
DA2004/DA2005: Labs

Lars Arvestad, Evan Cavallo, Christian Helanow, Anders Mörtberg, Kristoffer Sahlin

Machine Translated by Google

Lab Rules • All

deadlines are strict. If the deadline is missed, the lab or project must be redone at the next one

.

.

.

.

Content

• If you know that you will not be able to finish a lab or the project (due to a valid reason, e.g. illness), inform
the course leader before the deadline. If you contact the course leader only after the deadline , it will be
counted as missed and you will have to do it again at the next course opportunity.

.

. . .

.

.

.

.

.

.

. . .

.

.

.

.

.
.

.

. .

.

.

.

.

.

.

.

.

1 Temperature conversion 1.1
Learning objectives .

.

17

.

.

. . .

.

3.3 Data .

.

.

.

.

.

.

.
.

.

.

• You have to work individually with the labs and the project. This means that you must write your own code
and find your own solutions. You must not give solutions to each other or copy code from the Internet. All
submissions are automatically compared and suspected cheating is reported to the university's disciplinary
committee, which may lead to suspension.

.

..

.

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

. . .

.

.

.

. . .

.

.

.

. . .

4.2 Submission .

.

.

5

.

.

.

. . .

. . .

2 Polynomials
2.1 Learning objectives .

. . . .

. . .

.

.

.

.

.

.

.

.
.

.

. . .

.

.

.

.

. .

.

.

1

.

.

.

21

.

.

.

.

.

.

. . .

.

.

.

.

.

.

10

. . .

.

.

.

.

.

.

.

.

..

4.4 Data .

. .

. . .

.

. . .

.

2.3 Data .

.

. . .

.

.

.

.

. . .

.

16

. . .

.

..

.

. .

.

.

.

16

.

.

.

. . .

.

.

.

.

.

.

. . .

.

..

.

.

.

.

.

.

.

.

.

.

. . .

.

. .

.

.

.

.

. . .

3

.

.

.

.

.

..

.

3.2 Submission .

. . .

5

.

.

.

.

4 Program structure 4.1
Learning objectives .

.

. . .

.

5

. . .

.

.

.

.

1.2 Task .

.

.

.

.

.

course opportunity. Contact the course leader if this happens.

..

. .

.

.

.

.

.

.

. . .

.

.

.

.

.

.

. . .

.

.
.

.

.

.

.

.
. . .

.

.

. .

.

.

.

. . .

.

.

.

.

.

.

.

.

..

.

. . . .4.3 The Given Program .

.

.

.

.

.

.

2.2 Submission . ..

.

.

.

.
.

.

16

. . .

.

.

. . .

.

.

.

.

.

.

.

. . .

.

.

.

. . .
.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. . .

3

.

.

. . .

10

11

. . .

16

.

3 Iteration, file handling, error handling and lookup tables 3.1
Learning objectives .

.

.

.

.

5 Coming later

.

.

. . .

.

.

.

.

.

.

. . . .

. . .

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.

.

. . .

.

.

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

5

.

.

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

. . .

10

.

. .

.

.

.

Machine Translated by Google

the course leader.

• Your solution must provide the correct output for a given input.

2

• The solution must have a reasonable structure, ie it is not ok to have extremely long programs with the same copied code

over and over again instead of e.g. a loop. Unnecessarily complicated code may lead to point deductions.

• Solutions must be written in Python 3. Submissions in Python 2 are therefore not permitted.

• During reporting, you must be able to answer questions about the solution orally.

• Peer correction is a mandatory part of every lab. If you don't do it, the lab is counted as missed

• Each laboratory is worth 10 points.

• Do not use functions from any library in the labs unless it is explicitly stated that you will get them (ie,

man 2 bonus points.

• You can Google for Python commands, syntax, error messages, etc, but not for ready-made solutions. Google in English to

get the most answers. On the site https://stackoverflow.com/ probably has the answer to many of your questions.

• Keep a good tone and give constructive feedback on other people's code when you peer-correct. In case of problems contact

and you have to redo the lab at the next course session.

• If you reach 35 points, you get 1 bonus point for the project, and if you reach 45 points, you get

• Do you have problems with things that have nothing to do with the programming itself, e.g. if you have problems using the

terminal, conflicting libraries, etc., contact one of the teachers for help.

specified explicitly in the instructions.

• In normal cases, no report is required, but in the event of ambiguities, we may require an oral report.

• Submissions may not be made in any language other than Python. • Solutions

must be submitted in the form of .py files. No file format other than .py is accepted otherwise

do not use “import” anywhere).

• You must get at least 2 points per laboratory and a total of at least 25 points to be
approved for the laboratory course.

Peer correction on PeerGrade

Submission

Scoring

Accounting

Machine Translated by Google

https://stackoverflow.com/

2. Rewrite the function fahrenheit_to_celsius so that it calculates correctly. (2 points)

to type q (short for “quit”). (2 points)

You should be able to write, run, and modify a small Python program.

1. Download, test run and study the konvertera.py program from the course homepage (see the "Code
for labs" folder). Does it work as it should?

5. Extend the program so that it continues to ask for conversions, until exiting through

Here are your details:

To pass the lab you must have at least 2 out of 10 points, but remember that to pass the lab part at the
end of the course you must have at least 25 of the maximum 50 points in the labs.

4. Expand the program so that it asks for the conversion you want to do. (2 points)

The program converta.py in the "Code for labs" folder on the course homepage is supposed to ask for a
temperature in Fahrenheit, read in from the user, convert to the Celsius scale and then print the result.

3. Extend the program with a function that converts from Celsius to Fahrenheit. (2 points)

3

6. Extend the program so that it can also convert to and from Kelvin from both Celsius and Fahrenheit.
For full points, the program must still ask what conversion to do right up until the user types q. (2
points)

Lab 1

The main purpose of this laboratory is for you to familiarize yourself with the development environment either in the halls

or on your own computer.

1.1 Learning objectives

1.2 Assignment

Temperature conversion

Machine Translated by Google

Remember: it's always good to comment the code where necessary (to clarify the purpose of e.g.
a line of code or a block of code) and to document functions. All functions you write should also be
thoroughly tested so that you know they work as intended!

7. Submit your solution to PeerGrade.io. If you haven't registered yet, do so using the registration code found
on the course website. Important: use your real name/the same name as you are registered in the course
with when you register on Peergrade!

8. Peer-review other solutions on PeerGrade.io! It will be possible after the deadline.

4

Machine Translated by Google

http://www.peergrade.io/

2.1 Learning objectives

2.2 Submission

2.3 Data

3

4

4

Lab 2

4

+ 2

how to make calculations on it. • You must be
able to write small simple functions • You must be able

to work with the data structure list.

• You will see how to give an abstract concept (polynomial) a concrete representation in the computer and

Python representation

3 +

5

Submission of the laboratory must be done as usual on PeerGrade. Don't forget to peer correct!

[0, 0, 0, 0, 1] [0, 0, 4,

5] [5,4,3,2,1]

To pass the lab you must have at least 2 out of 10 points, but remember that to pass the lab part at the end of the course you

must have at least 25 of the maximum 50 points in the labs.

+ 5

Remember: it's always a good idea to comment the code where necessary (to clarify the purpose of e.g. a line of code or a block

of code) and to document functions.

Polynomial

5 + 4 + 3

In this task we will represent polynomials using lists of coefficients. The word "representation" here roughly means "storage

method in computer", and it means concretely that a polynomial like 1+3x+7xˆ2 is stored in Python as the list [1,3,7]. In general,

then, the coefficient of the term of degree n is stored at position n of the list .

In the lab, polynomials must therefore be represented as lists, below are some more examples of how polynomials can be

implemented as lists:

2

2

Polynomial

Machine Translated by Google

https://www.peergrade.io

• Terms with coefficient 0 are not printed. That is, 0 + 0x + 2xˆ2 must be simplified to 2xˆ2. • A list

containing only 0 as elements, e.g. [0, 0, 0] is written as 0.

However, it can be good to include the tests in the form of commenters to make it easier for those who have to read

through and test the code.

Assume that the polynomials p and q are defined as below.

Change in poly_to_string so that:

Write code to store the list representation of these two polynomials in the variables p and q in Python. That is to say,

p := 2 + x^2 q :=

-2 + x + x^4

The function in the Python file polynom.py (found on the course homepage in the “Code for labs” folder) contains a

function, poly_to_string, which converts polynomials represented as lists to strings.

>>> poly_to_string(p) '2 + 0x
+ 1x^2' >>> poly_to_string(q)

'-2 + 1x + 0x^2 + 0x^3 + 1x^4'

where the contents of the lists must be filled in. Test that you have written correctly in the following way:

Note: you can assume that the lists you are working with only contain numbers.

-1xˆ2 is instead written as 2 + -xˆ2.

p = [...] q =

[...]

• The empty list is converted to 0. •

Terms with a coefficient of 1 are written without a coefficient. That is, 1xˆ2 should instead be written as xˆ2.

• Terms with coefficient -1 put a minus in front of the term, but the one is not printed. For example. 2 +

print(poly_to_string(p))

Here >>> is the “prompt” in the Python interpreter, i.e. poly_to_string(p) is a command to be executed by Python and on

the line after comes the result. This may look different on your computer and be achieved in different ways, e.g. in Spyder

you can instead write:

Start by creating a file labb2.py, to get started with the lab, and copy over the poly_to_string function there. You must

now solve all the tasks below by adding the necessary code to solve problems specified in the tasks. As you will see,

you must also (later) modify the function poly_to_string (see task 2).

6

Note: you may not use functions from any library in the lab, i.e. you may not use "import"
anywhere in the solution.

2.3.2 Task 2 (3 points)

2.3.1 Task 1 (0 points, but needed for the tests later in the lab)

and then observe the result in the console on the right after running the program. In that case you
will not see '2 + 0x + 1xˆ2' but only 2 + 0x + 1xˆ2, i.e. ' will not be printed. These types of tests are
very helpful when developing the code, but should not be included in the final version that you submit.

Machine Translated by Google

b) Write a function that tests when two polynomials are equal by ignoring all trailing zeros and then tests
for equality:

Test that the code works:

and test the function:

>>> poly_to_string([1,2,3]) '1 + 2x
+ 3x^2'

>>> poly_to_string([0,0,0]) '0'

2 + x^2 + 0x^3 # 0
+ 0x + 0x2

7

>>> drop_zeroes(q0) []

>>> poly_to_string([1,1,-1]) '1 + x +
-x^2'

>>> drop_zeroes(p0) [2,
0, 1]

>>> poly_to_string([-1, 2, -3]) '-1 + 2x +
-3x^2'

>>> poly_to_string(p) '2 +
x^2'

def drop_zeroes(p_list): # here
be code

def eq_poly(p_list,q_list): # here
be code

Test the function! The output should look like this:

True

>>> poly_to_string([]) '0'

p0 = [2,0,1,0] q0
= [0,0,0]

Define some polynomials with zeros at the end

>>> poly_to_string(q) '-2 +
x + x^4'

>>> eq_poly(p,p0)

a) Write a function drop_zeroes that removes all zeroes at the end of a polynomial and returns
the result. Tip: use a while loop and the pop() function.

2.3.3 Task 3 (2 points)

Machine Translated by Google

def neg_poly(p_list):

>>> eval_poly(p,1) 3

The difference can be hard to grasp at first as the result looks similar when you run the code, but there is a very big

difference between a function that returns something and one that just prints something. See the end of 2.5.1 in the

compendium for more information on this.

8

>>> eval_poly(p,0) 2

algorithm: https://sv.wikipedia.org/wiki/Horners_algorithm

>>> eval_poly(q,2) 16

Also note that the code you got for poly_to_string returned the result string. Does your solution to problem 2 work the

same way? If not, go back and fix it.

>>> eval_poly(p,2) 6

False

Suggested algorithm:1

>>> eq_poly(q,p0)

2.3.5 Task 5 (3 points) a) Define

negation of polynomials (ie change the sign of all coefficients and return the result).

Write a function named eval_poly that takes a polynomial and a value of the variable x and returns the value of the

polynomial at the point x.

>>> eval_poly(q,-2) 12

True

Tests:

Then add the value of the term to the sum. •
When you have finished iterating, you return the sum.

>>> eq_poly(q0,[])

here be code

2.3.4 Task 4 (2 points)

1The proposed algorithm is not the most efficient, if you want to optimize, you can instead implement Horners

• Iterate over the terms of the polynomial by iterating over the coefficients.
• Keep track of the degree of the current term and the sum of the terms you have summed so far.

In each iteration, calculate the value of the term as coeff * x ** degree (remember raised is **).

Note: the drop_zeroes and eq_poly functions should return their results and not just print it out.

Machine Translated by Google

https://sv.wikipedia.org/wiki/Horners_algoritm

2.3.6 Task 6 (0 points)

False

Tip: keep in mind that p - q can be defined as p + (- q), i.e. to subtract the polynomial q from p , you can first
take the negation of q and then add with p.

9

here be code

p + p != 0 >>>
eq_poly(add_poly(p,p),[])

True

p + q = q + p >>>
eq_poly(add_poly(p,q),add_poly(q,p))

Test that the functions work:

p - q = 4-x+x^2-x^4 >>>
eq_poly(sub_poly(p,q),[4, -1, 1, 0, -1])

def add_poly(p_list,q_list): # here
be code

True

p - p = 0
>>> eq_poly(sub_poly(p,p),[])

b) Define addition of polynomials (ie add the coefficients and return the result).

True

True

(p + q)(12) = p(12) + q(12) >>>
eval_poly(add_poly(p,q),12) == eval_poly(p,12) + eval_poly(q,12)

def sub_poly(p_list,q_list):

True

Read through, rewrite and document your code. Since the correction must be objective, you must not leave
your name in the file you submit.

p - (- q) = p + q >>>
eq_poly(sub_poly(p,neg_poly(q)),add_poly(p,q))

c) Define subtraction of polynomials.

Note: the comments are only there to explain what the tests are testing. Can you think of more good

tests to find possible bugs in the code?

Tip: read through “Rules of Thumb for Programming” under Resources on the course homepage for
recommendations on how to write good code.

Machine Translated by Google

10

To pass the lab you must have at least 2 out of 10 points, but remember that to pass the lab part at the end of the

course you must have at least 25 of the maximum 50 points in the labs.

• You should be able to translate an algorithm into code. •

You must be able to work with lookup tables. • You must be
able to read and write data from files. • You must be able

to use error handling.

Submission of the laboratory must be done as usual on PeerGrade. Don't forget to peer correct!

Tip: use documentation strings in all functions you've written so you can easily find out what the input is and what

the function does.

Functions first, then the main program that calls the functions. On task 1, you may not use built-in functions for

sorting, such as sort or sorted.

Remember to remove your name from the code, in case e.g. Spyder put it in the file.

Lab 3

Remember: it's always good to remember to comment the code where necessary (to clarify the purpose
of eg a line of code or a block of code) and read through your code before submitting!

This lab includes a number of independent tasks involving basic algorithms, lookup tables, file handling,
and error handling.

No modules ("libraries") may be used, i.e. no imports. Put all the code in a file like in the last lab.

3.1 Learning objectives

3.2 Submission

Iteration, file handling, error
handling and lookup tables

Machine Translated by Google

https://www.peergrade.io

3.3 Data

Insertion sort (eng.: insertion sort) is a common sorting algorithm, i.e. a method for sorting a list of
elements. The idea behind this algorithm is similar to the way you might sort a deck of cards: for
each card in the deck, insert it into the correct slot in a pile of sorted cards.

>>> insertion_sort([12,4,3,-1]) [-1, 3, 4, 12]

>>> insertion_sort([]) []

Algorithm idea:

def insert_in_sorted(x,sorted_list): # here be code

11

a) Write a function that inserts an element xi into an already sorted list sorted_list:

def insertion_sort(my_list): # here be
code

A matrix can be represented in Python as a list containing equally long lists of numbers.

2. For each element xi my_list insert it into out using your function insert_in_sorted.

1. Assume sorted_list is sorted.

1. Initialize a variable out with the empty list.

Algorithm idea:

Tests:

3. If there is no sorted_list[i] greater than x: insert xi at the end.

Tests:

2. Iterate over all indexes in < len(sorted_list) until you find some element sorted_list[i] that satisfies sorted_list[i] > x and

then insert x.

3. Return out.

We can divide this into two sub-problems:

b) Write insertion sort using insert_in_sorted:

>>> insert_in_sorted(2,[]) [2] >>>

insert_in_sorted(5,[0,1,3,4]) [0, 1, 3,

4, 5] >>> insert_in_sorted(2,[0 ,1,2,3,4]) [0, 1, 2,

2, 3, 4] >>> insert_in_sorted(2,[2,2]) [2, 2, 2]

Note: for scoring, insertion_sort must use insert_in_sorted.

3.3.1 Task 1: deposit sorting (2 points)

3.3.2 Problem 2: sparse matrices (1 point)

Machine Translated by Google

3.3.3 Task 3: file management (1 point)

1 3

I could not you; I dared not rob: Therefore I
lied to please the mob.

If the coordinates are of the form (row, column) and we start counting from zero, then the matrix above can be
written in the following way as a lookup table:

A Dead Statesman

Consider a matrix with many millions of rows and columns containing only a handful of non-zero elements. A
better way to represent this type of matrix is as a lookup table from coordinates to nonzero elements.

What tale shall serve me here among Mine
angry and defrauded youth?

Write a function matrix_to_sparse that takes in a matrix represented as a list of lists and produces a lookup table
like above. You can assume that the matrix has the correct form (ie that all lists are the same length).

Now all my lies are proven untrue And I
must face the men I slew.

{(0, 0): 1, (0, 3): 2, (1, 1): 8, (2, 3): 5}

ÿ ÿ 1 0 0 2 ÿ ÿ ÿ ÿ 0 8 0 0 ÿ ÿ ÿ ÿ 0 0 0 5 ÿ ÿ

>>> matrix_to_sparse([[1,0,0,2],[0,8,0,0],[0,0,0,5]]) {(0, 0): 1, (0, 3): 2,
(1, 1): 8, (2, 3): 5} >>> matrix_to_sparse([[0,0,0,0],[0,0,0,0],[0,0 ,0,0],
[0,0,0,0]]) {} >>> matrix_to_sparse([[0,0],[0,0],[0,0],[0,10]]) {(3, 1): 10}

For example, the matrix:

A Dead Statesman 0 3

Tests:

So running annotate('infile.txt') should produce a file annotated_infile.txt containing :

Example: if the file infile.txt contains:

Write a function annotate(f) that takes a file name f as parameter and prints to a new file annotated_f with original
text, line number (counted from 0), total number of words up to and including that line.

can be represented as [[1, 0, 0, 2], [0, 8, 0, 0], [0, 0, 0, 5]].

12

A matrix is sparse if it contains mostly zeros. If you represent such a matrix as a list of lists, you
need to use up quite a lot of computer memory, especially if the matrix is very large.

Machine Translated by Google

Line 3: Therefore I lied to please the mob.

[(3, 'Therefore I lied to please the mob.\n'), (5, 'And I must face the men I slew.\n')] >>> hinfile.close() >>> with

open('infile.txt') as h: print(find_matching_lines(h, 'summer'))

[(3, 'Therefore I lied to please the mob.\n')] >>> hinfile.close()

>>> hinfile = open('infile.txt') >>> find_matching_lines(hinfile,

'the')

What do you want to search for? the The result

after searching for "the" is:

It is up to you whether the program should continue asking and whether you should be able to change the file
to search in, etc. As long as the user can select file and string and that the code uses find_matching_lines ,
you get points.

[]

...

Line 5: And I must face the men I slew.

Note: find_matching_lines must take a file handle, so it must not contain any call to open but it is
assumed that open was run before the function is called as shown in the tests above.

I could not you; I dared not rob: 2 11 Therefore I

lied to please the mob. 3 18 Now all my lies are proven

untrue 4 25 And I must face the men I slew. 5 33 What
tale shall serve me here among 6 40 Mine angry and

defrauded youth? 7 45

13

>>> hinfile = open('infile.txt') >>>

find_matching_lines(hinfile, 'the mob')

Hello, which file do you want to search in? infile.txt Ok, searching in

"infile.txt".

Example: a run of find_lines(), with infile.txt as above, might look like this:

Example (with infile.txt as above):

3.3.4 Task 4: string search in files (2 points) a) Write

a function find_matching_lines(h,s) that takes a file handle (eng: handle) h and a string s.
The function must return both line numbers (counted from 0) and content for the rows
containing the string in the form of a list of tuples.

Note: The search must be case sensitive, so "the" is not the same as "The". Tip: How does
in work for strings?

b) Write a find_lines() function that prompts the user for a file and a string, and uses the
find_matching_lines function to print the lines where the string was found.

Machine Translated by Google

The user must be able to provide several coordinates until he chooses to write exit , whereupon the program ends.

1For documentation on which special cases are predefined in Python see: https://docs.python.org/3/library/exceptions.html

3.3.5 Task 5: position search in files (4 points)

...

Tests:

>>> with open('infile2.txt') as hinfile2:
print(save_rows(hinfile2))

Space

You choose the structure of this code snippet yourself, e.g. can you define a function main() that takes no
parameters but contains the code containing 1-3 above:

then the following should happen during a run:

• If the position is a space, "Space" must be returned.

pp

14

>>> with open('infile2.txt') as hinfile2: d =
save_rows(hinfile2) print(lookup(d,0,0))
print(lookup(d,2,9)) print(lookup(d,2 ,10))

...

1. Asks the user for a file, reads the file into the lookup table (using save_rows)

But if you run, for example, lookup(d,3,0) or lookup(d,0,7), a LookupError must be raised. c) Use

save_rows and lookup to write a code snippet (a “program”) that:

{0: 'Hey you', 1: 'the moon revolves around earth', 2: 'two chairs and the table'}

We assume a 0-indexed coordinate system (as used in programming).

...

3. Uses lookup to retrieve and then print the character in the file at the location of the coordinate.
2. Asks the user to provide coordinates for row number and column number.

Note: note that there are no \ni at the end of the strings. b)

Write a function lookup that takes in a lookup table d as above and two coordinates r and c which correspond to
row and column id and returns the character of the position that the coordinates correspond to.

...

Hey you
the moon revolves around the earth two
chairs and the table

• If the row and/or column id not exist, the program must throw a LookupError.

hrs

These cases must be handled:

Example: if the input file infile2.txt contains:

...

The idea is that lookup should be used together with save_rows (see subtask c)) and each character in
the file can be said to lie in a row and in a column. For example, the word “Hey” in infile2.txt occupies the
coordinates (0,0), (0,1), (0,2). In the same way, the word "chairs" occupies the coordinates (2,4), (2,5), ...,(2,9).

1

a) Write a function save_rows(h) that takes a file handle (eng: handle) h and saves row numbers
as keys and rows as values in a lookup table. The function should then return the lookup table.

Machine Translated by Google

Provide row: 2

Provide column: 1

More code here for steps 2 and 3

15

def main():
infile2 = input('Enter a file: ') indexed_file
= save_rows(...)

Provide row: 1

Provide row: exit

Provide row: 3

If lookup throws an exception because the coordinates are outside the text, it should be caught with try-except.

hrs

...

Provide row: 0

At any point type "exit" to quit.

def save_rows(...):

Warning: Out of bounds, try again!

Provide column: 1

pp

...

Space

Provide column: 3

def lookup(...):

Provide column: 9

Then the message Warning: Out of bounds, try again! is printed and the program continues.

Example: if you run the program with the file infile2.txt as above, running the program should look
like this:

Machine Translated by Google

Submission of the laboratory must be done as usual on PeerGrade.

Lab 4

4.3 The given program

4.2 Submission

4.1 Learning objectives

2

Program structure

2

The program's task is to read in a data file with (invented) data from measurements, taken in different rounds from

different points in the plane, and for each round calculate the average value for measurements made within the unit

circle. A point (, ÿ 1.

Measurements taken outside the unit circle should be ignored. The data file has four columns separated by commas:

it is a so-called csv file (where "csv" stands for comma-separated values). The first number indicates which round

(batch) a measurement belongs to, the second and third numbers give you the x and y coordinates of the point where

the measurements were taken, and the fourth number is the measurement value.

In this lab, you will structure a given program, add good error handling, and increase functionality with plotting. You

get the relatively short program batch_means.py (see the folder Code for labs/Lab_4/ on the course homepage)

which can be written more neatly. You will find test data in the files sampleX.csv, for ÿ {1, 2, 3, 4} in the same folder.

Note: in this lab you must use matplotlib and you can also use numpy if that makes it easier.

+) in the plane is within the unit circle if

Submit the solution in a file with the final program. Please write in the comments what you did to solve each task.

16

• You must be able to follow recommendations for easy-to-read

code. • You must be able to rewrite existing code to follow code recommendations. •

You must be able to use special cases for error handling. • You should be able to

use a library to plot data.

Machine Translated by Google

https://www.peergrade.io

4.4 Data

on Task D for examples of what a warning might look like). • State

in comments which errors you corrected and how you did it.

If you try the program on the test files sample2.csv, sample3.csv, and sample4.csv , you will find that there are flaws in

batch_means.py. You should therefore add error handling (to your enhanced program from Task A) using try-except so that

crashes are avoided and the averages are calculated as well as possible given the problems. You shouldn't fix the test files,

just adapt your program to handle bad input.

Your task is to use lessons learned from the "Programming Rules of Thumb" chapter in the course compendium so that the

code becomes easier to read, easier to reuse for other projects, and easier to find errors in. You should be able to identify

several smaller functions based on the single function given .

• All given test files must be able to be analyzed without problems. • If

it is not possible to open the file entered by the user, this should be pointed out in a polite error message

4.4.1.1 Requirements

4.4.2.1 Requirements

Test your code on the sample1.csv file and your own test files. (Note that sample2-sample4.csv is probably still not working,

to get them working you need to do Task B)

1, 0.1, 0.2, 73 1, 0.11,

0.1, 101 2, 0.23, -0.01,

17 2, 0.9, 0.82, 23

4.4.1.2 Tips

don't get over the bugs (errors) yet). • The

functions must be documented using Docstrings. • Identifiers must be
descriptive.

For example, the data file might look like:

• If a line cannot be interpreted, a warning should be printed and the line ignored (see example run

• Your version of the program should not remove functionality from the given program (worry

landed.

change with retained function. • Write in

a comment what improvements you have made.

• It doesn't matter if the code file gets longer. •

Make the changes step by step and verify the program at each step. It's harder to make a big one

There are therefore measurements from two rounds, 1 and 2, and therefore two average values are to be calculated. Note

that the last measurement is outside the unit circle.

17

4.4.2 B: Error handling (2 points)

4.4.1 A: A better structure (3 points)

Machine Translated by Google

4.4.4 D: Plot the values (4 points)

4.4.3 C: Sorted batch data (1 point)

All functions from matplotlib.pyplot must now have plt. in front of his name. So to access the plot(...) function you

must write plt.plot(...).

The plot_data function should then be called in the main program after the averages have been printed, so a run

might look like this:

result should be:

Average
2.0 87.0

17.0

2.0

The function should plot the loaded data in data using matplotlib. One does not need to filter out points outside the

unit circle, but the unit circle itself should be plotted, and it is sufficient to plot the data without plotting any averages.

The plotted data should then be saved in f.pdf (where “f” is the second parameter to plot_data).

Read about the matplotlib module: https://matplotlib.org/stable/tutorials/introductory/pyplot.html You can

import the library in the following way:

Batch

Warning: wrong input format for entry: 2 -0.93 -0.O1 77

Which csv file should be analyzed? sample4.csv

Which csv file should be analyzed? sample3.csv

3

2

Note: for this to work you may need to install matplotlib. This can be done in Anaconda or with pip. For installation

instructions see https://matplotlib.org/stable/users/installing/

18

1

import matplotlib.pyplot as plt

Batch 3

1 2

17.0

def plot_data(data,f): # here
be code

Average
87.0

Which csv file should be analyzed? sample3.csv

Now add the following function:

Tip: it is probably good to use the function sorted. Read more in Python's documentation. Alternatively ,
you can use your own sorting algorithm from lab 3 (but then remember to include it in your submission).

As batch_means.py is implemented, the batch means are printed in an order that depends on
the order in which they were given in the input file. Change the program so that the output is
sorted so that round 1 funds are printed before round 2, etc. That is, instead of a run of the
program looking like

Machine Translated by Google

https://matplotlib.org/stable/tutorials/introductory/pyplot.html
https://matplotlib.org/stable/users/installing/
https://docs.python.org/3/howto/sorting.html

• Points outside the unit circle must also be plotted. You don't need to plot any average values, but

Average
51.0

3

• All given test files should be able to be plotted without problems.

• All measurements in the same batch should be drawn with the same color and all batches should be different colors.

However , it is enough if you support a finite number of batches and the important thing is that it works for everyone

19.0

33.57142857142857

the measurement values in the files are enough.

Batch

The file sample4.pdf then contains the following plot:

Warning: wrong input format for entry: 2 0.93 -0.O1 53

A plot of the data can be found in sample4.pdf

19

2

4.4.4.1 Requirements

This can be corrected, but it is not a requirement.

1

Note that the unit circle looks a bit oval. This is because the distance in the y-scale is smaller than in the x-scale.

Machine Translated by Google

references to where the code was found.

• What type of data the parameter has depends on how you solved the other tasks and should be documented

test files.

• There are many different ways to draw a circle in matplotlib. Google it! Note: you don't have to

in the function's Docstring.

• The unit circle must be drawn. This can be done in many different ways and if you want it, you will get it

use numpy to do it, but if you want you can do it.

• To solve this task, it helps a lot to read documentation and look at examples that can be found online.

use the numpy library.

20

• On this task, it is perfectly OK to use code you find online, but you should bring it with you

4.4.4.2 Tips

Machine Translated by Google

21

Lab 5

Coming later

Machine Translated by Google

