Unit inventory holding cost for retailérfor the time period
Isi; Unit lost-sale cost for retailer at time periodt
dif Demand of product in retaildrat time periodt , under scenaris
d Shelf life of product in time periods
Wt Price of product in retailerin periodt for the product which is produced in peri¢d
Cepnt Unit expiration cost of product at REat time periodt
Cey Unit expiration cost of product at DiCat time periodt
ce; Unit expiration cost of product at retaileat time periodt
P(s) Occurrence probability of scenago
M A large number
First-stage decision variables
Lpn Equals 1 if a PC is established in potential laratp with capacity leveln , otherwise 0
L gk Equals 1 if a DC is established in potential lamattl with capacity levelk , otherwise 0
Aig Equals 1 if retailer is assigned to D@ , otherwise 0
Second-stage decision variables
yisrt Amount of product delivered to customers in retdilat periodt , which is produced in time period ,
under scenarics
Pr;r Amount of product produced at time peripdn PC p , under scenari®
x;dn Amount of product produced at peribcand transported to D& from PC pin time periodt , under
scenarioS
Xgm Amount of product produced in periddand transported to retailierfrom DC d in time periodt , under
scenarioS
I Srt Amount of product produced in periécand remaining until end of periddin PCp , under scenarig
Ijrt Amount of product produced in periddand remaining until end of peridd in DCd , under scenari®

10



Srt Amount of product produced in peritcand remaining until end of peridd in retaileri , under scenario
I

S
Di;S Amount of lost-sale for demand in time peribdnd retailei , under scenari®

Ei? Amount of product expired at time periddand retailei , under scenari®
Egt Amount of product expired at time periddn PCp , under scenari®
Edst Amount of product expired at time periddn DCd , under scenari®

Mathematical formulation:
The first-stage model optimizes the location, cégand allocation decisions. Objective functiol daximizes the
second-stage objective function minus total stiategst, which includes PC and DC establishmentscaset X

denote the vector of second-stage decision vasaduhel for the given set of scenarifs Q (X,S) is the optimal

objective value of the second-stage problem.

Max Z:zp(S)Q(X-S)_Zprann _zzfdkl-dk (1)
s0S pOP nON d0D kK

Constraints:

Each PC and DC can be established with only onacdigdevel stated by Constraints (2) and (3).

D Lo <1 OpOP ()
n

zLdksl 0dOD (3)
k

Constraints (4) ensure that retailés assigned to D@ only if a DC is opened in locatiah Constraints (5) ensure

that each retailer should be assigned to a sinGle D

AidSZLdk giglr,dOD (4)
K

ZAd =1 Oi 01 (5)

dOD

The second-stage objective function (6) maximiz#al texpected revenue with respect to the set efaios.
Second-stage costs include production cost, tratetpm costs from PCs to DCs and from DCs to letsi
inventory holding cost in PCs, DCs and retaileost kales penalty at retailers and product expinatost at each
level of the SC. It is worth mentioning that if tamount of delivered product is predetermined, therfirst term is

constant and it is sufficient to minimize the ctesims. Otherwise, the amount of product, combimatibdifferent
ages, becomes a decision variable. Demand is @mesido be boundedl <dy), whered,, is a lower bound as a

market share target which could be estimated thrdlig marketing positioning strategy of the company
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Q(X,s) = zz z @t Yire ~

i0r rOT7 tOT|r<t
DIPWNLEEDIPIOIPICED I WP I
pOP tOT pOPdOD rDTtDT|r<t dOD 0l rOT tOT <t
(6)
+ ( prt_l prt ) ( Idrt—l + Idrt ) ( IiSrt—l + Ii?t )
+ z ZceptESt + Z Zcethdt ZZCQtEn +Zz|$t it
pOP tOT dOb tar ol tar idl T

According to Constraints (7), product can be tranga from DCd, to retaileri, if and only if retailen is assigned

to DCd. Similarly, Constraints (8) set transportationuiegment from a given centprto a DCd.

X3 SM xAy OdOD,i Ol ,r & OT |0<t —r <. ,s0S (7)
pdrt—MZL OpOP,dOD,r &tOT |0<t-r <SL,sOS (8)

Constramts (9), (10) and (11) show the inventalahce in PCs for each time period. In other woatithe end of
each time period, the amount of product which &pced in time periodis equal to the amount of product at the
end of the previous period minus the sum of thewarheent to the DCs, or it is changed to expirétsige is more

than the shelf life.

— OpOP,r &t 0T =t,sS 9

e =15+ Y X POP.r &LOT |1 =t,3 ©)
dD
s _|s _ s OpOP,r&tOT |0<t-r<SL,sOS (10)
ot = o = D X
drD

z S =ES Op0OP,t0OT,sOS (12)
rOr ft-r=SL
Constraints (12), (13) and (14) show the inventmiance at DCs for each time period.

— = 12
ngdrt_lgrt +zxgm 0dOD,r &t OT |r =t,sOS (12)
pCP il

— - 1
'§n-'§r(t—1)+zxﬁan‘z><§m OdOD,r &t OT |0O<t-r<SL,sOS (13)
pCP il
z 13, =ES 0dO0D,tOT,s0S (14)
rOr ft-r=SL

Constraints (15) and (16) show the inventory bagaaicthe retailers’ echelon for each time periodreiiall orders

are assumed to be delivered within less than apiened which equals zero.

S —1S S
Zxdin—lin"'Yirt Oi O1,r&tOT |r=t,sOS (15)
db
S
i =1y * D Xn ~Yi OiOl,r&tOT |0<t-r<SL,sOS (16)
diD

Constraints (17) define the amount of expired potglin each time period at the retailer’s location.
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z IS =ES 0i 01,t0T,s0S 17)
rrft-r=sSL
Constraints (18) and (19) are related to demaridfaetion. Constraints (18) ensure that the minimrdemand at

each time period for each retailer site is satisfleonstraints (19) balance demand, lost-sale apdupts delivered

to customers. As it can be seen, the deliveredyatsctould be combination of different product ages

i 18
Z yS 2d, 0i 01,t0T,s0S (18)
rr o<t -r<SL
Z yS, +D;° =d$ 0i 01,t0T,s0S (19)
rOm |O<t-r<SL

Constraints (9) — (19) model the requirements ofipcts flow along the SC stages and over the periodorder to
measure product age at each network node and tniedp an alias index)is introduced to show the time period
in which the product is processed, in other wortdsyase time. This is further depicted in Figungith an example.
It illustrates the product flow in the network fperiods 1, 2 tillt, for the product units that are processed in perio
(r=1). This shows how product units are controlled gatlolder through the SC based on their procegsnigd.

As for the ageing process, in each time perioddifference between the current time period andgssing time

period € - r) shows product age.

D

X1

oag-n RLEETE

A

Pr. = Pr Xpdt = X pa1, D |[Xdn =Xa dip =diy

Processing Center P Distribution Center D Retailer I

Figure 3 Product flow and ageing process for praagsmount in period one (r = 1)
Constraints (20) show the production capacity ehgaC in each time period.
s OpOP,r 0T ,sOS 20
Pro <dp P (20)
Constraints (21), (22) and (23) represent the tfjiinput capacity of PCs and DCs, and inventory cépac€i

retailers, respectively. It is clear that thesest@ints are interconnected with the balance Cams$ (9) -(17) and

the flows are limited by the capacities.
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s o L
Z Z X pdrt anppn pn OpOP,tOT ,sOS (21)

dOD rr n

Osr<t
Xdit < D CaPgy Lok
izu.:%:t ' Zk: 0d 0Dt OT ,sOS (22)
<r <
S
Z iy <Cop, 0i O1,t0T,s0S (23)
rT |Osr <t

Constraints (24) and (25) are related to typesaatibles.

Lon Lo »Ad DOT OpOP,nON,d 0D,k OK ,i OI (24)
S S S S S S
X patrt + Xairt »Ppr ol prt oLt ol it

S s s s s OpOP,dOD,iO1,r 0T tOT sOS (25)
Eit ’Edt ’Ept ’Dit ,ym Z 0

3.2.Modeling the Epidemic disruption process

As mentioned, this work investigates the resilieatéhe FSCND, prone to epidemic disruptions. Sdishuptions
have a cascading impact and when a facility is dther facilities are also under the threat of upsion. Such
correlation is due to the geographical proximityd/mn to the inter-sites flows. These disruptions amainly
characterized by their intensity, time to recovefyfacilities and propagation among facilities. Acodingly, we
propose in this section a probabilistic modelingrapch for the arrival of epidemic disruptions, ithghysical
impact on FSC resources and their propagatiomra tin the rest of the SC network. The approachi®wih the SC
risk modeling framework proposed by Klibi and Mart2012b) to integrate the main characteristicepidemic
risk and the specific impact on FSCs. It also takases on the so-called susceptible-infectiousvezed (SIR)

model extensively used for the management of iifastdiseases (Tassier, 2005).

The schematic representation of the arrival of pideamic disruption in the network is depicted irgitie 4. As
illustrated, when an epidemic disruption hits andit, a primary facility is first attained, but all theetwork
resources in the surrounding region of the hit zand those in relation with that resource are espo®
propagation risk. So, based on the flow level betweach pair of nodes and the distance between, ttiem
propagation of the disruption could spread in tbbsequent perioddH1, t+2,...) which become themselves
contaminated nodes, and so on. To do so, a coorelatatrix is used for propagation probabilitieswhich values
are mainly function of regional proximity and ofreltional network relations. For instance, the upsion

propagation is more probable from an upstream Rfdbwmstream DCs assigned to it, than in the oppasitction.
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Thus, the proposed modeling approach is basedstochastic compound process which unveils how sventld
happen randomly in time over the planning horizod & space over the geographical region underideration. It
starts with partitioning the region into a set ohes, and defining the exposure level of each zBoe facilities
located in each specific zone inherit of the zdek exposure level and disruption occurrence chearistics.The
next step characterizes disruption attributes whiolgi occurrence time and intensity. The final stegdels impact in

terms of recovery duration and in terms of abitifyPCs and DCs to ensure operations during thevezggeriod.

v
S § & &4 \l
§(// \\ //
% \\\ /// //’~-\\\
&3///4 g - = 4 y - \‘ v
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, %‘/ 2
T = N s ginrroreey
me =t “ A % ~
S y N
a8 < ML AN, B
/7
§(/ ‘\@ '\ g $ Z od
) ll \ gt g
Time=t+1 -~ < AN S Iy
P . / LS 777 4 J/
@ Processing Centers Proximity Zone /. B8 3 K072 /S\:, 7
727 <\ ol = 3
f"ﬁl Distribution Centers _~ Network Relation e o &
g Time = t+2

% Retailers V  Disrupted Facility

Figure 4 Schematic representation of epidemic gigso in a network

In the following, the modeling approach is desalibedetail, using the notation summarized as fedo

Disruption process notations

z

Set of zones, partitioning the considered region; z
Set of nodes in the network indexed &ye LIE ={ P.D,I }

Attenuation probability of zone to be hit by disruptions (zone’s risk exposureelgv
Attenuation probability of node to be hit by disruptions (node’s risk exposureelev

Proportion of capacity loss for nogewith values in [0 1], under scenasio
Time to recovery for nodein periods, under scenaso

Mean time between two consecutive disruptions imezo

Teiz@e)  Attenuation probability of nodeif its containing zone is hit by a disruption
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Proge  Equals 1 if disruption is propagated from naeto nodee, otherwise 0

For most of the disruption types, when a nodetibpia given event, the severity of the disrupi®associated to a
given node of the network and is based on two taied factors, namely, impact intensity and timedoovery.
However, in the case of epidemic event, this issuficient and thus one must consider the notibpropagation
inter-nodes which is another dimension charactegizhe severity of a disruption on the FSC netwoNext, as
well established, disruption does not uniformlyeaffthe network nodes during the recovery timegoke(Sheffi,
2005) and several phase-dependent impacts canfibedlby a discrete and step-wise recovery functitibi and
Martel, 2012a). In context of food SCs prone tadepiic disruptions, since the suspected facilitiesstaut down
and the suspected inventories are disposed, gsignaed that the throughput capacity and the inverkept are
dropped to zero. The capacity is fully recoveritdrahe time to recovery periods and the inventewgl is restored
only at the end of the time to recovery based owlneeplenished products. Figures 5a) and 5b) mimic

respectively, the impact of an epidemic disruptarthe facility capacity and on the inventory lekept within.

Capacity
Inventory

== H H e e . | ———‘_

! o

-

Nominal level

= = = Disrupted level

[ »

» »
Time to recovery Time period Time to recovery Time period

A
y

A
4

With this modeling approach, the attenuation prdbgbof node e can be computed with Equation (26). It is
assumed that nodecan be disrupted directly (i.e. is the centroicafisruption); or it could be disrupted due to the

propagation of a disruption hitting other facilggieshich are in the inter-sites network of nede

&= Zce|e’ 7 +ae[z )% (26)
e'lE
Regarding Equation (26) and disruption notatigpggs,dS) is defined as a function to show the impact of

disruptions on the capacity and inventory levelnetwork facilities during the disruption time. Ilgeneration

process is described in detail Appendix A. Then, obtained from, (55,6 ), loss parametgl; is corresponding
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to the lost portion of the nominal capacity andeintory level that is generally between 0 and 1 (Sgare 5). This
stochastically generated loss parameter is usegfdomulate the core mathematical model.
Given the disruption modeling process describedvabthe design model (1)-(25) must be adapted bewe.

Constraints (21), (22) and (23) are modified, retipely, as follows to take into account capacitsrdptions.

szpdrt <(1- (m)(zcapanpn) OpOP,tOT,sOS (27)
dOD ror
szdn <(1- Zd)(ZCEpddek) 0dOD,tOT,s0S (28)
idrar
Z|m <(1-{3)cap, 0i O1,t07,s0S (29)

With regards to the inventory level, Constraints (20), (12), (13), (15) and (16) become as foow

S S S S
A-¢n )Py _Iprt+zxpdn OpOP,r &tOT |r =t,sOS (30)
diD
— S
=@ ) )~ prdrt OpOP,r &t OT |r <t,s0S (31)
dib
_ 7S s _1s s
@ Zdt)(zxpdrt)_ldrt +Zxdirt 0dOD,r &t OT |r =t,s0S (32)
pOP il
= =GR Xpan +Hl )~ D XS
= dt part © 'dr (t-1) dirt OdOD,r &t0OT |r <t,sOS (33)
pOP iol
S S —1S S
(1—5n)(zxdn)—|dn +Yin Oi O1,r &tOT |r=t,sOS (34)
dD
S _
L =@~ |r(t—1)+zxdm) Vi Oi O1,r&tOT |r<t,sOS (35)
dib

4. Resiliency strategy formulations

In this section, resilience-seeking constructsfammulated and then appended to the core modeleatmenhance
the resiliency of the solutions. Here four stragsgextracted from the literature are considerethefy multiple-
sourcing, fortification, backup supplier and capaexpansion. With multiple-sourcing, retailers agemore single
sourced but are assigned to more than one DC.fiEatfitbn refers to strengthening and protecting fhelities
against the potential disruptions in order to rediis severity (ex: ISO 22000). Relying on a backupplier is
another strategy that induces an extra facilityemral to the network, is mandated to serve as-bpack case of
disruption. The capacity expansion is the fourthtegy which involves the allocation of additiosalpacity buffers
at some identified critical nodes of the networleréhfter, each of these strategies is further gqiaand its
corresponding formulation to integrate to the colel above is presented.

4.1 Multiple sourcing
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An important aspect of this problem is to allow tiplé-sourcing. In other words, a retailer may seuits needs
from multiple DCs proactively when the primary D@naot support its orders. This is inspired by trerknof

Snyder et al. (2006) and Klibi & Martel (2012a).this regard,/ is defined as the sourcing level parameter. For

instance, a value equal to two refers to a doublecing strategy. This strategic assignment detigadefined in
the first stage, and remains the same for all derend scenarios. Accordingly, Constraint (5) ia ¢ore model is

modified as follows.

D oA =Y O Ol (36)

4.2 Fortification

The idea behind this formulation is to augment cépaesistance against disruptions. Investinghiis proactive
strategy can help preemptively avoid unforeseeetgdfireats and allow faster response to any patedisruption.

Especially in the food supply chain context, théexdmes a vital component for enabling effectivedfeafety and
compliance initiatives to help prepare both prodsi@nd distributors for potential product recalts.fact, many
standards and regulations are imposed by goversnuenfood companies. Hasani & Khosrojerdi (201&enaly

considered fortification formulation, but with argilistic modeling of disruptions (i.e., without i and recovery
functions). Hereafter, we assumed that fortificatievel is not limited by a set of discrete proi@ctlevels, but is

continuous, relying on investment cost, which colddd, eventually, to more precise solutions. Telaghis

strategy,fpm;t , fd; andfim; are defined as the fortification variables of PDSs and retailers, respectively, at

periodt and under scenar® The capacity constraints are changed as folloviistégrate fortification opportunity.

DD Ko < (1—ZSt +fpmy [S)t)(zcappnl-pn) OpOP,tOT ,sOS 37)
dOD rOr n

D X S(l—fi +fdmg th)(zcapdk Lac) 0d OD,tOT,sOS (38)
g rar k

Din S(l—iif +fimg Zif)oaoi 0i 01, 0T ,s0S (39)
rar

O<fpmgy <1 OpOP,tOT,sOS (40)
O<fdmj <1 0d OD,t 0T ,sOS (41)
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O<fim; <1 Oi 01,t0T,s0S (42)
According to the above constraints, fortificatioariables impact the capacity and inventory in tippasite
direction of disruption impact. These variablesetalalues between 0 and 1, and are multiplied bydteeuption

impact when a given facility is hit. Similar chasgare applied for inventory constraints.

(1-¢5 +fom5 75 ) Pr =1 50 +(%;,X3dn OpOP,rOROT sOS  (43)

| oo =(l-ZSt+fpmStZSt)|Sr(t_1)-%XSm OpOP,rORLOT ,sOS  (44)

(15 +fdmg, Z(i)ZD:PXSdn ='3n+§x§m 0dOD,r ORtOT,sOS  (45)
; :

e = (1-¢5 +fdms Z&)(;PXSM+|§r(t-1))-zm:><§n 0dOD,rORtOT,s0S  (46)

. .

(1— it +fimg i?)dz X =line *Yin Oi O1,r OREOT ,sOS  (47)
0Ob

i :(1‘55 +fimg Zﬁ)(z Xair *+ it @-1)) = Yin 0i O1,r OREOT ,sO0S  (48)

dOb

Also, the associated cost could be as follows whlabuld be added to the objective function (Equiat&)).

D> tomy O (ancappnl-pn)"'z D fdm§ & (O capacLac) + D, Y fim§ 7 cap; (49)

tar poOpP tOr dOD k tar ol
4.3.Backup supplier

The idea behind this formulation is to specify theckup supplier to be used when the established da@sot
supply the orders. A backup supplier as a supditfe@Benaicha and Hadj-Alouane, 2013) ensures the flow of
material is maintained if disruption happens to tt&n sources of the network (Kamalahmadi & Pai231,7). In
this case, when a primary PC is not able to sugpertownstream demand, inventory in the backuplgrmwill be
transported to DCs to make up for unavailable sapplHere, it is assumed that the overall unicprement cost
(purchasing plus transportation costs) from thekbpcsuppliers is higher than normal supply cosifrestablished
PCs due to the urgent nature of this recourse. iiragly, the decision that needs to be integratethé¢ core model
is the amount of product that is provided by thekio@ supplier and transported to a given B@n periodt under
scenarios (denoted byug, ). Therefore, Equation (11) should be modifieda®ws.

S S S —1S S
BUG +(1= (&) (2 X ) = dx + 2 XGin 0OdOD,rOT tOT |r=t,sOS  (50)
pOP il
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The associated unit cost is production and trarafon cost b, ) from backup suppliers to DCs. So, the cost term

to add to objective function (6) is as follows.

D> by Bug (59)

dOD tOr

4.4.Capacity expansion

The last resiliency strategy introduces to the eooglel is the capacity expansion feature. In thie¢facilities have

the option to enhance their capacity temporarilycase of disruptions thanks to a capacity buffailalle to

engage. In this regard, variabIGelf1 , 0321 andOeiﬁ‘St are defined to fix the amount of capacity expanfdeadach

period, for PCs, DCs and retailers, respectivelyudions (27)-(29) should be modified in the coredel as

follows.

2D Xt S (1= G0l pn )+ Cely

part pt pn=pn OpOP,tOT,s0S (52
dOD rOOoT n
DD Xain S L-C§) (Y capac Lac ) +Ce 25 0dOD,t 0T ,sOS (53)
iol ror k
D lin <@~ )cap; +Ce3; 0i O1,t 0T ,s0S (54)
rr

In addition, capacity expansions impose cost factor the objective functioncc1,, cC 2, andcc3, are

pt ’

defined as unit capacity expansion costs whichmegllt in the following cost term in the objectifumction.

D Y cC1,Cety +) D CC2%CeZ +> D CC 3Ce § (55)

pOP tOT dOD tar ol tor

5. Solution Approach
The two-stage stochastic multi-period design matiteloped in this work is clearly difficult to selvThis is

mainly due to the combinatorial nature of the peabland the high number of scenarios needed to peodaod
quality solutions (Klibi and Martel, 2012a). Its roplexity is augmented here by the explicit inclusiof the
resiliency-seeking equations and the disruptiorcggse modeling. Accordingly, this work proposes #itient
solution approach that starts by sampling the $etcenarios and using scenario reduction techniglext, it
considers Benders decomposition (BD) approach keedthe equivalent deterministic problem and spepdhe

solution time.

5.1.Scenario reduction method
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Scenario reduction and sampling methods aim atcieduhe number of scenarios in such a way thatrédeced
numbers can be representative of the entire s@mna6t. Thék-means clustering method and the fuzzy clustering
method (FCM) (Bezdek, 1974) are known approaches i3 partition a given number of scenarios withilsir

features into a predefined number of clusters d@epto reduce the number of representative scenario

First, a Monte Carlo sampling method is developedhis work to generate plausible future scenatiosurring
along the planning horizon. It uses pseudo-randombers and the inverse of the parameters’ distdbdtinction
of the random variables involved. Based on theeapid disruption process described in Section 8 following
steps are applied in the proposed Monte Carlo paee First, disruption arrival time is generated éach zone
based on exponential distribution function. Thussheonological list of disruption occurrence is stiacted for
each zone. Next, for each event in the list, disompintensity is calculated. Subsequently, adst is done for each
node in the disrupted zone. In this step, a chiagiodl list of disruption occurrence is constructedeach node of
the network. In the fourth step, propagation ofui¢ion and its time lag in the network is adapteded on distance
and relations between nodes, and the contaminatesrand disruption time periods are obtained.&fbeg, in this

step, the nodes’ chronological disruption list glated. Fifth, time to recovery is calculated facle disrupted node
within a functiong, (55,65 ) . Finally, this function is then embedded in thetmeanatical model via’ impacting
the capacity and inventory levels through the piaghorizon. The detailed procedure is giverAippendix A.
Note that this procedure generates also realizatibthe random demand per retailer per time pefibe output of

the procedure that is projected in the model iggilby variablesand d; for all e, i, t ands. Running the procedure
for N times yields a sample of independent and equirbllekm:enario{isl,sz, Sp SN } =Sy » With p(s)=1/N .

Next, scenarios are clustered by means df@m that is known to be efficient and straightforwakkxt, scenarios
placed in a cluster, are substituted by their gpoading cluster center, which is an existing sdenn traditional

clustering methods, each scenario is restricteblelong to only one of the clusters, while FCM etates this
restriction and adds flexibility through memberstggrees. In this method, each object belongsdb elaster with
a membership degree that falls between zero andaadeis generated randomly at the starting pointhef
algorithm. It should also be noted that the sumomatif the membership degrees of a scenario mustjbal to one.
FCM implementation steps are presentedAppendix A. Applying this method yieldd clusters and siv

scenarios as representative of the ertirecenarios {(s,,s,,....sy } =Sy O Sy )- Thus, probability ofs  is equal
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to summation of probability of scenarios belongingelusterm asp(Sy,) =annum p(s,) which is also equal to

|s,, |/N Where|s, |indicates cardinality of scenarios in clusterAccordingly the objective function (1) must be

adapted to consider the sampled scenarios. Whegimgpphe FCM, the objective function must be rdtem as
follows:

Max Z= 3 pEmQMSn) =2 D Fonln = O b (56)
Sm Sy

pOP nON dOD kOK

5.2.Benders decomposition algorithm

The problem introduced in Section 3 is a very camphixed-integer problem since it includes a higimber of
integer variables. Its structure is well-suited fodecomposition approach such as Benders decaiopoéBD)
(Benders, 1962). In addition, benefiting from therits of cutting plane acceleration can be appebpr{Santoso et
al., 2005). In BD, instead of solving the complexPVproblem, the problem is decomposed into a poteger
problem and a linear problem, which are called praahd sub-problems, respectively. These two pnablare
solved iteratively by using the solution obtaineahfi each other until the termination conditionébiaved. We first
briefly present the general version of this appho@and then we explain a number of accelerationnigces which

are applied to enhance the performance of the pegpBD. A detailed formulation is providedAppendix B.

In order to develop a BD algorithm for the mathdo@tmodel concerned (1) - (25), the dual sub-Eob(DSP)

and master problem (MP) should be formulated. Tkerthe work more convenient, we consider the gémeoael

presented in Section 3. Let us fix the integeralkags to given fixed valued_gjn =Lpn, Lgk = |__dk, Ay =Ay)-

The Benders primal sub-problem (PSP) is then foatedl as imMppendix B. The DSP should now be formulated,
providing a lower bound for the objective functiof the original problem at each iteration becauss is a
maximization problem. Lefv : represent the dual variables of the constrainth@formulated PSP, then, the DSP
is formulated as i\ppendix B. According to the DSP solution, the MP providesuaper bound for the objective
function of the original model at iterations of takyorithm. The MP is also presentedAppendix B. The BD
algorithm in its general form may require a largenber of iterations and computational time to bee@wonverged.
Thus, in order to improve the convergence of the &gorithm, some acceleration techniques adopteh fihe

literature are employed.
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First, valid inequalities can boost convergencahaf BD algorithm by adding constraints based owrmftion
useful to MPs (Cordeau et al. 2006, Pishvaee et28l14). Low quality MP solutions could result ifow
convergence of the algorithm. Here, on the basimiofmum demand satisfaction and according to Gagt(18),
two valid inequalities can be added to the MP d®v®. These two constraints ensure that the capacithe
established PCs and DCs satisfy the minimum dentewel. Consequently, adding these inequalitiesht MP
restricts the feasible region and prevents insifficestablishment of the PCs and DCs. The prirtargtion of the
algorithm will therefore be improved in terms oftiial upper bound.

Z anppnl—pn 2 Zzgn (57), z anpdk Ly 2 Zzgﬂ (58)

pOP nON igrtor dOD kOK g tar

Second, a disaggregation method is applied to 8 Fhis method was first introducedBggan & Goetschalckx
(1999) for a multi-period production distributionoplem in order to restrict MP solution and consayly speed up
convergence. Thereatfter, this technique was emgldge solving complex network problems (Pearce &lfes,
2018). In this technique, the primal sub-problendésomposed into the independent sub-problemsn dagesugh

which an optimality cut is achieved. In our case,decompose the PSP irffosub-problems such as each scenario

is considered to be a sub-problem which has iteesppnding DSP asSP° . Figure 6 summarizes the general BD
and the acceleration techniques employed to shlvedt of models above.

We note that the bityl parameter used in Constraints (7) and (8) was dmaiby the maximum amount of product

to be transferred inside the networEEI Zmrgit ), to enhance the initial lower bound of the problem.

Stepl SetLB = -« andUB = +w

Step2 SetLp, =1,Lg =1andAy =1as an initial feasible value for binary variables

Step3 Solve the disaggregated dual sub-problenfid the optimal value of dual variable@\(’ )

Step4 If LB < DSPS! +...+ DSPS + constan thenLB = DSPS! +...+ DSPS + constan.

Step5 Form the master problem by adding optimality &easbibility cuts.

Step6 Solve the master problem and s& = MSP

Step7 IfUB - LB < ¢, then stop the algorithm and report the obtairdati®n and relevant objective|

function value; otherwise, go to step 3.

Figure 6 Proposed BD algorithm based on accelerstichniques

6. Experimental results
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In this section, the proposed RFSCND model as agthe variants including the resiliency constractstested on
a bench of problem instances realistically desigfié@ corresponding numerical results are analgnetdldiscussed

via extensive viewpoints.

6.1.Experimental plan

The business case considered here is relateddmpany in the food sector that aims to deploy diees national
production-distribution network. To this end, figandidate locations are considered for establisRiag, which are
fed by global suppliers and where for each PC tlegeacity levels are available. Next, ten poteritiahtions for
DCs are considered, with three capacity levelsp@r Finally, fifteen retail points are defined torgplete the
network. The horizon plan is one year and is coregdsy 26 biweekly time periods. Our preliminarytseshown
that with a biweekly time period we are able totoap the essence of the planning decisions as agelihe
propagation of the epidemic disruptions. The lea tbetween PCs and DCs and between DCs and rstiilkess
than a time period (i.e., zero lead time). Scalacameters of the considered case are accordinpetoralues
specified in Table 2. Three capacity levels of (58500, 10000) and (3500, 5000, 7000) throughpitsuare

considered for PCs and DCs per time period, rebbgt

Table 2 Parameters values

Processing Centers Distribution Centers Retailers
Parameter Value Unit  |Parameter Value Unit |Parameter  Value Unit
fon U (60000,80000 € fgn U (35000,60000 € h U (0.4,0.9) €/Period
Cpd U (0.02,0.35  €/Mile Cai U (0.04,0.47, €/Km Wt U(8,14)  €/unit
Co U (1.6,1.8) € hy U (0.1,0.8) €/Period ds U (0.1,0.8)  Unit
hy U(0.1,1.5)  €/Period | Cey U (0.4,1.1) €/unit Ce;t U(0.4,1.1) <€/unit
cepy U (0.4,1.1) € IS¢ U(4,7)  €unit
sl 3 Period

From this baseline network, three key dimensiomsvaried in our experiments: capacity lev€ag®™, Cag""},
shelf life {SL", SL"™ and lost-sale costl§®”, Is"9. The Cag®” is 15% less than the nominal capacity levels and

Capg"™" is 15% higher. The shelf-life of product is randgrgenerated in intervals [1, 2] and [4, 6] BL°" and

SL"9" respectively. Alsols®™ andIs"®" lost-sales values are varied in intervals [0.5] and [5, 8], respectively.

From Table 2, it is assumed that inventory holdingts are fixed and not product's age dependéertmentioned

dimensions are tested under six strategies: rigikdamce Ra) when no resiliency construct is applied, backup
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suppliers Bs), fortification (Fo), multiple-sourcing Ma), capacity expansionCg€ and risk ignoranceRj) when
disruptions are ignored. A combination of the thvaeying dimensions and six design models yield@gprbblem

instances.

For a given scenarios sample, solving each proposedel produces a network design solution, denbted’;
j=1,...,J. Each obtained network design specifiesstiteof PCs and DCs to open with specified capaeitgl and
assignment decisions of retailers to the opened. RCaddition to these decisions, each model presluits
resiliency-seeking policy that needs to be considdrom the strategic level in terms of additioassignments to
cover the retailers or additional capacity levefftmuto hedge the inventories. More specificallye Ma model
determines the multiple-sourcing policy and thuscsfes which the primary and secondary assignmfamtgach
retailer are. Th&s model provides the instruction on the backup sypplrces to have and total expected amount
of product that could be procured from them. Teamodel provides the total amount of expandable capthat is

at the disposal of the network as a contingency.dlathe same way, theo model provides the total amount of
capacity recovery that could be mitigated thankstite investments in DCs fortification. To evaluatese

alternative designs, their respective decisionsored’; j=1,..., J are assessed using a much larger sstenfarios,
denoted byy . To do so, a comprehensive inventory-flow modelised that is based on the core second-stage
model (6)-(25) appended with constraints (37)-(48)0) and (52)-(54) and terms (49), (51) and (5%he objective
function. This evaluation model is separable penado and this allows considering a larger setagharios and

also computing additional performance measuresakgiven desigi, the evaluation of the second-stage model is

used to compute the total profit during the plagnihorizon, under a given scenario, that is
Z(Yl,s);0j0J,s0Sy. and thus the summation oveBy: provides the expected value. Herg(Y! s)

indicates the total profit earned through the teahthe objective function of the core model (1)aiidition to the
terms (49), (51) and (55). Besides the total exgabprofit, the expected fill rate and the expegisatiuct freshness
are assessed. In FSCs, inventory velocity and gugp@ed are key performance indicators that shaowiraaty of
product flow through the network. In this studyesk are reflected in product age and its price pasia
characteristics of FSCs. These two indicators @diculated as given in Equations (59) and (6@cofding to
Equations (60), freshness index is always a pesitdal number. The less value of this index ingigdhe fresher

products are delivered to consumers.
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Expected Fill Rate% > [ZZnyn /ZZdﬁ] (59)

sOS, - \idl rO7 tO7T gl tar
1
Expected Product Freshnessm z [ZZZ|t -r|y /ZZnynJ (60)
sOSy - \idl rOr tar idl rOr ear

Finally, to measure the risk exposure related édbsign solution in establishing PCs and DCsskyriocations,

another indicator is considered. LgtY’, s) be the total number of disruptions on establisfeamiities under

scenarios when designY’is implemented. Thus, the average number of hitsafgiven desigh’ and set of

scenarios can be calculated through Equation (61).

va):[vaj,s)Just (61)

sOSy -

6.2.Computational Results

This subsection presents the computational refalted on the performance of the FCM algorithm &edBD
approach. To implement the FCM algorithm and geresdarge sample of scenarios with Monte Carlcgdore
(Figure A.1) MATLAB R2015b software was used. FCNyamithm cluster scenarios based on two attributes:
number of hits and total amount of lost capacityhiea whole network. This partitioning is based be tational that
the plausible future scenarios generated with tloatistCarlo procedure may involve variable levelsisi, which
can be measured by the number of hits it underdagag the planning horizon. Accordingly, Figureélldstrates
the distribution of the number of hits for a largemple of scenarios that are categorized into GiStels with
exponential inter-arrival times. As depicted, sauenarios involve only few disruptions over thenpiag horizon
but others may be much more chaotic as they invebxeral hits. Recall thahe number of hits depicted here is

associated to the potential network (i.e. includiighe potential PCs and DCs), over the planhiogzon.
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Figure 7 Scenario clustering for a large sampleace Figure 8 The convergence progression of theorithm

Another important feature of the solution appro&lthe BD developed to enhance the solvabilityhef tesign
models proposed. This algorithm is coded in GAMSLZ4optimization software, with CPLEX 11.2 solwesed to
solve the linear DSP and integer MP. The experisvarg run on a machine with a 1.7 GHz processod&ti of

RAM. In this section the computational efficiencahieved by implementing BD and adding accelegatiethods
are measured in terms of algorithm iterations amthputational times. In addition to the baselinemuek, three
other instances with augmented problem-size atede@.e., increased number of PCs, DCs and resaild@he
characteristics of the test instances are pres@émt€dble 3. This table also presents the perfooaadf the solution
approach, where the stopping criteria éae maximum of 150 Benders iterations afil) optimality gap below
threshold 0.1. As the experimental results indicttie proposed accelerated BD algorithm is sigaiftty more
time-efficient compared to the CPLEX 11.2 solveccérding to these results, it can be claimed thatproposed
BD algorithm is worthy to develop as it allows daly realistic sizes of the FSC design problem. Visial

representation of the BD algorithm convergencedvided at Figure 8 for the instances number 4aifl& 3.

Table 3 Comparative progression results among pep8D algorithm and CPLEX

| |T| || Number of  Number of Accelerated BC e

Instance |P| |D | |I variables  constraints Numb_er of Time(s) Time(s)
Iterations
1 2 3 5 5 3 1,785 3,205 3 50 1,202
2 4 5 8 10 5 36,422 70,702 8 60 3,650
3 5 8 15 15 8 137,076 385,107 19 1,300 18,376
4
(Sudied Case) 5 10 20 26 10 720,445 2,299,935 37 2,677 98,260

6.3.Analysis of Results

Given the 48 problem instances specified previquslis section discusses the quality of the propasetwork

designs using the set of performance measurese Falprovides comparative results on the performaricde
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resiliency strategies by performance measure, gheproblem-instance. It is worth mentioning thiae¢ different
models built never produce the same network degignording to this tableBs andFo designs dominat®a and
Ce designs.Fo design solutions perform better when the capadfitthe facilities is larger since this disruptions-
mitigation strategy acts directly on fortifying tbapacities. For instance, i643°",-,-) instancesBs overcomes the
Fo design solution (a gap of 4.8% in expected profit370,726€ versus 4,160,931€, respectively) , ewéhe
opposite behavior was observed@ag"®" - -) instances. For instance, i8gg"", SL°" |s°") instanceFo provides
an expected profit of 6,364,570€ which is 6.3%drathanBs, 15.8% better thaMa, and 25% better thaRi. As
another viewpoint, inGap®”.-,-) the expected profit of all the design modais very sensitive to lost-sales cost but
it is reduced for Capg"®" - -) instancesAs for the fill rate, the performance and behawibthe design solutions is
the same as their profit. For instance, under kigacity, the fill rate exceeds 90% only 88 andFo designs, is
relatively close forMa and Ce (89.5%), but drops critically foRa (77.6%) andRi (67.4%). When it comes to
product freshness, the calculated index showsRhatesign performs better than all the other desiigmsost of the
cases with values closed to zero (ranging from 0110.006). For instance, a freshness index of Difhdicates
that about 88% of the products delivered to custemaere produced within the last two weeks. Furtiee, the
results indicate thaRi design is extremely vulnerable in the presenaepafemic disruptions, especially i64g°" -

,-) instances. The expected profit and fill rate @early lower (by 68% and 44%, respectively) cameg to the best
designs produced because the exclusion of dismuéenarios from the second-stage and thus thevednod
recourse decisions/costs, lead to the openingskfakposed facilities, which is congruent with fimelings in Klibi

and Martel (2012a).

It can be concluded that under high capacities) ttpected profit and expected fill rate are beital it is because
the network is pushed to build buffers without payiany extra charges for it. Although buffers imntcause a
decrease in the expected freshness, the modelmiselest sales to achieve higher profits, which barnterpreted
as the “free resilience”. Also, as a general cosiolufor all the designs, i, SL™", -) instances, the freshness rate is
a little decreased since the model can keep inverito future deliveries as an inherent responsdisouptions.
Thus, it is a clear tradeoff performance to reaefiben the expected fill rate and the expectedymtoeshness.

Table 4 Model's performance under different dimemsiand in terms of indicators

(CadOW,SLIOWJS‘OW) (CadOW,SLIOWJSh‘gh) (CaﬁOW,SnghJS‘OW)(CaﬁOW,SLh‘thSmgh) (Caw‘gh,SLIOWJS‘OW) (Ca[j“gh,SL‘OWJSmgh) (Ca[j“gh,SnghJS‘ow) (Ca[j“gh,SththShlgh)

Expected profit gap from the best in %

Ra -30.4 -59.1 -30.3 -58.3 -17.8 -25.2 -17.2 -24.3
Bs 0 0 0 0 -6.3 -9.5 -5 -6.7
Fo -4.8 -9 5.1 -9.6 0 0 0 0
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Ma

-30 -58 -29.9 -57.3 -15.8 -21.7 -15.6 -21.4
Ce -24 -49.9 -24.3 -49.7 -12.1 -18.1 -12 -17.8
Ri -43 -68 -43 -68 -25 -33 -25 -33
Expected fill rate (%)
Ra 62.6 62.6 62.6 62.6 776 78.2 88 88
Bs 79.3 79.3 79.3 79.3 92.6 92.6 93.9 94.2
Fo 751 751 751 751 94.6 94.6 95.6 95.6
Ma 64.6 64.6 64.6 64.6 895 895 89.5 895
Ce 64.6 64.6 64.6 64.6 89.5 89.5 89.5 89.5
Ri 56.6 56.6 56.6 56.6 67.4 67.4 67.4 67.4
Expected freshness index
Ra 0.08¢ 0.25z 0.101 0.28¢ 0.08: 0.09t 0.17¢ 0.221
Bs 0.06¢ 0.08: 0.07¢ 0.16¢ 0.087 0.08¢ 0.16¢ 0.19(
Fo 0.006 0.048 0.006 0.117 0.006 0.008 0.010 0.012
Ma 0.084 0.199 0.091 0.282 0.053 0.097 0.071 0.127
Ce 0.00z 0.111 0.01¢ 0.19¢ 0.05: 0.09¢ 0.06¢ 0.12¢
Ri 0.091 0.251 0.09¢ 0.25] 0.08¢ 0.25:Z 0.08¢ 0.25¢

Table 5 shows the behavior of the design solutpyngduced with the resiliency-seeking strategie®ims of design
decisions. For each alternative design model, #teark structure is represented in terms of theage number of
opened PCs and DCs among all the instances. Tlkeroas indicate that the network structures ardyréine same
which is congruent with the performance resultd @ble 4. As expectedRa as the free-resilience design model
produces the highest number of opened facilitidgchvindicates that this network tries to hedgeirsiahe risk of
disruption with its coveragds designs have lower number of opened PCs amonge#iileency-seeking strategies
since they rely on the external super facility ahds invest less in endogenous resources. FinRlilydesigns

provide the lowest average number of opened PC®&wdsince the design model seeks efficiency andodoalue

buffers.
Table 5 Network structure of resiliency seekingigiesnodels
Design models
Ra Bs Fo Ma Ce Ri
Average # of opened PCs 4 3.44 3.60 4 3.92 3
Average # of opened DCs 7 6.15 5.86 6.25 6.45 5

Moreover, the disruption exposure level of eachigiesolution is presented in terms of average nundie
disruptive events in Figure 9 (i.e. number of litsthe opened PC and DC locations). It reveals Rezatlesign

performs well in this point of view, as expecteidce it provides a risk avoidance design. This lobannterpreted as
the fact that this design is the best one as theralacover against disruptions but the pay-offmes with a lower
expected profit compared to the other design smistiOn the hand, resiliency-seeking designs are wften in the
exposure of disruptions since there is a demand ftw some retailers when they are disrupted. ThiEsggns, in

top design produced yo andBs strategies, accept a higher exposure level simeg are fortified by resiliency-

constructs and contingency plans. In other worlls, resiliency-seeking strategies tend to find gbtade-offs
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between the cost of investing in resiliency and tieéwork profitability thanks to the recourse maaglin the

stochastic program. THei design solutions undergo the highest exposuré.leve

In the same way, the disruption-profit graph ofliescy-seeking designs is presented in Figurenli@ims of profit
generated under a given number of disruptions. g figsires reveal thdo andBs strategies are dominating ones
in both low and high capacity levels and show dlieege behavior toward disruptiondla and Ce designs
approximately have the same trend which is a i@sigt only to few disruptions. An interesting pomfigure 10 a)
is that when there is not any disruption (i.e, ®)hiall the strategies have the same profit exBsptvhich means
connecting the network to a super facility couldfvefitable when we are operating only with stoditagemand
quantities. While inCag"" - -) instances, all the design solutions are equaégd hits, and thus the super facility
doesn’t provide any advantage to support the denhewel. When the capacity level is low, the profélue is
dramatically decreased with increasing number sfugitive events. That is because the propagatiobapilities
are intensifying the severity of disruptions ané thecomes more affecting. In case of high capdeirgl, the
propagation severity could be absorbed to somenexte (Cap™®"-,-) instances (Figure 10b) and for low- and
medium-risk scenarios (less than 8 disruptioRs)}design model tends to give higher profits. However high-

risk scenario8s-design model create more profit thanks to thegares of the super facility.

14
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Figure 9 Average numbers of disruptions for eadigte
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Moreover, the pricing strategy, presented in FigRréhas an important influence on the expected fmtafit,

demand satisfaction and product freshness. Hemenaitivity analysis is explored by three pricirtgategies.
According to Figure 11, first and second price t/pee fixed and equal to 8 and 14 respectively,thadhird price
type is an age-varying pricing ranging from 8 ta Efjure 11 reveals that increasing the sellingeimplicitly

leads to higher profit levels. However, compariged price to 14 and age-varying price reveals #itiiough
objective functions are approximately equal, demsauisfaction, product freshness and inventory ihgldost are
considerably lower in the case of the variablegariccan be concluded that the production-distidrusystem tries
to maximize the freshness of the consumed prodiactsarn more profit and hold less inventory becatiée
increases product’s age. This behavior underlihesctucial importance in FSCs to model adequatstypricing

strategy in link with products freshness and agéc in this paper with the age-varying price.

In this last part, we have considered differentls\f resiliency budget to analyze how the desigations behave.
Before applying any resiliency strategy, the objecfunction in the case of disruption and no-dision are fixed
in Figure 12b). According to this figure, resiligngtrategies have considerable impact on the desiytion. Given
the resiliency strategies, the objective functisriricreased to 5,843x10This increase trend is up to 120,000 in
budget, and a budget of more than this does ndtifisigntly change the objective function. Thus,cén be
concluded that in the considered case, resilietreyegjies and a budget of 120,000 could resulighdr profits for

this FSC. On the other hand, resiliency strategi@sume different portions from the allocated btidge shown in
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Figure 12a). As expected, fortification and bacleupplier strategies consume more of the allocatethdt than

capacity expansion. Additionally, as the allocatadiget increases, the portion of backup supplidgmitely

increases, while the capacity expansion amountuéies and does not fit a specific trend.
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Although resiliency strategies were mainly devetbge tackle the disruptions with low probabilitiesd big

impacts, here they are used to deal with unceytalegree of demand regardless of disruptions. Toerethree

categories are assumed for demand process badbd arean and standard deviation for each demared Typese
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types are namely: deterministic demabBd {), where demand of each retailer is constant dweptanning horizon;
stochastic stationary deman®T2), where the demand of each retailer follows arithistion function whose
parameters are constant over the planning horigmchastic non-stationary demarit@), where unlikeDT2, the

distribution parameters not constant, but varyimgrahe planning horizon.

In Table 6, comparative results on the performaoicéhe resiliency-seeking designs are provided nadigg the
three demand types. Here low-capacity instanceseleeted for analysis to ignore the free-resikeatthe model
and highlight the various design impacts. Obtainesllts indicate that overall there is a decreasthé three
indicators of the networks for all design models, demand uncertainty is increased. This negativevtlr is
amplified inRa design since it is not supported by any of thdieegy strategies. It is worth mentioning that dner
for all three demand types, tHe design behaves exactly same as Reedesign. It was expected since the
fortification design plays role just in case ofrdjstions it is not activated for demand changedikédrdisruption
uncertainty case, thBs, Ma and Ce designs lead to indicators with negligible diffieces. However, they could
enhance the networks performance compared t&Rthdesign. FurthermoreRi dominatesRa design since irRi
design demand points are closely covered when iigmdhe disruption occurrence, whiRa uses free-resiliency

design that leads to a low-density network in whiahtransportation costs are considerable.

Table 6 Impact of resiliency-seeking designs okliag the demand uncertainty

Expected Profit Expected Freshness Expected Fill Rate
DT1 DT2 DT3 DT1 DT2 DT3 DT1 DT2 DT3
Ra 5,638,470 5,230,087 4,908,421 0.002 0.014 0.057 9610 0.912 0.840
Bs 5,639,029 5,233,546 4,915,116 0.002 0.008 0.016 .9650  0.930 0.897
Fo 5,638,470 5,230,087 4,908,421 0.002 0.014 0.057 9610 0.912 0.840
Ma 5,638,521 5,232,977 4,911,089 0.002 0.009 0.015 9620 0.930 0.863
Ce 5,638,470 5,231,491 4,910,790 0.002 0.012 0.015 9620 0.923 0.862
Ri 5,638,953 5,231,474 4,910,331 0.002 0.012 0.057 9650  0.930 0.880

7. Concluding remarks

Resiliency of food supply chains has become morgomant in recent years due to increasing vulnétisi
imposed by different aspects of uncertainties, @sflg epidemics. Systematic design and optimizatad FSC
networks can significantly assist in pushing furthewards efficiency, especially in developing ctiies. A
guantitative approach is used in this paper, teamiph epidemic disruptions which are modeled be$idsiness-as-

usual uncertainties through a risk modeling angagation approach. The framework of stochastic naroging
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with recourse is employed to incorporate scenafapidemics disruptions and to evaluate the exgueldsses and
recourses to be incurred under such events. Iniadda number of resilience strategies are incatgal into the
proposed core model to mitigate the impacts ofugisons. Next, an FCM algorithm is deployed thatuees the
complexity related to the huge number of disruptsmenarios, which is coupled with an accelerateddBes
decomposition algorithm. From the experiments méueestablished capacity and lost-sale cost anedf¢o be the
most influencing factors for the yielded FSC netivdesirability in terms of profit, fill rate and @auct freshness
such that they could impact resiliency-seeking nheééection. Among the resiliency-seeking modetstification
and backup supplier strategies provided more esgisolutions in comparison with multiple-sourcengd capacity
expansion. Another key finding is that we obsertteat age-dependent price instead of fixed prodtcepcould
have considerable impact on FSC indicators. Itéstvmentioning that our risk modeling approach destrated
that the impact of an extreme event on FSCs not depends on the arrival rate but on the intensignitude,
propagation scale and the preparedness level. megig resilient FSC by anticipation to yearly amdi-term
extreme events clearly helps in providing valuahtgibutes to the SC in order to durably performlwader
various unforeseen scenarios (epidemic outbreasdemics, disasters). The explicit inclusion ofsthdater
scenarios necessitates the consideration of loplgeming horizons, additional risk data and advdnselution

methods.

Several research avenues can be recommended ¢b énis promising area of the RFSCND problem. Ohthe
main issues in FSC and especially in cold chainthésemission of hazardous gases like,@@d NQ during
transportation and when keeping inventories ingefated warehouses. On the other hand, FSCNDs #e early
stages of development in developing countries dmy ttould incorporate social issues. Therefore ressihg
sustainability issues in conjunction with resiligrepnsiderations may provide more comprehensivésibectools
for decision-makers (DMs) in developing countrigsnother interesting idea for future research cobll
implementing robust scenario-based optimizationhods that could incorporate DMs attitudes to ris&luding
risk aversion, risk seeking and neutral into thedalimg approach. Another immediate research ideéa éxplicitly
investigate from-farm-to-fork network design prabl@ssociated with food traceability issues as aatbsiliency
strategy that would require new modeling techniguesrithermore, other related resiliency strategiesh as
technology investment for food traceability is éfthinterest. The models presented in this papeddvbe a good

starting point for these extensions.

34



References

Amiri-Aref, M., Klibi, W. and Babai, M.Z., 2018. Tdhmulti-sourcing location inventory problem witloshastic
demandEuropean Journal of Operational Research, 266(1), pp.72-87.

An, K. and Ouyang, Y., 2016. Robust grain supplgichdesign considering post-harvest loss and hiativeig
equilibrium. Transportation Research Part E: Logistics and Transportation Review, 88, pp.110-128.

Azad, N., Saharidis, G.K., Davoudpour, H., Maleltj, and Yektamaram, S.A., 2013. Strategies forgmtiig
supply chain networks against facility and transmon disruptions: an improved Benders decompmsiti
approachAnnals of Operations Research, 210(1), pp.125-163.

Baghalian, A., Rezapour, S. and Farahani, R.Z.32®bbust supply chain network design with servees!
against disruptions and demand uncertainties: Al-lifea case.European Journal of Operational
Research, 227(1), pp.199-215.

Behzadi, G., O'Sullivan, M. J., Olsen, T. L., Sageour, F., & Zhang, A. (2017). Robust and resiliginategies
for managing supply disruptions in an agribusinssgpply chainlnternational Journal of Production
Economics, 191, 207-220.

Behzadi, G., O’Sullivan, M.J., Olsen, T.L. and ZgaA., 2018. Agribusiness supply chain risk managetnA
review of quantitative decision mode@mega, 79, pp.21-42.

Benaicha, S. and Hadj-Alouane, A.B., 2013. Supaiilifias versus chaining in mitigating disruptions
impacts.Computers & Industrial Engineering, 65(3), pp.351-359.

Benders, J.F., 1962. Partitioning procedures fdvirsp mixed-variables programming problen\aimerische
mathematik, 4(1), pp.238-252.

Bezdek, J.C., 1973. Fuzzy Mathematics in Patteassification. Cornell University, Ithaca, New Yotdnited
States.

Bortolini, M., Faccio, M., Ferrari, E., Gamberi, Mnd Pilati, F., 2016. Fresh food sustainable itistion: cost,
delivery time and carbon footprint three-objectiy@imization.Journal of Food Engineering, 174, pp.56-67.

Bourlakis, M., and P. Weightman. 2004. Food Sughgin Management. Oxford: Blackwell Publishing

Brende, B. (2019). The Global Risks Report 201%h Edition.Geneva: World Economic Forum.

Chopra, S., Sodhi, M., 2004. Managing Risk to Av&dpply-Chain BreakdownMIT Soan Management
Review, 46, pp 53.

Cordeau, J.F., Pasin, F. and Solomon, M.M., 2006integrated model for logistics network designnals of
operations research, 144(1), pp.59-82.

De Keizer, M., Akkerman, R., Grunow, M., BloemhdfiM., Haijema, R. and van der Vorst, J.G., 201 gjittics
network design for perishable products with hetermpus quality decaffuropean journal of operational
research, 262(2), pp.535-549.

Dani, S., & Deep, A. (2010). Fragile food supplyaits: reacting to risk$nternational Journal of Logistics:
Research and Applications, 13(5), 395-410.

Dasaklis, T. K., Pappis, C. P., & Rachaniotis, N.(2012). Epidemics control and logistics operaioA
review. International Journal of Production Economics, 139(2), 393-410.

Dogan, K., Goetschalckx, M., 1999. A primal decosiion method for the integrated design of multripe
production—distribution systemdE Transactions. 31(11), pp.1027-1036.

Du, B., Zhou, H., & Leus, R. (2020). A two-stagebust model for a reliable p-center facility locatio
problem.Applied Mathematical Modelling, 77, 99-114.

Dupuy, C., Botta-Genoulaz, V., & Guinet, A. (200Batch dispersion model to optimise traceabilityfdod
industry.Journal of Food Engineering, 70(3), 333-339.

Esteso, A., Alemany, M.M.E. and Ortiz, A., 2018.nCeptual framework for designing agri-food supphains
under uncertainty by mathematical programming nm&dieter national Journal of Production Research, 56(13),
pp.1-29.

35



FAO, 2009. The state of agricultural commodity neask2009. Rome, Italy, Food and Agriculture Orgatim
of the United Nations, pp. 66.

Fattahi, M., Govindan, K. and Keyvanshokooh, EJ120Responsive and resilient supply chain netwasigh
under operational and disruption risks with delvérad-time sensitive customefgansportation Research
Part E: Logistics and Transportation Review, 101, pp.176-200.

Faturechi, R. and Miller-Hooks, E., 2014. Travelméi resilience of roadway networks under
disasterTransportation research part B: methodological, 70, pp.47-64.

Goh, M. (1992). Some results for inventory modedsihg inventory level dependent demand rhiternational

Journal of Production Economics, 27(2), 155-160.

Goh, M., Lim, J. Y., & Meng, F. (2007). A stochastinodel for risk management in global supply chain
networks.European Journal of Operational Research, 182(1), 164—-173.

Goh, M., & Sharafali, M. (2002). Priegdependent inventory models with discount offers rahdom
times.Production and Operations Management, 11(2), 139-156.

Gonzalez, C.: Climate change, food security, anoksgdiversity: toward a just, resilient, and susable food
system. Fordham Enlzaw Rev. 22, 11-19 (2011)

Grillo, H., Alemany, M.M.E., Ortiz, A. and Fuertddiquel, V.S., 2017. Mathematical modelling of theder-
promising process for fruit supply chains considgrithe perishability and subtypes of produdisplied
Mathematical Modelling, 49, pp.255-278.

Hasani, A. and Khosrojerdi, A., 2016. Robust glolkabply chain network design under disruption and
uncertainty considering resilience strategies: Araj@ memetic algorithm for a real-life case
study. Transportation Research Part E: Logistics and Transportation Review, 87, pp.20-52.

Henderson, D.A., 1999. The looming threat of biatesm. Science, 283(5406), pp.1279-1282.

Ivanov, D., Dolgui, A., Sokolov, B., 2019. Rippl&ext in the supply chain: Definitions, frameworasd future
research perspectives. Handbook of ripple effectsin the supply chain. New York, Springer, 1-33.

Ivanov, D., Sokolov, B., & Dolgui, A. (2014). Thagple effect in supply chains: trade-off ‘efficignflexibility-
resilience’in disruption managemehtternational Journal of Production Research, 52(7), 2154-2172.

Ivanov, D., Pavlov, A., Dolgui, A., Pavlov, D. arbkolov, B., 2016. Disruption-driven supply chaie){
planning and performance impact assessment withsideration of pro-active and recovery
policies. Transportation Research Part E: Logistics and Transportation Review, 90, pp.7-24.

Jabbarzadeh, A., Fahimnia, B., Sheu, J.B. and MigynaH.S., 2016. Designing a supply chain resiliemhajor
disruptions and supply/demand interruptiofr@nsportation Research Part B: Methodological, 94, pp.121-149.
Jaggi, C. K., Tiwari, S., & Goel, S. K. (2017). @itefinancing in economic ordering policies for non
instantaneous deteriorating items with price depahdemand and two storage faciliti@anals of Operations

Research, 248(1-2), 253-280.

Kamalahmadi, M. and Parast, M.M., 2016. A reviewthd# literature on the principles of enterprise angply
chain resilience: Major findings and directions ffuture researchnternational Journal of Production
Economics, 171, pp.116-133.

Kamalahmadi, M. and Parast, M.M., 2017. An assessma&f supply chain disruption mitigation
strategieslnternational Journal of Production Economics, 184, pp.210-230.

Kaya, O. and Polat, A.L., 2017. Coordinated priciagd inventory decisions for perishable produdR.
spectrum, 39(2), pp.589-606

Klibi, W. and Martel, A., 2012a. Modeling approashér the design of resilient supply networks under
disruptions.International Journal of Production Economics, 135(2), pp.882-898.

Klibi, W. and Martel, A., 2012b. Scenario-based @ypchain network risk modelingzuropean Journal of
Operational Research, 223(3), pp.644-658.

Klibi, W., Martel, A., Guitouni, A., 2010. The degi of robust value-creating supply chain netwogkritical
review. European Journal of Operational Research. 203 (2), 283-293.

Klibi, W. and Rice, J.B. and Urciuoli, L. (2018)p&cial dossier: Quantifying supply chain resilign8apply
Chain Forum: An International Journal, 19,4, 253—254, Taylor & Francis.

36



Le Hoa Vo, T., & Thiel, D. (2011). Economic simutat of a poultry supply chain facing a sanitarysisiBritish
Food Journal, 113(8), 1011-1030.

Liu, M. and Zhang, D., 2016. A dynamic logistics sebfor medical resources allocation in an epidecaiatrol
with demand forecast updatingpurnal of the Operational Research Society, 67(6), pp.841-852.

Manning, L., Baines, R. N., & Chadd, S. A. (200Bgliberate contamination of the food supply ch&iritish
Food Journal, 107(4), 225-245.

Mogale, D.G., Kumar, M., Kumar, S.K. and Tiwari, B4, 2018. Grain silo location-allocation problemthwi
dwell time for optimization of food grain supplyaih network.Transportation Research Part E: Logistics and
Transportation Review, 111, pp.40-69.

Mohammed, A. and Wang, Q., 2017a. Multi-criterigimization for a cost-effective design of an RFIBskd
meat supply chairBritish Food Journal, 119(3), pp.676-689.

Mohammed, A. & Wang, Q., 2017b. The fuzzy multiextijve distribution planner for a green meat sublgin.
International Journal of Production Economics, 184, pp.47-58.

Mohammed, A., Wang, Q. and Li, X., 2017. A costkefive decision-making algorithm for an RFID-enable
HMSC network design: A multi-objective approathdustrial Management & Data Systems, 117(9), pp.1782-
1799.

Mohan, S., Gopalakrishnan, M., Mizzi, P., 2013. taying the efficiency of a nonprofit supply chaor the food
insecurelnternational Journal of Production Economics, 143 (2), 248—-255.

Nooraie, S.V. and Parast, M.M., 2016. Mitigatingpsly chain disruptions through the assessmentaafetoffs
among risks, costs and investments in capabilitréernational Journal of Production Economics, 171, pp.8-
21.

Pearce, R.H. and Forbes, M., 2018. Disaggregatedidds decomposition and branch-and-cut for soltirey
budget-constrained dynamic un-capacitated fadititation and network design probleBuropean Journal of
Operational Research, 270(1), pp.78-88.

Pishvaee, M.S., Razmi, J. and Torabi, S.A., 2014. acelerated Benders decomposition algorithm for
sustainable supply chain network design under taicgy: A case study of medical needle and syrisgeply
chain.Transportation Research Part E: Logistics and Transportation Review, 67, pp.14-38.

Ponomarov, S., 2012. Antecedents and ConsequerficSsuipply Chain Resilience: a Dynamic Capabilities
Perspective. University of Tennessee, Knoxvillenfessee, United States

Qi, L., Shen, ZJ.M. and Snyder, L.V., 2010. Thdeaf of supply disruptions on supply chain design
decisionsTransportation Science, 44(2), pp.274-289.

Qin, X., Liu, X. and Tang, L., 2013. A two-stag@ahastic mixed-integer program for the capacitdogistics
fortification planning under accidental disruptio@®mputers & Industrial Engineering, 65(4), pp.614-623.

Rong, A., Akkerman, R. and Grunow, M., 2011. Animation approach for managing fresh food quality
throughout the supply chaimternational Journal of Production Economics, 131(1), pp.421-429.

Rong, A., & Grunow, M., 2010. A methodology for ¢wmiling dispersion in food production and disttitoun. Or
Spectrum, 32(4), 957-978.

San-José, L.A., Sicilia, J. and Garcia-Laguna,2015. Analysis of an EOQ inventory model with pelrti
backordering and non-linear unit holding cé3mega, 54, pp.147-157.

Santoso, T., Ahmed, S., Goetschalckx, M., Shaph.0,2005. A stochastic programming approach forpdup
chain network design under uncertaintiuropean Journal of Operational Research. 167 (1), pp.96—115.

Sawik, T., 2013. Selection of resilient supply fait under disruption risksOmega 41 (2), 259-269.

Sawik, T., 2014. Joint supplier selection and salied of customer orders under disruption riskag& vs. dual
sourcing.Omega, 43, pp.83-95.

Sawik, T., 2018. Disruption Mitigation and RecovenySupply Chains using Portfolio Approacdmega, 84,
pp.232-248

Sheffi, Y., 2007. The resilient enterprise: Overdognvulnerability for competitive advantage. Candige, MA:
MIT Press.

Sheffi, Y., 2005. The Resilient Enterprise: OveraogrVulnerability for Competitive AdvantagMIT Press.

37



Shishebori, D. and Babadi, A.Y., 2015. Robust agléhible medical services network design under uager
environment and system disruptiofisansportation Research Part E: Logistics and Transportation Review, 77,
pp.268-288.

Snyder, L.V., Scaparra, M.P., Daskin, M.S. and ChuR.L., 2006. Planning for disruptions in supphain
networks.Tutorialsin operations research, 2, pp.234-257.

Soysal, M., Bloemhof-Ruwaard, J.M., Haijema, R. &ad der Vorst, J.G., 2015. Modeling an Inventoputng
Problem for perishable products with environmertahsiderations and demand uncertaihtiernational
Journal of Production Economics, 164, pp.118-133.

Soysal, M., Bloemhof-Ruwaard, J.M. and Van der Y,0i<G.A.J., 2014. Modelling food logistics netwsnkith
emission considerations: The case of an internatibeef supply chainnternational Journal of Production
Economics, 152, pp.57-70.

Stone, J. and Rahimifard, S., 2018. Resiliencegiitfaod supply chains: a critical analysis of titerature and
synthesis of a novel frameworRupply Chain Management: An International Journal, 23(3), pp.207-238.

Tang, C.S., 2006. Perspectives in supply chainnmiakagementnternational Journal of production economics,
103 (2), pp.451-488.

Tassier, T., 2005. "SIR model of epidemicarihual report.

Tendall, D.M., Joerin, J., Kopainsky, B., Edwarés,Shreck, A., Le, Q.B., Krutli, P., Grant, M. a8k, J., 2015.
Food system resilience: defining the conc&bpbbal Food Security, 6, pp.17-23.

Terreri, A., 2009. Preventing the next product He¢aod Logistics 111- 2025

Tiwari, S., Jaggi, C. K., Gupta, M., & Cardenas+®ar L. E. (2018). Optimal pricing and lot-sizinglizy for
supply chain system with deteriorating items undiemited storage capacitynternational Journal of
Production Economics, 200, 278-290.

Torabi, S.A., Namdar, J., Hatefi, S.M. and Jolaj,Z016. An enhanced possibilistic programming eaph for
reliable closed-loop supply chain network desigternational Journal of Production Research, 54(5),
pp.1358-1387.

Tukamuhabwa, B.R., Stevenson, M., Busby, J. andidioM., 2015. Supply chain resilience: definitjioeview
and theoretical foundations for further stuthernational Journal of Production Research, 53(18), pp.5592-
5623.

Validi, S., Bhattacharya, A. and Byrne, P.J., 2044ase analysis of a sustainable food supply ctiimibution
system—A multi-objective approachnternational Journal of Production Economics, 152, pp.71-87.

Vlajic, J.V., Van der Vorst, J.G. and Haijema, RQ12. A framework for designing robust food supply
chains.International Journal of Production Economics, 137(1), pp.176-189.

Wagner, S.M. and Neshat, N., 2010. Assessing thénexability of supply chains using graph
theory.International Journal of Production Economics, 126(1), pp.121-129.

Wang, X. and Li, D., 2012. A dynamic product quaétvaluation-based pricing model for perishabledfsapply
chains.Omega, 40(6), pp.906-917.

WHO (2010). Accessible &ittps://www.who.int/csr/don/en/

Zabhiri, B., Jula, P. and Tavakkoli-Moghaddam, R.1&. Design of a pharmaceutical supply chain netwoider
uncertainty considering perishability and subsditiiity of productsinformation Sciences, 423, pp.257-283.

Zahiri, B., Zhuang, J. and Mohammadi, M., 2017. &aivan integrated sustainable-resilient supply rchAi
pharmaceutical case studyansportation Research Part E: Logistics and Transportation Review, 103, pp.109-
142.

Zwietering, M.H., De Wit, J.C. and Notermans, 29@. Application of predictive microbiology to estte the
number of Bacillus cereus in pasteurised milk & toint of consumptiornternational journal of food
microbiology, 30(1-2), pp.55-70.

Appendix A. Monte Carlo procedure and scenario redation method
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In this section, a scenario generation approaghdposed in Figure A.1 based on the epidemic riskleting and
the Monte Carlo sampling. This latter uses pseaalom numbers and the inverse of the parametessiladition
function of the random variables involved. The am$pof the method are expressed in t&mwhich impact the
capacity parameter and also the inventory levéh@modeling approach. Running the procedure inrgigh.1 N

times yields a sample of independent scen{as'psz,...sn oSN } . In the procedurel denotes a pseudo-random

number, andF_l(U) the inverse of the standardized Normal variate. fitoposed Monte Carlo procedure includes

five main steps. First, disruption arrival timegienerated for each zone based on exponentialtdison function.

Thus, a chronological list of disruption occurrenigeonstructed for each zone. Second, for eaditien in the
list (Y3 ), disruption intensity is calculated. After thshit test is done for each node in the disruptetez O Z . In

this step, a chronological list of disruption ogemce is constructed for each node of the netwarthe fourth step,
propagation of disruption and its time lag in tredwork is adapted based on distance and relatietvgelen nodes,
and the contaminated nodes and disruption timeogeriare obtained. Therefore, in this step, the siode

chronological disruption list is updated. Fifthm# to recovery is calculated for each disruptederantti the function
0 (535,65) takes binary values (0-1) according to the dismipime periods, as shown in Figure 5a). Finallg th

disruption impact is calculated as loss paramgtetUsing the same method, we generate a demandosieach

scenario over the planning horizon, where the dehmaoniformly distributed.
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[ 1S U o 1T T I =T 1= = L4 o

1) Generatedisruption arrival time for each zone
ForallzOZ do:

n=0
While 7 T
Generateu ; and compute the next disruption arrival perioddnez : /7 =/] + Fz_l(uj)

Add day [Iﬂ to the chronological IistY§

End while
End for
2) Generatedisruption intensity

Forallt OYS andedz

z

Generatel; and compute/%s = Fe_l(uz)

End for
3) Do hit test for each nodein zone z

For alle JZ andt 0 Y3

If for a random numbdd® : u® < a, then add[/fl to the chronological list/g

End for
4) Do disruption propagation test

Foralle' OE (€'0OE —{&}) andt O Yz,

If for a random numbdd® : US < Cee thenaddt +lag to the chronological listYg.

End for
5) Compute the disruption duration for disrupted facilities

Forall €[JE andt 0 Y3
*  Generateu$ and compute the time to recovery for each faciffy =[q( &) +F _1(u§)]

*  Updateg, (&,& )t =tt+1..1+& -1
End for
G(5.6) itt+l. . t+6 -1
0 OWw.
(D= 1 FoT g Lo [ 1= g T=T = i o D PP
Foralli O andt OOT

Generate uniformly pseudo-random numtleﬁson the interval [0,1]

6) Calculate (g :{

Calculate the demand valgk$ =d;, +(d, —d;, )us
End for

The parameters of the Monte Carlo procedure arerdicty to the values indicated in Table 7 as foBow

Table 7 Parameters values of the Monte Carlo proeed

S S
Parameter us a. Cepe 6

Value Exprnd(10) U(0.3,0.4) U(0.0,0.7) U(L,4)

It should be noted that according to Figures 5a) aln), once the disruption occurs, the capacity iandntory

levels drop to zero, so the random paramegais equal to 1. Besides, as it was described ini@e8t2, prope is

derived in a correlation matrix based on regionedxpnity and directional network relations. Accargi to

parameters in Table 7, an inter-arrival rate ofa@®ks (10 bi-weekly arrivals) is considered thatcibnditional hit
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probability is 0.4, which correspond jointly to anapound likelihood of epidemic arrival-hit of 1 &80 weeks per
year. This behavior is close to what is observegrattice. It is clear that the avian influenzanso® is an extreme
event that not only depends on the arrival rate dtthe intensity magnitude, propagation scale trel
preparedness level. Besides, these parameters wanydfor different kinds of disruptions. For inste, avian

influenza could diffuse smoothly but COVID-19 wowdhdow a considerable outbreak leading to a pandemic

Fuzzy Bezdek Clustering Method

Next, let us introduce the basics of the FCM mettemaployed here to cluster the scenarios. We censiget ofS
scenariosX ={X1,X2,...,XS} in a R P dimensional space, and FCM method tries to pantitheese scenarios into

C(1<C <8) fuzzy clusters. According to our epidemic risk ralidg approach (Figure A.1), we have considered

two attributes P ) for each scenario, namely number of hits andl tdisrupted capacity of the SC. The FCM
(adopted from Bezdek, 1974) consists of five iigeasteps, as follows. The output of the methotbiprovide a

reduced subset of scenarios, where each scenamoasg the existing ones and is representativegofean cluster.

Step 1Fix the desired number of clustet , the weighing exponeif, the induced A-norm orR"and r =0.

Generate an initial membership matrix,(). The membership matrix determines membershipegsgof scenarios

to each cluster.

c
U=|... Ug - ;Osuﬁsl&ZU(S:l (A1)
c=1

whereu is the membership degree of t&® scenario to the™ cluster center.

Step 2Compute the cluster center vector CC. Wheyés the main characteristic of scenagio

s s s s
cc =[[Zu}2.ys /ZUB] [Zug; Vs /ZUCS]] T lsm<o  (A2)
s=1 s=1 s=1 s=1

Step 3Calculate the new membership mattix(**) according to Equations (A.3) and (A.4)

-1
2 r+l r+l
_ u u
. C ur m-1 11 B
r+l _ cs r+l _ r+l
ust =y ur (A.3) u™t=ll udt (A.4)
AN r+l urst
C1l CS

Step 4If U™ -U " < ¢ (tolerance level) stop; otherwise get r +1and return to step 2
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S
Step SAttribute o= z U 7T, 1O each cluster center as the likelihood of oanee of that cluster center.

s=1

Appendix B. Benders Decomposition Formulation
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