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Abstract

Brain computer interfaces (BCI) are systems that decipher an individual’s intents
by analyzing their brain signals. These systems have shown the potential to be
a solution for improving independent mobility in paralyzed individuals. Under
the motor imagery paradigm, an individual imagines movement of a limb. The
system subsequently decodes this signal and provides a class prediction. Most
previous work has sought to improve feature extraction and selection methods but
has relied on linear classifiers for class prediction. In this work, we examine the
use of ensemble learning methods to improve classification accuracies in a BCI
paradigm based on 2-class motor imagery. Our results demonstrate that majority
voting schemes outperform Linear Discriminant Analysis (LDA) but that other
ensemble techniques such as boosting and bagging perform worse. In the future,
we aim to employ more robust feature extraction methods such as Filter-bank
Common Spatial Patterns to improve our system’s generalizability.

1 Introduction

Brain-Computer Interfaces (BCIs) are systems which translate an individual’s intent into computerized
commands. These systems offer individuals with severe motor impairments, such as those suffering
from paralysis, a means for environmental control (e.g. TV, light, computer, wheelchair control)[8]
[13]. A BCI system is composed of several sub-components as depicted in Figure 1.

Several types of inputs can be used as inputs to the system. Electroencephalography (EEG) is the most
widely used modality during the signal acquisition phase as it is practical, non-invasive, and easy-to
use [10]. EEG signals are recorded using an electrode cap according to standardized placements
(10-20 system). Several types of control signals can be inferred from the raw data to allow for the
decoding of user intent. One such type of signals are sensorimotor rhythms (SMRs). SMRs are
modulation in the signals of the sensorimotor cortex of the brain; they arise as a result of actual
movement, motor intent or motor imagery (MI). This causal relation between movement-related brain
processes and SMRs has allowed motor imagery-based BCIs to be used for environmental control
[19].

Under the motor imagery paradigm, the user imagines a specific limb’s movement. This results in
alterations in the rhythmic activities overlying that limb’s location in the user’s sensorimotor cortex
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Figure 1: BCI Subcomponent Overview. Signal acquisition is done using an electrode cap according
to a standardized system. Data then undergoes de-noising, feature extraction and output prediction.
Several BCI paradigms are possible, each of which depend on a different control signal. SCP are
slow cortical potentials, SSVEP are steady state visually evoked potentials, P300 are evoked resting
potentials and SMRs are sensory motor rhythms.

[17]. Once recorded, the raw EEG data undergoes a feature extraction process. The features are then
passed to a classification algorithm which is trained with the extracted features to discern between
the different motor intents of the user. These intents can therefore serve as different control signals
during environmental control tasks (e.g. right-hand movement corresponds to moving a computer
cursor to the right) .

Traditionally, MI classification accuracy has relied on extensive user training to maximize the power
of the measured signals, and subsequently, the separability of the different classes. Users were
instructed to use visual feedback signals to reinforce their imagined movements [3]. This placed
the onus on users to adapt and hampered widespread use of the systems. Recent developments in
Machine Learning techniques now place the task of improving classification accuracy on the machine
side.

Several challenges still face BCI algorithms and are subject to much work. First and foremost,
EEG-based BCI systems are non-stationary by nature, have limited signal-to-noise ratios and suffer
from poor spatial resolutions due to volume conductor effects. These effects are worsened by varying
electrode impedances, muscular activity, eye movements and changes in user mental states)[3][5].
Additionally, the datasets are highly dimensional, with the number of channels either equalling or
exceeding the number of measured trials[8].

In this project, we seek to improve 2-class motor imagery classification accuracy using ensemble
learning methods. Figure 2 depicts the typical data processing pipeline we will follow. More
specifically, we outline the following aims: examining the use of boosting, bagging and majority
voting schemes with popular BCI classification algorithms.

2 Problem Domain

2.1 Overview

Under the formulation of this classification problem, X ∈ RC×T will correspond to a short segment
of an EEG signal which, in turn, pertains to a motor imagery trial. In this case, C represents the
number of data acquisition channels and T represents the sampled time points [5]. For correct
prediction of the output, the raw signal must pass through several stages before classification. Figure
2 depicts the pipeline describing the data processing method followed in this work. The method
employed follows the data processing pipeline based on the Common Spatial Patterns (CSP) algorithm
[5].

2



Figure 2: CSP based data processing pipeline employed in this work.

2.2 Stage 1: Frequency Filtering Stage

The raw data, X ∈ RC×T , is first passed through a frequency filtering stage using a zero-phase
Chebyshev Type II filter. The filter covers the frequency range between 3 and 30 Hz (most pertinent
for SMRs). This stage yields a frequency filtered matrix, denoted E ∈ RC×T and centers the
analysis about two frequency peaks relevant for SMRs: around 10 Hz and 20 Hz [8].

2.3 Stage 2: Spatial Filtering Stage

Due to volume conducting effects through the skull, scalp and brain layers, EEG signals undergo
spatial smearing before acquisition [9]. This renders the task of separating classes more difficult.
In this case, spatial filtering algorithms can be used to compute a projection matrix W, which is
C × C, such that W TE = Z, which has reduced smearing [5][9]. The Common Spatial Patterns
(CSP) algorithm has been successfully used for spatial filtering in motor imagery classification [3][5].
It designs spatial filters wj (the columns of projection matrix W) which maximize the variances
of the filtered time series and render the classes optimally separable. This is done by solving the
following eigenvalue decomposition problem:

Σ1W = (Σ1 + Σ2)WD (1)

where Σ1 and Σ2 are estimates of the covariance matrices for each of the classes. D is a diagonal
matrix containing the eigenvalues of Σ1. W is sorted in descending order of the eigenvalues. The
first 3 and last 3 filters are kept (i.e. the most important filter pair is the first, and last entry in the
matrix) [11]. This results in a projection matrix that is C × 6. The ith trial in the spatially filtered
signal V ∈ RNtrials×6 can then be computed using the new projection matrix :

Vi = log
diag(W TEiE

T
i W )

tr[W TEiE
T
i W ]

(2)

2.4 Stage 3: Classification Stage

For a binary classification task, a classifier, denoted by f(X;W,B), is expected to output a real
value, whose sign is interpreted as the predicted class (see eqn 1).

f(X;W,β) =

J∑
j=1

βj log (wT
j XX

Twj) + β0 (3)

The frequency-filtered raw data X is first projected by j filters (columns of the projection matrix
W ). The log of the power of the projected signal is then taken and is combined with J dimensional
features and a bias to produce a prediction [5].
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In this work, five classification algorithms which have been relatively successful in motor imagery
classification tasks are examined and compared to ensemble learning methods. Linear Discriminant
Analysis (LDA) has been extensively used in BCI classification tasks. It maximizes between-class
separation and minimizes within-class distances; it does so by finding a set of weights and a bias
which make up the best discriminating projection [8]. The sign of the resulting output is taken as the
class prediction. Support Vector Machine (SVM) classifiers calculate a decision hyperplane which
maximizes the margins between the classes. The decision tree algorithm uses the extracted feature
set to generate a decision-making scheme with branches and nodes. At each level of the tree, either
one or several features are considered such that the information gain of class labels in the partition is
maximized. A Multilayer perceptron is an assembly of several layers of neurons (input layers, one
or many hidden layers and an output layer), which together produce a nonlinear decision boundary
[8]. Finally, logistic regression computes the probability of a default class by linearly combining the
inputs and passing the result through a sigmoid function to produce binary values.

2.4.1 Ensemble Learning Methods

Ensemble learning consists of combining the decisions of many classifiers to improve the overall
accuracy. Boosting is an ensemble learning method which aims to reduce bias by training classifiers
in a cascade-like manner. In this sense, each new classifier focuses on the mistakes of its predecessor
[8]. Voting is another scheme which simply consists of taking the majority vote between several
classifiers trained on the original dataset. Bagging (Bootstrap-aggregation) is the third and final
method employed in this work. It reduces overfitting by averaging predictions over subsets of the
dataset that are randomly generated with replacement. Random Forests are based on the bagging
algorithm. They use decision trees with splitting on random subsets of features to produce predictions
[2].

3 Related Work

Extensive bodies of work have been devoted to improving motor imagery classification accuracies.
In terms of feature extraction, popular methods include statistical spectrum estimation methods (both
parametric and non-parametric)[7], Adaptive autoregressive (AAR) parameter estimation with the
recursive least squares algorithm [12] and finally, and spatial filtering techniques [5]. Based on recent
classification performances in the BCI competition IV, methods based on spatial filtering techniques
seem to demonstrate superior classification accuracies [16].

Independent component analysis is a widely used unsupervised spatial filtering technique which
separates multichannel EEG into statistically independent components. Naeem et al. compared three
well-known ICA-based algorithms (FastICA, SOBI and Infomax) to Common Spatial Patterns (CSP)
filtering. They found that CSP yielded better results [9]. This is unsurprising given that CSP is
supervised algorithm. CSP also performed better in session-to-session testing.

Several variants on the CSP algorithm have also been proposed. Samek et al. provide a comparison
of 7 variants and demonstrate that stationary-CSP marginally outperforms the rest [13]. Filter-bank
CSP (FBCSP) is another variant on CSP and has been relatively successful during BCI competitions.
Ang et al. applied FBCSP on a 4-class motor imagery dataset in BCI competition III. They compared
the performance of several classifiers and concluded that FBCSP with Naïve Bayes Parzen windows
yielded the highest test accuracies [1].

In terms of classification algorithms, many different procedures have been explored in literature.
Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs) have been widely used
with relative success [8]. Alois Schlogl et al. made use of adaptive autoregressive process features
and SVMs to classify 4-motor imagery tasks as part of the 2005 BCI competition IIIa. They obtained
better classification accuracy and high kappa values using SVM relative to LDA [14] . Others have
examined the use of Hidden Markov Models (HMMs), Multilayer Perceptron (MLP) and K-Nearest
Neighbours [8].

Methods based on Ensemble Learning such as Random Forest (RF) have been occasionally examined.
Bentlemsan et al. used FBCSP with the RF technique. They ran the algorithm on the Graz data set
B of the BCI competition (a two-class motor imagery dataset with significant EOG contamination).
Their algorithm outperformed most previous classification approaches [2].
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Figure 3: BCI Competition III Dataset IVb Experiment Setup

In our work, we aim to make further use of ensemble learning techniques such as voting, bagging and
boosting to further improve classification accuracies.

4 Model Comparisons

4.1 Dataset Overview

The dataset examined in this work is provided as part of the BCI competition III in 2003, dataset IVb
“Motor imagery, Uncued Classifier Application”. The particular problem which it attempts to address
is that which involves classifying motor imagery in an asynchronous protocol design. In other words,
no cues are provided along with the data to indicate that the subject has switched to a different mental
target class [4]. As a byproduct of this paradigm, the dataset contains periods in which the user has
no control intention. The algorithm is therefore expected to discern between left and right motor
imagery as well as the resting state.

EEG data was recorded from one subject, sitting in a comfortable chair with arm rests. It is split
into 7 sessions. The first 3 form the training set, and contain cues indicating for 3.5 seconds which
of the 3 motor imageries the subject should perform. The remaining 4 sessions do not contain cues
and have active periods of motor imagery varying between 1.5 to 8 seconds, intermitted by resting
periods of 1.75 to 2.25 seconds. The data was recorded using 118 channels and consists 120 trials of
motor imagery. Signals were band-pass filtered between 0.05 and 200 Hz and then downsampled at
100Hz before being publicly available for analysis. The experimental setup is depicted in Figure 3.

4.2 Experimental Procedure

As mentioned earlier, LDA is one of the most widely used classification algorithms applied in BCI
research. Thus, an LDA classifier is used as the baseline model in our study and its classification
performance on the test set is the metric used to assess the different models. The experimental
procedure consists of training and testing a wide variety of classification algorithms on the BCI
competition III dataset. More specifically, six standard classifiers (i.e. LDA, Linear SVM, RBF-
Kernel SVM, Artificial Neural-Network, Decision Tree and Logistic Regression) and three ensemble
classifiers (i.e. Majority voting, Random Forest, Logistic Regression Boosted) are trained and have
their respective hyper-parameters tuned using 5-fold cross validation. This cross validation scheme
is adopted over 10-fold cross validation to reduce training time as the number of classifiers being
used in the experiment are high. As mentioned earlier, the classifiers are trained using a CSP feature
extraction algorithm (mentioned in Section 2), which results in a six-dimensional feature vector for
each data point. In addition, the training dataset is comprised of 210 labeled instances that is split
evenly between the two classes.

The test dataset contains 34,594 data instances, with 18,488 belonging to one class and 16,106 to
the other. As mentioned earlier, a six-dimensional feature vector is extracted for each test instance.
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Table 1: Classification test results

Classifier Test Error Cohen’s Kappa

LDA 13.02% 0.737
Linear SVM 11.64% 0.764
RBF-Kernel SVM 11.13% 0.775
Neural Network 11.45% 0.769
Decision Tree 16.53% 0.671
Logistic Regression 12.98% 0.739
Majority Vote 10.81% 0.782
Random Forest 14.05% 0.713
Logit Boost 16.38% 0.681

Since, the number of data instances belonging to each class is different (roughly 2,000 more positive
examples than negative examples), a second performance metric (other than test error) must be used;
a metric that is insensitive to randomness caused by different number of examples in each class.
Hence, Cohen’s kappa value is also used. Using these metrics, three performance comparisons are
made: 1) Baseline vs. Other Standard Classifiers, 2) Ensemble Classifiers vs. Standard Classifiers,
3) Ensemble Classifier vs. Respective Standard Classifier (i.e. Random Forest vs. Decision Tree,
Logistic Regression Boost vs. Logistic Regression).

4.3 Results and Discussion

The results of the experiments are summarized in Table 1. Three classifiers (Linear SVM, RBF-Kernel
SVM and Neural Network) performed better than LDA, one performed similarly (Logistic Regression)
and one performed worse (Decision Tree). The application of a linear maximum margin classifier (i.e.
Linear SVM) improved the classification performance by roughly 1.5%. Also, given that the training
dataset has low feature dimension (6 dimensions) but a much greater amount of training instances
(210); it is no surprise that the non-linear and more complex models, the RBF-Kernel based SVM and
artificial neural network performed better than the LDA. In fact, the RBF-Kernel based SVM was the
best performing standard classifier with a test error of 11.13% and kappa value of 0.775. In contrast,
the Decision Tree classifier performed substantially worse with a test error of 16.53%, which may be
a result of overfitting due to substantial tree size.

In terms of ensemble classifiers, three different models (i.e. Majority Vote, Random Forest and
Logit Boost) were used for producing predictions on the test dataset. The Majority Vote classifier
produced a test error of 10.81% and kappa value of 0.782, making it the best performing model of the
study. In this classifier, predictions are made by aggregating the predictions made by the five standard
classifiers (i.e. Linear SVM, RBF SVM, Neural Network, Decision Tree and Logistic Regression)
and then choosing the class that was most frequently predicted. The other two ensemble classifiers,
Random Forest and Logit Boost, performed worse than the baseline. The poor performance of Logit
Boost is hypothesized to be a result of the increase in variance (leading to overfitting) that can occur
when using boosting ensembles. The overfitting which has led to reduced performance is also evident
when comparing the performance of Logit Boost with its underlying model, logistic regression (3.5%
increase in test error). Unlike Logit Boost, the Random Forest model performed better than its
underlying model producing about a 2.5% increase in performance compared to the Decision Tree. It
is noted that the poor performance of the Decision Tree may be a hint of overfitting. Thus, it was
expected that its "Bagged" ensemble version, which is known for reducing overfitting, has resulted in
an increase in performance. Therefore, it seems that inadequate performance of the Random Forest
model when compared to the baseline is due to the below-par performance of the underlying Decision
Tree model.

5 Model Limitations

The limitations discussed will pertain to the best performing classification model in the study. This
model consisted of CSP feature extraction followed by classification using the Majority Vote ensemble
model. Two types of limitations exist: one as a result of the non-stationary and noisy characteristics
of the human brain signals, and the other due to the inherit characteristics of an ensemble model.
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As a consequence of head and ocular movement, the EEG signals collected typically suffer from poor
signal-to-noise ratio. The EEG dataset provided in this study did not have electro-oculogram(EOG)
readings nor did it have expert artifact labeling of the signals. This limited our capacity for data
de-noising prior to classification. In more practical BCI settings, this will not be the case. As
such, we expect our algorithm to generalize poorly to other datasets. Many different autonomous
artifact removal algorithms have been proposed in the literature [6]. Thus, to address this limitation a
pre-processing step before feature extraction is required to remove the potential artifacts.

The other BCI related limitation exists due to the inherit non-stationary nature of the EEG signals.
More specifically, an individual’s EEG signals rapidly vary over time and more so across different
sessions. Thus, a classification pipeline that was trained using EEG signals from an earlier session
may no longer be applicable for BCI classification in a future session. Several solutions have been
proposed as a remedy to this issue, including adaptive classifiers and pre-session tuning of classifiers
[15].

The final limitation arises due to the structure of the Majority Vote ensemble classifier. As mentioned
earlier, this model is comprised of five different underlying classifiers, thus, training this model
involves training the five underlying models. In addition, making predictions using the ensemble
involves running the various classifiers and aggregating their predictions. In a BCI system, time
constraints exist in both classifier training and prediction. This is especially the case if additional
training is required as a remedy to the non-stationary limitations mentioned earlier. In addition, the
EEG signals are being sampled at 1000 Hz, which corresponds to a new data point coming in to be
classified every millisecond. Thus, the time it takes to train and test the model must be minimal. This
can be an issue for the Majority Vote ensemble model as it is comprised of multiple classifiers. To
overcome this limitation, the use of parallel computing and map-reduce have been proposed and
shown to give adequate train and test time [18].

6 Conclusions

In this work, we examine the use of 5 classifiers and 3 ensemble learning schemes to predict outputs
for a 2-class motor imagery classification problem. We demonstrate that ensemble models such as
Majority Voting are able to outperform traditional methods such as Linear Discriminant Analysis.
Other ensemble learning techniques such as boosting and bagging performed worse and may require
further tuning to improve their classification accuracies. In the future, we hope to employ more robust
feature extraction methods such as FB-CSP and to handle data de-noising in our data processing
pipeline. Additionally, we aim to test our model on different data sessions to assess its ability to
generalize to other data.
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