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the method of characteristics with the finite difference streamline diffusion (FDSD) method
to create the characteristic FDSD (C-FDSD) procedures. Stability analysis and error estimate
of the C-FDSD method are deduced. The scheme not only realizes the purpose of lowering
the time-truncation error, using larger time step for solving the convection-dominated dif-
fusion problems, but also keeps the favorable stability and high precision of the FDSD
method. Finally, numerical experiments are presented to illustrate the availability of the
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1. Introduction

It is well known that the convection-dominated diffusion problem has strongly hyperbolic nature, the solution often
develops sharp fronts that are nearly shocks. So the finite difference method (FDM) or the finite element method (FEM) ap-
plied to the problem do not work well when it is convection-dominated. Therefore to construct an effective numerical meth-
od for solving such a problem is not easy. In 1982, Douglas and Russell [1] considered combining the method of
characteristics with finite element or finite difference techniques to overcome oscillation and faults likely to occur in the tra-
ditional FDM or FEM. There are many related approximation techniques for the convection-dominated diffusion equations
[2,3]. For example, Tabata and his coworkers [4-7] have studied the upwind schemes based on triangulation for the convec-
tion-diffusion problem. Yuan has presented a characteristic finite element alternating direction method with moving
meshes [8] and an upwind finite difference fractional step method [9], respectively. In problems with significant convection,
these approaches of characteristics have much smaller time-truncation errors compared to FDM or FEM. Moreover, these
schemes of characteristics will permit the use of larger time steps, with corresponding improvements in efficiency, at no cost
in accuracy [10-14].

Streamline diffusion (SD) method for the convection-dominated diffusion problem is introduced by Hughes and
Brooks [15]. Afterwards, Johnson [16] and Hansbo [17,18] develop a space-time FEM based on combining the method of
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characteristics with streamline diffusion stabilization, respectively. The method is based on space-time elements approxi-
mately aligned with the characteristics in space-time. Furthermore, for the time-dependent convection-diffusion problems
and Navier-Stokes equations, the SD method is based on a general space-time finite element mesh, with the basis functions
continuous in space but discontinuous in time, then it will increase the number of dimension comparing with the completely
discrete Galerkin FEM [19-24]. Due to its favorable stability and higher precision, the SD method has been developed rapidly
in theory and practice in the past years [25,26,3]. The finite difference streamline diffusion method (FDSD) is proposed firstly
by Sun and his coworkers [27,28] in 1998, that is, using the SD method discrete only in space variables and using the finite
difference discrete in time variables. Compared with the SD method, the FDSD method not only simplifies the computational
work but also keeps the good stability and high accuracy. So it is developed and used widely by many authors [29-33].

In this paper, the method of characteristics is combined with the FDSD method to create the C-FDSD scheme for solving
two-dimensional convection-dominated diffusion problems. In addition, we derive the stability analysis and error estimate
in the L>-norm and L*-norm. The main results for the C-FDSD method introduced in Section 2, are contained in Theorem 3.1
of Section 3 and in Theorem 4.1 of Section 4. Then this method keeps the favorable property of having much smaller time-
truncation errors and using larger time steps, the favorable stability and high precision of FDSD method is also kept. Finally,
we give numerical experiments for a convection-dominated diffusion problem. Compared with the standard Galerkin FEM,
the characteristic Galerkin FEM and the FDSD method, the C-FDSD method is more effective.

The remainder of the paper is organized as follows. In Section 2, the C-FDSD method for solving the time-dependent con-
vection-dominated diffusion problem is presented and in Section 3 we give stability analysis of the new scheme. Section 4 is
devoted to error estimate for the new scheme. Numerical experiments confirming the theoretical results are provided in Sec-
tion 5. Finally, conclusions are given in the last section.

2. C-FDSD finite element method

Let Q be an open bounded domain with piecewise smooth boundary 0 in R%. W™P(Q) and W{*(2) denote the standard
. . ; 1/p
Sobolev space [34] respectively. The norm of v € W™P(Q2) will be denoted by || v/|,,, , o = (Zj<m||D’ UHIZ,,(Q)) ,for1 <p<ooand
1]l .0 = Max ess sup ID'2|, for p = oo. We shall write W™*(2) = H™(R), [[#lymqg = 2]l and |22, = [Z]lo = [ 7]]-

Assume that €2 is the square domain (0,1) x (0,1), T> 0 represents a finite time. Denote Q = Q x (0,T]. Now we consider
the following time-dependent convection-dominated diffusion problem

% — V- (ax,t)Vu) + p(x,t) - Vu+ o(x, t)u = f(x,t), (x,t)€Q, (2.1a)
u(x,t) =0, (x,t) €0 x(0,T], (2.1b)
u(x,0) =up(x), xe€Q, (2.1¢)

where x = (x1,X2), f(x,t) = (B1(x,£),82(x,1)). Here the coefficients a(x,t), 1(x,t), f2(x,t) € L(W'(Q)), o(x,t) € L°(Q). The pre-
scribed external force f(x,t) € [*(Q) and the initial velocity uy(x) € H'(Q) N Hy(Q), r > 1 and there exist positive constants
do, ay,a,a,bq,oq,k such that
ap =infa(x,t), a; =supa(x,t), qo,= 97
Q Q do
oa

a=%wwwm,a{5

) 01 =Ssup |O-(X7 t)‘v
12(1~(@) Q
1

2 2
b :slépllvﬁ(x,t)lh k:sgpllﬂ(x,t)ll = sup (Zlﬂi(x, t)|2> , Gy < k.
i=1

We also assume the solution u(x,t) of problem (2.1a)-(2.1c) satisfies:

uel=0,T;H(Q) nHA(RQ)), (2.2a)
% € [*(0,T;H"(Q)), (2.2b)
Pu o, )

o ELOTL Q). (2.2c)

We assume that Q is partitioned by a quasi-uniform triangulation T, = {x} with the mesh parameter h;, where h; is the largest
diameter of each element in Ty. Set h = max{h;} and 0 < h < hg < 1. Denote

Vi = {v|v e Hy(Q) N C(Q), v, € P;(k), VK € Ty},

where P(k) is a polynomial set of degree <r on each element x, r > 1. Let

Y=1\/1+p7+5 (2.3)
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and 7 = t(x) be a unit vector in the direction (1, 81, 82), then we have

0 1o} 1o} 0
W%—EJF/%TXIJF/%TXZ- (2.4)

Then, problem (2.1a)-(2.1¢) can be written in the equivalent form

lﬁ% —V-(ax,t)Vu) + o(x,t)u = f(x,t), (x,t) €Q, (2.5a)
u(x,t)=0, xe02x(0,T], (2.5b)
u(x,0) = up(x), xeQ. (2.5¢)

The variational formulation of problem (2.5) reads as follows

(B v+ o03) - (V- (@ V), 0+ 60F) + (0", v+ 60) = (", v+ 60)), Ywe Vi, n=1,2,..,N, 26)
(U —ug,v) =0, VveV,
where v} 2 p"- Vv and 6 > 0 is an appropriate artificial parameter. Let At be the time step, t"=nAt, n=1, 2, ..., N,

N = [T/At]. The characteristic derivative will be approximated basically in the following manner:

ou_
ot~

u(x,t) —u(x,t — At) u(x,t) —u(x,t — At)
v = =" = At : (2.7)
(x —X)" + (At)

where X = x — f(x,t) - At. Denote u(x,t,) =u" and "' = u(x,t, ;). On level t = t" rewrite (2.5a) as

ut — ﬂn—l

— V- (@"Vu") + o"u" = f" + E], (2.8)
where E| = ””*Aﬂt"" — (v g—';)” Omitting the truncation error from (2.8), the C-FDSD scheme for solving problem (2.1) is
defined as:

Find U"e Vp,,n=1, 2, ..., N, such that, for all ve V,

{ (U”ft" Lot 57/;}) - (V (@"VU"), v + 51/;) +(0"U", v+ 508) = (fr, v + 507), 29)

(U° — ug, v) =0,
where (V S(a"vu™), 51/;) 25 (V S(a"vu™), 57/}}) “and (w,v) £ [, wodx.

3. Stability analysis for the C-FDSD method
In this section, we will give the stability result of the C-FDSD method. Firstly we introduce some lemmas in the following.

Lemma 3.1 (Inverse inequality [35]). There exists a positive constant u > 0 independent of h, for any v € V, such that
-1 -1
IVl < ph[vll,  |Av|| < ph [Vl 3.1
where [|Av]* = 32| A

Lemma 3.2 (Interpolation approximation property[36]). Let IT, : H""'(Q) n C(Q) — V), be an interpolation operator, there
exists a positive constant c independent of h, for any v € H'(Q) N C(Q), such that

|v— yol + bV (v~ 0y0)]| < ch™ 0], (32)

Lemma 3.3 ([1]). Let w € [*(Q),® = w(x — g(x)At), g and g’ be bounded functions on Q, if the time step At is sufficient small,
there exists a positive constant ko, such that

l> = @[]+ < kollel|2At, (33)

where ko only dependent on ||g||,~ and ||g'||,~, and the norm of || - ||;-1 is defined as follows

(v.9)
v = Su .
10 = SUP g
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Denoting 9,U" = X=U— ! the choice of artificial parameter § satisfies the following restricting conditions

(Hi) omax{ku, 4kuqy, 2auk} <1,
(Hy) omax{k’, 1, 2ka} <%
(Hs) omax{l’p?, 2akiy <'y.

Throughout this paper, C denotes a generic positive constant independent of n, h, At which may be different at different
occurrences.

Theorem 3.1. Let {U"} be the solution of problem (2.9), 6 satisfies the assumptions (H;)-(H3) and At is sufficient small. Then we
have

max " +ZIIU'1 unP +aoZHVU”II At<C<Zf” At + | VU°? +||U°|2) (34)

n=1 n=1

Proof. Taking »=U" in (2.9) then

Un _ Un—l Un _ Un—l R Un—l _ Unq R
(At’un> + (@"VvUu",vu") = (fr,u" +5U2) — (At,bU’/} - TQU}}

Un 17U”71 n n n n nym n S A &
— =g U + (V- (@ VU, 0U)) — (a"U", U +0Uy) & z]:si. (3.5)
1=
Obviously, we have the following equality

Un—UrF1 n 1 ny2 n—-12 n n-12
(T,U>m(nu P = U o - U ).

At first, we estimate the left hand-side of (3.5). It is easy to derive that

n n-1 n n-1,2 n n—1)2
(U AU ,U) (@VU", VU > [U™)* = U P + Ut - Ut +ao| VU (3.6)

t 2At

Now we estimate the terms of the right-hand side in (3.5) respectively. It follows from the Young inequality, Lemmas 3.1, 3.3
and assumptions (H;)-(Hs)

= (" U" + 0Uy) < 3|f"|? +8HU"|| + HVU"H,

Ut -yt
S, :<At,oug) o:.U"|? + HVU”II

ut-gnt o Ut =T n R - o n
&—(T,éuﬁ) <o|p"vVU 1’7 <kgu™? +—5IVU I} < kllu™ P + IIVU I,
-1

gt _unt 10 ol 5 o 52K w2 ke ke .
= — < -~ | <= —9_\u™
S4 ( a U <IVUL AL <3 VU ||1+52k2HU I \5218“” & + IIVU 1%,

. . . o _ a
S5 = (V- (a”VU"),bU}}) = (Va"- VU",OUZ) +(a"V - (VU”),OU/”,) < (qoaodkuh Ty oka)||[ VU™ || < §°||VU"H2.
Using the Cauchy-Schwarz inequality, we obtain
nyn n n n G] n 52’(2 n n n
Se = —(6"U", U" + 0U}) < o ||U"|)* + L ||U"))? +—-IVU I” < 0'1+ HU 2+ HVU 1.
Substituting (3.6), (S1-Se) into (3.5), multiplying two sides by 2At and summing up forn=1, 2, ..., m (m < N), we have

LS YTl +aoZWU“| At< CAtZ(\lf"ll + UM + 20000717 ) + U0 D 37)

n=1
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Lemma 3.4. Let {U"} be the solution of problem (2.9) and ¢ satisfies the assumptions (H;)-(Hsz), then

m m
> 0:U"|[*At + ao| VU™|* < CAE Y (Ilf”ll2 +|[VU"|* + IIU”HZ) + VU,
n=1 n=1

Proof. Taking v=0.U" in (2.9) then

i . yn-! _ g . yr! _ gt 0
(.U, 0,U™) = (f*, 0,U" + 54" - V(9,U")) — (T,&U ) - <T,5ﬁ"~V(8tU ))

6

+ (V- (@VU"), 66" - V(9:U") — (@"VU", V(9,U")) — (6"U",8,U" + 6" - V(9:U") £ 3T,

i=1

Obviously the left-hand side of (3.9) is (9,U",a,.U™) = ||8,U".

565

(3.8)

(3.9)

Now we estimate the terms of the right-hand side in (3.9) respectively. It follows from the Young inequality, Lemmas 3.1,

3.3 and assumptions (H;)-(Hs)

n n n azkz ﬂ n
T = (f",0U" + 68" - Vo.U") < 4lf"|* +8H0rU P+ =5 IV@U"I* < AP +55 H&U [

U -t U - ko 3k’ ko
T2:<At’8tU"> N e I L e e L e L L
U - u! n n n Un—] _Un—l ko n-1 n
Ty=- T,éﬁ O | < 1A= <l % Héﬂ V@:Uni;

IIU" P +35 HBrU"H

Ty = (V- (@"VUY), 56" - V(9,U") = (Va" - VU™, 3" - V(9,U")) + (a"V - (VU"), 8p" - V(9,U"))

_ . _ 5
< (okaroph™ + saukh)|[VU" 0" < 15 VU" I + 55 100"

1
10!

It is easy to derive that

Un _ Un—l Un _ Un—l
_ (g0 n my n n -2 _ n - -v n
Ts = —(a@"VU", V(8,U")) (a vu,v( v >)< a0<vu,v< v >>< 2At(||vu 2 -

bi's 3
Ts = —(0"U",0,U" + 6" - V(2,U")) < 501U +—H6rU"H + 5 10U} < 50U + 55 loU" .

Combining (T;-Tg), we get

SR 42 (VU — U ) < (IR + VU + U 4 U )

2At
Multiplying (3.10) by 2At and summing up forn=1, 2, ..., m (m < N) to have

m m
> 0:U"|[*At + ao | VU™|* < CAE Y (Ilf”ll2 +[[VU"|* + IIU"HZ) +VUr. o
n=1

n=1

It follows from (3.7), (3.11) and Lemma 3.4, we get

m N m

JUT2 43U = U+ ap Y VU AL < {Z (™17 + UM% AL + [ VU + (U°) 2 }
n=1 n=1 n=1

By the Gronwall’s inequality, we have

N
max (L +ZIIU” Ut +aoZHVU”| At < (ZIU‘"ZAHVUOIIZHIUOIZ)
n=1

n=1 n=1

—IvUrP),

(3.10)

(3.11)

(3.12)

(3.13)
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4. Error estimation for the C-FDSD method

Let w(t) be an arbitrary differentiable map [0,T] — V}, : w(t) = yu(t). Set
fn:Un—(l)n nn:un_wn e”:u”—U":r/"—é"
where U" is the solution of problem (2.9), u" is the weak solution of problem (2.1). From Lemma 3.2, we have
7"+ Rl < ch™ Ul (4.1)

For any v € V}, from (2.6) and (2.9) we can get

g gn—1 n _ -1 n _ -1 n-1 _ pn-1 n-1 _ yn-1
(g ~ ,v) +(@"VE, Vo) = (” N ,v) + (’7 N ,51;;}) + <7” o ,v) + <7" n ,w,;)

n-1 _ %n-1 n-1 _ %n-1 e gn—1
- (fAté v) - (%,51)}}) - (ﬁ,évﬂ) + (a"Vi", Vo)

+ (V- (@'VE), ovp) — (V- (@'Vn"),0vp) + (™", v+ 00f) — (0"&", v + dvp)

+ (B}, v+0v)) & Zsi, (4.2)

where Ej = =" (yon)?,

At It

Theorem 4.1. Let {u"} and {U"} be the solution of problems (2.6) and (2.9) respectively. § satisfies the assumptions (H;)-(Hs3) and
At is sufficient small. Then the following error estimation holds

N N
n| 2 n n-1)2 np2 2r 2
- < ) .
max |e"[|” + ;:1 le" —e" [ + ao ,?:1 [Ve'||“At < C(h™ + (At)7) (43)
Proof. Taking v=¢" in (4.2), then we estimate the two sides of it.

At first, we estimate the left hand-side of (4.2). It is easy to see that

fn _CV’F1 n n en—1 £n n—1),2 n 2
(T,c>+<a Ve Ve 2 o (I 161 418" — IR + aoll VTP (44)

Now we estimate the terms of the right-hand side in (4.2) respectively. It follows from the Young inequality, Lemmas 3.1, 3.3
and assumptions (H1) (Hs)

— nn l ny2
S“( At ’g> Har e i) Tl

(1= o ﬂ o L 902
52 = ( At OV At 8t 2ty 1 tn1?) g lIve at 2ty 1 tn1?) 6”v§ I

_ 7’1"_] - ﬁn_l n ny o ']n_l - 17,n—1 n-1 & kO n-12
S = (7At &)< gy <1 ol < T

szVI" I + HW”II

n-1 _ p#n-1 } 3 n-1 _ pn-1 ) _ k2 . . k
S = (%,6/3’“%") o vl [T <o werh ol < v+ G
1

"°||n“|| L9 e,
64

fni] - Z.n_] n £n
=l < .
S5 ( =) <l

k2
‘° 1€ + 12 Ve,

én,] _ En—l

Sk? k0 P
At

< koll ™M < - IVE1P + 2% %

-1
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5"*1 _ En—l

T R
T <1 VE kol < IV + S e

Sg=— oo OB VE | < ot Ve -
6= At = -1

-1

ko n-1
Sl + 4HVc I
Using the definition of 9,¢" and assumption (H-), we have
gt et w2 Ok 2, Qo 2
= = = < b < 2N Ho n 2
S ( o Ve ) <0 IP + - IVER < 10" + g IV e
By the Young inequality, Lemma 3.1 and assumptions (Hq)-(H3), it follows that

Ss = (a"Vi", V") < Caol V|| + HV i

So = (V- (a"VE), 8 = (Va" - V& 5" - vg") @'V - (VE), 56" - VEN) < (8qoaokph™ + ska)|| Ve < =2 3“" Ve 1%,
9a
Sio = ~(V - (@"Vn"),5¢}) < guw I+ 5519 E,
. 5K
Si = (6", &" + 88)) < 4t || +35 Hé I +—gIve I + Cat|n™I* < Clin"|? +16||£ I?,
Siy = —(a"&", & + 5¢p) < €& +16H &2,
Sia = (B, + 62)) < o [+ S v P+ cae < L jer? 4 ca
B3 = 32 16 '
Combining (S;-S13) and (4.4), we have
(1 —Hi” ) 4 gl — R+ R e
< ) R T |n"”> +10EP. 45)
Lz tn 1 fn
Multiplying (4.5) by 2At, and summing up for n=1, 2, ..., m (m < N), we obtain
1EMP+ 30 = &P + a0 Y Ve PAt
n=1 n=1
o ||on 2 2 & n2 202
<C(Y 3t +ZHW/ [ At+ZHn [ At+ZII PAE ) 42 0" PAL + (1) (4.6)
n=1 L (tn1.tuil?) n=1 n=1
Lemma 4.1. Let ¢ satisfy the assumptions (H;)-(H3), then
m m m
S llocEt P At < c(Z IVEPAL+ 37 (|7 At + (At)* + h* At + hz’”). (4.7)
n=1 n=1 n=1

Proof. Taking v=0," in (4.2) then

=N zn—1 n-1 n n-1 n-1 nn—1
¢ —¢ n nm-n n n n n n —-n 2N
(At O ) (T O ) (T o - V(o )> (T’(M )

zn-1 _ zn-1 en—1 _ zn-1
i 65 V(0 )) - (%,8@") - (%,(m".thg"))

(e
_ gn—-1
(C - OB - V(9" | = (a"VE, V(8:E") + (a'Vn", V(9:E"))
+ (V- (@'VeE), 08" - V(0:E") = (V- (a"V"), 08" - V(9:E")) + (0™", 08" + 0" - V(9e"))
14
— (0", 0"+ 6" - V(0:EM) + (B}, 08" + 6" -V (9:EM) £ Y T (4.8)

i=1

Obviously the left-hand side of (4.8) is (9:¢",8,¢™) = ||0:£"||%.
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Now we estimate the terms of the right-hand side in (4.8) respectively. It follows from the Young inequality, Lemmas 3.1,
3.3 and assumptions (H;)-(Hs3)

= (o) < gl

n _ 4n-1
T2:<n A? OF" - V(2:L") ) AtHat

n—1 _ ;an-—1 n-1 _ s;n-1
T (u,afé") <lorel || <toh kol <
-1

||8t H ’

L2 (ty_1.tn ;L2

1 ny2
+ 5l

L2 (tn 1 .tnil?)

Hﬂ” i + HV (@M

At ()] g

||'1” | +5a H@té I,

n—-1 _ pn-1
T4:<u,5ﬁn.v<at¢n>) 158" V(@xe|

111_1711—
7]' < I5B" - V@), - kol

Koo 'S . k2 52k
<k—§H'1 ]H2+ZH55"-V(&C")H? < °||'1” | + Vo "I \szﬂ" | +6a Harf I”,

n 1 anl 4

. _ 5K
< 10"y - kol < Hé" " t16 IIM"H]

-1

S5 ||11” "I+ 55 Ha[é I,
éﬁil - EH?l n n n n éﬂil - Eﬂil S ol n n—-1
To= | =7 08"- V(0" | < I38"- V@& |=—5—]| < 198" V(@& -kolle" |
-1
ko n-1 2 ké n-1 Ok en-1
g fem P + ||5l3 V(0 )II1<PH€ & + Vo Hl\ I? 64 ||<9t "7

2 H

By the definition of 9,¢", the Young inequality, Lemma 3.1 and assumption (H3), we get

— gl 1 ) 1 1
T7 =~ (5 AL 5ﬁ”~V(8té")> <;1||8t€"\|2+521<2||V(8rc")|| < qglloec H2+1H8ré”||2,

n n-1
Ty = —(a@"VE&", V(8:6")) < —ag (v v(%)) < - 2At(IIV*”H —|ve P )
To = (@"Vn", V(8:£") < ar[|"[IV(9:EM| < 1IIW & + HV( MNP < IZIIW & 64 ||8fé”H

Tio = (V- (@"VEY), 0" - V(9:&") = (Va" - V", 6" - V(aff"» (@' - (VE), 68" - V(9:E")
< (6Goaokp*h™ + skaph™ ||V E[[9:"| < [V + 55 ||af "2,

Ty = (V- (@Vn"), 56" - V(0:&") < | Vi"||? 62 Hf‘)rc I2.
We can easily derive that

Tia = (6" 0" + 38" - V(0:") < 400" > + 510",

64|
Tis = —(0"¢", 0" + 3" - V(9,¢")) < 4003 &")* *6a Har "I,

Tio= (ELOE+ 0" - V(M) < CA + g 0,817
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Combining (T;-Ty4), it follows that

n £n— 1
Lo 2 (v - v ( H

Multiplying (4.9) by 2At, and summing up forn=1, 2, ..., m (m < N), we have

o VAP IVEE 1T+ )+ At)- (4.9)

2 (tn_1 tnil

m
Z 10:"|[* At + ao||VE™ |

e

m m m m
a5 O NVIIPACE D I IPAL DIV ENIFAL ST AL + (AL + Vé"nz)
= n=1 n=1 n=1

LZ (tn—1.tnil%)

m
(va | At+ZHE"|| At + (At)? h”AHhZ’”). | (4.10)
=1 n=1

It follows from (4.6), (4.10) and Lemma 4.1, we get

m m
12+ D 11" = &P + a0 Yy | VE*A
n=1 n=1

m
< C{Z
n=1

m
= +IVEIR+ D (100" + 1" + IV + 117 ) At + 10 + (AD? + B> At 4+ h2"*2 5.
ot 2 —

12 (61 tmil?)
(4.11)
By the Gronwall’s inequality, we have
N N
ny2 en #n—12 “n| 2 2r 2
— < . .
max 71+ 31" - & a0 3 Ve < (T (1)) (412)
Finally, applying the triangle inequality we obtain
N N
n2 n_ on-1)2 ny2 < 2r 2
max [l¢'| +;\|e e | +a0;uw PAt < c(h + (Ab) ) (4.13)

5. Numerical experiments

In this section, we present some numerical experiments to illustrate the effectiveness of the C-FDSD method. We consider
the following convection-dominated diffusion problem:

au ou ou

o Aqua*Jr@Jru_ﬂ (x,y,£) € 2 x(0,T], (5.1)
u,y,t)=0, (x,y,t) €0Qx(0,T], (5.2)
ux,y,00=0, (x,y)€Q. (5:3)
Table 1
Numerical results obtained with ¢=1.0e-3 at T=5.
Method Grid size Values of At and & [2-norm error
Galerkin h= % 2.09991e-4
h=1 At =0.005 1.37370e—4
h=} 4.61192e-5
C-Galerkin h=1} 1.53427e—-4
h=% At =0.005 1.34192e-4
h=}% 6.08919e-5
FDSD h=1 At =0.005 2.10282e-4
h=1 5=0.000125 1.32975e—-4
h=1 4.00132e-5
C-FDSD h=} At =0.005 1.33350e—- 4
h=1} 4=0.000125 1.05037e—4
h=% 1.26409e—5
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Table 2
Numerical results obtained with & =1.0e—5 at T=5.
Method Grid size Values of At and L?-norm error
Galerkin h=1 2.24474e-4
h=1% At=0.05 1.77912e-4
h=4% 1.61974e-4
FDSD h=1 At=0.05 2.24466e—4
h=} 6 =0.000001 1.77862e-4
h=1 1.61172e-4
C-FDSD h=1 At=0.05 1.48780e—4
h=1 5=0.000001 6.06253e—5
h=4} 3.89388e-5
Fig. 1. Mesh with uniform grid size h = L.
IsoValue
W9.42031e-005
W0.000115137
m0.000136071
W0.000157005
m0.000177939
m(0.000219807
H0.000240741
H0.000261675
m0.000282609
m0.000303543
m0.000324477
H0.000345411
m0.000366345
m(0.000387279
m0.000408213

Fig. 2. The isovalue of U when ¢ =1.0e — 3, § = 0.000125, At = 0.005.
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IsoValue

- m0.000200351

m0.000219432
m0.000238513
m0.000257594
m0.000276675
m0.000295756
m0.000314837
m0.000333918

m0.000353
m0.000372081

Fig. 3. The isovalue of U when ¢ = 1.0e—5, § = 0.000001, At = 0.05.

The spatial domain is Q=[0,1] x [0,1]. The time interval is (0,T] = (0,5]. The function f is determined by the exact solution
u(x,y,t) =e " xy(1 — x)(1 —y).

Now we use P; conforming finite element, and compare C-FDSD method with FDSD method, C-Galerkin FEM, the standard
Galerkin FEM which are based on the regular meshes. In the numerical experiments, the data are chosen as follows.

The domain is partitioned into triangles with the size h =} for N =2, 4, 8, respectively. The time step size is At =0.005
with T= 5. The choice of artificial parameter ¢ is 0.000125. We consider the case ¢ = 1.0e—3, the absolute error of velocity
in L2-norm and convergence rate are shown in Table 1. From Table 1 we can see the above four kinds of methods are effective
but the C-FDSD method is more robust.

If we choose the smaller ¢ = 1.0e—5, the standard Galerkin FEM and FDSD method are not effective, but the C-FDSD meth-
od can be expected work well. In order to confirm the theoretical results, we can choose the larger time step At = 0.05. The
numerical results are shown in Table 2.

From Table 2, we see that the C-FDSD method is stable, and the L2-norm error obtained by the new scheme is smaller than
the FDSD method and the standard Galerkin FEM. Furthermore, the C-FDSD method not only realizes the purpose of lowering
the error of time, using larger time step for solving the convection-dominated diffusion problems, but also avoids the numer-
ical oscillation and keeps favorable stability and higher precision.

Finally, we present the Figs. 2 and 3 for the isovalue of U, where U is the numerical solution of u, when ¢ = 1.0e—3, 1.0e—-5
and 6 = 0.000125, 0.000001, respectively. The uniform spatial grid size is h = 1/16 in Fig. 1, and compute the results at T=5.
From Figs. 2 and 3, we can see that when we choose the proper values of parameter J, we can adopt the larger time step to
computation for save operation and complexity. It is noticed that the choice of parameter values é depended on the assump-
tions (H1)-(H3).

6. Conclusions

In this paper, we provide the characteristic finite difference streamline diffusion method for two-dimensional convection-
dominated diffusion problems and deduced error estimates for its full-discrete scheme under some assumptions. It allows to
simplifies the computational work and keeps the good stability and high accuracy by choosing the proper parameter values.
Obviously, we can easily extend the present analysis to the three-dimensional convection-dominated diffusion problems.
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