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ABSTRACT

We prove that Toeplitz matrices are unitarily similar to complex
symmetric matrices. Moreover, two n × n unitary matrices that
uniformly turn all n × n Toeplitz matrices via similarity to complex
symmetric matrices are explicitly given, respectively. When n ≤ 3, we
prove that each complex symmetric matrix is unitarily similar to some
Toeplitz matrix, but the statement is false when n > 3.
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1. Introduction

Denote by Cn×n the set of all n × n complex matrices and let U(n) be the group of n × n
unitary matrices. It is well-known that every A ∈ Cn×n is similar to a complex symmetric
matrix (cf. [1, Theorem 4.4.24]). Every normal matrix is unitarily similar to a diagonal
matrix which is clearly symmetric. One may ask whether every matrix is unitarily similar
to a symmetric matrix. This is true when n = 2 [2]. However, it is not true [3, Example 7]
when n ≥ 3. See [4,5] for related works.

Toeplitz matrices arise in solutions to differential and integral equations, spline func-
tions, and problems andmethods in physics, mathematics, statistics, and signal processing.
They are one of the most well-studied matrices. Toeplitz matrices are also generalized as
Toeplitz operators acting on the vector Hardy space [6]. Recently, Chien and Nakazato [7]
proved that every Toeplitz matrix is unitarily similar to a complex symmetric matrix.

In this paper, we will use twomethods to constructively prove that each Toeplitz matrix
is unitarily similar to a complex symmetric matrix. Moreover, there are two unitary
matrices that uniformly turn all n × n Toeplitz matrices into symmetric matrices via
similarity and they will be given explicitly. Thus, this is an improvement on the result from
[7]. We also study the problem of whether every symmetric matrix is unitarily similar to a
Toeplitz matrix. When n ≤ 3, it is true (see Theorem 3.6). However, the answer is negative
in general. Proofs are given for the case n = 4 and the case n = 5 in Section 5 and Section
6, respectively.

CONTACT Jianzhen Liu jzl0073@auburn.edu
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2. Kippenhahn polynomials

We introduce some invariants of the unitary similarity. The k-th numerical range of
A ∈ Cn×n is the set

�k(A) := {z ∈ C : PAP = zP for some k − dimensional orthogonal projectionP}

1 ≤ k ≤ n (cf. [8]). When k = 1,�k(A) is reduced to the classical numerical range defined
as

W(A) := {ξ∗Aξ : ξ ∈ C
n, ξ∗ξ = 1},

which has been systematically and intensively studied in the literature (cf. [1,9–11]). The
k-th numerical range �k(A) is completely determined by the following ternary form:

FA(x, y, z) = det(x�(A) + y�(A) + zIn),

where�(A) = (A+A∗)/2 and�(A) = (A−A∗)/(2i). Kippenhahn [11] proved this result
when k = 1.More precisely,W(A) is the convex hull of the real affine part of the dual curve
of FA(x, y, z) = 0. In [12], it was proved that the equations �k(A) = �k(B) (1 ≤ k ≤ n)
for n × n matrices A,B hold only if those Kippenhahn polynomials satisfy FA = FB.
A matrix A and its transpose AT have the common ternary form FA = FAT . Helton
and Spitovsky [13] showed that for every A ∈ Cn×n there exists a complex symmetric
B ∈ Cn×n satisfying FB(x, y, z) = FA(x, y, z), hence �k(A) = �k(B). Their result depends
on a theorem in [14]which answers affirmatively to the conjectures raised in [9,15], namely,
for a hyperbolic ternary form F(x, y, z), there exist real symmetric matrices H and K such
that F(x, y, z) = FH+iK (x, y, z). The result of [14] provides us motivation to study the
class of matrices which are unitarily similar to symmetric matrices. In [16], a method to
construct symmetric matrices H ,K starting from a hyperbolic form F(x, y, z) is explicitly
given when the curve F(x, y, z) = 0 has genus 0 or 1.

3. Main results

An n× nmatrix T = (aij) is called a Toeplitz matrix if aij = ak� for every pairs (i, j), (k, �)
satisfying i−j = k−�. In this case, aij is denoted by ai−j for some a0, a±1, a±2, . . . , a±(n−1).

Explicitly,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 . . . . . . a−(n−1)

a1 a0 a−1
. . .

...

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a−1 a−2
...

. . . a1 a0 a−1
an−1 . . . . . . a2 a1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The n×n Jordan block Jn(0) corresponding to the zero eigenvalue is a Toeplitz matrix and
[1, p.208] Jn(0) is unitarily similar to the symmetric matrix

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ i
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 −1 0
... . .

.
. .

.
. .

.
1

0 . .
.

. .
.

. .
.

0

−1 . .
.

. .
.

. .
. ...

0 1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

via U = 1√
2
(In + iJn) ∈ U(n), where Jn is the n × n backward identity.

The property that Jn(0) is unitarily similar to a symmetricmatrix is also true for arbitrary
Toeplitz matrix T ∈ Cn×n and it was proved by Chien and Nakazato [7]. We are going
to reprove their result by explicitly giving unitary matrices U that transform all Toeplitz
matrices in Cn×n to symmetric matrices.

A Toeplitz matrix can be viewed as a linear combination of Jordan block Jn(0), the
transpose of Jn(0), and their powers. It is not difficult to see that the unitary matrix
U = 1√

2
(In + iJn) ∈ U(n) can also turn all Toeplitz matrices to symmetric matrices.

Theorem 3.1: Every Toeplitz matrix T is unitarily similar to a symmetric matrix B = (bij)
via the unitary matrix U = 1√

2
(In + iJn) ∈ U(n), where Jn is the n × n backward identity.

More specifically,

bij = 1
2
(ai−j + aj−i) + i

2
(ai+j−n−1 − an+1−i−j).

Proof: Since U∗ = 1√
2
(In − iJn) ∈ U(n) and JTJ = TT , we have

U∗TU = 1
2
(I − iJ)T(I + iJ)

= 1
2
(T + iTJ − iJT + TT)

= 1
2
(T + TT) + i

2
(TJ − JT)

Note that T + TT is symmetric, TJ and JT are Hankel matrices (see [1, 0.9.8]), which are
symmetric. Hence, U∗TU is symmetric.

Example 3.2: When n = 4, U = 1√
2

⎛
⎜⎜⎝
1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

⎞
⎟⎟⎠ and
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U∗TU = 1
2

⎛
⎜⎜⎝

2a0 + i(a−3 − a3) a1 + a−1 + i(a−2 − a2)
a1 + a−1 + i(a−2 − a2) 2a0 + i(a−1 − a1)
a2 + a−2 + i(a−1 − a1) a1 + a−1

a3 + a−3 a2 + a−2 + i(a1 − a−1)

a2 + a−2 + i(a−1 − a1) a3 + a−3
a1 + a−1 a2 + a−2 + i(a1 − a−1)

2a0 + i(a1 − a−1) a1 + a−1 + i(a2 − a−2)

a1 + a−1 + i(a2 − a−2) 2a0 + i(a3 − a−3)

⎞
⎟⎟⎠

We remark that in Theorem 3.1 the unitaryU that uniformly turns all Toeplitz matrices
to symmetric matrices via similarity is not unique.
Theorem 3.3: Every Toeplitz matrix T ∈ Cn×n is unitarily similar to a symmetric matrix.
Moreover, the following U ∈ U(n) uniformly turns all Toeplitz matrices in Cn×n into
symmetric matrices via similarity:

(1) When n = 2m, with m ≥ 1,

U = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 i
. . . . .

.

1 i
1 −i

. .
. . . .

1 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2) When n = 2m + 1, with m ≥ 1,

U = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 i
. . . . .

.

1 0 i
0

√
2 0

1 0 −i

. .
. . . .

1 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof: Clearly U is unitary and we write U = (u1 · · · un) in column form and let B :=
U∗TU = (bst). Our goal is to show that B is symmetric. Note that bst = u∗

s Tut .

(1) When n = 2m,

uk =
{

(ek + e2m−k+1)/
√
2 k ≤ m

(e2m−k+1 − ek)i/
√
2 k > m.

By straightforward computation, we have

bst = bts =

⎧⎪⎨
⎪⎩

1
2 (at−s + as−t + as+t−2m−1 + a2m+1−s−t), s ≤ m, t ≤ m
1
2 i(at−s − as−t + as+t−2m−1 − a2m+1−s−t), s ≤ m, t > m
1
2 (at−s + as−t − as+t−2m−1 − a2m+1−s−t), s > m, t > m.
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(2) When n = 2m + 1,

uk =

⎧⎪⎨
⎪⎩

(ek + e2m−k+2)/
√
2 k ≤ m

em+1 k = m + 1
(e2m−k+2 − ek)i/

√
2 k > m + 1.

Straightforward computation yields

bst = bts =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (at−s + as−t + as+t−2m−2 + a2m+2−s−t) s ≤ m, t ≤ m√
2
2 (am+1−s + as−m−1) s ≤ m, t = m + 1
1
2 i(at−s − as−t + as+t−2m−2 − a2m+2−s−t) s ≤ m, t > m + 1
a0 = 1

22a0 s = m + 1, t = m + 1√
2
2 i(at−m−1 − am+1−t) s = m + 1, t > m + 1
1
2 (at−s + as−t − as+t−2m−2 − a2m+2−s−t) s > m + 1, t > m + 1.

It follows that B = U∗TU is symmetric.

We remark that the corresponding symmetric matrices B = U∗TU given by
Theorem 3.1 and 3.3 are different.

Example 3.4: When n = 4, U = 1√
2

⎛
⎜⎜⎝
1 0 0 i
0 1 i 0
0 1 −i 0
1 0 0 −i

⎞
⎟⎟⎠ and

U∗TU = 1
2

⎛
⎜⎜⎝

2a0 + a3 + a−3 a1 + a−1 + a2 + a−2
a1 + a−1 + a2 + a−2 2a0 + a1 + a−1

i(a2 − a−2 + a−1 − a1) i(a1 − a−1)

i(a3 − a−3) i(a2 − a−2 + a1 − a−1)

i(a2 − a−2 + a−1 − a1) i(a3 − a−3)

i(a1 − a−1) i(a2 − a−2 + a1 − a−1)

2a0 − a1 − a−1 a1 + a−1 − a2 − a−2
a1 + a−1 − a2 − a−2 2a0 − a3 − a−3

⎞
⎟⎟⎠

Denote by Sn the subspace of complex symmetric matrices in Cn×n and Tn the set of
Toeplitz matrices in Cn×n. Theorem 3.1 and 3.3 imply that {U∗TU : U ∈ U(n)} and Sn
have nonempty intersection for all T ∈ Tn.

Given S ∈ Sn, can we find a unitary matrix U such that USU∗ is Toeplitz? If the answer
is affirmative, then it can be viewed as a (weak) converse to Theorem 3.1 and 3.3, that is,
every symmetric S ∈ Cn×n is unitarily similar to a Toeplitz matrix.

It is not hard to see that the claim is true when n = 2 since each A ∈ Cn×n is unitarily
similar to a matrix of equal diagonal entries [17, p.18]. How about the 3 × 3 case? The
answer is affirmative and we are going to prove it. We first note that for any 3× 3 complex
matrix



2136 M.-T. CHIEN ET AL.

S =
⎛
⎝s11 s12 s13
s12 s22 s23
s13 s23 s33

⎞
⎠ ,

we have

USU∗ = 1
2

⎛
⎝ s11 + s33

√
2(s12 + is23) s11 + 2is13 − s33√

2(s12 − is23) 2s22
√
2(s12 + is23)

s11 − 2is13 − s33
√
2(s12 − is23) s11 + s33

⎞
⎠ ,

whereU is the unitary matrix given in Theorem 3.3. So, if s11 + s33 = 2s22, then the matrix
USU∗ is Toeplitz. Let us return to the case that S is symmetric. If we can find a rotation
matrixW such that B = (bij) = WSWT satisfies

b11 + b33 = 2b22, (3.1)

then we have the desired result by applying the unitary similarity via U to B for the 3 × 3
case. We will show that such a rotation matrix exists.

Denote by SO(n) the n× n proper orthogonal group. Let S ∈ S3 and S̃ = S − 1
3 (tr S)I3.

Then tr S̃ = 0. If we can show that S̃ is unitarily similar to some Toeplitz matrix T , then S
is unitarily similar to the Toeplitz matrix T + 1

3 (tr S)I3. Thus we may assume tr S = 0.
Lemma 3.5: Suppose that S ∈ S3 satisfying tr S = 0. Then there is W ∈ SO(3) such that
the (2, 2)-entry of WSWT is 0, and hence

WSWT =
⎛
⎝b11 b12 b13
b12 b22 b23
b13 b23 b33

⎞
⎠

for some b11, b12, b13, b23, b22, b33 ∈ Cwith b22 = 0, b33 = −b11. It follows that b11 +b33 −
2b22 = 0.

Proof: Note that tr S = 0. By a result of Brickman [18], (also see [19,20]), the range

W(S) := {(WSWT)22 : W ∈ SO(3)}

is convex. Since s11, s22, s33 ∈ W(S),

0 = 1
3
tr S = 1

3
(s11 + s22 + s33) ∈ W(S).

So there isW ∈ SO(3) such that (WSWT)22 = 0.

Theorem 3.6: Any 3 × 3 complex symmetric matrix is unitarily similar to some 3 × 3
Toeplitz matrix.

Proof: Let S ∈ S3. Let S̃ = S − 1
3 (tr S)I3. By Lemma 3.5, there existsW ∈ SO(3) such that

B̃ := (b̃ij) = WS̃WT and b̃22 = 0; thus b̃11 + b̃33 = 2b̃22. Now B := (bij) = WSWT =
WS̃WT + 1

3 (tr S)I3 is symmetric and b11 + b33 = 2b22 and b22 = 1
3 tr S, that is, (3.1) is

satisfied. By the previous discussion
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UBU∗ = UWSWTU∗ = UWS(UW)∗

is Toeplitz, where U is the 3 × 3 unitary matrix given in Theorem 3.3.

4. A standard form of complex symmetric matrices

To consider the class of complex symmetricmatrices which are unitarily similar to Toeplitz
matrices, we introduce a new standard form for complex symmetric matrices.

Lemma 3.5 can be extended in the following theorem.
Theorem 4.1: Let S ∈ Sn. There exists W ∈ SO(n) for which the diagonal entries
(d1, d2, . . . , dn) of the complex symmetric matrixWTSW satisfy

dj = 2
n
tr S − dn+1−j

for j = 1, 2, . . . , n. In particular, dj = −dn+1−j when tr S = 0 for j = 1, 2, . . . , n.

Proof: Without loss of generality, we may assume that tr S = 0. It suffices to prove that
there exists W ∈ SO(n) for which the diagonal entries (d1, d2, . . . , dn) of WTSW satisfy
dj = −dn+1−j for j = 1, 2, . . . , n.

It is trivial when n = 2 and Lemma 3.5 handles the n = 3 case.
Now we let n ≥ 4. When n = 2m, let C = diag(1, 0, . . . , 0, 1). By a result of Au-Yeung

and Tsing [19] (also see [20, Theorem 11.7]), the range

WC(S) = {(WSWT)11 + (WSWT)nn : W ∈ SO(n)}

is convex. If 0 	∈ WC(S), we can separate WC(S) from 0 by the line x = a for some a > 0
by rotating the range.Wemay assumeWC(S) ⊂ {z ∈ C : �(z) ≥ a}. This relation implies
that

�((WSWT)11 + (WSWT)nn) ≥ a,
�((WSWT)22 + (WSWT)(n−1)(n−1)) ≥ a,

. . .

�((WT)mm + (WSWT)(m+1)(m+1)) ≥ a,

and hence �(tr (WSWT)) = �(tr S) ≥ ma > 0, which contradicts tr S = 0. So we have
0 ∈ WC(S), and thus there existsW ∈ SO(n) such that the diagonal entries (d1, d2, . . . , dn)
ofWTSW satisfy dn = −d1. The argument can be used to prove dj = −dn−j+1 by taking
C = diag (0j−1, 1, 0n−2j, 1, 0j−1). Hence, we have dj = −dn+1−j, where j = 1, · · · ,m.

When n = 2m + 1, let C = diag(0m, 1, 0m). Using the idea in Lemma 3.5 we can
prove that there existsW ∈ SO(n) such that the diagonal entries (d1, . . . , dm+1, . . . , dn) of
WTSW satisfy dm+1 = 0. Then we consider the (2m)×(2m)matrix S̃ obtained by deleting
the (m + 1)-st row and column from S. We then apply the inductive hypothesis to S̃ and
complete the proof of our assertion.

We consider the class of 4 × 4 standard form of complex symmetric matrices S with
tr S = 0:
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S =

⎛
⎜⎜⎝
s11 s12 s13 s14
s12 s22 s23 s24
s13 s23 −s22 s34
s14 s24 s34 −s11

⎞
⎟⎟⎠ ,

which is parametrized by the 8 complex numbers s11, s22, s12, . . . , s34. In order to have
S = U∗TU for some T ∈ T4 and the unitary matrix U given in Section 3, the following
two equations are necessary and sufficient conditions:

s12 + s34 − 2s22 = 0, s13 − s24 + 2s23 = 0.

A general form of T̃ = USU∗ for the above S is given by

T̃ =

⎛
⎜⎜⎝

0 t12 t13 t14
t21 0 t23 t13
t31 t32 0 t12
t41 t31 t21 0

⎞
⎟⎟⎠ ,

which is parametrized by 8 complex numbers t12, t13, t14, t23 and t21, t31, t41, t32.We denote
by T̃4 the complex vector space of matrices of the form

T̃ =

⎛
⎜⎜⎝
t11 t12 t13 t14
t21 t11 t23 t13
t31 t32 t11 t12
t41 t31 t21 t11

⎞
⎟⎟⎠ .

The matrix T̃ is Toeplitz if t23 = t12, t32 = t21.

5. Comparision of the two dimensions, 27 vs. 26

In this section, we shall prove that the following inclusion is proper:

{UTU∗ : T ∈ T4,U ∈ U(4)} ⊂ {USU∗ : S ∈ S4,U ∈ U(4)}.

We first establish that the following theorem.
Theorem 5.1: The set

{UTU∗ : T ∈ T4, tr T = 0,U ∈ U(4)}, (5.1)

is parametrized by real 26-variables. The following set

{USU∗ : S ∈ T̃4, tr S = 0,U ∈ U(4)} (5.2)

contains the above set (5.1) and its dimension is 27. Hence there is a set S ∈ T̃4 with tr S = 0
for which USU∗ does not belong to (5.1) for any U ∈ U(4).

Proof: We first examine the set (5.1). Note that the dimension of the real vector space

{T ∈ T4, tr T = 0}
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is 12. The Lie group SU(4) is a 15-dimensional real analytic manifold with the real tangent
space at the identity composed of the 4 × 4 skew-Hermitian matrices of zero trace:

X =

⎛
⎜⎜⎝
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

⎞
⎟⎟⎠

with x11 = ip1, x22 = ip2, x33 = ip3, x44 = −i(p1+p2+p3), x12 = r1+is1, x21 = −r1+is1,
x13 = r2+is2, x31 = −r2+is2, x14 = r3+is3, x41 = −r3+is3, x23 = r4+is4, x32 = −r4+is4,
x24 = r5 + is5, x42 = −r5 + is5, x34 = r6 + is6, x43 = −r6 + is6, where p1, p2, p3, r1, . . . , r6,
s1, . . . , s6 are 15 real parameters. For a general point UgT0U∗

g of the set

{UTU∗ : T ∈ T4, tr T = 0,U ∈ SU(4)},

we shall estimate the dimension of its tangent space. By using the operation

Z �→ U∗
g ZUg ,

wemay assume thatUg = I and restrict ourselves to consider the dimension of the tangent
space at T0 ∈ T4 with tr T0 = 0. By the Taylor expansion of an element of a neighborhood
of T0, we obtain

exp (tX)(T0 + tT1) exp ( − tX) = T0 + tT1 + tXT0 − tTX0 + O(t2)

for X ∈ C4×4,X∗ = −X, trX = 0 and T1 ∈ T4, tr T1 = 0. These T1’s form a 12
dimensional real vector space. We compute the dimension of the derivation range

{T0X − XT0 : X ∈ C4×4,X∗ = −X, trX = 0}

modulo the vector space
{T̃ ∈ T4 : tr T̃ = 0}.

We denote byWij the (i, j)-entry ofW = TX − XT . Let

W1 = W1,1,W2 = W2,2,W3 = W3,3,W4 = W1,2 − W3,4,W5 = W2,1 − W4,3,
W6 = W1,3 − W2,4,W7 = W3,1 − W4,2,W8 = W2,3 − W3,4,W9 = W3,2 − W4,3.

EachWj can be expressed as

Wj = tj,1p1 + tj,2p2 + tj,3p3 +
9∑

k=4

tj,k−3rk +
15∑
10

tj,k−9sk

for some complex coefficients tj,k. The coefficients tj,k satisfy

tj,k = 0,

for j, k = 1, 2, 3. We are going to give the coefficient vectors
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Pk = (t4,k, t5,k, t6,k, t7,k, t8,k, t9,k), k = 1, 2, 3.

They are

P1 = (0, 0, 0, 0, ia1 − b1,−ic1 + d1),
P2 = 2(ia1 − b1,−ic1 + d1, ia2 − b2,−ic2 + d2, 0, 0),
P3 = (2ia1 − 2b1,−2ic1 + 2d1, 2ia2 − 2b2,−2ic2 + 2d2, 3ia1 − 3b1,−3ic1 + 3d1),

and hence the vectors P′
j s satisfy the linear equation

P3 − P2 − 3P1 = 0.

Hence, the rank of the 18× 15 matrix (�(tj,k),�(tj,k))T is necessarily less than or equal to
14. By taking a rather general coefficient aj, bj, cj, dj, the rank of such a matrix is just 14.
Thus, we conclude that the dimension of the set (5.1) is 26.

We then examine the set (5.2) and show that it has dimension 27 = 16+ 11. We take a
generic matrix T̃ in T̃4 with tr T̃ = 0 as follows:

T̃ =

⎛
⎜⎜⎝

0 2 − 2i 3 + 7i 7 + 8i
1 + 4i 0 23 + 3i 3 + 7i
23 + 7i 13 − 3i 0 2 − 2i

−11 + 11i 23 + 7i 1 + 4i 0

⎞
⎟⎟⎠ ,

at which we consider the tangent space of the set (5.2). By the Taylor expansion of an
element of a neighborhood of T̃ , we obtain

exp (tX)(T̃ + tT1) exp ( − tX) = T̃ + tT1 + XT̃ − T̃X + O(t2)

for X ∈ C4×4,X∗ = −X, trX = 0 and T1 ∈ T̃4, tr T1 = 0. These T1’s form a 16
dimensional real vector space. We compute the dimension of the derivation range

{T̃X − XT̃ : X ∈ C4×4,X∗ = −X, trX = 0}

modulo the vector space
{T1 ∈ T̃4 : tr T1 = 0}.

We denote byWij the (i, j)-entry ofW = TX − XT . Let

W1 = W1,1,W2 = W2,2,W3 = W3,3,W4 = W1,2 − W3,4,

W5 = W2,1 − W4,3,W6 = W1,3 − W2,4,W7 = W3,1 − W4,2.

Let

�(Wj) = c2j−1,1p1 + c2j−1,2p2 + c2j−1,3p3 + c2j−1,4r1 + · · · + c2j−1,9r6 + c2j−1,10s1
+ . . . + c2j−1,15s6,

�(Wj) = c2j,1p1 + c2j,2p2 + c2j,3p3 + c2j,4r1 + · · · + c2j,9r6 + c2j,10s1 + . . . + c2j,15s6,

j = 1, . . . , 7. We consider the 14 × 15 matrix T̃ = (cij) = [A|B]:
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 −26 4 0 0
0 0 0 −2 −14 −19 0 0
0 0 0 3 0 0 −36 −26
0 0 0 2 0 0 0 −14
0 0 0 0 26 0 36 0
0 0 0 0 14 0 0 0
0 4 4 0 −20 −46 −6 −20
0 4 4 0 −5 −14 −14 −5
0 8 8 0 −12 −6 −46 −12
0 −2 −2 0 −14 −14 −14 −14
0 −14 −14 −30 0 −2 4 0
0 6 6 −11 0 −8 −4 0
0 14 14 −2 0 −4 2 0
0 −46 −46 −8 0 4 8 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 6 0 3 0 0 0
0 1 −20 18 0 0 0
0 −6 0 0 −6 0 0
0 −1 0 0 10 −20 −20

−3 0 0 0 6 0 0
0 −2 20 0 −10 0 0
0 0 −11 14 −14 −11 −11
0 0 −6 −46 6 −6 −6
0 0 8 −14 14 8 8
0 0 34 6 −46 34 34

−30 −5 0 8 4 0 0
−11 −16 0 −2 4 0 0
−2 14 0 4 8 0 0
−8 24 0 4 −2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We are going to show that the rank of T̃ is at least 11. For this purpose we delete the first
two columns and the last two columns from T̃ without increasing the rank. These columns
correspond to the variables p1, p2, s5, s6. We also delete the first two rows and the last row
from T̃ without increasing the rank. These two rows correspond to the (1, 1)-entry of
W = TX − XT and the imaginary part ofW7 = W3,1 −W4,2. Then we obtain an 11× 11
real invertible matrix. This shows that the set (5.2) has a tangent space of dimension at
least 27 at the point T̃ . In fact, with some additional computations we can show that the
rank is just 11 but it is unnecessary for the proof of the assertion in the theorem, so the
set (5.1) cannot cover the set (5.2). Thus, we just proved that there exists a 4 × 4 complex
symmetric matrix which is not unitarily similar to any 4 × 4 Toeplitz matrix.

6. 5 × 5matrices

We shall prove the following theorem.
Theorem 6.1: There exists a 5 × 5 complex symmetric matrix A with trA = 0 for which
FA is not realized by FT for any T ∈ T5 with tr T = 0.
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Proof: The real vector space of all 5× 5 Toeplitz matrices T with tr T = 0 is parametrized
as ⎛

⎜⎜⎜⎜⎝
0 p1 + iq1 p2 + iq2 p3 + iq3 p4 + iq4

p5 + iq5 0 p1 + iq1 p2 + iq2 p3 + iq3
p6 + iq6 p5 + iq5 0 p1 + iq1 p2 + iq2
p7 + iq7 p6 + iq6 p5 + iq5 0 p1 + iq1
p8 + iq8 p7 + iq7 p6 + iq6 p5 + iq5 0

⎞
⎟⎟⎟⎟⎠

by 16 real parameters p1, . . . , p8, q1, . . . , q8. The Kippenhahn polynomial of a general 5×5
unitarily symmetrizable matrix S̃ with tr S̃ = 0 is expressed by

FS̃(t, x, y) = t5 + c1t3x2 + c2t3xy + c3t3y2 + c4t2x3 + c5t2x2y + c6t2xy2

+c7t2y3 + c8tx4 + c9tx3y + c10tx2y2 + c11txy3

+c12ty4 + c13x5 + c14x4y + c15x3y2 + c16x2y3 + c17xy4 + c18y5,

where c1, . . . , c18 are real coefficients. We will identify FS̃(t, x, y) by its coefficient vector
F̄S̃ := (c1, c2, . . . , c18). We consider the subspace

{F̄T = (c1, c2, . . . , c18) : T ∈ T5, tr T = 0}.

The map

(p1, q1, . . . , p8, q8) �→ (c1, . . . , c18)

is a polynomialmap and hence it is infinitely differentiable. So the set of points (c1, . . . , c18)
for 5× 5 Toeplitz matrices T with tr T = 0 has dimension≤ 16.We show that there exists
a 5 × 5 complex symmetric matrix S for which the linear perturbation S̃ = 2S + H + iK
of 2S by the matrices H ,K :

H =

⎛
⎜⎜⎜⎜⎝
a1 a5 a9 a12 a14
a5 a2 a6 a10 a13
a9 a6 a3 a7 a11
a12 a10 a7 a4 a8
a14 a13 a11 a8 a12

⎞
⎟⎟⎟⎟⎠ , K =

⎛
⎜⎜⎜⎜⎝
b1 0 0 0 0
0 b2 0 0 0
0 0 b3 0 0
0 0 0 b4 0
0 0 0 0 b5

⎞
⎟⎟⎟⎟⎠ ,

with a12 = −(a1 + a2 + a3 + a4), b5 = −(b1 + b2 + b3 + b4) for real coefficients
b1, . . . , b4, a1, . . . , a14. Then the matrix S̃ = 2S + H + iK has non-vanishing Jacobian

∂(c1, . . . , c4, c5, . . . , c18)
∂(b1, . . . , b4, a1, . . . , a14)

at (b1, . . . , b4, a1, . . . , a18) = (0, . . . , 0, 0, . . . , 0) for some symmetric matrix S. In fact, let

S =

⎛
⎜⎜⎜⎜⎝

0 2 + 3i 1 − 3i 4 + 2i −3 + 5i
2 + 3i 4 + 2i 3 − 2i 3 + 5i 4 − 6i
1 − 3i 3 − 2i 2 + i 2 + 2i 1 − i
4 + 2i 3 + 5i 2 + 2i −2 − i 1 + i

−3 + 5i 4 − 6i 1 − i 1 + i −4 − 2i

⎞
⎟⎟⎟⎟⎠ .
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Then we compute the above Jacobian by using computer software. This value does not
vanish and is about 3.81737 × 1057. Hence, there exists a 5 × 5 symmetric matrix A with
trA = 0 for which FA is not realized by FT for any T ∈ T5 with tr T = 0.
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