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Abstract

Importance of early prediction of Sudden Cardiac Deaths (SCD) has been rising as
a large percentage of mortality of patients with cardiovascular diseases. Various
deep learning methodologies has been developed to predict the onset of SCDs,
Their key limitation is either classification accuracy or the processing time. This
research tries to improve the classification accuracy and decrease the processing
time. A Convolutional Neural Network (CNN) is combined with a Recurrence
Complex Network (RCN) along with Dropout Regularization to enhance the
accuracy of SCD classification. Initially, the synchronization feature of individual
heartbeat of the electrocardiogram (ECG) signal is constructed by RCN. The
recurrence matrix from the (RCN) will generate Eigen values. Then, CNN will
be employed to extract features and detect SCD by analysing the Eigen values.
Finally, the performance of the classification is improved by the developing a
voting algorithm for the SCD detection. MIT-BIH SCD database is used to
evaluate the proposed system. The average accuracy and processing time for
MIT-BIH Arrhythmia dataset is 93.24% and 21 epochs, MIT-BIH SCD Holter
dataset is 90.60% and 11.5 epochs, and Apnoea-ECG dataset is 92.13% and 13.5
epochs. The average processing time has also been reduced to 20.77 milliseconds
against the current processing time of 32.96 milliseconds. The proposed system
enhances the classification accuracy and the processing time of the prediction
system. The study eradicates the issue of gradient saturation during the training
of the CNN by proposing a new activation function as well as eliminates the risk
of overfitting by implementing dropout regularization in CNN.
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1 Introduction

Earlier methods in the field of mortality prevention due to Sudden Cardiac Deaths (SCD)
involved development of effective targeted therapeutic interventions; such as implantable
cardioverter defibrillators (ICDs) [21]. The drawback of these methods is the limited cost
effectiveness because of a small number of people receiving inappropriate ICD shocks in
follow-up clinics as well as most SCDs seen in patients not having high risk profile [4].
Moreover, the traditionally developed computer-aided diagnosis systems were proven to work
relatively well only when the illness is already existing in the patient [3]. Currently, deep
learning methods based on convolution neural networks (CNNS) are gaining popularity to
overcome the limitations of traditional methods. Hence, the avoidance of complex mathemat-
ical abstractions or manual interventions can improve computational efficiency in the early
prediction [23].

Deep learning technology has gained increasing attention in the recent years, and has
enhanced greatly the ways of medical diagnosis at earlier stages [23]. Deep learning algorithms
are used in many domains such as in; the image processing, text recognition, natural language
processing, etc. and has been used to derive other algorithms. CNN shows high performance in
the classification of 2D and 3D medical image, brain tumor [M. A. Khan, I. Ashraf, M.
Alhaisoni, R. Damasevi cius, R. Scherer, A. Rehman, and S. A. Chan Bukhari, “Multimodal
Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine
Learning Application for Radiologists,” Diagnostics, Aug 2020, vol. 10, no. 8, pp.:565., DOIL:
https://doi.org/10.3390/diagnostics10080565.]. The convolution neural network (CNN) is
applied to extract features and reduce computation time in classification [NEW], [16] of
patients having heart conditions using their ECG signals. CNNs are well-known in pattern
recognition technique that combines feature extraction, feature reduction and classification
techniques with the use of multiple convolution layers, pooling layers and a fully connected
layer. Convoluted optimal features are extracted and classified using feed-forward artificial
neural networks that employs a fully connected layer with back propagation learning mech-
anism [23]. However, the CNN has a low convergence speed, the back-propagation learning is
slow and requires large number of iterations [6]. Other concerns related to network perfor-
mance degradation when applying different datasets to construct a general feature extraction
and classification mechanism to fit all datasets, is quite challenging [12].

Currently, a variety of combination of the feature extraction and classification techniques
has been developed in order to enhance the performance of the system in terms of accuracy
and speed rate when detecting SCD. The model proposed in the state of art method presents an
accuracy of 94.59% [27]. The 11-layer deep CNN architecture proposed by [1] has a
classification accuracy of 95.22%, while [9]‘s system has an accuracy of 84.28%, ~10% less
than the highest record. However, these systems are still unreliable to be implemented in the
real-world scenario, where the consistency in the result is not prevalent since various factors
such as; the population size, training and learning techniques, feature maps, activation
functions, etc. The back-propagation algorithm used in the previous studies has not considered
the risk of overfitting during training and produced misclassification due to inconsistency and
inaccuracy of selected features due to noises introduced. Therefore, there are still some areas in
the current studies that need improvements.

This study aims to improve the classification accuracy and the processing time of the
proposed model by implementing two modified features. A modified loss function is com-
bined with ridge regression in the back-propagation algorithm in order to avoid overfitting and
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a modified activation function to reduce the learning time of the network by quickly allowing
the model to converge. The aim is to increase the classification accuracy of the system by
combining regularization in the training in order to preserve the important features from noises
as well as maintaining consistency of the selected features. Therefore, the accuracy and
processing time of the system are improved in the prediction of sudden cardiac death.

In this study, a new activation functions and a modified learning technique are proposed to
overcome the drawbacks in the current systems. The new proposed activation function is the
modified Rectified Linear Unit (ReLU), which can effectively eliminate the problem of
gradient saturation. Thus, classification accuracy and relatively faster convergence speed can
be observed. To overcome loss of features or inconsistencies, regularization is used. Regular-
ization, while preserving and maintaining consistency of selected features, also significantly
reduces the variance of the model without increasing in its bias. The lesser the variance, the
more different types of data the model can classify.

2 Literature review

There have been a lot of works done on the prediction of SCD. In this section, we summarize
prior studies and their applied algorithms and how the problems related to the prediction of
SCD are solved taking into consideration the function used, prediction performance, prediction
time, and prediction accuracy.

[10] improved the prediction time of SCD to 13 min with an accuracty of 84% by
proposing an optimum strategy to systematize the extracted features and decide on the
appropriate processing method, which improve the prediction time. Since it has been known
to be ineffective to apply the same set of features in all time intervals, this study applied feature
selection using reinforcement learning that allows various features to be selected from different
parts of the sample space. The obtained accuracy, sensitivity, specificity and precision were
84.28%, 85.71%, 82.85% and 83.33% respectively. However, it ignored the fact that other
features may be present in the processing methods and discussed forming optimal combination
in addition to other features extracted. Non-linear features obtained from ECG signal could
provide newer information that were left before. Additionally, the chaotic and non-linear
features grow drastically significant and relatively dominant as getting further away from the
incident of SCD. Thus, it might pose more importance to examine a greater number of features
while trying to optimize the prediction time.

[24] enhanced the signal processing times to around 4 to 5 min. Implantable cardioverter
defibrillators (ICDs) have been used to reduce SCD. This study did a comparative study on the
prediction performance of the features that address heart rate changes before SCD, using a
common database and a support vector machine classifier. From the comparison of the
features, the time domain features are found to have high performance and also high AUROC
with 85.7% in sensitivity, specificity and accuracy and an analysis window of 5 min. However,
the drawback of this solution is that the processing times is marginally increased when
different features are selected in each minute. This will take more time and slow down the
system.

[21] have tried to automatically identify a developing SCD in patients using machine
learning approaches on the arrhythmic risk markers using the intensively clinically demon-
strated electrocardiographic markers.The study introduced more effiecient and practical ap-
proach based on calculation of SCDI, an integration of the informative markers, simplified the
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prediction method. The automated strategy employing the five classifiers was able to predict
SCD in less than one second with average accuracy of 98.91% (KNN), 98.70%(SVM),
98.99% (DT), 97.46% (NB) and 99.49% (RF) for up to thirty minutes prior to the occurrence
of SCD. However, the study was performed on a relatively smaller data from a public
database, which is why the results cannot be applied to all the real cases. The arrhythmias
risk markers are currently in epidemiological studies and not routinely. Additionally, there is a
problem in overfitting (failing to fit additional data) during the training process, which reduces
the accuracy of the recognition of risk markers of SCD.

[3] improved the prediction time and the accuracy of the prediction of SCD by proposing a
methodology based on ECG signals applying Wavelet Packet Transform as a signal processing
technique, Homogeneity Index (HI) as a nonlinear measurement for time series signals and an
Enhanced Probabilistic Neural Network (EPNN) as the classification algorithm. The effec-
tiveness and usefulness is evaluated using a database of measured ECG data for patients with
and without SCD. The proposed solution is capable of predicting the risk of developing an
SCD event up to 20 min prior to the incident with a high accuracy of 95.8% and decreasing
processing times for signals as ECG signal are directly used. The drawbacks to this model is
that; the test data is relatively small compared to the number of real SCD cases and the
variations in each of them. The HI didn’t consider various linear and non-linear features of the
signal that might contribute to lowering or increasing the prediction time.

[8] presented a system that is designed based on a novel multi-class approach for the
prediction of SCD 10 min before its the occurance. The approach includes the HF patients and
normal people, people as the comparison group, while previous studies only included normal
patients over the same database. A hybrid approach of unsupervised and ensemble learning
algorithms has been constructed for dimensional space reduction and optimal feature selection
of different features of HRV based on clustering the data into different groups. Among the
ensemble learning algorithms, boosting, bagging, and random subspace are popular algorithms
to construct a set of classifiers based on weighted votes. The bagging algorithm that builds
deep trees is time and memory consuming in comparison to the boosting and subspace
methods. Moreover, among the multi-class predictions, the recommended algorithms are
subspace and RUSBoost, in which the latter is extremely efficient in the case of random
sampling of test cases. Therefore, the hybrid approach of the SFS-RUSBoost algorithm
produced a minimum classification error of 20% with eight selected subset of features. The
solution presented by the study performs prediction of SCD 10 min earlier to occurrence of
SCD episode, with a novel multi-class classification approach, and average classification
accuracy of 83.33 for SCD prediction.

[2] enhanced the classification accuracy by using two artificial intelligence classifiers; namely
KNN and LDA.The SCD and normal patients were classified using 8 different time and frequency
domain features. The ECG signals from the patients are filtered, the amplitude is normalized, and
features are normalized to improve the performanace and accuracy of the classifiers. Ten-fold cross
validation was performed on both of classifiers to test the robustness of the classifiers. When the
features are normalized, the difference in the accuracy of the KNN classifier was found, which is
increased significantlymore than when it is not normalized. The risk of occurrence of SCD was
predicted within 10 min before the onset with an impressive accuracy of 97% for the classifier with
highest performance (KNN). Although an impressive prediction time has been calculated and a
higher accuracy is gained, but various other considerations should be made before implementing the
solution. A larger dataset of a diverse population should be considered so as to obtain a generalized
result. Also, various other features of the time-frequency domain should be considered.
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[9] enhanced the prediction time and accruacy by providing an optimal strategy to organize
the extracted features and decide on the appropriate processing method to improve the
prediction time. Since applying the same set of features in all time intervals has been known
to be ineffective. This study implemented non-linear, time-frequency feature selection for local
decision makers using reinforcement learning, which selected different features from different
parts of the sample space. Prediction time; before the onset of SCD, with acceptable accuracy
rate is obtained at 12 min. The obtained accuracy was 83% for a Multi-layer perception
classification.

[18] significantly improved the prediction time and accuracy by proposing a deep-learning early
warning system (DEWS) that used a total of 36,190 patients. The study data are decomposed into a
set of 28,045 subjects for derivation data and a set of 8145 subjects for validation, these patients are
taken from two hospitals. Only the derivation data is used to develop DCAPS, using a multilayer
perceptron (MLP). In the training dataset for predicting neurologic recovery, the AUROC of
DCAPS, LR, RF, SVM, and conventional model was 0.976. 0.955, 0.965, 0.951, and 0.821. In
training dataset for predicting survival to discharge, the AUROC of DCAPS, LR, RF, SVM, and
conventional model was 0.928, 0.891, 0.886, 0.856, and 0.734 respectively. Attempt to fix it by
adjusting event/non-event data will lead to high sensitivity which is not preferred. Because data from
one hospital is used for model derivation, and data from other hospital for testing purposes, the result
is not guaranteed on other hospitals.

[19] proposed and enhanced the performance of a deep learning model based on echocar-
diography results predicted in-hospital mortality among HD patients more accurately than the
existing prediction models and other machine learning models. It developed and compared the
result of the Deep Learning (DL) model with a Logistic Regression and Random Forest
machine learning model. Furthermore, subgroup analyses were performed for coronary heart
disease (CHD) and heart failure (HF) patients. The DL model outperformed all the risk scores
as well as the machine learning model in terms of AUROC and AUPRC. The proposed
method comprised of 25,776 patients among which 1026 were deceased. The DL model
calculated a risk score of 22% and the areas under the receiver operating characteristic curve
(AUROC) were 0.912, 0.898, 0.958, and 0.913 for internal validation, external validation,
CHD, and HF, respectively. They have shown outperforming results over other considered
algorithms. However, since the deep learning and machine learning are derived from the
relationship between given data and results and not from medical knowledge, the model is
strongly based on the memory of the derivation data. Therefore, the performance of the model
in other situations is not guaranteed without external validation.

[25] extraordinarily enhanced the prediction times and accuracy is done for the automatic
classification of abnormal ECG beats differentiated from normal ones, based on a Deep Neural
Network (DNN). The DNN for the heartbeat classification was developed by using the Tensor
Flow framework, the deep learning library from Google. The DNN classifier is constructed
using an input layer for the raw descriptors, seven hidden layers, with 5, 10, 30, 50, 30, 10 and
5 neurons respectively, and an input layer for the raw descriptors, based on the ReLU
(Rectified Linear Unit) activation function. To confirm the quality of correct classification
for the approach in terms of accuracy, the authors have performed a comparison of eleven
well-known classification techniques using WEKA tool. The result for the accuracy of the
DNN model showed more efficient over all the datasets with values greater than 99%, and
concerning sensitivity and specificity the model achieves good value in comparison with the
other algorithms. A well-known MIT-BIH Arrhythmia Database is used in the experiments.
This approach can be implemented to develop a model to predict SCD.
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[1] enhanced the accuracy of the prediction by proposing a 11-layer deep CNN that uses a
dataset obtained from the Physikalisch-Technische Bundesanstalt Diagnostic (PTBD) ECG
database. ECG data of 200 subjects were taken along with 12-lead signal from each subject.
Each signal is sampled at 1000 samples per second. A total of 10,546 normal ECG beats and
40,182 MI ECG beats have been used in this study. Each ECG beat consists of 651 samples
(250 and 400 samples for before and after R-peaks detection respectively) comprising of one
P-QRS-T wave. The study carries out these steps twice one for signal with noise and on
without noise. The proposed system performed better when the noise was removed. The signal
with noise reduced the performance of the system. However, the model has realized compa-
rable results for ECG with or without noise and the ability to undersatand the underlying
structure of a noisy ECG beat. An average accuracy, sensitivity, and specificity are achieved of
93.53%, 93.71%, and 92.83% respectively for ECG beats with noise. Furthermore, the highest
average accuracy of 95.22% sensitivity of 95.49% and specificity of 94.19% is obtained for
ECG beat without noise. On the contrary, the system required computationally intensive time
to learn the features and big data is required to train the system for better performance.

[13] proposed three ANN models; multilayer perceptron (MLP), long-short-term memory
(LSTM), and hybrid for the prediction of cardiac arrest are trained and then compared to other
classifiers including; the modified early warning score (MEWS), and non-ANN models
(logistic regression, and random forest). AUROC, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) are used for the comparison. However the
degree of actual numeric difference was relatively small. They clarify that this statistically
minor difference is not because the ANN is insignificantly different from other models, but
because even the MEWS (with relative low accuracy compared to other classification tech-
niques) seemed to have high performance in the emergency department. A total of 374,605 ED
visits and 2,910,321 patient status updates. The ANN models (MLP, LSTM, and hybrid)
obtained better results based on AUROC (AUROC: 0.929, 0.933, and 0.936; 95% confidential
interval: 0.926-0.932, 0.930-0.936, and 0.933-0.939, respectively) than the best achieved
results of non-ANN models, and the hybrid ANN model that utilizes baseline and sequence
information showed the best performance. The only limitation is not including the temporal
adequacy in the clinical study; such as: sensitivity and PPV, to evaluate the early warning
system. This model cannot accurately measure whether the information about a deteriorating
patient is given in timely manner. Since the reason for prediction is not reported, the action to
be taken may not be clear. Using of the model is not sufficient in identifying the number of
prevented cardiac arrest.

[17] enhanced a prognostic prediction model that uses a deep learning on data from a large
national registry for the clinical outcomes of patients after OHCA. 52,131 patients from 2
hospitals were included during the study period. The hospital data were split by date into a
derivation set and a validation set. A recurrent neural network was trained. Through validation,
this study demonstrated that the accurate performance of the deep-learning model, DCAPS, was
excellent for predicting neurologic recovery and survival to discharge. When DCAPS was applied
to electronic health records (EHR) in a hospital and Emergency medical service (EMS), the
possibility of neurologic recovery could be calculated in real time. As comparative measures, we
used the area under the receiver operating characteristic curve (AUROC), the area under the
precision—recall curve (AUPRC), and the net reclassification index. For 352 input vectors labelled
cardiac arrest in hospital, the deep learning—based early warning system (DEWS) that shows
(AUROC: 0.850; AUPRC: 0.044), which is significantly performed better than a modified early
warning score (MEWS) that shows (AUROC: 0.603; AUPRC: 0.003), a random forest algorithm
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(AUROC: 0.780; AUPRC: 0.014), and logistic regression (AUROC: 0.613; AUPRC: 0.007). The
area under the receiver operating characteristic curve, and the area under the precision—recall
curve (AUROC) are used to measure the model.

[20] enhanced the accuracy of the prediction of heart failure (HF) patients. They found a
DL predictive model based on echocardiography, for predicting the in-hospital patients
mortality with AHF using two hospital datasets, and validated DAHF using separated AHF
registry data. The DL model consisted of 3 hidden neural network layers with 362 nodes, batch
normalization and dropout layers using TensorFlow. The model has achieved high perfor-
mance in predicting the mortalities and is more accurately than the existing prediction models
and other machine learning models. For predicting in-hospital mortality, the area under the
receiver operating characteristic curve of the DAHF were 0.880 (95% confidence interval,
0.876—0.884). These results significantly outperformed those of the GWTG-HF (0.728 [0.720—
0.737]) and other machine learning models. For predicting 12 and 36-month endpoints, DAHF
(0.782 and 0.813) significantly outperformed MAGGIC score (0.718 and 0.729).

[23] proposed an improved CNN-SVM model that enhanced the recurrence classification
performance of AF patients. While traditional CNN model extract feature maps through convo-
lution layer, reducing these maps from the pooling layer, implementing a MLP classifier to
classify the characteristic information of the objects, then integrating CNN with non-linear SVM
classifier to classify the feature maps. The developed system is tested with signals obtained from
body surface potential mapping (BSPM) to find out that the performance of the modified system
(CNN-SVM) outperforms that of a CNN. The constructed model ultimately achieved an accuracy
of 96%, a sensitivity of 88%, and a specificity of 96%. For this process, 14 patients of AF are
followed up for one year after their first treatment of which 10 remained in normal sinus rhythm
while other four returned to AF. The ECG data for these patients are obtained through the 128-
Lead BSPM system. However, the BPSM signals and label from patients are limited and a lot of
human and material resources are required to continuously follow up patients. Moreover, there is
no public database that records the required data [7, 14, 15].

2.1 State of art

Figure 1 shows the block diagram that explains the features of the state-of-art model proposed by
[27] for the prediction of atrial fibrillation, which is one of the major causes for sudden cardiac
deaths. The area enclosed in a blue dotted box depicts the good features, while the limitations are
enclosed in a box with red dotted lines. [27] proposed a deep CNN that utilizes a RCN for
generation and analysis of the synchronization features of the electrocardiogram signal to detect
atrial fibrillation. This is followed by a voting algorithm to increase the classification performance
of the beat-wise atrial fibrillation detection algorithm. The use of RCN for the analysis of the
signal is accounted for the ECG signal being a non-stationary time series [2]. In the state of art
model, the RCN is used for extracting low level atrial fibrillation features. It uses the time delay
method of the phase space reconstruction method [8] for the generation of the recurrence matrix,
which will be used for feature extraction. The use of convolutional layers, pooling layers and fully
connected layers in the network architecture have improved the signal classification accuracy
[11]. The model uses a Softmax classifier and a sigmoid function as an activation function to
classify ECG signals. With this model, the obtained sensitivity, specificity, and accuracy of the
state of art algorithm are 91.28%, 92.91%, and 89.59%, respectively. This model consists of four
stages as shown in Fig. 1. 1) Data Preprocessing ii) Low level feature extraction with RCN iii)
Classification using CNN and iv) Majority Voting.
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Fig. 1 Block Diagram of the State of Art System [27]. The blue dotted box represents the good features while the
red dotted box shows the limitation of the state of art solution for Sudden Cardiac Death prediction using Deep
Convolution Neural Networks

2.1.1 Data preprocessing

The real data provided by the MIT-BIH AF includes 25 long-term ECG recordings of humans
with AF and contains 299 AF episodes. Each recording contains ECG1 and ECG2 signals,
which are sampled at 250HZ and 12-bit resolution. Only ECG1 signals are used to evaluate the
AF detection methods. To reduce the baseline wander and noise components of ECG signal,
each single data recording is filtered with a seven-order Butterworth bandpass filter with poles
at 0.5 Hz and 49 Hz. It can correct the baseline and reduce the noise effects. The local
maximums of the convolution is calculated between ECG recording and a set of predefined
QRS model to detect the onset of the QRS wave. At each onset point of the QRS, the QRS
wave and noise are removed, based on the most matched model that find the local maximums
of the convolution between the ECG recording and a set of predefined QRS models [27]. The
rest of the signals are split into segments; each segment is approximately represented the
output AA signal of a heartbeat, where almost the ventricular signals are removed. The signals
are interpolated into 128-bit data samples using Fourier transform interpolation. Based on the
samples, an ECG classification algorithm is developed next. To evaluate each method of
denoising, the signal-to-noise ratios (SNR) of the original and filtered signals were calculated.
The maximum value of SNR depending on the length of the signal.

2.1.2 Low level feature extraction with recurrence complex network
The RCN is a popular tool for processing non-stationary time series [27]. Since ECG data is a
non-stationary time series, thus, it is analysed by the RCN. The RCN is used to generate the

recurrence matrix using the time delay method of the phase space reconstruction method.
Traditionally, the recurrence matrix is binarized to extract some numerical features manually
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which are then used to classify the input samples using fuzzy c-means (FCM). However, due
to the complexity involved in the manual extraction of the appropriate features of ECG data,
the features are extracted from the recurrence matrix automatically using CNN. The Eigen
values of the recurrence matrix is calculated first and fed into the CNN. The CNN extracts the
features and classifies the data. Each Eigen values of the data sample is a 92-byte feature
vector.

2.1.3 Classification using CNN

Using CNN for ECG signal classification is composed of alternating layers of convolution and
pooling layers. CNNs are able of automatically generating high-level features (i.e., weights and
thresholds) by training. The CNN proposed in this study for the classification of heartbeats consists
of two convolutional layers, two pooling layers, one flattening layer, and an output layer [27]. Each
convolutional layer in the network can be considered to be a fuzzy filter to enhance the character-
istics of the original signal, reduce noise and generate feature maps [17]. The convolution kernel size
of each feature map is 5 x 11 and the stride is one. The sub-pooling layer subsamples the data using
the principle of local correlation and retains useful information while reducing the number of
parameters [25]. The pooling size is 2 x 2 and the stride is two. The data in the pooling layer is
transformed into feature vectors by the flattening layer.

2.1.4 Majority voting

The classification accuracy obtained from the beat-wise AF detection algorithm is relatively
low. So, in order to improve the classification accuracy, majority voting methodology is used.
For this, before the classification, the ECG data is segmented into beat-wise data samples.
Each adjacent sample is used as a collective candidate for the classification of signal. The
above method is used to classify the samples of one candidate and the results are then
integrated by majority voting to determine the class of the signal. The number of adjacent
samples to be considered in calculated experimentally. As an activation function sigmoid
function is used in the convolution layer. This activation function is prone to encountering the
gradient saturation problem. Therefore, the network is unable to adapt weights during training
and this will impact the classification performance [18]. Also, the used back-propagation
algorithm is incapable of updating weights of the neurons throughout the learning, which
increases the complexity of the network and will in turn increase the bias of the network. This
makes the network learning very slow and unable to classify different types of data [13]. The
problem with sigmoid function is saturated, i.e. large values snap to 1 and small values snap to
0. The function is only sensitive to changes around the mid-point of its input. Once it is
saturated, it becomes a challenging issue for the learning algorithm to adapt the weights. The
layers that are deep in the network do not receive useful gradient information. Errors are
propagated through the network to update weights, are decreased with additional layers
through which it is propagated [24]. This is called gradient vanishing problem, which will
prevent the network from learning effectively and thus influences the convergence time and
overall classification accuracy. Further, the loss function for the back-propagation algorithm is
incapable of updating weights and/or decreasing variance of the model [19]. Therefore, the
model is not able of generalizing datasets that are different from the training data. Also, since
the datasets are limited, they are amplified for the training purposes. In this process, when the
data is not enough or the model overtrains, then there is a risk of overfitting as the weights of
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the neurons get high and the network becomes more complex [26]. As a result, effective
classification cannot be done, and the model may produce inaccurate outcomes.

The proposed model demonstrated higher performance with the algorithm achieving
sensitivity, specificity, and accuracy of 91.28%, 92.91%, and 89.59%, respectively. The
proposed method proved more effective to the problem of individual variation in the atrial
fibrillation detection compared to traditional algorithm. The training algorithm is presented in
Table 1 and the flowchart is presented in Fig. 2.

Activation functions in neural networks compute the weight of input and bias that
will help to decide whether a neuron can be fired or not. In the presented solution,
sigmoid function is used as an activation function to calculate the output of the
neurons in the convolution layer as expressed in eq. (1). The input to previous layer,
weight and bias will generate the input for the sigmoid function. However, the
sigmoid function will suffer from gradient vanishing problem affecting the classifica-
tion accuracy and efficiency. This problem can be mitigated by replacing sigmoid
function with Rectified Linear Unit (ReLU) function as activation function [23].

The output from the output layer of the CNN is obtained as

eXP(Z],XLPj,m Wm,n)
Zi’zlexp<z[yxilpj,mwm,n,>

o, =

Where,

0, the units in the output layer, n=1, 2.
N total number of pooling layers.

m 1, 2..Ng.

W,..» the weight between Py, ,, and o,,,

o
3

final output unit in the final pooling layer

Table 1: Pseudocode for Beat-Wise AF Detection (BWAD) algorithm

Algorithm: BWAD method with RCN for ECG classification
Input: ECG samples E
Output: ECG Signal Classification
BEGIN
Step 1: For each ECG sample in E, create a LXxL recurrence matrix
R@j) = I X(t) - X(t) |, i,j=1,2....... L
Where, L=N —(m-1)t

Step2: From each of the recurrence matrix, extract Eigen values to be fed to the CNN

Step 3: Calculate convolution feature maps as
G =o(X" 0 W)

Perform averaging pooling on the feature maps to get pooling feature maps as:
Pin= 7241 Cim-1)ssin

Then, the output layer will generate the output as:
0 = exp Zﬁ'LPF,me,n)

" Zir;lexp(Zﬁil PEmWmn )

Step 4: Perform majority voting on the collective candidate of adjacent samples.
Step5: The integrated result from majority voting is the final output.

END
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G
Pj,m =T Zl Cj,(m*l)*s%n (2)

n—=

Where,

Ci m—1)xs+n the ((m-1) * s+n)’ th unit of convolution layer feature map
and is given by eq. (3)

Pi m m’th unit of P;, which is the pooling layer feature map
G pooling size
s shift size that determines the overlap of adjacent pooling windows
r scaling factor, selected as one in G
Ci= U(Z?JIOI'*WL/) (3)
Where,

G fully connected feature map of convolution layer

] 1, 2... NO; NO =number of fully connected feature maps
N;  total number of input feature maps

O; input feature maps

W, ; weight vectors

o the activation function as given by eq. (4)

1

o =
l1+e>

Where,

e s the natural logarithm
o 1is the activation function
x is the input to the activation function

The CNN is trained with a backpropagation algorithm using loss function that is given by
eq. (5). During machine learning, when there is a little training data, when dataset has small
sample size; when dataset has noise or random fluctuations, or overtraining. It negatively
impacts the performance of the model on new data. Amplifying the datasets generally will
solve it. For limited data, ridge regression method is chosen, also known as L2 regularization
to reduce weights of neurons and decrease complexity [23].

2
E(0) =~ zlyi,non (5)
e
Where,
EJ0) is the loss function
0 is all the weights of the CNN
X; is input sample

Vin [V 1. ¥i. 2] 1s binary encoding vector target for x;
0O, is the output unit given by eq. (1):
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3 Proposed solution

From the analysis of feature extraction and classification of ECG signals using deep learning, it
is found that activation function, loss function and weights are significant factors that needs to
be considered for the performance of convolutional neural networks. We adopt the solution
proposed by [27] because it is used CNN with majority voting to eliminate the overfitting
problem. If there is overfitting, the neural network will have difficulty to generalise unknown
data and lead to result in under-performance. Using dropout will select participating param-
eters randomly in the training. This allows the network to be switched to multiple combina-
tions to enhance the generalization ability and steer clear of overfitting, thereby improving the
accuracy of classification [27].

However, there are few issues with this solution. It uses sigmoid function in the convolution
layer as the activation function, which is highly likely to suffer gradient saturation problem that
affects the classification accuracy of the model and also reduces the convergence speed [10].
The other limitation is that the loss function for the back-propagation algorithm is incapable of
updating weights and/or decreasing variance of the model [19]. Therefore, the model is not
able of generalizing datasets that are different from the training data. This will lead to
inaccurate outcomes and degrades the performance of the classifier. To fix the gradient
saturation problem, the proposed solution will employ a Modified Rectified Linear Unit
(MReLU) as activation function, which is inspired by [23]. Another feature of the proposed
solution is the adaptation of work from [23] to deal with loss in the back-propagation
algorithm. These two features will improve the classification accuracy and convergence speed.
The proposed system consists of two stages as shown in Fig. 3. I) Preprocessing ii) CNN for
Feature Extraction and Classification.

3.1 Preprocessing

To reduce the baseline wandering and noise of the signal, each single data recording is filtered
with a seven-order Butterworth bandpass filter with poles at 0.5 Hz and 49 Hz. The local
maximums of the convolution between ECG recording and a set of predefined QRS model is
calculated to detect the onset of the QRS wave. At each onset point of the QRS, the QRS wave
is cancelled based on the most matched model. The rest of the signals are departed into
segments; each approximately the AA of a heartbeat segment. The signals are interpolated into
128-bit data samples using Fourier transform interpolation. Based on the samples, an ECG
classification algorithm is developed.

3.2 CNN for feature extraction and classification

CNNGs are able of automatically generating high-level features (i.e., weights and thresholds) by
training. The CNN proposed in this study consists of two convolutional layers, one pooling
layer, one flattening layer, and two fully connected layers. Each convolutional layer in the
network can be considered to be a fuzzy filter enhancing the characteristics of the original
signal and reducing noise and generate feature maps. The proposed solution uses Modified
ReLU (MReLU) as activation function as shown in Fig. 3. The MReLU is simpler in
comparison to sigmoid function and can solve the problem of gradient saturation. The neurons
are allowed to update effectively and accelerate the convergence of the model. The sub-
pooling layer subsamples the data using the principle of local correlation and retains useful
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Fig. 3 Workflow of the proposed model for ECG signal classification using Modified Rectified Linear Unit
(ReLU) activation function and dropout regularized back propagation learning. The green dotted box represents
the new modified feature while the blue dotted box represents the existing good feature of the system

information while reducing the number of parameters (dropping out parameters). The data in
the pooling layer is transformed into feature vectors by the flattening layer. The two fully
connected layers employ the biased dropout method [26]. The loss is calculated by the
modified loss function as in Fig. 3. The new loss function takes weight of each class into
account to reduce the bias towards frequent classes [6]. The calculated loss is back propagated
through the network to update weights and bias for optimization.

The training strategy namely Beat-Wise AF Detection (BWAD) algorithm with L2 Regu-
larization is shown in Table 2 and the flowchart of the algorithm is presented in Fig. 4.

3.2.1 Proposed equations

The Rectified Linear Unit (ReLU) activation function forces the input values less than zero to
zero and thus eliminates the vanishing gradient problem. The function is given as [23]:

0, x<0
=15, (©
Where,
X is the input to the activation function

f(x) is the activation function

The ReLU is sometimes fragile during training and allow some gradients to die, which
leads to the death of some of the neurons. This will hinder in the weight update process of the
training phase.

The Exponential Linear Unit (ELU) solves the problem of the ReLU by using identity for
positive values, while negative values will be pushed close to zero reducing computation
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Table 2: Beat-Wise AF Detection (BWAD) algorithm with L2 Regularization

Algorithm: L2 Regularized modified loss function
Input: Training ECG samples, regularization parameter A
Output: Regularized loss function
BEGIN
Step 1: Initialize weights of neurons ‘w’
Step 2: For each training ECG samples,
Check if w> 0. If yes,
Calculate square of weights of neuron.
Reduce the weight of the neuron by the penalty factor as in equation (12).
Repeat the above process for all neurons for all iterations.

End For
Step 3: For each ECG sample in E, create a LxL recurrence matrix
R(ij) = [ X(6) - X(@®) [l i,j=1,2....... L

Where, L =N — (m-1)t

Step 4: From each of the recurrence matrix, extract eigen values to be fed to the CNN
Step 5: Calculate convolution feature maps as
G = Mo(3 0 x W)

Perform averaging pooling on the feature maps to get pooling feature maps as:
— G
Pim = 1 X521 G m-yrsin

Then, the output layer will generate the output as:

_ exw(EﬁL Pl-',me,n)
On = 2 Np

En,:,exv(zm:,Pp,me‘n )

Step 6: Perform majority voting on the collective candidate of adjacent samples.
Step 7: The integrated result from majority voting is the final output.

END

complexity and improving learning speed. The Exponential Linear Unit (ELU) activation
function with 0 < «, is given as [5]:

f(x):{ x, x>0

aexp(x)—1, x<0
1 x>0 @
fx)+a  x<0

Where,

f(x) is the activation function
@ ELU hyperparameter that controls the saturation point for negative net inputs

The eq. (7) has some part that will eliminate the limitation of eq. (6). ELU reduces the gap
between the normal gradient and the unit natural gradient because of a reduced bias shift effect
for units in next layer. Therefore, ELU improves and accelerate learning characteristics in
DNN compared to a ReLU network with the same architecture. ELUs have a clear saturation
plateau in its negative values with smaller arguments, allowing them to learn a more robust to
noise and stable representation. Saturation means a small derivative, which decreases the
variation [27]. We will use only that part in green colour in eq. (7) to modify the old ReLU
function. Therefore, eq. (6) will now be modified by us using eq. 7 to create an eq. (8).

x, x>0

Mf(x) = { exp(x), x<0 (8)

Equation (8) is the required modified activation function that eliminates the gradient vanishing
problem in the state of art system. Here, we modified the state of art activation function which
is eq. (4) by our modified eq. 8. Therefore, eq. (4) [27] will be modified to eq. (9) as:
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Mo = Mf (x) 9)
Where,

Mo is the modified version of the activation function
X is the input

The solution provided by (Li et al., 2019) uses L2 regularization method to compensate for
the limited data in their study. This will prevent the model from overfitting. The ridge
regression adds L2 norm with as penalty factor A thereby reducing weight and lowering the
complexity of the network. This aids in proper data fitting. The loss function with L2
Regularization given by (Li et al., 2019) is expressed as eq. 10:

3
I(x) = L(X) AT | 6: 117 (10)
i-
Where,
I(x) is the loss function
0 the feature weights of i layer of the fully connected layer of the CNN
L(X) is cross entropy loss
A is penalty factor after cost function

Y2 || 6 |* s the regularization parameter.

Taking only the regularization parameter into account, eq. (10) should be modified by us to
be eq. (11). This modified equation will then be used in eq. (5).

3
Mi(x) :)\_Z] [ 6: 1 (11)
i-
Where,
Mi(x) is the modified loss function
0 the feature weights of i? layer of the fully connected layer of the CNN
A is penalty factor after cost function

AYZ | 6: | is the regularization parameter.

By using the regularization parameter in eq. (10), we obtain the modified loss function for
the state of art system. The modified loss function is expressed as:

2
ME,,(0) = = ¥ 3;,,0n + Mi(x) (12)
n=1
Where,
ME,.(6) the enhanced loss function
0 all the weights of the CNN
X; input sample
M I(x) the modified loss function
Yi.n = [¥a1)¥ii2)] binary encoding vector target for x;
0O, is the output unit given by eq. (1)
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3.2.2 Area of improvement

An equation for a modified loss function was proposed in eq. (12) to improve the performance
of the network model. The modified loss function is the embellishment of the state of art loss
function with the addition of regularization, which reduces the risk of overfitting. Regulariza-
tion significantly reduces the variance of the model without increase in its bias. The lesser the
variance, the more different types of data the model can classify [28]. Regularization also
decreases size of weights in the network, which helps to reduce the loss making the network
simple and efficient in generalization [23]. Not implementing the regularization increases the
weights over time, makes the network more complex and decreases the learning rate of the
network. Another area that could be improved on the state of art solution is the activation
function. By proposing a new enhanced Rectified Linear Unit activation function, the problem
of gradient saturation is overcome and also the learning time of the network is reduced by
allowing the model to converge. Therefore, the classification accuracy and processing time are
improved.

3.2.3 Why modified loss function (ME,.(6))?

Recently, deep learning algorithms like Convolution Neural Networks (CNN) have been
widely used to eliminate the traditional explicit feature extraction process by introducing an
automatic feature extraction process, which consists of convolution layers and subsampling
layers. The CNN can learn to implicitly and automatically extract characteristic features from
training data [22]. The complexity and parameters of CNN model is greatly reduced due to
local receptive fields, shared weights and subsampling. However, because of large number of
parameters involved in CNN, the training data are often vulnerable to over-fitting, which
exacerbates when there is not enough training data or due to overtraining [16]. To avoid risk of
potential over-fitting, early stopping and regularization are used, and the training is terminated
when the accuracy of the verification set reaches certain limits.

Overfitting restricts the CNN model from generalizing newer data failing to produce
accurate classification and decrease the performance of the network. Therefore, the overfitting
must be prevented to train the network more effectively [29]. The possibility of overfitting can
be reduced by increasing dataset size, increasing network size or regressions. Regularization
significantly reduces the variance of the model without increase in its bias. The lesser the
variance, the more different types of data the model can classify [28]. Regularization also
decreases size of weights in the network, which helps to reduce the loss making the network
simple and efficient in generalization [23]. Not implementing regularization increases the
weights over time, makes the network more complex and decreases the learning rate of the
network.

4 Results and discussion

For the implementation of this research, we used a software called PyCharm 2018.2 (Profes-
sional Edition) with Python 3.7.0 along with the libraries such as; Keras, NumPy, Tensorflow,
sklearn, NLTK, and matplotlib. We implemented the state of art and our proposed solution,
and reviewed them using three different datasets available freely. The datasets include MIT-
BIH Arrythmia dataset [21], MIT-BIH SCD Holter dataset [10] and Apnoea-ECG datasets for
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Table 3 Statistics of datasets used for the evaluation of State of Art model and the proposed model

Dataset Name Total Number ECG Total Number of samples per  Total Number of
recordings recording subjects
MIT-BIH Arrhythmia 48 65,000 47
Database
SCD Holter Database 23 45,000 23
Apnoea-ECG Database 70 30,000 70

a more comprehensive review of the solution proposed. Each dataset varies in the total number
of samples and data balance degree. Six-fold cross-validation is used, where the training data is
randomly divided into six equal sized sets. For testing purposes, one out of the six data sets is
used while the rest of the data sets are used for training [29]. The model is trained using
stochastic gradient descent with the dropout rate of 0.3, the learning rate of 0.18, the filter size
of 4, 5, 6 respectively, batch size of 90, hidden unit of 180 (Table 3).

The system used for the experiment was configured with Intel® Core™ i5-3337U CPU@
2.40 GHz and 4GB RAM. The experiment is divided into two parts. In the first part, the
experiment covers three different scenarios, a small dataset with relatively small number of
samples (Apnoea-ECG dataset), a medium sample from a small number of recordings (MIT-
BIH SCD Holter dataset) and a large dataset with large number of samples per recording of
ECG (MIT-BIH Arrhythmia dataset). 20% of the data from each dataset were used as
validation data, while the other 80% were used for training purposes. The results for the
training and validation are shown in Table 4. The second part of the experiment includes
testing the CNN model for all three datasets and the results are shown in Tables 5, 6 and 7.

The accuracy and processing time for the three datasets are computed by the metric function
from python Keras library. The mean method of the python NumPy library is used to calculate
the average of the processing times and the accuracy. The results for different datasets are
shown in Fig. 7 and 8. For the review of each datasets, the predict function from python Keras
library is used to compute the classification accuracy. The now function of the datatime library
is used to calculate processing time. The averages of the metrics are calculated to construct a
bar graph for comparison as shown in Figs. 9, 10 and 11.

The convolutional neural network model is created to extract features from the labelled
training data automatically during the feature extraction stage. The extracted features from the
feature maps are fed into the max pooling layer the output of which are used by the fully

Table 4 Accuracy and Processing Time Results of State of Art solution and proposed solution for three different
datasets

Dataset Name Stage State of Art Solution Proposed Solution
Accuracy  Processing Time Accuracy  Processing Time
(%) (epoch) (%) (epoch)
MIT BIH Arrythmia Training  89.24% 27 epochs 97.93% 23 epochs
Dataset Validation 82.73% 23 epochs 88.54% 19 epochs
SCD HolterDataset Training  90.05% 17 epochs 92.93% 14 epochs
Validation 88.32% 11 epochs 91.26% 9 epochs
Apnoea-ECG Dataset Training  92.48% 19 epochs 96% 16 epochs
Validation 80.75% 13 epochs 88.25% 11 epochs
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Table 5 Accuracy and Processing time Results of State of Art solution and proposed solution for ECG
classification for MIT-BIH Arrhythmia Dataset

Sample No. State of Art Solution Proposed Solution
Accuracy (%) Processing Time (ms) Accuracy (%) Processing Time (ms)

1 92.23% 32.35 ms 94.82% 22.46 ms
2 90.06% 29.80 ms 96.71% 19.54 ms
3 89.25% 31.75 ms 94.22% 22.45 ms
4 92.81% 29.55 ms 95.74% 20.47 ms
5 94.72% 36.28 ms 97.51% 21.88 ms
6 88.34% 33.45 ms 98.13% 20.92 ms
7 89.21% 31.28 ms 93.62% 21.80 ms
8 89.72% 30.35 ms 91.92% 23.38 ms
9 91.32% 3321 ms 93.04% 23.20 ms
10 90.04% 38.45 ms 92.24% 24.21 ms

connected layer to obtain the ECG classification by applying softmax classifier in the
classification stage. The trained model is then used to evaluate the validation data.

The accuracy performance of the MIT-BIH Arrhythmia dataset during the training stage is
shown in Fig. 5 for both the state-of-art solution and our proposed solution. In the training
stage, both the solution achieves similar accuracy. However, the proposed solution reaches
maximum accuracy within fewer epochs. This provides the evidence that the proposed
solution reduces the processing time for a larger dataset during the training of the model.

The accuracy performance of the MIT-BIH Arrhythmia dataset during the training valida-
tion stage is shown in Fig. 6 for both the state-of-art solution and our proposed solution. The
accuracy of the proposed solution has dramatically increased in even fewer epoch compared to
the state of art solution. The accuracy and processing times of the three different datasets based
on the training and validation stages is presented in Table 4.

The data report and bar graphs generated from the results obtained are used for the
comparison of the state of art solution and our proposed solution. The comparison is presented
in following tables and figures. The results are obtained in two ways. One in terms of training
and validating the model on differing dataset sizes and the other for comprehensive testing of
each models with the three datasets.

Table 6 Accuracy and Processing time Results of State of Art solution and proposed solution for ECG
classification for MIT-BIH SCD Holter Dataset

Sample No. State of Art Solution Proposed Solution
Accuracy (%) Processing Time (ms) Accuracy (%) Processing Time (ms)

1 93.28% 31.02 ms 96.58% 19.45 ms
2 89.88% 33.54 ms 93.32% 18.29 ms
3 90.01% 37.25 ms 95.43% 21.28 ms
4 87.09% 29.82 ms 93.35% 18.93 ms
5 88.21% 30.23 ms 94.25% 21.02 ms
6 89.92% 35.82 ms 92.27% 21.25 ms
7 90.58% 3321 ms 91.65% 20.93 ms
8 91.82% 36.81 ms 95.45% 21.84 ms
9 93.07% 30.53 ms 96.22% 19.21 ms
10 88.25% 32.88 ms 92.55% 20.44 ms
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Table 7 Accuracy and Processing time Results of State of Art solution and proposed solution for ECG

classification for Apnoea-ECG Dataset

Sample No. State of Art Solution Proposed Solution
Accuracy (%) Processing Time (ms) Accuracy (%) Processing Time (ms)

1 89.21% 32.45 ms 94.46% 18.78 ms
2 90.5% 33.65 ms 96.58% 19.25 ms
3 91.22% 33.94 ms 94.21% 20.15 ms
4 82.21% 36.10 ms 95.63% 19.35 ms
5 85.32% 32.46 ms 92.28% 20.32 ms
6 87.25% 33.68 ms 94.50% 22.78 ms
7 89.21% 30.58 ms 97.29% 21.98 ms
8 90.23% 29.89 ms 95.34% 18.55 ms
9 91.24% 32.56 ms 93.29% 19.56 ms
10 89.28% 35.98 ms 94.76% 19.48 ms

For the first part, the results are shown based on the stages of training and validation. The
result for each dataset is shown in terms of accuracy and processing times. The accuracy is
calculated in terms of percentage of correctly classified samples against the total labelled
samples, whereas the processing time is calculated in epochs required for the model to
converge. This test was performed on the 20% of the samples in three datasets (i.e. MIT-
BIH Arrhythmia, MIT-BIH SCD Holter and Apnoea-ECG datasets). The overall average
accuracy is calculated by averaging the accuracy result of the training and validation stages
and the overall average processing time is computed by averaging the processing times of the
result of training and validation stages. The result thus obtained is presented in Table 4 and
visualized in Fig. 7 and 8. For state-of-art, the average accuracy and processing time for MIT-

Accuracy on MIT-BIH Arrythmia datas
stage

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Accuracy (%)

0 1 2 4 6 8 10 12

Epoch

w—SOA Solution

et at training

14 16 18

Proposed Solution

Fig. 5 The classification accuracy performance on MIT-BIH Arrhythmia dataset for state-of-art solution and
proposed solution at the training stage. a) The blue line shows the classification accuracy versus epoch of the
state-of-art solution. b) The orange line shows the classification accuracy versus epoch of our proposed solution
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Fig. 6 The classification accuracy performance on MIT-BIH Arrythmia dataset for state-of-art solution and
proposed solution at the validation stage. a) The blue line shows the classification accuracy versus epoch of the
state-of-art solution. b) The orange line shows the classification accuracy versus epoch of our proposed solution

BIH Arrhythmia dataset is 85.99% and 25 epochs, MIT-BIH SCD Holter dataset is 89.91%
and 14 epochs, and Apnoea-ECG dataset is 86.62% and 16 epochs. For the proposed solution,
the average accuracy and processing time for MIT-BIH Arrhythmia dataset is 93.24% and 21
epochs, MIT-BIH SCD Holter dataset is 90.60% and 11.5 epochs, and Apnoea-ECG dataset is
92.13% and 13.5 epochs.

Average accuracy of state of art and proposed solution for
three different datasets
94.00 93.24
92.13
92.00 06
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z
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MIT BIH Arythmia SCD Holter Apnea-ECG
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Datasets
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Fig. 7 Average classification accuracy in percentage for the three different datasets. The green colour indicates
the accuracy of the state-of-art solution while the blue colour indicates the accuracy of the proposed solution. a)
The first couple of bar graphs indicate the average accuracy for the MIT-BIH Arrhythmia dataset. b) The second
couple of bar graphs indicate the average accuracy for MIT-BIH SCD Holter dataset. ¢) The third couple of bar
graphs indicate the average accuracy for Apnoea-ECG dataset.
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Average Processing times for state of art and proposed solution
for three different datasets
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Fig. 8 Average processing times in epochs for the three different datasets. The green colour indicates the
accuracy of the state-of-art solution while the blue colour indicates the accuracy of the proposed solution. a) The
first couple of bar graphs indicate the average processing times for the MIT-BIH Arrhythmia dataset. b) The
second couple of bar graphs indicate the average processing times for MIT-BIH SCD Holter dataset. ¢) The third
couple of bar graphs indicate the average processing times for Apnoea-ECG dataset

For the second part, the samples from each dataset have been tested and the results for each
sample are shown in Tables 5, 6, and 7 and visualised in Figs. 9, 10 and 11. The test has been
conducted for ten samples from each dataset to obtain the classification accuracy and process-
ing time. The classification accuracy is expressed as the percentage probability of the labelled
data for each class whereas the processing time is the execution time for the test sample to be
classified.

The accuracy and processing times are the metrics that are calculated in order to evaluate
the state of art and the proposed solution. These results were obtained during the classification
stage in the convolutional neural network. This involved the use of tools such as Python with

Average processing times for state of art and proposed solution
for MIT-BIH arrythmia database
Average accuracy of state of art and proposed solution for MIT- =
BIH arrythmia database LT
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(a) Average accuracy in percentage (b) Average processing times in ms

Fig. 9 Average accuracy and processing times results for State of Art Solution and Proposed solution for MIT-
BIH Arrhythmia dataset. (a) The average accuracy in percentage for the state of art solution and proposed
solution. (b) The average processing times in milliseconds for state of art and proposed solution
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Fig. 10 Average accuracy and processing times results for State of Art Solution and Proposed solution for MIT-
BIH SCD Holter dataset. (a) The average accuracy in percentage for the state of art solution and proposed
solution. (b) The average processing times in milliseconds for state of art and proposed solution

Tensorflow backend and Keras library. The analysis of the results is done in two phases:
training and validating the model for each solution and then review the model for each of the
three different datasets. The classification accuracy and processing time has been improved in
the proposed solution by using eq. (9) to eliminate the risk of gradient saturation and eq. (12) to
prevent overfitting of the network therefore minimizing the processing times.

The results demonstrate the improvement in classification accuracy and processing
time of the proposed solution comparing to the state-of-art solution of the classification
of ECG signals for SCD prediction. For the modified activation function and modified
loss function, the average classification accuracy of 94.7% which is 4.72% higher than
the current solution [27]. Also, the convergence speed of the model is decreased with
15.3 epochs to obtain the optimization which is 5 epochs less that the current solution.
Additionally, the average processing time has been decreased by 12.19 ms in the
proposed solution at 20.77 ms compared to the current solution. For each of the
datasets, the predict function from python Keras library computes the classification
accuracy using true positives and true negatives. The now function of the datatime
library calculates processing time using the start and stop time. The averages of the
metrics are calculated using AVERAGE method of MS Excel, which will help in the
comparison of the two solutions.

Average Accuracy of state of art and proposed solution for Apnea- Average processing time for state of art and proposed solution for
ECG database Apnea-ECG database
% 3129
5483 -
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(a) Average accuracy in percentage (b) Average processing times in ms

Fig. 11 Average accuracy and processing times results for State of Art Solution and Proposed solution for
Apnoea-ECG dataset. (a) The average accuracy in percentage for the state of art solution and proposed solution.
(b) The average processing times in milliseconds for state of art and proposed solution
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The accuracy is calculated using eq. (13)

Accuracy — True Positives + True Negatives 13)
All Samples

Where,

True Positives  the number of correctly identified positive samples
True Negatives  the number of correctly identified negative samples

Using modified ReLU (MReLU) function; as the activation function in the convolutional
layer of the networks, eliminates the problem of gradient saturation and improves the
performance of the proposed system. The main idea of the MReLU function is its gradient
that will never saturate, which allows efficient updating of the parameters during training
therefore, the model optimization is achieved. Using regularized loss function is another
feature. Regularization significantly reduces the variance of the model without increase in its
bias. The lesser the variance, the more different types of data the model can classify [28].
Regularization also decreases size of weights in the network which helps to reduce the loss
making the network simple and efficient in generalization [23]. Using a modified loss function
combined with ridge regression in the back-propagation algorithm in order to avoid overfitting
and a modified activation function that reduces the learning time of the network by quickly
allowing the model to converge. The aim is to increase the classification accuracy of the
system by combining regularization in the training in order to preserve the important features
from noises as well as maintaining consistency of the selected features.

The primary objectives of this solution have consistently been to achieve higher classifi-
cation accuracy while using lower processing time. The limitation of the current solution has
been successfully solved in this research with an average accuracy of 94.7% against the current
accuracy of 91.17%. The improvement in these metrics are accounted by the use of modified
activation to minimize the risk of gradient saturation and the regularized loss function to
reduce the bias in the data. Hence, the proposed solution exhibits better performance in
different data scenarios. .

Table 8 shows the comparison between state of art and proposed solution.

5 Conclusion

In this paper, a novel deep learning SCD detection algorithm has been presented. A CNN
structure is employed leveraging multilayer structures and presenting highly abstract repre-
sentation of the input. Optimizing the signals to obtain high-level features and then classify the
input. A majority voting algorithm has been utilized to improve the performance of the
algorithm. However, there still exist limitations in accuracy and processing time. The aim of
this research is to increase the classification accuracy and reduce the processing time using
deep learning methods. The modified Rectified Linear Unit activation function has been
developed. This improvement reduces the risk of gradient saturation when the model is trained
in order to improve the accuracy and convergence speed. Combining the loss function with
ridge regression will allow preserving and maintaining consistency of selected features that
will improve the classification accuracy. It also helps minimize the negative effect of bias in
the imbalance dataset and further enhances the classification accuracy. It also decreases size of
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weights in the network which helps to reduce the loss making the network simple and efficient

ing

eneralization. Therefore, the proposed solution has reduced the convergence time by 5

epochs on average. Apart from this, the proposed solution has improved the accuracy by
4.72% on average and decreased the processing time by 12.19 milliseconds on average

Appendix

Table 9 Annotations for abbreviations used

SCD Sudden Cardiac Death

ECG Electrocardiogram

CNN Convolution Neural Network
ReLU Rectified Linear Unit

MReLU Modified Rectified Linear Unit
RCN Recurrence Complex Network
References

10.

11.

12.

13.

14.

. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M (2017) Application of deep convolutional

neural network for automated detection of myocardial infarction using ECG signals. Information Sciences
415-416:190-198. https://doi.org/10.1016/.in5.2017.06.027

K. A. Alfarhan, M. Y. Mashor, A. Zakaria, and M. I. Omar, "Automated Electrocardiogram Signals Based
Risk Marker for Early Sudden Cardiac Death Prediction," Journal of Medical Imaging and Health
Informatics, vol. 8, no. 9, pp. 1769-1775, 2019, doi: https://doi.org/10.1166/jmihi.2018.25311769.

. Amezquita-Sanchez JP, Valtierra-Rodriguez M, Adeli H, Perez-Ramirez CA (2019) A Novel Wavelet

Transform-Homogeneity Model for Sudden Cardiac Death Prediction Using ECG Signals. Journal of
Medical Systems 42(10):176. https://doi.org/10.1007/s10916-018-1031-5

Chugh SS, Kelly KL, Titus JL (2000) Sudden cardiac death with apparently Normal heart. Circulation
102(6):649-654. https://doi.org/10.1161/01.CIR.102.6.649

. Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and Accurate Deep Network Learning by Exponential

Linear Units (ELUs), CoRR, vol. abs/1511.07289.

Dang H, Sun M, Zhang G, Qi X, Zhou X, Chang Q (2019) A novel deep arrhythmia-diagnosis network for
atrial fibrillation classification using electrocardiogram signals. IEEE Access 7:75577-75590. https://doi.
org/10.1109/ACCESS.2019.2918792

Delakis M, Garcia C (2008) Text Detection with Convolutional Neural Networks. pp. 290-294

Devi R, Tyagi HK, Kumar D (2019) A novel multi-class approach for early-stage prediction of sudden
cardiac death. Biocybernetics and Biomedical Engineering 39(3):586—598. https://doi.org/10.1016/].
bbe.2019.05.011

Ebrahimzadeh E, Manuchehri MS, Amoozegar S, Araabi BN, Soltanian-Zadeh H (2019) A time local
subset feature selection for prediction of sudden cardiac death from ECG signal. Medical & Biological
Engineering & Computing 56(7):1253—1270. https://doi.org/10.1007/s11517-017-1764-1

Ebrahimzadeh E et al (2019) An optimal strategy for prediction of sudden cardiac death through a
pioneering feature-selection approach from HRV signal. Computer Methods and Programs in
Biomedicine 169:19-36. https://doi.org/10.1016/j.cmpb.2018.12.001

Fujita H, Acharya UR, Sudarshan VK, Ghista DN, Sree SV, Eugene LWIJ, Koh JEW (2016) Sudden cardiac
death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl Soft Comput
43:510-519. https://doi.org/10.1016/j.as0c.2016.02.049

Greenspan H, Ginneken BV, Summers RM (2016) Guest editorial deep learning in medical imaging:
overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153-1159.
https://doi.org/10.1109/TM1.2016.2553401

Jang D et al (2019) Developing neural network models for early detection of cardiac arrest in emergency
department. Am J Emerg Med 38:43-49. https://doi.org/10.1016/j.ajem.2019.04.006

Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE
Trans Pattern Anal Mach Intell 35(1):221-231. https://doi.org/10.1109/TPAMI.2012.59

@ Springer


https://doi.org/10.1016/j.ins.2017.06.027
https://doi.org/10.1166/jmihi.2018.25311769
https://doi.org/10.1007/s10916-018-1031-5
https://doi.org/10.1161/01.CIR.102.6.649
https://doi.org/10.1109/ACCESS.2019.2918792
https://doi.org/10.1109/ACCESS.2019.2918792
https://doi.org/10.1016/j.bbe.2019.05.011
https://doi.org/10.1016/j.bbe.2019.05.011
https://doi.org/10.1007/s11517-017-1764-1
https://doi.org/10.1016/j.cmpb.2018.12.001
https://doi.org/10.1016/j.asoc.2016.02.049
https://doi.org/10.1109/TMI.2016.2553401
https://doi.org/10.1016/j.ajem.2019.04.006
https://doi.org/10.1109/TPAMI.2012.59

Multimedia Tools and Applications

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Korpusik M, Collins Z, Glass J (2017) Semantic mapping of natural language input to database entries via
Convolutional neural networks, Proceedings of 2017 IEEE international conference on acoustics, speech
and signal processing, pp. 5685-5689

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural
networks. Neural Information Processing Systems 25:01/01-01/90. https://doi.org/10.1145/3065386
Kwon J, Lee Y, Lee Y, Lee S, Park J (2018) An Algorithm Based on Deep Learning for Predicting In-
Hospital Cardiac Arrest. Journal of the American Heart Association 7(13):¢008678. https://doi.org/10.1161
/JAHA.118.008678

Kwon J, Jeon KH, Kim HM, Kim MJ, Lim S, Kim KH, Song PS, Park J, Choi RK, Oh BH (2019) Deep-
learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes. Resuscitation
139:84-91. https://doi.org/10.1016/j.resuscitation.2019.04.007

. Kwon J et al (2019) Artificial intelligence algorithm for predicting mortality of patients with acute heart

failure. PLOS ONE 14(7):¢0219302. https://doi.org/10.1371/journal.pone.0219302

Kwon J, Kim K, Jeon K, Park J (2019) Deep leaming for predicting in-hospital mortality among heart
disease patients based on echocardiography. Echocardiography 36(2):213-218. https://doi.org/10.1111
/echo.14220

Lai D, Zhang Y, Zhang X, Su Y, Heyat MBB (2019) An automated strategy for early risk identification of
sudden cardiac death by using machine learning approach on measurable arrhythmic risk markers. IEEE
Access 7:94701-94716. https://doi.org/10.1109/ACCESS.2019.2925847

Lecun Y, Bottou L, Bengio Y, Haffher P (1998) Gradient-based learning applied to document recognition.
Proc IEEE 86(11):2278-2324. https://doi.org/10.1109/5.726791

LiZ, Feng X, Wu Z, Yang C, Bai B, Yang Q (2019) Classification of atrial fibrillation recurrence based on a
convolution neural network with SVM architecture. IEEE Access 7:77849-77856. https://doi.org/10.1109
/ACCESS.2019.2920900

Parsi A, Loughlin DO, Glavin M, Jones E (2019) Prediction of sudden cardiac death in implantable
Cardioverter defibrillators: a review and comparative study of heart rate variability features. IEEE Rev
Biomed Eng:1-1. https://doi.org/10.1109/RBME.2019.2912313

Sannino G, De Pietro G (2018) A deep learning approach for ECG-based heartbeat classification for
arrhythmia detection. Future Generation Computer Systems 86:446—455. https://doi.org/10.1016/].
future.2018.03.057

SiY, Xu T, Jiang S (2018, 2018) Deep Convolutional Neural Network Based ECG Classification System
Using Information Fusion and One-Hot Encoding Techniques. Mathematical Problems in Engineering
(7354081):10. https://doi.org/10.1155/2018/7354081

Wei X, Li J, Zhang C, Liu M, Xiong P, Yuan X, Li Y, Lin F, Liu X (2019, 8057820) Atrial Fibrillation
Detection by the Combination of Recurrence Complex Network and Convolution Neural Network. Journal
of Probability and Statistics 2019:9. https://doi.org/10.1155/2019/8057820

Zhai X, Tin C (2018) Automated ECG classification using dual heartbeat coupling based on convolutional
neural network. IEEE Access 6:27465-27472. https://doi.org/10.1109/ACCESS.2018.2833841

Zhang M, Diao M, Guo L (2017) Convolutional neural networks for automatic cognitive radio waveform
recognition. IEEE Access 5:11074—11082. https://doi.org/10.1109/ACCESS.2017.2716191

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Rabin Kaspal' + Abeer Alsadoon’ « P. W. C. Prasad’ - Nedhal A. Al-Saiyd? - Tran Quoc
Vinh Nguyen? - Duong Thu Hang Pham?

1

2

3

School of Computing and Mathematics, Charles Sturt University, Sydney, Australia
Faculty of Information Technology, Applied Science Private University, Amman, Jordan

Faculty of Information Technology, The University of Da Nang — University of Science and Education, Da

Nang, Vietnam

@ Springer


https://doi.org/10.1145/3065386
https://doi.org/10.1161/JAHA.118.008678
https://doi.org/10.1161/JAHA.118.008678
https://doi.org/10.1016/j.resuscitation.2019.04.007
https://doi.org/10.1371/journal.pone.0219302
https://doi.org/10.1111/echo.14220
https://doi.org/10.1111/echo.14220
https://doi.org/10.1109/ACCESS.2019.2925847
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ACCESS.2019.2920900
https://doi.org/10.1109/ACCESS.2019.2920900
https://doi.org/10.1109/RBME.2019.2912313
https://doi.org/10.1016/j.future.2018.03.057
https://doi.org/10.1016/j.future.2018.03.057
https://doi.org/10.1155/2018/7354081
https://doi.org/10.1155/2019/8057820
https://doi.org/10.1109/ACCESS.2018.2833841
https://doi.org/10.1109/ACCESS.2017.2716191

	A novel approach for early prediction of sudden cardiac death (SCD) using hybrid deep learning
	Abstract
	Introduction
	Literature review
	State of art
	Data preprocessing
	Low level feature extraction with recurrence complex network
	Classification using CNN
	Majority voting


	Proposed solution
	Preprocessing
	CNN for feature extraction and classification
	Proposed equations
	Area of improvement
	Why modified loss function (equation(IEq4)...


	Results and discussion
	Conclusion
	Appendix
	References


