Appendix Il

Short Tutorial on M atlab
(©2004 ty Tomas Co)

Part 5. Using S-function blocks in Simulink®

I. Motivation: With the cmmplexity of medium-sizeto large-size nonlinear models, it
may be more dficient to use aset of differential equations written in an m-file.
These m-files will be acessed by Simulink through the S-function block. Thus,
this method mixes the alvantages of an m-file which can be run diredly by
solvers sich asode45, with the graphical links to other Simulink blocks.

II. Example System:

Suppose we want to model the nonisothermal CSTR,

dc E
a (F a
— == (Cg-Cq)=kgexp-————|-C
d v Cd~ Caj=ko pL{-(T+460) a
E
dT_[F AH a U-A
-<>-<TfT> : ko-ex{ -ca] (T-T))
dt |V PCp R.(T + 460) pCpV

We want to model this system in which we will treat the jacket temperature, T_j, as
theinput (i.e. manipulated variable). We will also want to monitor concentration
and temperature of the liquid in the CSTR as our outputs.

I1l. Writethe m-file.
Recall that we could model the process by writing an m-file to be used by Matlab
solvers such asode45. One such file, which we will nameasr eact or. m is

shown in Figure 1.

Test the model to make sure it works. For instance, with Tj=55:

| >> [t, x] =ode45(@eactor,[0 10],[0.1;40],[], 55);

Note/Recall: The command-line specifies: asimulation-time spanof [0 10] , an
initial-value column vector: [0. 1; 40] , anull placeholder,[] , for
default options, and setting T; with a value equal to 55.

OfficePC
Typewriter
Appendix III

function dx = reactor(t,x, Tj)
%
% nodel for reactor
%
Ca = x(1) ; % | brol /ft "3
T = x(2) ; % oF
Ea = 32400 ; % BTU/ | bnol
kO = 15el2 ; % hr~-1
dH = -45000 ; % BTU/ | bnol
Uu =175 ; % BTU hr-ft~"2-oF
rhocp = 53.25 ; % BTU/ ft"3
R = 1.987 ; % BTU/ | bnol - oF
vV =750 ; %ft"3
F = 3000 ; % ft~3/ hr
Caf = 0.132 ; % | brol / ft~3
Tf = 60 ; % oF
= 1221 ; %ftn2
ra = kO*exp(-Ea/(R*(T+460))) *Ca;
dCa = (F/V)*(Caf-Ca)-ra;
dT = (F/V)*(Tf-T)-(dH)/ (rhocp) *ra. ..
-(UA)/ (rhocp*V) *(T-Tj);
dx =[dCa; dT];

Figure 1. Filesaved asr eact or . m

Remarks:

1. Wetreat T; asan argument/parameter. Thisisin anticipation that we will be
varying T; later as an input/manipulated variable.

2. Theargumentsx and dx are column vectorsfor state and derivative,
respectively.

3. Writing amodel first for direct ODE45 implementation is advisable, specially for
complex processes. Thisway, one can check the validity of the model, prior to
its incorporation to a Simulink model.

. Write an S-function file.

Thisfile will also be saved as an m-file. It contains the protocol in which Simulink
can access information from Matlab.

For our example, we show one such S-function file in Figure 2. We will save this
fileasreactor _sfcn. m

function [sys,x0,str,ts]=...
reactor_sfcn(t,x,u,flag,Cnit, Tinit)

switch flag
case 0 % initialize

str =[] :
ts=[0 0] ;

S = simsizes X

s.NumContStates =2 ;
s.NumDiscStates =0 ;
s.NumOutputs = 2 ;
s.Numinputs = 1 ;
s.DirFeedthrough =0 ;
s.NumSampleTimes =1 ;

sys = simsizes(s) ;

x0=[Cinit, Tinit] ;

case 1 % derivatives
Tj= u ;
sys = reactor(t,x,Tj) ;

case 3 % output

SYS = X;
case {2 4 9} % 2:discrete
% 4:calcTimeHit
% 9:termination
sys =[I;
otherwise

error(unhandled flag =',num2str(flag)]) ;

end

Figure 2. File saved asreactor_sfcn.m

Let us deconstruct the S-function file given in Figure 2 to understand what the file needs
to contain.

1. Thefirst line specifies the input and output arguments.

function [sys,x0,str,ts]=...
reactor _sfcn(t,x,u,flag,Cinit, Tinit)

Asit iswith any Matlab functions, the variable names themselves are not as crucial
as the positions of the variables in the list.

a) input arguments

(1) t - thetime variable

(2) x - the column-vector of state variables

(3) u - the column-vector of input variables (whose value will come from other
Simulink blocks)

(4) f1 ag - indicator of which group of information and/or calculationsis being
requested by Simulink.

There are six types of request that Simulink performs, each of which is
designated by an integer number:

fvlalig Job/Data Request
[nitialization:
a) Setup of input/output vector sizes and
0 other setup modes

b) Specification/calculation of initial
conditions for the state variables.

Derivative Equation Updating:

1 a) Calculationsinvolving input vectors

b) Calculation of the derivatives

Discrete Equation Updating

(will not be used for our example)

Output Calculations:

Evaluating output variables as a function of

3 the elements of the state vector (and in

some case, also the elements of the input

Vector)

Get Time of Next Variable Hit

(will not be used for our example)

Termination:

Additional routines/calculations at the end

of the simulation run.

(will not be used for our example)

(5) CGinit, Tinit -additional supplied parameters.

In our case, these are the initial conditions for concentration and temperature.

Note: We do not specify what the values of the input arguments are. Their values
will be specified by Simulink during a simulation run.

b) output arguments

(1) sys - themain vector of results requested by Simulink. Depending onthef | ag
sent by Simulink, this vector will hold different information.

If flag =0 sys = [a,b,c,d,e, f,g]
where,

a = number of continuous time states

b = number of discrete time states

¢ = number of outputs (Note: thisis not necessarily
the number of states)

d = number of inputs

e =0 (requiredto beO0, not currently used)

f =0(no) or 1(yes) for direct algebraic feed through
of input to output. (thisisrelevant only if during
flag=3, the output variables depend algebraically
on the input variables.)

g = number of sample times. (for continuous
process, we set this equal to 1)

If flag =1 sys = acolumn vector of the derivatives of the state
variables
If flag =3 sys = acolumn vector of the output variables
If flag = since these flags are not used in our example, they can
2,4,9 just send out a null vector: sys=[]

The next set of 3 output arguments are needed by Simulink only whenf | ag =0,
otherwise they are ignored:

(2) x0 - column vector of initial conditions.

(3) str -needtobesettonull. Thisisreserved for use in future versions of
Simulink.

(4) ts - anarray of two columns to specify sampling time and time offsets. Since
our example will deal only with continuous systems, thiswill besetto[0 0]
during initiation phase.

. After thefirgt line, the S-function file is glit into the different cases determined by
flag . Asshownin Figure 3, we show the bare structure of the “containers’ for the
different cases. We have left out the detail s for case 1, 2 and 3. For case 2, 4, and 9,
we simply set sys=[] . Thelast two linesto catch an exceptional case where abug
occurs during the Simulink run.

switch flag
case 0 % initialize
%...
case 1 % derivatives
%...
case 3 % output
%...
case {2 4 9} % 2:discrete
% 4:calcTimeHit
% 9:termination
sys =[I;
otherwise

error(unhandled flag =',num2str(flag)]) ;

end
Figure 3.
Now, let usfill the details.
For case O (initialization),
a) definestr ,ts and x0
str =[] ;
ts=[0 0] ;
x0=[Cinit, Tinit] ;

b) creaearow vedor which spedfies the number of inpus and outputs, etc.
To ad in this, we invoke the simsizes command.
Without arguments, simsizes will credes a strucure variable which we @an
then fill with the required values:

| s= simsizes :

NuntCont St at es
. NunDi scSt at es

. NumQut put s

. Num nput s

. Di r Feedt hr ough
. Nunanpl eTi nes

RPORFRLNON

nunmunmunonn

Using the command simsizes again with the structure variable as the argument
actually translates the values in the structure, s, into arow vector which gets sent to
Simulink viasys:

| sys = sinsi zes(s) ;

For case 1 (derivative calculations)

We set the input u to Tj and then apply it to the m-file we wrote earlier, i.e.

reactor. m
case 1 % derivati ves
T =u ;
sys = reactor(t,x, Tj) ;

For case 3 (output calculations)

case 3 % out put

Sys = X;

V. Insert the S-Function block into the Simulink.

In the Simulink Library browser, goto the[User - Def i ne Functi ons]
subdirectory. Then drag-drop the S- Funct i on block (see Figure 4).

Double-click on the S-function block and fill in the parameters. Change the S-
function nametor eact or _sf cn. Also, fill inthe parameters. Inour case, we

input 0. 1, 40 (which isthe value for G ni t and Ti ni t) asshown in Figure 5.

E Simulink Library Browszer

File Edit “iew Help
O = <A Find |

Fecn: Gr'sneral enpression block, Usze "y as the input variable name. ﬂ
Exampher zinful] * exol2 3 -ul21 1

- Rl Simulink -
B Continuous e e

- B Discontinuities e
- 2 Discrete Bt MATLAE Fon

. 2 Look-Up Tables g
. 7| Math Operations < system | S-Qunction

- B Model Verification

23] Madekwide Lltities sﬁ?‘ Sl TR,
- B Ports & Subsystemns

5 y Signal Attributes L S-Function

- 23| Signal Routing block

o B Sinks

- P Sources

i - 3| User-Defined Functions
.- Wl Aerozpace Blockset

Ready o
Figure 4.

Block Parametmﬁ: 5-Function I

— S-Function

Uzer-definable block. Blocks may be written in b, C, Fortran or Ada and
must confarm to S-function standards. ts.u and flag are automatically
pazzed ta the S-function by Simulink. "Extra" parameters may be
zpecified in the 'S-function parameters' figld.

— Parameters
S-function name;

Irean:tu:ur_sfn:n

S-function parameters;
|0.1.40

[k I Cancel Help Apply

Figure 5.

V1. Add other Simulink blocksand simulate.

EI untitled * =]
Eile Edit “iew Simulation Fomat Tool: Help
D eHS| B8 | v | @i i
i
B
1 Ca
E—p— redctor_sfocn 4>|:
Step
S-Fundtion .-,_I:l
T
Cut the 100% | {oded5 o

Figure 6.

Remark: In figure 6, we include ademux block (which stands for demultiplexer)

to split the output vector to the 2 elements. In other applications where the input
vectors has more than one element, we need amux block (which stands for

multiplexer). Both mux and denux blocksresideinthe Si gnal Routi ng
subdirectory of the Simulink Library browser.

