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Abstract
Histogram Equalization (HE) is one of the most popular techniques for this purpose. Most 
histogram equalization techniques, including Contrast Limited Adaptive Histogram Equali-
zation (CLAHE) and Local Contrast Modification CLAHE (LCM CLAHE), use a fixed 
block size technique for feature enhancement. Due to this, all these state of art techniques 
are used to give poor denoising performance after feature enhancement. In this paper, a 
deep learning based new approach, namely Dynamic Block Size Technique (DBST), 
is used to improve image denoising. In this approach, we use the Categorical Subjective 
Image Quality (CSIQ) image set, an image database generally used for preprocessing 
of images. The results obtained from experiments show better performance for different 
important parameters (used by state of art techniques). The work is novel in the preproc-
essing of images because in this work, we classify the image depending upon the image 
features for selecting appropriate block sizes dynamically during preprocessing. Proposed 
work outperforms in terms of PSNR, MSE, NRMSE, SSIM and SYNTROPY. The average 
respective values are 18.92, 863.86, 0.25, 0.81 and 19.35 and are better in comparison of 
CLAHE and LCM CLAHE.

Keywords Deep learning · Histogram Equalization · DBST LCM CLAHE · Image 
preprocessing · Noise · Denoising

1 Introduction

Images help in creating thoughts, senses, and responses in our society. May it be a 
video or an image, both speak volumes of information while dispersing fast perceiv-
ing and understandings compared to text data. Thereby, they acts as essential tools for 
outspreading towards society. Further, images are also used in areas such as medical 
diagnosis, digital image forensic labs, to name a few. However, advancing editing tools 
and technologies are available for being supported by the cloud [2] to everyone, the 
credibility, and genuineness of images used in deferent applications are extremely prob-
lematic. Nowadays, there are numerous techniques for checking out the originalities of 
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an image or a video such as forgery detection, feature extraction, clustering and clas-
sifications, digital forensics, medical image processing, and so on. All these techniques 
require some preprocessing over images before applying feature enhancement tech-
niques to achieve better performance. Preprocessing commonly refers to those image 
operations when abstraction seems to be at its extreme moderate level. The process aims 
at improving image data and essentially focusing on further processing while avoiding 
suppression of distortions or enhancements of certain features of image. [39].

Given the above, we proposed a new preprocessing technique for receiving quality 
image reconstruction from available original image. In a real world scenario, this pre-
processing technique may be helpful whenever its is necessary to critically analyze an 
image similar to a medical image processing, image forensics, and satellite image data 
analysis.

Histogram equalization (HE) is essentially a preferential technique for preprocessing 
and enhancing image features. It is a global preprocessing technique. Further, it enhances 
the contrast of the image to analyze, but it sometimes suffer from over contrast enhance-
ment which, in turn, degrades the quality of the image. This degradation happens by over 
enhancement.

Histogram equalization is a method in image processing of contrast adjustment using 
the images histogram.

It is a technique used in image processing to enhance the contrast of an image by redis-
tributing its intensity values. Histogram equalization works by transforming the image’s 
histogram so that the intensities are spread out over a wider range. In many images, the 
usable data is often represented by closely spaced contrast values, which can result in a low 
overall contrast. Histogram equalization addresses this issue by stretching the intensity val-
ues across the histogram, making the distribution more uniform. This process effectively 
increases the global contrast, making the darker regions darker and the brighter regions 
brighter. By spreading out the intensity values, areas of the image that initially had lower 
local contrast can gain a higher contrast. This can lead to improved visual quality, making 
details more distinguishable and enhancing overall image appearance. Histogram equali-
zation is a widely used technique in image processing and computer vision applications. 
However, it’s worth noting that it may not always produce the desired results, especially 
when applied to images with specific characteristics or when preserving the original image 
content is crucial. Various modifications and advanced algorithms have been developed to 
address these limitations and provide more sophisticated contrast enhancement methods. 
[8]).

Adaptive Histogram Equalization (AHE) is an alternative contrast enhancing technique 
for overcoming problems in global preprocessing such as HE for natural images, medical 
images, and other non visual images. Adaptive Histogram Equalization (AHE) is indeed 
an effective contrast enhancement method for a wide range of images, including natural 
images and medical images. It is particularly well suited for initially nonvisual images, 
such as those obtained through medical imaging techniques. AHE operates automatically 
and effectively utilizes all the available contrast in the image data, making it a competitor 
to the standard method of contrast enhancement known as interactive intensity windowing.

In medical imaging, AHE’s automatic operation and ability to present all available con-
trast in the image data make it a compelling alternative to interactive intensity windowing. 
Observer studies have indicated that for certain image classes, AHE provides local contrast 
presentation without significant disadvantages in any contrast range compared to intensity 
windowing. AHE offers advantages such as automatic and reproducible operation, as well 
as the convenience of requiring the observer to examine only a single image [29].
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Block based histogram equalization is a variant of histogram equalization that operates 
on image blocks or patches instead of the entire image. It aims to improve local contrast 
enhancement by dividing the image into smaller regions and applying histogram equali-
zation independently to each block. In block-based histogram equalization, the image is 
divided into non-overlapping blocks of equal size. For each block, a local histogram is 
computed, representing the distribution of pixel intensities within that block. The histo-
gram equalization algorithm is then applied to each block individually, stretching the 
intensity values within the local histogram to enhance local contrast. By processing image 
blocks independently, block based histogram equalization can adapt to local variations in 
contrast and better preserve details within each block. This approach is particularly useful 
when an image contains regions with significantly different contrast levels or when global 
histogram equalization may lead to undesirable effects such as over-enhancement or loss 
of important details. Block-based histogram equalization can be implemented using vari-
ous strategies, such as non overlapping square blocks or more sophisticated methods that 
consider image content and adaptive block sizes. The choice of block size and other param-
eters depends on the specific image characteristics and the desired enhancement outcome. 
It’s worth noting that while block-based histogram equalization can improve local contrast, 
it may introduce block artifacts along the boundaries of the blocks, especially when the 
blocks’ sizes are noticeable. Researchers have developed advanced techniques, such as 
contrast limited adaptive histogram equalization (CLAHE), to mitigate these artifacts and 
achieve more visually pleasing results. Overall, block-based histogram equalization pro-
vides a localized approach to contrast enhancement, enhancing details and preserving local 
contrast variations within an image [36, 45].

Deep learning has revolutionized various aspects of image processing due to its ability 
to automatically learn and extract complex features from large amounts of data. Here are 
some common applications of deep learning in image processing: for example, Image Clas-
sification, Object Detection, Image Segmentation, Image Super-Resolution, Image Denois-
ing, Image Style Transfer, Image Captioning.

These are just a few examples of how deep learning is used in image processing. Deep 
learning techniques continue to advance the field, enabling more accurate and efficient 
solutions to a wide range o Deep learning techniques have gained significant attention in 
the field of image denoising. However, there are notable variations among the different 
types of deep learning methods employed for this purpose [12, 31, 42].

1.1  Motivation

These findings highlight the potential benefits of AHE in medical imaging and other 
domains where contrast enhancement is crucial. However, it’s important to note that the 
choice of contrast enhancement technique should consider the specific characteristics of 
the images, the desired outcome, and any domain specific requirements. Different methods 
may be more appropriate in certain scenarios, and it’s always recommended to evaluate 
and compare different techniques to determine the most suitable approach for a particular 
application. The primary method used in histogram equalization is that it maps each pixel 
of a given image. This mapping is based on nearby pixels around the pixel (known as its 
contextual region). Generally, they use interpolative mapping. The value is generated by 
applying four mappings (HE, AHE, CLAHE, and LCM CLAHE). In these mappings, the 
image is considered mosaic and grouped into a grid called equivalent contextual region 
(ECR) [29], even if the primary form of AHE is non interpolated. Still, it suffer from over 
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enhancement of noise and slow speed. To overcome the problem of primary AHE, later on, 
the author suggested Interpolated AHE with contextual regions [29].

Furthermore, all these four types of HE use fixed block adaptive processing. CLAHE 
is a method shown to help assign displayed intensity levels in medical images (S.M. Pizer 
et  al. n.d.). AHE related noise issues can possibly be minimized by restricting contrast 
intensifications in variable areas that shall be distinguished by histogram peaks in associa-
tion with provisional zones (which implies numerous pixels to fall into similar grayscale). 
CLAHE has gray level assignment scheme related slopes that are restricted to limited pixel 
quantities in each bin alternatively associated with local histograms. Clipping of histogram 
and pixels equitably admeasures the entire histogram as well as keep its count equivalent. 
[58]. LCM CLAHE, on the other hand, depends on the user defined fixed sized block and 
selection feature for checking the quality of output image done in a repetitive methodology 
[38]. Some reviews on deep learning [14] for denoising the images exist, but actual imple-
mentation is minimal. Deep learning for denoising is also available for seismic data [53]. 
CNN model is used to denoise the Image [11], but the histogram equalization technique is 
equally important in this process [48]. An overview of CNN to denoise the image is also 
available in many research papers [42], but the fusion of HE and deep learning is rarely 
available.

In the presented work, it is observed that most HE techniques do not provide better per-
formance on account of fixed block techniques in contrast enhancing processes. We have 
proposed a new technique to get a better denoised image by optimizing block size in the 
HE technique to overcome this problem. For this purpose, we have modified, particularly, 
LCM CLAHE. In this method block evaluation is performed by using PSNR to evaluate 
the reconstructed images.

1.2  Contribution

In this paper, we developed a moderated LCM CLAHE [35, 36] for optimizing the size 
of blocks using a dynamic block size before performing subsequent operations. There are 
a variety of color images that have different categories of noises that may include images 
with highly poor quality, ultrasonic, and realistic achieved from an unreliable and insecure 
environment [9]. There are so many filtering methods for filtering noise from an image 
signal. In the proposed work, we developed a new method for enhancing image quality by 
trimming down the noise from images before applying any filtering technique. Absolute 
Mean Brightness Error (AMBE), Entropy, and Peak Signal to Noise Ratio (PSNR) are the 
most favoured frameworks for estimating the HE quality [4]. We have taken PSNR, MSE, 
NRMSE, SSIM, and ENTROPY to evaluate our proposed method. These parameters are 
discussed in detail in Section 4.1. To experiment with our method, we have taken the CSIQ 
Image Database [3], which contains 30 original images of non monotonous features and 
has deferent variants of noise, distortion, and compression [3]. This database contains hun-
dreds of images to experiment with in terms of preprocessing and noise reduction.

We have organized the rest of our paper in six sections. Section 2 reviews existing state 
of art techniques. Section  3 discusses a strategy proposed for improving LCM CLAHE 
with the help of deep learning based DBST. Section 4 theorizes the attributes regarding 
the strategy proposed in Section 3 and later about its associated algorithms. Section 5 dis-
cusses implementations, experimentations, and results of the proposed strategy. Finally, 
Section 6 concludes with our future works and plans regarding this particular subject and 
methodology.
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2  Related work

In one of the significant researches in this area, [35, 36] proposed a method to enhance 
the features of finger print images with dynamic block size. However, they did not dis-
cuss the types of images for which it will give better performance. Moreover, they also 
did not highlight any relationship between block size and the feature of the object image. 
Furthermore, they did not evaluate the effect of type of image on block size selection, 
that is why, whenever different images except for those with finger prints for feature 
enhancing, it does not provide satisfactory results. [8, 10] have discussed the signifi-
cances of enhancing images and the proper use of histogram. [25] proposed Fuzzy logic 
based histogram equalization (FHE) where they compare the proposed method with the 
noisy images. Hence, it is not clear that this method may be helpful in case of noisy 
images or not.

In the same line of research, another team of the researcher [27, 41] initiated LCM 
CLAHE depending upon user defined window sizes of block and selection features 
for examining the standard of the output image in a continuous repetitive manner [18] 
but excluding the parameters of PSNR for later hikes. [34] differentiated both global 
and local contrast enhancement techniques in their work. [43] represented an approach 
for assembling a 2 D histogram by dynamic window size selection. With this research 
work, after converting a user defined block, the active size and position window are 
implemented for selecting block groups for further operations. [15] proposed a contrast 
enhancement technique using weighted transformation functions. The research showed 
promising results by providing better performance than certain non block techniques, 
but they did not discriminate it for those block based techniques. In several research 
papers [17, 55], key point based techniques conserve brightness that are later initiated 
for enhancing contrasts with the help of histogram equalization. This same histogram 
equalization is again made in use by [16] for changing the feature enhancing concept 
entirely depending on Just Noticeable Deference (JND) technique and overcoming 
shortcomings eventuated within HE. The importance of image preprocessing is actively 
discussed by [2] for investigation better copy move forgery and regarding it as as one of 
most important techniques of histogram. [54] organized a histogram for de noising the 
images between over enhancing and over smoothening textures and controlling its qual-
ity at the same time. Researchers such as [40, 44, 50] effectively utilized HE blocks in 
various propositions for constructive feature enhancements and de noising of images.

In continuation of related work study [26] have surveyed the SOTA for brain MRI 
denoising techniques in which researcher have mentioned that among different hybrid 
techniques of image denoising combination of Gaussian based undecimated NLM and 
Principal Component Analysis (UNLM-PCA) is more promising. For better understand-
ing of ML techniques in the area of classification and text sequencing and denoising 
[21, 37] have mentioned the use of recurrent network and NN.

As discussed above, HE blocks do not consider image features while implementing 
themselves in user defined dynamic block sizes that somehow are indistinctive about 
maximum feature enhancements because of low performing PSNR. The present paper 
introduces a new LCM CLAHE that depends on DBST and de noises the color images 
with the help of a deep learning approach.
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2.1  Assessment of related work

S.No. Reference Methods Cons and Pros

1 [38] Modified Contrast Limited Adaptive His-
togram Equalization depends on Local 
Contrast Enhancement

Cons: Image variants remain unchecked.
Pros: Better contrast enhancement and 

information preservation
2 [4] Image quality measuring method using 

HE based contrast enhancement tech-
niques

Cons: Not suitable for real time processing 
due to more time complexity.

Pros: Good correlation with human visual 
perception (HVP)

3 [25] Fuzzy Logic Based Histogram Equaliza-
tion for Image Contrast Enhancement

Cons: Suitable for only consumer elec-
tronic product

Pros: The visual enhancement results of 
proposed FHE algorithm were better

4 [17] Contrast Enhancement for Cephalometric 
Images using Wavelet based Modified 
Adaptive Histogram Equalization

Cons: The time complexity of wavelet-
based methods are remarkably high

Pros: Best contrast enhancement between 
skeletal structure and the background 
and also between the soft tissue and 
background.

5 [48] Histogram equalization combined with 
dark detail enhancement algorithm

Cons: Image evaluation and selecting 
procedures are possible only after using 
image information entropy metrics.

Pros: Makes it easier to observe the metal 
corrosion area and reduces the difficulty 
in carrying out research on metal prod-
ucts affected by corrosion

6 [7]) multilevel edge features a guided network Cons: Not Effective for high noise images
Pros: MLEFGN achieves competitive 

results on AWGN and real noisy image 
denoising tasks

7 [21] Unpair deep learning methods Cons: Only investigation of denoising 
methods

Pros: Uses a lightweight network and 
achieve the best denoising performance.

8 [5]) wavelet transform Cons: Investigated only on UAV videos
Pros: From manual identifications. The 

results showed that the extracted trajecto-
ries were reasonably close to the ground 
truth data.

9 [47] 3 D quasi recurrent neural network for 
hyperspectral Image (HSI) denoising

Cons: Investigated only on hyperspectral 
Image.

Pros: Achieve better performance and 
faster speed

10 [51] Regularization deep cascade broad learn-
ing system (DCBLS) architecture

Cons: Do not deal with blind Image.
Pros: Also works with natural images.

11 [57]) Generative adversarial network (GAN) Cons: Performed on self-created data set
Pros:
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S.No. Reference Methods Cons and Pros

12 [13] Flexible Hysteresis smoothing (FHS) Cons: Relatively independent of noise 
distribution but not cover a wide range of 
type of noises and need to modify some 
parameter for adoptability

Pros: method can directly learn the physi-
cal parameters from data and recover 
clean images from hazy ones in an end-
to-end manner

13 [33] A hybrid model of learning based and 
reconstruction based method

Cons: The method is slow in computation
Pros: Can exploit both deep CNN and the 

knowledge of the observation model
14 [6] ML techniques to predict the threshold of 

VisuShrink de-noising technique
Cons: self-estimation the visushrink 

threshold is not done
Pros: Efficient framework in terms of dif-

ferent noises
15 [46] Unsupervised Random Denoising Method Cons: Only limited to Seismic data

Pros: Can provide some performance 
guaranties and an insight into the denois-
ing system

16 [58] Convolutional Sparse Coding from a 
Multi-Scale Perspective

Cons: It is necessary to investigate the 
effect of scale number on the denoising 
performance.

Pros: Proposed MCSC Net significantly 
advances the denoising performance, 
with an average PSNR improvement of 
0.32 dB over the state-of-the-art (SOTA) 
CSC based method

17 [24] Similarity-Informed Self-Learning Cons: Not applied on other type of images, 
only limited to seismic images.

Pros: effective and robust for seismic 
image denoising

18 [23] noise-sample to noise-sample (NS2NS) Cons: NS2NS cannot accurately recover 
the original ground truth unless we are 
able to evaluate the mean value of the 
noise in advance

Pros: Uses original noisy images to con-
struct the training dataset

19 [20] Gradient Domain Guided Filtering and 
NSST

Cons: Effect of NSST denoising alone is 
not obvious.

Pros: Restore the natural appearance of 
the image

3  Proposed method

This particular section discussed briefly about the theories of HE initiated strategy 
for denoising the images. Figures 1, 2 and 3 features the category variants of images 
and also represents the operation flow charts of CLAHE and LCM CLAHE. Figure 4, 
on the other hand, features graphic presentation of our initiated strategy following its 
details in below subsections.
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3.1  Selection of enhancement parameters

Image parameters are systematically enhanced at this particular stage on the basis of 
contrast and brightness. On exemplification, contrast is regarded as the enhancing 
parameter where its major difference is between the brightness and the color that dis-
tinctively differentiates the image of an object or the actual physical object itself. In 
similar words, the contrast in the real time and real world is identified whenever a par-
ticular color or brightness of one object is compared with the same features of another 
object. Contrast has many definitions but are defined differently in each different sit-
uation. Therefore, luminance contrast is exemplified here but having its formulas get 
applied to other physical quantities. The definitions of a contrast is generally repre-
sented in the form of a ratio where luminance deference is usually compared to average 
luminance. Mathematically contrast can be defined as follows

Fig. 1  Categories of images taken for the experiments

Fig. 2  Operational flow chart of 
CLAHE
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Equation 1 represent the contrast where c is contrast, ld and la are luminance defer-
ence and average luminance respectively.

Image processing methods substantially require contrast enhancements for process-
ing valuable scientific images such as images taken from either a satellite or during 
an X-ray, and also for enhancing the details for better effect. Precisely, the histogram 

(1)c = ld∕la

Fig. 3  Operational flow chart of 
LCM CLAHE

Fig. 4  Operational flow chart of 
proposed DBST LCM CLAHE
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equalization stands out to be one of the best and the mainstream methods for enhanc-
ing image contrast.

Figure 1 shows 30 sample images of the image set CSIQ that is used to experiment. 
These images are various images in terms of features like color distribution, contrast, 
brightness, and noise. Images are numbered from top left corner to right then row wise 
till bottom left corner as image0, image1, image3… to image29.

Figure  2 shows the process of CLAHE. In this histogram equalization procedure, 
six key steps start from selecting the CLAHE parameter for the input image and end 
with the result. Image is processed in  2nd step then in  3rd step contrast is locally con-
trolled, and modified further gray level mapping is done then after gray level map-
ping is interpolated to assemble the image before producing the output. Figure 3 has a 
quality check step used to control the modification in local contrast, and accordingly, 
CLHAE parameters are adjusted.

Figure  4 shows the process of the proposed method in which selection block size 
that is one of the parameters for HE is based on the feature of the image, and it is 
selected dynamically (i.e., at run time)

3.2  Local contrast modification

Local contrast modification is the second important step where it itself gets imple-
mented on the input image. The function [38]of this step is designed to abstract data 
both locally and globally following the production of the enhanced images. Under 
transformation functions, we provide an expression for both the local mean and the 
standard deviation for the user defined local window of size n * n.

On calculating the local mean,’ m’, and standard deviation σ from Eqs. 2 and 3, all 
the user defined windows produce the average of these given values for achieving finer 
details of an image with the help of Eqs. 4 and 5. Finally, image with finer details act 
as an input and modify CLAHE, for using DBST and optimizing the Image PSNR dur-
ing HE.

Here, f and g are input images whereas LCM stands for enhanced image, respec-
tively. E is the enhancement parameter, M and m are global respectively.

(2)m(x, y) =
1

n ∗ n

n−1
∑

x=0

n−1
∑

y=0

f (x, y)

(3)� =

√

√

√

√
1

n ∗ n

n−1
∑

x=0

n−1
∑

y=0

(f (x, y) − m(x, y))2

(4)T =
E ∗ M

�

(5)g = T ∗ (f − m) + m



11027Multimedia Tools and Applications (2024) 83:11017–11042 

1 3

3.3  Selection of block size based on the feature of an image

Our concerned research work found a fascinating factor regarding the unique relation-
ship between block size used in the HE technique and features of an input image that may 

Fig. 5  A general CNN Model to classify the images [32]

Fig. 6  Effect of block size 
(x-axis) over PSNR (y-axis) in 
HE



11028 Multimedia Tools and Applications (2024) 83:11017–11042

1 3

improve PSNR after preprocessing. The relationship is shown in Fig. 5, which is divided 
into two parts, Fig. 6. a and b. Figure 6. a depicts the categories of images taken for the 
experiment, and Fig. 6. b represents how a uniquely built block size produces maximum 
capability value of PSNR in each type of image. The graph in this figure represents block 
size in the x-axis and PSNR in the y-axis. Reconstructed images qualities are effectively 
measured using PSNR. Which means, here, the signal acts as an original data and the noise 
acts as that particular error found during the resconstruction of an image. PSNR is corre-
sponding to the human perception of reconstruction quality and with its highest impact, it 
allows us to take this parameter for optimizing block sized LCM CLAHE.

4  1Extracting the feature using CNN

Several objects and colors available in any image are the key factors in selecting the block 
size for DBST LCM CLAHE.

Figure 5 shows the CNN model to classify the object based on the feature. This model is 
used to classify the image into the category of  2k where k is an integer number and further 
"i" is selected by equation number 6. Then the model is trained for the value of I and k, and 
new image block size is predicted ask for input i.

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric in image processing to eval-
uate the quality of reconstructed or compressed images. PSNR has important role in the 
measurement of quantitative image quality, quality control in image compression, stand-
ardized evaluation, sensitivity to perceptual important distortion and many more.

In Eq.  7, R is the maximum fluctuation in the input image data type, whereas MSE 
stands for Mean Square Error between original and reconstructed images. Equation 6 pro-
vides a suitable value of ’i’ for which PSNR stays maximum and ’i’ remains block size 
as i*i pixels for histogram equalization. Therefore, the value of’ i’ stays as an input to 
CLAHE as the block size allowing Eq. 7 to show the PSNR value.

Figure 6 shows the block size effect over PSNR value during the histogram equaliza-
tion. Figure 6.a shows 3 sample images to calculate the HE for different block sizes, and 
6.b shows the relation graph between PSNR and block size. The x-axis of Fig. 6.b shows 
block size, whereas the y-axis shows the PSNR. It is clear from Fig. 6.b that a single value 
of block size PSNR is maximum for the image, but this single value of block size is not the 
same for different images.

4.1  Applying proposed CLAHE

On calculating ’i’ value, CLAHE get implemented on the object image with block size ’i’. 
This particular method is outlined accurately for non monotonous noisy images. Figure 2 
shows all the steps involved in CLAHE.

(6)i = max

(

n − 1

i = 0
PSNRi

)

(7)PSNR = 10 ∗ log10(
R2

MSE
)
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4.2  Performance measurement

The working performance of our initiated strategy is measured critically from image qual-
ity parameters such as Peak to Signal Noise Ratio (PSNR), Mean Square Error (MSE), 
Normalize Root Mean Square Error (NRMSE), Structure Similarity Index Map (SSIM), 
and Entropy.

Peak Signal-to-Noise Ratio (PSNR) is a measurement used to assess the quality of a 
reconstructed or compressed signal by comparing it to the original signal. It quantifies the 
ratio between the maximum possible power of a signal and the power of the noise that 
affects it. Higher PSNR values indicate better quality and less distortion.

Mean Square Error (MSE) is a common metric used to quantify the average squared 
difference between the values of the original signal and the reconstructed or compressed 
signal. It provides a measure of the overall distortion or error between the two signals, with 
lower MSE values indicating better fidelity.

Normalized Root Mean Square Error (NRMSE) is an extension of MSE that scales the 
error metric by the range of the original signal. It provides a normalized measure of the 
error, making it easier to compare across different signals or datasets.

Structural Similarity Index Map (SSIM) is an image quality assessment method that 
measures the similarity between two images based on luminance, contrast, and structural 
information. It evaluates the perceptual quality of the reconstructed or compressed image 
by considering both local and global image characteristics. Higher SSIM values indicate 
better image similarity and quality.

Entropy is a measure of the amount of information or randomness in a signal or data. 
It quantifies the average amount of uncertainty or surprise in the values of the signal. In 
image processing, entropy can be used to assess the complexity or diversity of pixel values, 
with higher entropy values indicating greater complexity or randomness in the image.

The higher the value of PSNR, SSIM, Entropy, the lower is the value of MSE and 
NRMSE regarding better image quality. The PSNR calculation is done with the help of 
Eq. 7, and Eqs. 8-11 offer the formulas for the remaining parameter:

In Eqs. 7 and 8,  I1 and  I2 are the original and reconstructed images of size M * N.

In Eq. 10, μx is the average of x , μy is average of y, σx2 is the variance of x, σy2 is 
the variance of y, σxy is the covariance of x and y, c1 =(k1L)2, and c2 =(k2L)2 are two 
variables for sustaining the division with a weak denominator, L. Here, L is the dynamic 
range of pixel values (2bitperpixel -1) where, k1=0.01 and k2=0.03 by default. The 
SSIM indulges with symmetry conditions, i.e., SSIM(x,y)=SSIM(y,x), where x and y 
stand for equivalently proportional windows from primary and reconstructed images, 
respectively. Image entropy aggregately represents an image business which includes 

(8)MSE =

∑

MN

[I1(m, n) − I2(m, n)]
2

M ∗ N

(9)NRMSE =
RMSE

I1 − I2

(10)SSIM(x, y) =
(2�x�y + c1)(2�xy + c2)

(�x
2 + �y

2 + c1)(�x
2 + �y

2 + c2)
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certain data proportions that must be encoded by a reconstructive algorithm. Entropy 
must be consistent for any image in case of reconstruction. Shannon Entropy is very 
suitable for estimating the data proportions in a given image.

In Eq. 11,  pi is the probability that the difference between two adjacent pixels equals 
i.

4.3  The algorithm

DBST LCM CLAHE is an initiated algorithm that is renamed due to its uses that deal 
with dynamic block sizes that do not stabilize for image variants but are dependent on 
image categories such as feature distribution and noises. Our proposed strategy repre-
sents the algorithm in following steps:

(11)SENTROPYH(X) = −

n−1
∑

i=0

(

pilog2pi
)

Algorithm 1:  DBST LCM CLAHE
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5  Experiment result and discussion

Our initiated strategy is implemented in Python 3.6 and in Python image packages such 
as skimage, OpenCV, and other science packages. Ubuntu 16 is operated on a corei3 
system as a hardware platform, 8 GB RAM and 500 GB HDD.

Figure 7 shows the performance of CLAHE for different categories of images. Here, 
many pixels vs. contrast graphs are presented only for 2 out of 8 images taken for simu-
lation of the graphical representation of results. Images are shown in grayscale values, 

Fig. 7  Performance of CLAHE over a different category of Images

Fig. 8  Performance of LCM CLAHE over a different category of images
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and graphs have the number of pixels in the y-axis containing a particular value of con-
trast shown in the x-axis.

Figure  8 shows the performance of LCM CLAHE for different categories of images. 
Here, the number of pixel vs. contrast graphs is presented only for 2 out of 8 images taken 
for simulation of graphical representation of results. Images are shown in grayscale values, 
and the graph has the number of pixels in the y-axis containing a particular value of con-
trast shown in the x-axis.

Figure 9 represents the functioning capabilities of the initiated methodology in different 
categories of images. Here number of pixel vs contrast graph is presented only for 2 images 
out of 8 images taken for simulation of graphical representation of results. Images are 
shown in grayscale values, and the graph has the number of pixels in the y-axis contain-
ing a particular value of contrast shown in the x-axis. In proposed methods, it is promising 
that contrast distribution for pixel is smooth and resultant images are more promising than 
state of art techniques. The following figure (Fig. no. 10) shows five graphs, graph a, graph 
b, graph c, graph d, and graph e. Graph a shows the performance of all three methods, b 
states of art techniques, and one of our proposed methods. In this representation, the y-axis 
represents the PSNR value, and the x-axis represents the respective image taken for the 
experiment. There are three lines inside the graph red, blue, and green; the red line shows 
the proposed method, the green line shows the LCM CLAHE, and the blue line shows the 
CLAHE. The graph shows that our proposed method is more promising than the state of 
the art technique for PSNR performance. Further graph b, c, d, e shows the performance of 
MSE, NRMSE, ENTROPY, and SSIM. All graphs show the promising performance of the 
proposed method.

5.1  Comparing with existing techniques

In this section, we compare the state of the art methods with our proposed method regard-
ing PSNR, MSE, NRMSE, SSIM, and SEntropy. The comparison results are shown 
in Tables  1, 2, 3, 4, and 5, which prove promising improvements. We have used three 

Fig. 9  Performance of Proposed DBST LCM CLAHE over different category of images
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generalized categories of images as shown in Figure 1. Figures 7, 8, and 9, and 10 show 
potentialities of CLAHE, LCM CLAHE, and the advanced form of DBST LCM CLAHE. 
Figure  10 shows potentialities of CLAHE, LCM CLAHE, DNN, GradNet and SMNET 
with the advanced form of DBST LCM CLAHE.

5.2  Comparing with existing techniques

Throughout this section, the state of the art methods are analogized with our initiated strat-
egies regarding PSNR, MSE, NRMSE, SSIM, and Entropy. The comparitive results are 
shown in Tables 1, 2, 3, 4, 5, and 6 which prove promising improvements.

Table 1  PSNR comparison table

PSNR Values

Image No. CLAHE LCM CLAHE DNN GradNet SMNET Proposed Method

Image 0 16.03 10.538 17.301 17.411 17.411 17.411
Image 1 19.874 13.098 19.312 20.512 18.512 20.512
Image 2 19.345 19.345 19.316 19.316 19.316 19.316
Image 3 15.765 12.193 17.167 17.167 17.167 17.167
Image 4 19.237 13.725 19.725 19.725 19.725 19.725
Image 5 19.761 13.732 19.105 19.105 19.105 19.105
Image 6 17.449 17.449 19.73 19.73 19.73 19.73
Image 7 16.751 13.555 17.649 17.649 17.649 17.649
Image 8 16.03 10.538 17.211 17.411 17.411 17.411
Image 9 19.874 13.098 17.211 20.512 17.512 20.512
Image 10 19.345 19.345 19.316 19.316 19.316 19.316
Image 11 15.765 12.193 17.167 17.167 17.167 17.167
Image 12 19.237 13.725 19.725 17.725 19.725 19.725
Image 13 19.761 13.732 19.105 17.105 19.105 19.105
Image 14 17.449 17.449 19.73 18.73 17.73 19.73
Image 15 16.751 13.555 17.649 17.649 17.649 17.649
Image 16 16.03 10.538 17.411 17.411 17.411 17.411
Image 17 19.874 13.098 19.122 18.512 17.512 20.512
Image 18 16.03 10.538 17.111 17.411 17.411 17.411
Image 19 19.874 13.098 17.649 18.512 17.512 20.512
Image 20 19.345 19.345 17.116 19.316 17.316 19.316
Image 21 15.765 12.193 17.167 17.167 17.167 17.167
Image 22 19.237 13.725 19.725 18.125 19.725 19.725
Image 23 19.761 13.732 17.105 18.105 19.105 19.105
Image 24 17.449 17.449 19.73 17.73 19.73 19.73
Image 25 16.751 13.555 17.649 17.649 17.649 17.649
Image 26 19.345 19.345 18.316 17.316 17.316 19.316
Image 27 19.237 13.725 16.725 16.725 17.625 19.725
Image 28 19.761 13.732 17.105 17.105 17.605 19.105
Image 29 17.449 17.449 19.73 17.73 17.63 19.73
Average PSNR 18.14 14.29 18.27 18.17 18.16 18.92
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A quick start on initiated approaches necessitated distinctive refinements with PSNR so that 
the performance graphs (as shown in Fig. 10) provide comprehensive results and from com-
paring Tables 1, 2, 3, 4, 5 and 6, the proposed method may show satisfactory improvements.

6  Conclusion and future work

Our work has introduced a new HE method using deep learning based DBST LCM CLAHE 
to denoise an image depending on CLAHE’s dynamic block size selection method. Further, 
we have taken the image database having three categories of images with different types of 

Table 2  MSE comparison table

MSE Values

Image No. CLAHE LCM CLAHE DNN GradNet SMNET Proposed Method

Image 0 1622.057 5745.439 1180.358 1180.358 1180.358 1180.358
Image 1 669.438 3186.24 577.919 577.919 577.919 577.919
Image 2 756.098 756.098 761.082 761.082 761.082 761.082
Image 3 1724.027 3924.832 1249.628 1249.628 1249.628 1249.628
Image 4 775.175 3024.064 693.101 693.101 693.101 693.101
Image 5 686.963 2753.675 799.019 799.019 799.019 799.019
Image 6 1168.89 1169.89 691.939 691.939 691.939 691.939
Image 7 1373.841 2868.538 1117.397 1117.397 1117.397 1117.397
Image 8 1622.057 5745.439 1180.158 1180.358 1180.358 1180.358
Image 9 669.438 3186.24 577.919 577.919 577.919 577.919
Image 10 756.098 756.098 761.082 761.082 761.082 761.082
Image 11 775.175 3024.064 693.101 693.101 693.101 693.101
Image 12 686.963 2753.675 799.019 799.019 799.019 799.019
Image 13 1168.89 1169.89 691.939 691.939 621.939 691.939
Image 14 1373.841 2868.538 1117.397 1117.397 1117.397 1117.397
Image 15 1622.057 5745.439 1180.108 1180.358 1180.358 1180.358
Image 16 669.438 3186.24 607.119 557.719 697.919 577.919
Image 17 756.098 756.098 761.082 861.082 861.082 761.082
Image 18 1724.027 3924.832 1149.628 1249.508 1249.528 1249.628
Image 19 775.175 3024.064 693.101 693.101 693.501 693.101
Image 20 1622.057 5745.439 1280.358 1180.308 1180.358 1180.358
Image 21 669.438 3186.24 577.119 677.919 577.119 577.919
Image 22 756.098 756.098 761.082 761.082 761.082 761.082
Image 23 1724.027 3924.832 1249.628 1149.608 1249.028 1249.628
Image 24 775.175 3024.064 733.01 693.101 693.901 693.101
Image 25 686.963 2753.675 799.019 799.019 799.019 799.019
Image 26 1168.89 1169.89 691.39 691.539 691.739 691.939
Image 27 775.175 3024.064 713.01 673.101 693.001 693.101
Image 28 686.963 2753.675 799.019 799.019 800.019 799.019
Image 29 1373.841 2868.538 1117.07 1117.197 1117.327 1117.397
Average MSE 1053.81 2959.20 866.76 865.83 868.87 863.86
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noises. The structural strategy initiated in this paper is analysed using parameter variants 
of images such as MSE, NRMSE, and SSIM as well as preeminently enhancing those with 
rich featured noisy images. Henceforward, the future research may include an automatic 
block size selection procedure regulated by input image attributes during the preprocessing 
conditions conducted by image foregey detecting variants so that the state-of-the-art per-
formance techniques are vigorously upgraded. Also, the proposed method can be applied to 
medical images to check the performance in different scenarios since it is only checked in 
natural images.

Table 3  NRMSE comparison table

NRMSE Values

Image No. CLAHE LCM CLAHE DNN GradNet SMNET Proposed Method

Image 0 0.341 0.641 0.291 0.291 0.291 0.291
Image 1 0.192 0.42 0.179 0.179 0.179 0.179
Image 2 0.179 0.179 0.18 0.218 0.18 0.18
Image 3 0.656 0.989 0.558 0.558 0.558 0.558
Image 4 0.242 0.479 0.229 0.229 0.229 0.229
Image 5 0.199 0.398 0.214 0.214 0.214 0.214
Image 6 0.213 0.213 0.164 0.164 0.164 0.164
Image 7 0.327 0.473 0.295 0.295 0.295 0.295
Image 8 0.331 0.641 0.281 0.281 0.281 0.281
Image 9 0.192 0.42 0.179 0.179 0.179 0.179
Image 10 0.179 0.179 0.181 0.181 0.181 0.181
Image 11 0.656 0.989 0.558 0.558 0.558 0.558
Image 12 0.242 0.479 0.229 0.229 0.229 0.229
Image 13 0.199 0.398 0.214 0.214 0.214 0.214
Image 14 0.213 0.213 0.164 0.164 0.164 0.164
Image 15 0.242 0.479 0.229 0.229 0.229 0.229
Image 16 0.199 0.398 0.214 0.214 0.214 0.214
Image 17 0.213 0.213 0.264 0.164 0.164 0.164
Image 18 0.327 0.473 0.295 0.295 0.295 0.295
Image 19 0.334 0.641 0.229 0.229 0.229 0.229
Image 20 0.192 0.412 0.179 0.199 0.179 0.179
Image 21 0.179 0.179 0.218 0.18 0.18 0.18
Image 22 0.656 0.989 0.558 0.558 0.558 0.458
Image 23 0.242 0.479 0.229 0.229 0.229 0.229
Image 24 0.242 0.479 0.229 0.229 0.229 0.209
Image 25 0.199 0.398 0.214 0.214 0.214 0.214
Image 26 0.213 0.213 0.164 0.194 0.164 0.164
Image 27 0.242 0.479 0.229 0.229 0.229 0.221
Image 28 0.199 0.398 0.214 0.294 0.214 0.214
Image 29 0.213 0.213 0.364 0.264 0.164 0.164
Average NRMSE 0.28 0.45 0.26 0.26 0.25 0.24
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Table 4  SSIM comparison table

SSIM Values

Image No. CLAHE LCM CLAHE DNN GradNet SMNET Proposed Method

Image 0 0.765 0.455 0.781 0.781 0.781 0.981
Image 1 0.806 0.502 0.856 0.856 0.856 0.856
Image 2 0.8 0.8 0.8 0.8 0.8 0.8
Image 3 0.666 0.466 0.935 0.635 0.635 0.635
Image 4 0.844 0.535 0.84 0.84 0.84 0.84
Image 5 0.81 0.579 0.827 0.827 0.827 0.827
Image 6 0.848 0.848 0.873 0.873 0.873 0.873
Image 7 0.813 0.692 0.788 0.788 0.788 0.788
Image 8 0.765 0.455 0.781 0.781 0.781 0.781
Image 9 0.806 0.502 0.856 0.856 0.856 0.856
Image 10 0.8 0.8 0.98 0.8 0.8 0.98
Image 11 0.666 0.466 0.935 0.635 0.635 0.935
Image 12 0.844 0.535 0.84 0.84 0.84 0.984
Image 13 0.81 0.579 0.827 0.827 0.827 0.827
Image 14 0.666 0.465 0.935 0.735 0.835 0.835
Image 15 0.844 0.535 0.84 0.84 0.84 0.984
Image 16 0.81 0.579 0.827 0.827 0.827 0.827
Image 17 0.848 0.848 0.873 0.873 0.873 0.873
Image 18 0.813 0.692 0.788 0.788 0.988 0.988
Image 19 0.765 0.455 0.781 0.781 0.781 0.981
Image 20 0.806 0.502 0.856 0.856 0.856 0.856
Image 21 0.68 0.78 0.88 0.88 0.88 0.988
Image 22 0.666 0.466 0.735 0.735 0.935 0.935
Image 23 0.844 0.535 0.984 0.84 0.84 0.984
Image 24 0.848 0.848 0.873 0.873 0.873 0.873
Image 25 0.844 0.535 0.984 0.84 0.84 0.984
Image 26 0.81 0.579 0.827 0.827 0.827 0.827
Image 27 0.666 0.466 0.935 0.735 0.835 0.835
Image 28 0.844 0.535 0.84 0.84 0.984 0.984
Image 29 0.813 0.692 0.788 0.788 0.988 0.988
Average SSIM 0.79 0.59 0.86 0.81 0.84 0.89
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Table 5  SYNTROPY comparison table

SYNTROPY Values

Image No. CLAHE LCM CLAHE DNN GradNet SMNET Proposed Method

Image 0 19.382 19.331 19.368 19.368 19.368 19.368
Image 1 19.456 19.321 19.381 19.381 19.381 19.381
Image 2 19.321 19.321 19.321 19.321 19.321 19.321
Image 3 19.036 19.109 19.081 19.081 19.081 19.081
Image 4 19.425 19.319 19.448 19.448 19.448 19.448
Image 5 19.427 19.31 19.354 19.354 19.354 19.354
Image 6 19.364 19.364 19.443 19.443 19.443 19.443
Image 7 19.346 19.315 19.412 19.412 19.412 19.412
Image 8 19.382 19.331 19.368 19.368 19.368 19.368
Image 9 19.456 19.321 19.381 19.381 19.381 19.381
Image 10 19.321 19.321 19.321 19.321 19.321 19.321
Image 11 19.036 19.109 19.081 19.081 19.081 19.081
Image 12 19.425 19.319 19.448 19.448 19.248 19.448
Image 13 19.427 19.301 19.354 19.354 19.354 19.354
Image 14 19.364 19.364 19.443 19.443 19.443 19.443
Image 15 19.346 19.315 19.412 19.412 19.312 19.412
Image 16 19.382 19.331 19.368 19.368 19.368 19.368
Image 17 19.456 19.321 19.381 19.381 19.381 19.381
Image 18 19.321 19.321 19.321 19.321 19.321 19.321
Image 19 19.321 19.321 19.321 19.321 19.321 19.321
Image 20 19.036 19.109 19.081 19.081 19.081 19.081
Image 21 19.425 19.319 19.448 19.448 19.448 19.448
Image 22 19.427 19.311 19.354 19.354 19.354 19.354
Image 23 19.364 19.364 19.443 19.443 19.443 19.443
Image 24 19.346 19.315 19.412 19.412 19.412 19.412
Image 25 19.382 19.331 19.368 19.368 19.368 19.368
Image 26 19.456 19.321 19.381 19.381 19.381 19.381
Image 27 19.321 19.321 19.321 19.321 19.321 19.321
Image 28 19.425 19.319 19.448 19.448 19.348 19.448
Image 29 19.427 19.31 19.354 19.354 19.354 19.354
Average SYNTROPY 19.35 19.30 19.35 19.35 19.34 19.35
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Fig. 10  Comparitive graphs of CLAHE, LCM CLAHE, and DBST LCM CLAHE, a: Graph of PSNR, b: 
Graph of MSE, c: Graph of NRMSE, d: Graph of Entropy, e: Graph of SSIM, f: Graph of SOTA vs Pro-
posed
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