
1

Shor t Tutor ial on Matlab
(©2004 by Tomas Co)

Par t 5. Using S-function blocks in Simulink®

I . Motivation: With the complexity of medium-size to large-size nonlinear models, it
may be more efficient to use a set of differential equations written in an m-file.
These m-files wil l be accessed by Simulink through the S-function block. Thus,
this method mixes the advantages of an m-file which can be run directly by
solvers such as ode45, with the graphical links to other Simulink blocks.

II . Example System:

Suppose we want to model the nonisothermal CSTR,

dC a

dt
.F

V
C af C a

..k 0 exp
E a

.R ()T 460
C a

dT

dt
.F

V
T f T .∆ H

.ρ C p

..k 0 exp
E a

.R ()T 460
C a

.
.U A

..ρ C p V
T T j

We want to model this system in which we will treat the jacket temperature, T_j, as
the input (i.e. manipulated variable). We will also want to monitor concentration
and temperature of the liquid in the CSTR as our outputs.

III. Write the m-file.

Recall that we could model the process by writing an m-file to be used by Matlab
solvers such as ode45. One such file, which we will name as reactor.m, is
shown in Figure 1.

Test the model to make sure it works. For instance, with Tj=55 :

>> [t,x]=ode45(@reactor,[0 10],[0.1;40],[],55);

Note/Recall: The command-line specifies: a simulation-time span of [0 10], an
initial-value column vector: [0.1;40], a null placeholder,[] , for
default options, and setting Tj with a value equal to 55.

OfficePC
Typewriter
Appendix III

2

function dx = reactor(t,x,Tj)
%
% model for reactor
%

 Ca = x(1) ; % lbmol/ft^3
 T = x(2) ; % oF

 Ea = 32400 ; % BTU/lbmol
 k0 = 15e12 ; % hr^-1
 dH = -45000 ; % BTU/lbmol

 U = 75 ; % BTU/hr-ft^2-oF
 rhocp = 53.25 ; % BTU/ft^3
 R = 1.987 ; % BTU/lbmol-oF
 V = 750 ; % ft^3
 F = 3000 ; % ft^3/hr
 Caf = 0.132 ; % lbmol/ft^3
 Tf = 60 ; % oF

 A = 1221 ; % ft^2

 ra = k0*exp(-Ea/(R*(T+460)))*Ca;
 dCa = (F/V)*(Caf-Ca)-ra;
 dT = (F/V)*(Tf-T)-(dH)/(rhocp)*ra...

 -(U*A)/(rhocp*V)*(T-Tj);

 dx =[dCa;dT];

Figure 1. File saved as reactor.m

Remarks:
1. We treat Tj as an argument/parameter. This is in anticipation that we will be

varying Tj later as an input/manipulated variable.
2. The arguments x and dx are column vectors for state and derivative,

respectively.
3. Writing a model first for direct ODE45 implementation is advisable, specially for

complex processes. This way, one can check the validity of the model, prior to
its incorporation to a Simulink model.

IV. Write an S-function file.

This file will also be saved as an m-file. It contains the protocol in which Simulink
can access information from Matlab.

For our example, we show one such S-function file in Figure 2. We will save this
file as reactor_sfcn.m.

function [sys,x0,str,ts]=...
 reactor_sfcn(t,x,u,flag,Cinit,Tinit)

3

switch flag

 case 0 % initialize

 str =[] ;
 ts = [0 0] ;

 s = simsizes ;

 s.NumContStates = 2 ;
 s.NumDiscStates = 0 ;
 s.NumOutputs = 2 ;
 s.NumInputs = 1 ;
 s.DirFeedthrough = 0 ;
 s.NumSampleTimes = 1 ;

 sys = simsizes(s) ;

 x0 = [Cinit, Tinit] ;

 case 1 % derivatives

 Tj = u ;
 sys = reactor(t,x,Tj) ;

 case 3 % output

 sys = x;

 case {2 4 9} % 2:discrete
 % 4:calcTimeHit
 % 9:termination
 sys =[];

 otherwise

 error([' unhandled flag =',num2str(flag)]) ;

end

Figure 2. File saved as reactor_sfcn.m .
Let us deconstruct the S-function file given in Figure 2 to understand what the file needs
to contain.

1. The first line specifies the input and output arguments.

function [sys,x0,str,ts]=...
 reactor _sfcn(t,x,u,flag,Cinit,Tinit)

As it is with any Matlab functions, the variable names themselves are not as crucial
as the positions of the variables in the list.

4

a) input arguments

(1) t - the time variable
(2) x - the column-vector of state variables
(3) u - the column-vector of input variables (whose value will come from other

Simulink blocks)
(4) flag - indicator of which group of information and/or calculations is being

requested by Simulink.

There are six types of request that Simulink performs, each of which is
designated by an integer number:

flag
value Job/Data Request

0

Initialization:
a) Setup of input/output vector sizes and

other setup modes
b) Specification/calculation of initial

conditions for the state variables.

1
Derivative Equation Updating:
a) Calculations involving input vectors
b) Calculation of the derivatives

2
Discrete Equation Updating
(will not be used for our example)

3

Output Calculations:
Evaluating output variables as a function of
the elements of the state vector (and in
some case, also the elements of the input
vector)

4
Get Time of Next Variable Hit
(will not be used for our example)

9

Termination:
Additional routines/calculations at the end
of the simulation run.
(will not be used for our example)

(5) Cinit,Tinit - additional supplied parameters.

 In our case, these are the initial conditions for concentration and temperature.

Note: We do not specify what the values of the input arguments are. Their values
will be specified by Simulink during a simulation run.

b) output arguments

(1) sys - the main vector of results requested by Simulink. Depending on the flag
sent by Simulink, this vector will hold different information.

5

If flag = 0 sys = [a,b,c,d,e,f,g]
where,
 a = number of continuous time states
 b = number of discrete time states
 c = number of outputs (Note: this is not necessarily
 the number of states)
 d = number of inputs
 e = 0 (required to be 0, not currently used)
 f = 0(no) or 1(yes) for direct algebraic feed through
 of input to output. (this is relevant only if during
 flag=3, the output variables depend algebraically
 on the input variables.)
 g = number of sample times. (for continuous
 process, we set this equal to 1)

If flag = 1 sys = a column vector of the derivatives of the state
 variables

If flag = 3 sys = a column vector of the output variables
If flag =
 2,4,9

since these flags are not used in our example, they can
just send out a null vector: sys=[]

The next set of 3 output arguments are needed by Simulink only when flag = 0,
otherwise they are ignored:

(2) x0 - column vector of initial conditions.

(3) str - need to be set to null. This is reserved for use in future versions of
Simulink.

(4) ts - an array of two columns to specify sampling time and time offsets. Since
our example will deal only with continuous systems, this will be set to [0 0]
during initiation phase.

6

2. After the first line, the S-function file is split into the different cases determined by
flag . As shown in Figure 3, we show the bare structure of the “containers” for the
different cases. We have left out the details for case 1, 2 and 3. For case 2, 4, and 9,
we simply set sys=[] . The last two lines to catch an exceptional case where a bug
occurs during the Simulink run.

switch flag

 case 0 % initialize

 %...

 case 1 % derivatives

 %...

 case 3 % output

 %...

 case {2 4 9} % 2:discrete
 % 4:calcTimeHit
 % 9:termination
 sys =[];

 otherwise

 error([' unhandled flag =',num2str(flag)]) ;

end

Figure 3.

Now, let us fil l the details.

For case 0 (initialization),
a) define str , ts and x0

 str =[] ;
 ts = [0 0] ;
 x0 = [Cinit, Tinit] ;

b) create a row vector which specifies the number of inputs and outputs, etc.
To aid in this, we invoke the simsizes command.
Without arguments, simsizes will creates a strucure variable which we can
then fil l with the required values:

 s = simsizes ;

7

 s.NumContStates = 2 ;
 s.NumDiscStates = 0 ;
 s.NumOutputs = 2 ;
 s.NumInputs = 1 ;
 s.DirFeedthrough = 0 ;
 s.NumSampleTimes = 1 ;

Using the command simsizes again with the structure variable as the argument
actually translates the values in the structure, s, into a row vector which gets sent to
Simulink via sys:

 sys = simsizes(s) ;

For case 1 (derivative calculations)

We set the input u to Tj and then apply it to the m-file we wrote earlier, i.e.
reactor.m:

 case 1 % derivatives

 Tj = u ;
 sys = reactor(t,x,Tj) ;

For case 3 (output calculations)

 case 3 % output

 sys = x;

V. Insert the S-Function block into the Simulink.

In the Simulink Library browser, go to the [User-Define Functions]
subdirectory. Then drag-drop the S-Function block (see Figure 4).

Double-click on the S-function block and fill in the parameters. Change the S-
function name to reactor_sfcn. Also, fill in the parameters. In our case, we
input 0.1,40 (which is the value for Cinit and Tinit) as shown in Figure 5.

8

S-Function
block

Figure 4.

Figure 5.

9

VI. Add other Simulink blocks and simulate.

Figure 6.

Remark: In figure 6, we include a demux block (which stands for demultiplexer)
to split the output vector to the 2 elements. In other applications where the input
vectors has more than one element, we need a mux block (which stands for
multiplexer). Both mux and demux blocks reside in the Signal Routing
subdirectory of the Simulink Library browser.

