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A B S T R A C T   

Microsieving by rotating belt filters is an engineered fractionation method for particle separation from waste-
water that can be used as an alternative to primary clarification due to its smaller footprint and lower total cost of 
ownership. Because of the multiscale nature of the filtration processes involved, and the interdependent variables 
controlling performance and the system design, the availability of verified and comprehensively validated 
models that, based on fundamental principles, can explicitly capture the effect of particle size, mesh size and 
polymer dose are essential for performance optimization and scale-up. In this paper, a detailed microsieving 
filtration model was derived by extending Darcy’s law to a dual-layer dynamic framework whose predictions 
were validated against batch (column) and continuous flow (RBF pilot) experimental data. The ability of the 
microsieving model to accurately capture observed trends confirmed that the model formulation, derived from 
column experiments, were sufficiently accurate and flexible to capture the relevant physics involved, with a 
relative error in performance scale up (from column to pilot) of 33% and 14% for filter capacity and effluent total 
suspended solids, respectively. Upon further calibration against pilot data, the relative error was reduced to 9% 
and 5%, respectively, indicating the suitability of the model structure in further adapting to filtration process 
conditions occurring at pilot scale. Finally, the calibrated model was used to derive guidance for future pilot 
studies. It was determined that, under naturally varying influent conditions, at least 8 h of continuous pilot data, 
with sampling frequency of at least 15 min for filter capacity and suspended solids concentration, were necessary 
for a satisfactory estimate of the model parameters.   

1. Introduction 

A large fraction (30–50%) of total suspended solids (TSS) in 

municipal wastewater is represented by cellulose fibers originating from 
toilet paper and cellulose-like material (hemicellulose and lignin) [1]. 
Previous studies have shown that cellulose can show very complex 
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degradation kinetics, with degradation rates much slower than other 
organic particulate compounds, typically present in domestic waste-
waters [2,3]. Moreover, the elongated morphological feature of cellu-
lose fibers may limit the separation by gravity settling, as operated in a 
primary clarifier. To enhance the separation of these types of fibers, new 
technologies based on the capture of particulate by shape and size have 
been developed and have recently been introduced to the market 
(microsieves). The rotating belt filter (RBF), a microsieving technology, 
has been shown to have performance dependency on the particle size 
distribution in the influent wastewater as well as the mesh size and flow 
rate [4]. A clear benefit of RBF over primary clarifier is the much higher 
hydraulic loading that an RBF can sustain, leading to a much smaller 
footprint and lower capital cost, making RBF attractive in contexts 
where land is expensive or access to capital is limited. 

RBFs operate on the mechanism of sieving and cake filtration, which 
allows for the removal of solid particles up to three times smaller than 
the pore size of the mesh [5]. Since the cake is formed due to particle 
accumulation on the mesh prompted by the size exclusion mechanism (i. 
e., the particle forming the cake are those greater in size than the mesh 
size), the cake filtration effect strongly depends on the particle size 
distribution of the influent wastewater. As a result, higher filtration ef-
ficiencies are obtained with RBFs for municipal wastewaters high in 
fiber content typically associated with the use and the discharge in the 
sewer of toilet paper. In the absence of toilet paper fiber in the influent 
wastewater, another strategy for increasing RBF particle removal effi-
ciency is via pre-treatment by cationic polymers (i.e., polyacrylamide) 
which act as both a bridge and a coagulant among suspended particles. 
The use of polymer is crucial for sewage systems with a low content of 
fibers such as toilet paper. As such, RBF performance is highly depen-
dent on influent wastewater quality, which makes it of paramount 
importance to use numerical models that can take into account the 
interplay between flow dynamics and particle separation as well as 
influent particle size distribution and mesh size. 

First-principles models for cake filtration have been developed in 
previous studies [6–9]. However, these approaches were focused on 
modeling the process of cake filtration rather than scaling up the model 
to the entire filtration system unit. Later, other groups developed nu-
merical models for filtration systems and correlated cake resistance, 
cake porosity, particle density, particle diameter, and cake solidity 
[5,10–17]. Most of the authors discussed and identified the limitations 
of a first-principles approach recognizing the complexity and disad-
vantages in estimating the mathematically dependent and statistically 
correlated parameters involved in the model. In addition, available 
models were developed primarily for constant flow or constant pressure, 
an assumption that is applicable for microsieving operated on inclined 
rotating belt filters. On the contrary, RBFs have spatially varying pres-
sure head difference and cake resistance, leading to spatially dependent 
filtration performance as illustrated by DeGroot et al. with simplified 
hydrodynamic calculations verified against computational flow dy-
namics (CFD) simulations [18]. Sherratt et al. developed a numerical 
model to characterize the resistance across a mesh filter, using CFD 
modeling and the cake layer estimated by a gravity drainage experiment 
[19]. Through the combination of the two resistances, an integrated 
filtration model was developed to conduct parametric analysis on the 
performance of inclined RBF systems. Later, Boiocchi et al. [20] used the 
modeling framework developed by Sherratt et al. [19] to incorporate the 
dynamic effects of the pilot RBF system by modeling the transient 
phenomena associated with upstream and downstream water level 
variations using ordinary differential equations. Model parameters were 
evaluated by calibrating the model against the pilot RBF data, showing 
that the predictions were satisfactory both with and without pre- 
treatment by cationic polymers. However, this approach did not 
explicitly consider the effect of particle size of the influent solids or 
filtration mesh size, which are very important design parameters to 
consider when optimizing the RBF technology for accurate sizing. 

In this paper, we extended the RBF filtration model reported in 

Sherratt et al. and Boiocchi et al. by incorporating the effects of sieving 
efficiency (a surrogate for particle size) and filter mesh size on the 
microsieving filtration process [19,20]. The extended model was based 
on the development of a new modeling framework centered on Darcy’s 
law using a validated cake growth expression able to satisfactorily 
capture the mesh behavior both in particle-free water (i.e., tap water) 
and particle-rich wastewater. Moreover, by introducing power-law- 
based mathematical dependencies between water quality parameters 
and model coefficients, it was possible to successfully achieve scaling up 
of filtration performance from column gravity drainage and sieve tests to 
pilot-scale experiments. The validity of the model structure was also 
successfully tested against pilot data collected from various interna-
tional locations (Canada, Korea, USA, and Australia) with very satis-
factory results. Finally, the validated model was used to estimate, with 
an inverse modeling approach, the optimal length of a hypothetical pilot 
campaign so that the model parameters could be estimated with a 
reasonable level of uncertainty for a robust technology scale-up. 

2. Materials and methods 

2.1. Mechanism of rotating belt filtration 

A schematic of a typical RBF system is shown in Fig. 1 [21]. The RBF 
system consists of influent and effluent wastewater streams separated by 
an angled rotating belt carrying a microsieving surface with pore sizes 
ranging from 50 to 500 µm (typical nominal pore size range: 150–350 
µm), which performs the liquid and solids separation processes. The 
filtration process is driven solely by gravity, with the hydrostatic pres-
sure (controlled by belt speed) acting on the influent side of the RBF 
unit. The accumulation of solids on the moving belt induces the for-
mation of a thin cake, which creates resistance to filtration, allowing less 
wastewater to pass through the mesh. At the beginning of the micro-
sieving process (i.e., in the absence of cake), the total resistance of the 
system corresponds to the clean mesh resistance only. However, with the 
dynamic formation of the thin cake made of suspended solids, the cake 
resistance starts to significantly contribute to the total resistance, mak-
ing the contribution of the clean mesh vanishingly small. Therefore, as 
the filtration process spatially evolves from the bottom to the top of the 
rotating filter belt, the thickness of the cake continues to increase 
together with the total filter resistance while the specific capacity of the 
filter progressively decreases, as schematically shown in Fig. 1. This 
enables the cake filtration process to capture particles up to one third 
smaller than the nominal pore size of the microsieving mesh. 

It is crucially important to comprehend the mode of operation of an 
RBF system to understand the filtration process occurring in a real 
WWTP. In general, good cake formation is anecdotally observed and 
reported when an RBF is operated at constant flowrate and uniform belt 
speed since those conditions would lead to minimal particle deposition 
disturbance. However, due to the constantly varying concentration of 

Fig. 1. Schematic of an RBF system and cake formation along filter belt car-
rying the microsieve. 
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total suspended solids in raw wastewater (TSSin) and real plants, it is 
practically impossible to maintain constant operations without con-
trolling the RBF variables dynamically. Instead, quasi-steady-state con-
ditions are achieved by controlling the upstream water level using the 
rotational velocity of filter belt speed (ω) as a manipulated variable 
using a programmable logic controller. As an example, in the presence of 
a TSSin increase, the upstream water level would also increase. Then, a 
water level sensor measures such an increase, and triggers a propor-
tional increase of the belt speed to reduce the thickness of the cake 
(hence the total resistance to filtration) and reduce upstream water level 
at the desired setpoint. In essence, a faster rotation of the belt leads to a 
thinner cake layer resulting in lower TSS removal efficiency and higher 
filter capacity. Consequently, operating an RBF system at an optimal 
removal efficiency involves balancing solids removal and filter capacity 
under continuous variation in TSSin, upstream water level, and belt 
speed. As a result, only quasi-steady-state conditions can be achieved, 
and a suitable modeling framework shall be constructed to accurately 
reflect those filtration dynamics into the conceptual model implemented 
to describe the RBF process. 

2.2. Modeling framework and governing equations 

The dynamic behavior of an RBF unit employing microsieves re-
quires the filtration model to be capable of accounting for unsteady 
wastewater characteristics and input parameters. A quasi-unsteady 
modeling framework may also be acceptable to describe the micro-
sieving particle separation process occurring in an RBF unit if one con-
siders that the characteristic timescales of microfiltration (i.e., seconds 
to minutes) are considerably smaller than those associated with influent 
wastewater quality variabilities (i.e., hours to days). Therefore, a valid 
approach in modeling the microsieving entails the development of a 
modeling framework using a sequence of instantaneous steady states 
accounting for the dynamics of variation of wastewater quality, water 
level (i.e., the driving force to filtration), and belt speed (RBF-dependent 
variable affected by the system geometry and filtration angle). Under 
those assumptions, the governing equation for pressure and filtration 
velocity is given by the well-known Darcy’s Law: 

ΔP =
μU
K

(1)  

where ΔP is the pressure drop across the length of the porous medium, μ 
is the dynamic viscosity of the fluid (water, in our case), U is the flow 
velocity through the porous medium, and K is the permeability of the 
porous medium. Furthermore, we consider filter mesh and cake as thin, 
porous media, which provide resistance to flow across the rotating belt. 
In this respect, Eq. (1) can be written in resistance form: 

ΔP = μURtotal (2)  

where, Rtotal is the total resistance to flow across the system (i.e., the sum 
of clean mesh resistance (Rmesh) against clean water and cake resistance 
(Rcake)against wastewater). 

The separation of Rmesh and Rcake is useful as the magnitude of the two 
resistances changes throughout the microsieving process and spatially 
too, given the rotating nature of the rotating belt filtration process. 
Initially, and near the bottom of the RBF unit (where the clean mesh is 
constantly re-introduced into the raw wastewater), Rmesh dominates Rtotal 
(due to lack of particles accumulated on the sieve). The opposite is true 
at the top of the RBF unit, where the thickest cake is present (i.e., near 
the end of the filtration cycle). 

2.3. The total resistance concept: Model formulation and identification 

While practical and useful in specific circumstances where water 
quality and particle size are relatively uniform and stable in time, the 
total resistance expression proposed in Sherratt et al. and subsequently 

adopted in Boiocchi et al. has some limitations [19,20]. The main one 
entails the non-physical behavior of the proposed expression for extreme 
conditions corresponding to thick cakes and high filtered volumes (for a 
single filtration cycle). This is because the total resistance expression 
Rtotal in Sherratt et al. is a function obtained from ratioing the primary 
variable modeled by the authors (i.e., the time-dependent water level in 
the column) and its derivative [19]. As a result, Rtotal is not guaranteed to 
be monotonic in the cumulative filtered volume and may behave 
strangely when extrapolated to a high value of filtered wastewater. To 
overcome this limitation, in this paper, we focused on the development 
of an RBF model that is centered around the a-priori selection of a family 
of mathematically suitable functions (having the desired and physically 
reasonable properties expected for cake filtration), with subsequent 
identification of the form of equation for the total resistance model Rtotal 
used in Eq. (2) against experimental data. Among the several functions 
tested (not all reported in this manuscript for brevity), the double 
exponential function has shown very promising results (Fig. 2). 

In the case of double exponential models, Rtotal can be described as: 

Rtotal = A.eeCFV.B (3)  

where, CFV is the cumulative filtered volume, and A and B are model 
coefficients. CFV is normalized by the filtration surface area, which 
means that it has units of m3/m2. It should be noted that in Eq. (3), the 
Rtotal equation accounts for both cake and clean mesh resistances; 
however, these two resistances can be appropriately isolated, as 
explained in the next section of this manuscript. Mathematically, Eq. (3) 
returns the clean mesh resistance when B is set to zero, which allows Ae 
to characterize the mesh resistance. It is essential to emphasize that the 
double exponential expression used in Eq. (3) to expand Rtotal has also 
been compared against experiments, as shown in Fig. 2. In there, Rtotal 
has been quantified using a column test apparatus where drainage ex-
periments were carried out on a representative sample of raw waste-
water and a circular sample of a real microsieve. As anticipated, the 
dead-end nature of the filtration experiments returns the expected 
behavior typical of very rapid growth in the total mesh resistance Rtotal 
which could not have been captured by a single exponential expression. 
Specifically, a double exponential function was found to capture the 
Rtotal very well with the experimental data, as shown in Fig. 2. 

Substituting Eq. (3) in Eq. (2), and replacing △P with ρg△h, we 
obtain Eq. (4): 

ρgΔh = μU(AeeCFV.B
) (4) 

Eq. (4) is the governing equation for the microsieving process of raw 
wastewater carried out in an RBF unit. It states that flow through a 
microsieve is directly proportional to the differential hydrostatic 

Fig. 2. Total resistance Rtotal versus CFV for the single and double exponen-
tial function. 
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pressure and inversely proportional to the total resistance offered by the 
combined media formed by the clean microsieve mesh and thin cake. For 
the case of an RBF unit operated with constant upstream water level 
controlled by the belt speed, the Δh (at the left-hand side of Eq. (4)) can 
be quantified, as a first approximation, from the RBF system geometry. 
On the right-hand side, we have flow velocity (U) and the steady-state 
and local value of the total resistance (which are unknown and must 
be estimated). Since U can be written as a function of H, the problem can 
be mathematically solved once A and B are known. 

2.4. Model extension to particle size, mesh size, and polymer dose 

RBF performance is reported to be highly dependent on the average 
particle size in the raw wastewater and the average pore size of the 
microsieve used in the system. Therefore, a useful RBF model must be 
capable of predicting the impact of these two important process vari-
ables. To accomplish this, the first step is to extend the model to capture 
the effect of particle size and pore size, which represents the main 
contribution to the state of the art offered by this paper. In our current 
study, this was achieved by parameterizing the model coefficients ex-
pected to be dependent on mesh size and pore size with extended power 
laws, as also suggested by Boiocchi et al. [20]. In Eq. (4), the B coeffi-
cient is certainly particle size and mesh size-dependent, as it captures 
how the filter cake that grew on the microsieves changes along the filter 
belt (a phenomenon that is affected, among others, by the interplay 
between particle and microsieve sizes). Therefore, the B coefficient of 
Eq. (4) was expanded, as shown below: 

B =
BoTSSin

bt

ηbm
(5)  

where, Bo is the reference cake resistance coefficient (i.e., the value 
assumed by the B coefficient when TSSin and mesh size are both unity), 
bt is the power-law coefficient of the variable TSSin, and bm is the cake 
resistance coefficient of the mesh size (η) variable. Through this 
expansion, the model can now capture the variation in TSS concentra-
tion and mesh size associated with the microsieving filtration process. 
From a filtration process perspective, the selection of an expression like 
what reported in Eq. (5) seems logical since high TSS value will induce 
the thicker and denser cake (hence a higher cake resistance represented 
by a higher B coefficient), while conversely, microsieves with bigger 
mesh size would generate a more porous cake and lower cake resistance 
to flow (hence a lower B coefficient). A similar thought process could be 
applied to the expansion of the B coefficient to capture pre-treatment by 
coagulants and polymers. Indeed, the formation of bigger particles 
before the microfiltration process is expected to lead to a higher refer-
ence value for Bo, which can now be expanded into Bo + bpCp. It should 
be noted that the assumption made in assuming a linear relationship 
between Bo and polymer dose holds true if the cake porosity and the 
overall cake structure remains the same. Moving from a suspension type 
to another may require a re-verification of this assumption and a re- 
calibration of the empirical coefficients reported in the power law 
equations used in this paper. 

When directly substituted to Bo in Eq. (5), the expanded expression 
reported in Eq. (6) is obtained: 

B =

(
Bo + bpCp

)
TSSin

bt

ηbm
(6)  

where Cp represents the polymer concentration used in the process and 
bp accounts for increment in cake resistance due to polymer. It should be 
further pointed out that bm and bt are empirical correction coefficients; 
therefore they are expected to be influenced by particle characteristics 
and fluid properties. That said, these coefficients can be expected to be 
relatively constants for municipal wastewater applications as long as the 
particle characteristics does not dramatically change from one site to 

another. 
Finally, the last step associated with the extension of Darcy’s law to 

pore size and mesh size entails the extension of the particle removal 
efficiency of a static process (sieve test experiment, a surrogate test for 
finding the average particle size of the influent wastewater) towards a 
dynamic filtration process as the one occurring in an RBF unit. To do so, 
we imagine decomposing the filter belt in a sufficiently high number of 
elements and modeling each of these individual subsystems as inde-
pendent column drainage experiments (as shown in Fig. 3). If the sieve 
experiment is repeated for different initial values of the influent TSS 
concentration and mesh sizes, it is possible to obtain a parametric sieve 
test filtration kinetic model connecting pore size and mesh size to CFV, 
that is, the bridging variable between static and dynamic filtration 
processes. In Eq. (7), the mathematical expression required to model 
sieve test experiments is reported: 

TSSout = TSSine(− k.TSSin)e(− γ.CFV) (7)  

where TSSout is the filtrate TSS concentration of the sieve test, and k and 
γ are water-quality specific cake-specific parameters. 

From the above expression, the sieving efficiency can be defined (and 
mathematically determined) as TSSine(− k.TSSin) by setting CFV to be zero, 
which represents the fraction of particles removed by the sieve (mesh) 
by capturing particles greater than the mesh size. In the case of chemical 
pre-treatment with polymer, it is expected that an increase in the 
average particle size will correspond to an increase of the sieving effi-
ciency captured by parameter k of Eq. (7). With considerations like those 
reported for Eq. (6), the effect of mesh size η and polymer concentration 
Cp can be incorporated in Eq. (7) by expanding the k coefficient as 
follows: 

k =
k1 + k2Cp

ηk3
(8)  

2.5. Model simulation procedure 

To simulate the filtration process, we first need to evaluate the model 
coefficients related to clean mesh (as those will not be changed during 
wastewater filtration simulations), and then the model coefficients 
describing the variation of cake resistances as a function of time (or, in 
our case, cumulative filtered volume). Moreover, to predict removal 
efficiency, we need to find, via a series of sieve test, the coefficients 
required in the TSSout expression reported in Eq. (7) and convolve it with 
the steady-state solution of flow (or, in our case, cumulative filtered 
volume) obtained from the extended version of Darcy’s law. 

There are two procedures that are potentially viable to estimate the 
cake resistance and the sieving removal coefficients required for the 
microsieving filtration process simulation, each with its advantages and 
disadvantages. In the first approach, termed as batch coefficient evalu-
ation (BCE) method, the coefficients are estimated using data generated 
with batch column drainage experiments using real wastewater from the 
specific wastewater plant of interest. This is mostly a sizing procedure 
that is utilized when pilot data are not available. This approach can be 
executed quickly (less than one hour, including column set-up and data 
processing) but shows an error ranging from 10 to 30% in the filter 
capacity and solids removal efficiency. An alternate method consists of 
short-term pilot data to collect the (dynamic) data required for solving 
the inverse problem (from integrated quantities to model coefficients). 
This approach is termed as pilot coefficient evaluation (PCE) method. In 
this respect, all the required parameters such as TSSin, TSSout , belt speed, 
flow rate, and water level are logged approximatively every 15 min, and 
then used to estimate the model coefficients using a global optimization 
search algorithm in the space of the model coefficients. 

Once the model coefficients are determined, Eq. (4) can be solved 
along the filter belt to simulate the entire RBF process cycle and estimate 
the quantity of interest. In this respect, the filter belt is discretized into a 
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sufficiently large number of elements (in this paper we used 500 ele-
ments, as doubling the filtration elements to 1,000 only improved so-
lution accuracy by 1%), which also enables the model to account for the 
blockages imposed by the supporting structure under the belt. Subse-
quently, Eq. (4) is solved for each element, as shown in Fig. 3. For the 
first element, we consider CFVmodel,1 = 0 and U1 = 0 to evaluate Rtotal 
using Eq. (3), followed by the estimation of U1 using Eq. (4). Since the 
proper value of U1 is required to obtain Rtotal, its converged value is 
obtained iteratively. Once U1 is calculated, it is multiplied by the single 
element area to get the Qmodel,1. The evaluation of CFVmodel,1 is also 
dependent on filtration velocity U, element area, belt speed (ω), and belt 
angle (θ). For the adjacent element, we consider CFVmodel of the previous 
element and again apply Eq. (3) to obtain the resistance of that element. 
Thus, Qmodel,i and CFVmodel,i are estimated for each belt element and 
cumulatively added up to the last belt element to obtain the total Qmodel 
and CFVmodel. Once CFVmodel is evaluated, the predicted TSSout is ob-
tained using Eq. (7). 

In the present work, we applied this modeling framework and 
simulation process to pilot the filtration data obtained using a SF2000 
RBF model (details mentioned in Table SI1), a commercial system 
manufactured by Salsnes Filter (Norway) [21]. As such, the design pa-
rameters used in the simulation, including upstream and downstream 
water levels, belt length, belt width, belt inclination angle, and mesh 
size, were all based on the SF2000 model series. 

2.6. Experimental datasets and procedures 

Several sets of experiments were conducted and used in this study for 
model development and validation, namely, gravity drainage column 
tests, sieve tests, and pilot tests. 

The gravity drainage column tests allow for characterizing the 
gravity-based filtration process. The first step is to conduct them with 
clean water (CWDC, TSSin = 0 mg/L) to allow the estimation of the clean 
mesh resistance parameters (m1, m1p, m2, and m2p) included in Eq. 
(13). Subsequently, identical column drainage tests are performed with 
real wastewater (WWDC-1 and WWDC-2) to evaluate the cake resistance 
parameters (Bo, bt, and bm), included in Eq. (5). 

Wastewater sieve test (WWS) allows for the estimation of the particle 
size distribution and consists of filtering known volumes of raw waste-
water (sufficiently low to avoid cake formation) through a series of filter 
meshes of known pore sizes. The same test could be operated by filtering 
known aliquots cumulatively, thus allowing for the estimate of cake- 
growth water-quality-specific model parameters (k and γ) as shown in 
Eqs. (7) and (8), as mentioned in Section 2.4. 

Finally, pilot calibration tests (PC) were performed for the SF2000 
system using 350 µm mesh, with and without polymer, to calibrate 
further the model parameters estimated from the column tests. 
Furthermore, pilot validation tests (PV) were also performed with the 

SF2000 system using 350 µm mesh, utilizing two approaches to validate 
the sizing methodology. The latter was checked against three interna-
tional locations from which Salsnes filter pilot data were available. 
Experimental procedures are briefly discussed in the following sections 
and reported in more detail in the supporting information file 
(Table SI2). 

2.6.1. Column and sieve tests 
Drainage column tests were performed with a vertical cylindrical 

column as described in Sherratt et al. [19], where a well-mixed sample 
of wastewater is filtered through a column with the mesh being installed 
at the bottom (Fig. 4a). Different mesh sizes (between 54 and 840 µm) 
were used in the drainage column tests. In the case of a clean water 
column test, standard tap water was used. An ultrasonic sensor was 
employed to monitor the height of wastewater with the help of Senix 
view software (Hinesburg, USA). During the filtration process, the 
change in the wastewater column height (as a function of time) was 
recorded to evaluate mesh and cake resistances. In the case of CWDC, the 
rate of change of column height was derived, and the mesh resistance 
coefficients were assessed with 70 drainage tests. For WWDC, the cake 
resistance was evaluated for wastewater from two different WWTPs. 

Analogous to the drainage column test, sieve tests were performed to 
evaluate the TSSout equation coefficients. The experiment involved 
taking a sample of wastewater with known TSSin and then sieving it 
through the filter mesh to obtain TSSout and CFV. 

2.6.2. Pilot tests 
The cake resistance and TSSout model coefficients were evaluated 

using the logged pilot data using PCE method. For the PC dataset, the 
pilot unit comprised of SF2000 with PLC controller, flow meters, and the 
connected piping and sampling valves (Fig. 4b). The RBF unit was tested 
with different filter mesh (belt) sizes and was run in automatic mode 
during the test. Under automatic mode, the belt speed automatically 
adjusted to maintain a pre-set water level in the RBF, given the varying 
influent flow rates. The TSSin and TSSout were measured by collecting 
samples after the system achieved a steady state. During the pilot run, 
the data logger recorded the RBF parameters (belt speed, water level, 
etc.) and TSSin/out values. 

The filtration model was validated using both the BCE and PCE 
methods. In the BCE method, which uses only batch experimental data, a 
set of drainage column and sieve tests (WWDC-2 and WWS) carried out 
at Pottersburg WWTP was used to estimate the model coefficients. Once 
the model coefficients were determined, the model was simulated 
against pilot data (PV), which was also generated at the Pottersburg 
facility. The PCE method involves obtaining the model coefficients from 
the pilot data (PC) using an inverse calibration method, followed by 
simulating the model for the PV dataset. 

To further test the applicability of the model to a wide range of 

Fig. 3. Solution procedure of the developed filtration model.  
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influent wastewater characteristics, we applied our model to pilot data 
which were obtained at different locations. Those calibration data were 
collected from international pilot locations (Korea, USA, and Australia). 

3. Results and discussion 

3.1. Evaluation of clean mesh resistance 

Before we estimate the cake filtration model coefficients, it is 
essential to evaluate and fix the mesh resistance against clean water 
(clean mesh resistance). Clean mesh resistance was evaluated by per-
forming the gravity drainage column tests with clean water. As ex-
pected, the smaller the mesh size, the longer the time to drain, due to 
higher resistance of small pores to flow compared to the larger mesh 
size. To estimate clean mesh resistance, the Eq. (3) can still be used since 
it reduces to 

Rtot = Rmesh = Ae (9) 

With no formation of cake, Rtot reduces to Ae, which represents total 
resistance offered by the mesh that includes the effects of mesh porosity, 
belt thickness and surface smoothness. Moreover, as observed by Sher-
ratt et al. [22], Rmesh is dependent on flow velocity, and can be written as 

Rmesh = m1 + m2U (10)  

where, m1 and m2 are the coefficients for characterizing the mesh. To 
account for the resistance variation due to the mesh size, Eq. (10) can be 
expanded as 

Rmesh = m1η− m1p + m2η− m2pU (11)  

where η− m1p and η− m2p (see nomenclature table) reflects the inverse 
proportionality between flow resistance and pore size. From Eq. (9) and 
Eq. (11), the mesh resistance parameter A can be estimated: 

A = (m1η− m1p + m2η− m2pU)/e (12) 

For the column test, U in Eq. (4) is the rate of change of column 
height − dh/dt. Substituting Eq. (12) into Eq. (4) and rearranging gives 
the governing equation for height (water level) variation in a clean 
water drainage test with negligible wall effects: 

dh
dt

= −
ρgΔh

μ(m1η− m1p + m2η− m2pU)
(13) 

The solution of Eq. (13) provides the rate of change of height, which 
was utilized to evaluate the mesh resistance coefficients (m1, m1p, m2,

m2p) by simultaneously fitting the solution of Eq. (13) with seventy 
drainage test curves (CWDC), as shown in Fig. 5 and Fig. SI1. This 
approach allows us to properly evaluate mesh resistance as a function of 
flow velocity and mesh size. 

3.2. Evaluation of cake filtration coefficients for RBF sizing (BCE 
method) 

Once clean mesh water parameters are estimated and fixed, Eq. (14) 
can be used to estimate the remaining model parameter with wastewater 
experiments using a column test apparatus. This approach focuses on 
evaluating the cake resistance coefficients using the drainage column 
test. We assess these coefficients by fitting the drainage column test data 
with the solution of the following expression: 

dh
dt

= −
ρgΔh

μAeeCFV.B (14)  

where, B is expanded using Eq. (5). 
To evaluate the cake resistance coefficients, all the 29 column tests 

(WWDC-1) results were used to obtain a single set of coefficients for Eq. 
(14). Fig. 6 shows the wastewater column tests for 9 different combi-
nations of mesh size and TSSin along with the fitted model results. The 
sound agreement between the experimental data and model predictions 
shows that this approach is suitable to account for mesh size and TSSin 
variations using a single set of coefficients, thus making the model more 
generic and widely applicable. Furthermore, Fig. 6 also includes the 
corresponding clean water column tests with model predictions, which 
further depicts the generic nature of the developed filtration model. 

Using the wastewater sieve test results, we can fit Eq. (7) to obtain 
the TSSout coefficients. To demonstrate the efficacy of this approach, we 
used a batch of sieve tests (WWS) involving variations in mesh size, 
TSSin, and CFV. To evaluate a single set of TSSout coefficients, the sieve 
test results were fitted together, as shown in Fig. 7. Using this set of 
coefficients, we can now predict TSSout for different mesh sizes and 
TSSin. Moreover, the incorporation of CFV allows us to confidently 

Fig. 4. In the picture: (a) Drainage column test and (b) RBF pilot set up.  
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predict the TSSout , based on various levels of filtered flows. 

3.3. Evaluation of cake filtration coefficients (PCE method) 

Further calibration of the cake filtration coefficients can be obtained 
using pilot data. To evaluate the cake resistance coefficients using this 
approach, logged data of belt speed, water level, TSSin, and flow rate 
(Qexp) were collected and used for calibration. Belt speed, TSSin, and 
water level data were used as inputs to solve Eq. (4) to obtain the Qmodel. 
The values of resistance coefficients were iteratively refined using an 
optimization algorithm until the error between Qmodel and Qexp is mini-
mized. Fig. 8 shows the potential of this approach by plotting the cali-
brated model results against the pilot data obtained with and without 
pre-treatment by polymer, which was obtained from the RBF pilot unit 
operated at Pottersburg WWTP (PC). It also shows that the modeling 
framework developed in this study that takes simultaneously into ac-
count suspended solids concentration, particle size, mesh sizes and 
polymer doses work remarkably well for the tested range of conditions. 

Logged pilot data were also used to predict effluent suspended solids 
concentration (TSSout). To evaluate TSSout equation coefficients, 
Qexp,TSSin and TSSout were used in a similar manner as described before 
for the case of estimation of cake resistance coefficients. Fig. 9 shows the 
calibrated TSSout equation results against the experimental data, con-
firming that the calibrated TSSout equation allows for accurate pre-
dictions of solids separation efficiency for varying polymer doses and 
flow rates. 

With all the required coefficients finally estimated and known, the 
filtration model can now be used for simulating different operating 
conditions as a function of process and system variables. In this respect, 
we simulated the effect of varying belt speeds, polymer concentrations, 
TSSin, and mesh sizes. Fig. 10 reports the effect of mesh size and TSSin on 
flow rate and removal efficiency. With increasing mesh size, the flow 
rate increases, while removal efficiency decreases. Moreover, an in-
crease in TSSin improves removal efficiency at the expense of a reduction 
in flow rate. The model was also able to predict the effect of pre- 
treatment with different polymer concentrations, as shown in Fig. SI2 

(see supporting information file). With the increase in belt speed, the 
flow rate tends to increase while removal efficiency tends to decrease. As 
expected, an increase in polymer concentration results in higher 
removal efficiency at the expense of a drop in system capacity and flow 
rate. Thus, the model enables accurate sizing as predictions can be made 
with a satisfactory degree of accuracy for different processes and design 
conditions. 

3.4. Model-based RBF sizing: The BCE method and the PCE method 

3.4.1. The BCE method 
To validate this approach, the resistance coefficients were obtained 

by fitting 11 drainage column tests together (WWDC-2), as shown in 
Fig. 11, while the sieve tests (WWS) shown in Fig. 7 were used for the 
evaluation of TSSout coefficients. We observed deviations between the 
model predictions and pilot data (PV), as shown in Fig. 12. This devia-
tion occurs due to the differences in water quality between the bench- 
scale data (column and sieve tests) and the pilot data, as they were 
carried out at different times. Although PV, WWDC-2, and WWS datasets 
were produced at the Pottersburg facility, but not at the same time, 
which means that the wastewater quality may not be identical for the 
three datasets. Ideally, all the tests and data collection activities should 
be done simultaneously to avoid the differences in wastewater quality. 
However, even in such a case, it would be challenging to have perfectly 
matching results because column and sieve tests cannot accurately 
capture the real-time fluctuations in wastewater quality. Despite such 
limitations, the BCE method produces the root mean square error of flow 
and TSSout equal to 6.58 L/s and 23.16 mg/L, respectively. 

3.4.2. The PCE method 
To validate the PCE approach, we used the PC dataset (Figs. 8 and 9). 

The model predictions are shown in Fig. 13, which shows good agree-
ment with the PV dataset. Interestingly, both calibration and validation 
datasets were generated at Pottersburg WWTP at different times, yet the 
calibration data captured the variations in wastewater qualities result-
ing in accurate predictions. This results in the root mean square error of 

Fig. 5. Clean water gravity drainage column tests for various mesh sizes and model predictions (Eq. (13)).  
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flow and TSSout equal to 2.02 L/s and 9.19 mg/L, respectively, which is 
significantly less compared to the BCE method. 

3.4.3. Application of the PCE method to other international locations 
One key aspect of the developed model is its capability to simulate 

RBF systems across different geographic locations. Thus, it is essential to 
validate the model for different WWTPs around the world. Fig. 14 shows 
the model results obtained after calibrating it with the corresponding 
pilot data for global locations such as Korea, USA, and Australia. The 
results show that the RBF model can capture the filtration process for all 
the locations accurately by only using the relevant pilot data. It should 
be noted that these datasets were collected before the present model was 
developed and used different mesh sizes and differing qualities of 
wastewater. Fig. 14 also shows the general applicability of the model, 
where it can be used to simulate the filtration process of diverse qualities 
of wastewater around the world. The plot also shows that using the pilot 
data, the filtration model can capture the quality of wastewater without 
any sieve and column drainage tests, which shows the generic nature of 
the model. 

3.5. Guidance for future pilot studies via model based analysis 

The success in calibrating the model against pilot data shown in the 
previous sections raises a question: how much data is required to 
satisfactory retrieve the model coefficients and to enable accurate 
sizing? To answer this question, we carried out model simulations in two 
ways. In the first case (scenario 1), we generated numerical experiments 

by running the RBF model based on naturally occurring variations in 
flow rate and TSSin obtained from the influent data file of the Bench-
marking Simulation Model #2 (BSM2) by Jeppsson et al. [23]. This case 
simulates RBF pilot testing where the inflow to the pilot is dictated by 
gravity. In the second case (scenario 2), we generated numerical ex-
periments by assuming certain flowrate patterns. This case simulates 
RBF pilot testing where the inflow to the pilot is dictated by a pump 
while the TSSin is still obtained from the BSM2 influent data. These two 
ways of operations reflect how the RBF units can be piloted in real site 
(using gravity in the first case, and pumped flow in the second case). In 
both scenarios, the upstream water level is kept to a desired setpoint by 
adjusting belt speed, to simulate the control logic implemented in the 
Salsnes RBF units. The following simulation procedure was carried out:  

1) Running the filtration model to estimate ω and TSSout . The model was 
simulated using the coefficients that were obtained by calibrating a 
usual pilot RBF data;  

2) Added random noise to each of the RBF system parameters such as 
Qmodel, TSSin, TSSout , ω and upstream water level to transform clean 
data into realistic RBF data using as uncertainty the standard devi-
ation from real pilot RBF data;  

3) Used the system data generated in step 2 to re-evaluate the model 
coefficients by error minimization using an optimization method 
automatically implemented in the code;  

4) Compared estimated with a-priori known pilot coefficients to 
determine estimation errors. 

Fig. 6. Wastewater gravity drainage column tests for various mesh sizes and TSSin. The color markers represent wastewater column tests, and the black markers 
represent the clean water column tests. 
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In scenario 1, 8 different sampling events were simulated. The first 
sampling event duration was of 1 h, having 4 sampling points with 15- 
minute intervals. The second sampling event duration was of 2 h. By 
doubling the sampling event duration in this manner, the 8th sampling 
event lasted for 128 h, having 512 sampling points. In scenario 2, the 
flow rate was gradually increased. Consequently, each row in Table 1 
represents an individual sampling event with a given amount of data. 

All events in scenarios 1 and 2 were simulated using 0%, 10%, and 
20% levels of random noise, which covers the uncertainty levels 
commonly observed in pilot studies. Adding no noise to the model pa-
rameters (0% random disturbance) allowed us to retrieve the base pa-
rameters with fewer sampling points at almost 100% accuracy, which 
verified the suitability of the calculation approach. 

Based on our model-based analysis, testing the system with scenario 
1 (gravity fed RBF unit) allowed rapid convergence towards the a-priori 
assigned parameters. Indeed, with a 20% noise level (Table SI3), 8 h of 
sampling (or 32 sample points) were already sufficient to retrieve the 
model parameters with a satisfactory level of accuracy (Table SI3). In 
the case of scenario 2 (pump-fed RBF unit), at least 3 flowrate and 3 h of 
sampling at each flowrate are required to achieve a similar level of ac-
curacy of scenario 1 (Table SI4). Increasing the number of flowrates and 
the hours of sampling did not seem to considerably improve the estimate 
of the model parameters. 

Fig. 7. Sieve test results for TSSout as a function of TSSin and a) CFV b) mesh size.  

Fig. 8. Average flow rate as a function of belt speed for various polymer doses.  
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4. Conclusions 

Overall, the filtration model developed in this study was found to be 
suitable and highly adaptable to a variety of real operating and testing 
conditions, as shown by the extensive validation studies carried out in 
this paper. Specifically, results reported in this manuscript allow to draw 
the following conclusions:  

• Wastewater drainage column and sieve tests can be used as a first 
approximation to obtain the water-quality-specific model coefficient 
required for RBF sizing, with relative error (at average flow and 
influent total suspended solids concentration) of 33% and 14% for 
filter capacity and effluent total suspended solids, respectively.  

• Accessing pilot data enhance model calibration allows further 
reducing the RBF sizing uncertainty considerably, with the relative 
error not exceeding 9% for filter capacity and 5% for effluent total 
suspended solids. Furthermore, the model developed in this study 
was able to perform well also against pilot data obtained from three 
international locations (Korea, USA, and Australia).  

• The validated model provided useful guidance for future pilot 
studies. Specifically, it is recommended that, in the case of gravity- 
fed RBF unit, at least 8 h of piloting time (with data acquisition 
frequency of 15 min) are employed to allow a satisfactory estimate 
(with a 20% uncertainty) of the filtration parameters. If the same 
level of uncertainty is targeted with pump-fed RBF unit, the RBF 
system must be tested with at least three distinct flowrate and for 
more at least three hours per flow. 

Fig. 12. Model prediction of a) flow rate b) TSSout against the Pottersburg 
WWTP data. The model was fitted with column drainage and sieve tests. 

Fig. 11. Drainage column tests with fitted model results. The same color 
markers represent column test data, and the corresponding color line shows the 
predicted model results. The entire set of 11 drainage tests having different 
TSSin was fitted together to obtain the model predictions. 

Fig. 10. Predicted flow rates and TSS removal efficiency as a function of mesh 
size and TSSin. 

Fig. 9. Average TSS removal efficiency as a function of belt speed for various 
flow rates. 
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Fig. 14. Model predictions against pilot data at different locations.  

Fig. 13. Model prediction of a) flow rate b) TSSout against the Pottersburg validation data.  
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Table 1 
Sampling points for scenario 2 with a controlled flow rate. In each pattern, flow 
rate is increased in steps. Pattern-1: constant flow rate of 60 L/s, Pattern-2: [30, 
90] L/s, Pattern-3: [30, 60, 90] L/s, Pattern-4: [30, 50, 70, 90] L/s, Pattern-5: 
[30, 45, 60, 75, 90] L/s.  

Sampling duration 
(h) 

Total sampling points 

Pattern- 
1 

Pattern- 
2 

Pattern- 
3 

Pattern- 
4 

Pattern- 
5 

1 4 8 12 16 20 
2 8 16 24 32 40 
3 12 24 36 48 60 
4 16 32 48 64 80 
5 20 40 60 80 100  
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