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Summary

Previous chapters have introduced the concepts of

process dynamics and strategies for process control,

emphasizing traditional applications from the petro-

chemical industries, such as chemical reactors and

distillation columns. In this chapter, we introduce the

application fields of bioprocessing and biomedical

devices, and elucidate the characteristics that these

processes share with traditional chemical processes. Dif-

ferences will also be highlighted, including the nature

of uncertainty in biological processes, as well as the

safety considerations in medical closed-loop systems.

Control system design for three bioprocessing oper-

ations is described: crystallization, fermentation, and

granulation. Finally, a number of problems in controlled

drug delivery are reviewed, and control strategies are

demonstrated in the areas of diabetes and blood pres-

sure regulation. Biological applications are expanded

in Chapter 24, with a discussion of control systems

opportunities, including applications to systems biology.

23.1 PROCESS MODELING AND
CONTROL IN PHARMACEUTICAL
OPERATIONS

A typical flowsheet in the pharmaceutical industry con-

tains many of the same categories of operations as occur

435

in a traditional petrochemical processing plant: reactors

to generate products from raw materials, purification

steps to extract desired products from the by-products

and unreacted feed materials, and downstream process-

ing associated with the final formulation of the product.

Pharmaceutical processes are unique in several respects:

(1) the main reactions involve biological materials, such

as cells and tissues from more complex organisms, and

(2) most of the products are formulated in solid form,

which requires a unique set of bulk solids processing

steps to purify and formulate the desired end product

(e.g., a medicinal tablet). Consequently, the upstream

processing involves sterilization and fermentation, and

the manipulated inputs for the reactor often include

inducers to activate the expression of particular genes

in microbes in the reactor (gene expression is covered

in more detail in Chapter 24). The downstream section

of the flowsheet includes crystallization or chromato-

graphic purification, to extract a high-purity product

with desirable properties (e.g., chirality). Subsequent

steps may involve solids handling and processing to

produce final particulates with desirable properties,

including dissolution attributes and tableting capability.

These processes include mixing, classification, milling,

grinding, crushing, granulation (agglomeration), tablet-

ing, coating, molding, and extrusion. Each of these
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436 Chapter 23 Biosystems Control Design

operations has its own challenges and unique dynamic

characteristics.

In the following sections, we consider three of the

main processing steps in the pharmaceutical flowsheet:

fermentation, crystallization, and granulation. Several

of these processes appear in other industries as well

(e.g., food, mining, semiconductor, and specialty chem-

ical), so the process control methods described find

broad application in industry. It is important to note

that the industry has a new emphasis on process sys-

tems engineering methods, driven by changes in FDA

regulations (see PAT discussion in Chapter 22). The

pharmaceutical industry is placing increasing emphasis

on integrated manufacturing, linking the control of syn-

thesis, purification, and final (drug) product formulation

(Mascia et al., 2013). Furthermore, the push for sustain-

able manufacturing has identified unique challenges

and opportunities for this sector (Sheldon, 2007).

23.1.1 Bioreactors

Fermentation reactors are widely used in the pharma-

ceutical industries to make an array of important com-

pounds, including penicillin, insulin, and human growth

hormone. In recent years, genetic engineering has fur-

ther expanded the portfolio of useful products that can

be synthesized using fermentation methods (Buckland,

1984; Lim, 1991; Schügerl, 2001). Despite the impor-

tance of this unit operation, the state of pharmaceutical

fermentation operations is often characterized as more

art than science, as with the winemaking industry

(Fleet, 1993; Alford, 2006). In beermaking, there are

similar traditions of “art”, although modern facili-

ties employ a sophisticated array of unit operations

(e.g., cooking, washing, lautering, brewing, fermenta-

tion) with the corresponding control challenges. Since

1990, there has been a focused effort to develop more

sophisticated control architectures for fermentation

operation, driven by the availability of new technolo-

gies for monitoring the quality of the contents of the

fermentor (see, e.g., Van Impe et al., 1998; Boudreau

and McMillan, 2007). Key measurements and their

associated controlled variables include dissolved oxy-

gen (status of aerobic metabolic process), pH (optimal

growth conditions), temperature (metabolic heat gen-

eration), and offgas concentration (indicator of culture

activity). A schematic of a fermentation process is given

in Figure 23.1.

In a general sense, fermentation involves the genera-

tion of cell mass (product) from a substrate according to

a simple reaction:

aCαHβOγ + bO2 + cNH3 → CδHεOζNη + dCO2 + eH2O

(23-1)

Figure 23.1 Schematic of a typical

industrial fermentor. (Figure from

Jon Gunther, PhD Thesis, Dept of

Chemical Eng., UCSB, 2008).
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23.1 Process Modeling and Control in Pharmaceutical Operations 437

whereCαHβOγ is the substrate (reactant) andCδHεOζNη
is the cell mass (product). For example, in beer making,
the substrate is glucose (derived from the wort from
grains), and the products are the alcohol and carbon
dioxide gas, both ofwhich contribute to the quality of the
final product. This apparently straightforward reaction
is complicated by the fact that it does not obey simple
mass action kinetics; instead, the complex biochemistry
underlying the reaction gives rise to unusual nonlin-
ear rate expressions that characterize the enzymatic
processes.
A simple dynamicmodel of a fed-batch bioreactorwas

given in Chapter 2, Eqs. 2-84 to 2-87. This model can be
converted into mass balances on individual components
as follows:

dX
dt

= μ(S)X − F
V
X (23-2)

dP
dt

= YP∕X μ(S)X − F
V
P (23-3)

dS
dt

= F
V
(Sf − S) − μ(S)

X
YX∕S

(23-4)

dV
dt

= F (23-5)

where the material balance in Eq. 23-2 details the
conservation of biomass X, Eq. 23-3 describes the
production of metabolites by the cells (biomass),
Eq. 23-4 details the conservation of substrate S, and
Eq. 23-5 is the overall material balance. The ratio F/V is
often denoted as the dilution rate,D. The constants that
appear in this equation include the feed concentration
of the substrate Sf, the yield of cell mass from substrate
YX/S, and the product yield coefficient YP/X. The rate of
the biochemical reaction, μ(S), typically utilizes Monod
kinetics given by the saturating function:

μ(S) μmS
Km + S

(23-6)

where μm is the maximum specific growth rate (limit-
ing value of the rate), and Km is the substrate saturation
constant. Control of this simple reactor involves manip-
ulating the influx of substrate (via the dilution rate, D)
to achieve an optimal level of production. More sophis-
ticated control inputs are also possible, including induc-
ers that stimulate the transcription of key genes in the
microorganisms, leading to the synthesis of enzymes that
maximize product yield.
One of the primary challenges to controlling these

reactors in industry is the difficulty in measuring the sta-
tus of the microorganisms in the fermentor. Specialized
sensors (Mandenius, 1994) include enzyme electrodes
(e.g., tomeasure glucose, lactate), calorimetric analyzers
(e.g., to measure penicillin), specific gravity (e.g., beer
fermentation), and immunosensors (e.g., to measure
antigens). However, it remains an open challenge to

develop in situ sensors that can monitor a variety of

metabolites within the microorganisms in real time.

EXAMPLE 23.1

Consider a fermentor, operated at constant volume, in

which a single, rate-limiting substrate promotes biomass

growth and product formation. Under the assumption

of constant yield, one can derive the following material

balances that describe the concentrations in the fermentor

(Henson and Seborg, 1991):

Ẋ = −DX + μ(S, P)X (23-7)

Ṡ = D(Sf − S)
1

YX∕S
μ(S, P)X (23-8)

Ṗ = −DP + [α μ(S, P) + β]X (23-9)

For this reactor, the growth term has a more complex

shape than the simple Monod expression presented earlier,

because both substrate and product can inhibit growth:

μ(S, P) =
μm

(
1 − P

Pm

)
S

Km + S + S2∕Ki

(23-10)

The variables X, S, and P are the biomass, substrate, and

product concentrations, respectively; D is the manipulated

variable (dilution rate); Sf is the feed substrate concen-

tration, and the remaining variables are fixed constants

(yield parameters). Take the following values for the fixed

parameters:

Table 23.1 Parameter values and units for fermentor in

Example 23.1

YX/S 0.4 g/g α 2.2 g/g

β 0.2 h−1 μm 0.48 h−1

Pm 50 g/L Km 1.2 g/L

Ki 22 g/L Sf 20 g/L

(a) Assume a nominal operating point is D = 0.202 h−1

(dilution rate). The corresponding steady-state or

equilibrium values of X, S, and P are 6.0, 5.0, and

19.14 g/L, respectively. Calculate the linearized model

at this operating point, and determine the poles, zeros,

and steady-state gain.

(b) Simulate the biomass X response to ±10% relative

changes in dilution rate.

(c) Next, change the nominal dilution rate to

D = 0.0389 h−1. The corresponding equilibrium values

of X, S, and P are 6.0, 5.0, and 44.05 g/L, respectively.

(Does anything look unusual here?). Recalculate the

linearized model at this operating point, as well as the

poles, zeros, and steady-state gain.

(d) Simulate the biomass response to ±10% relative

changes in dilution rate.Pr
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438 Chapter 23 Biosystems Control Design

(e) Comment on the extreme differences in behavior of

the fermentor at these two operating points. What does

this indicate about this nonlinear system?What are the

implications for control design?

SOLUTION

(a) Using the approach described in Section 4.3, a lin-

earization of the nonlinear model (Eqs. 23-7 through

23-10) is performed. From the resulting model, one can

derive a transfer function model with three poles and

two zeros. The stable poles are calculated as the com-

plex conjugate pair, −0.1469 ± 0.0694j, and the stable

real pole at −0.2020. The zeros are both real and have

the values: −0.1631, −0.2020. Finally, the steady-state

process gain is −39.54.
(b) The simulated responses are depicted in Fig. 23.2.

(c) As in part (a), the model is linearized, now at the new

operating point. The poles are calculated as the com-

plex conjugate pair, −0.0632 ± 0.0852j, and the stable

real pole at −0.0389. The zeros are both real and have

the values: −0.1630, −0.0389. Notice that one of the

zeros is now nonminimum phase. Finally, the steady-

state process gain is 86.90, indicating that the sign of

the gain has been reversed.

(d) The simulated responses are depicted in Fig. 23.3.

(e) In the first case (D = 0.202 h−1), the process gain was

negative and the zeros were both negative. In the sec-

ond case (D = 0.0389 h−1), the process gain was posi-

tive and one of the zeros becomes nonminimum phase,

exhibiting inverse response. This suggests that the fer-

mentor exhibits a dramatic nonlinearity, in which the

gain can change sign and process zeros can change from

negative to positive (indeed, a plot of the steady-state

relationship between the dilution rate and the biomass
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symmetric changes in D of magnitude 10% from the

nominal value ofD = 0.202 h−1.

for this fermentor reveals a parabolic shape; also see

Exercise 2.15). This suggests that operation across this

gain change requires a nonlinear controller or an adap-

tive control scheme.
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symmetric changes in dilution of magnitude 10% from the

nominal value ofD = 0.0389 h−1.

23.1.2 Crystallizers

The operation of crystallization allows the separation

of one phase (in this case, the solid from a solution)

so that the product has desirable properties. The solid

product that results from crystallization is a highly

ordered solid structure, which may have other desirable

attributes, including morphology (e.g., shape), that are
of direct benefit to the value of the final product. In

the pharmaceutical industry, crystal size and shape may

facilitate downstream solids processing and/or may be

directly related to the final drug formulation, such as

bioavailability, shelf life, toxicity, and drug dissolution
(Fujiwara et al., 2005; Nagy and Braatz, 2012). Crys-

tallization also finds application in the food industry to

improve taste, as well as shelf life, for a diverse range of

products (Larsen et al., 2006).

In order to explain the process control strategies
employed in the operation of an industrial crystallizer,

it is important to review briefly the concept of super-

saturation and its relevance to crystallization (Larsen

et al., 2006). Saturation refers to the property of phase

equilibrium, in this case the equilibrium between the

liquid and the dissolved solid (i.e., the solubility of the
solid in the liquid). The state of supersaturation refers

to the condition in which the liquid solution contains

more solid than the amount that corresponds to the sol-

ubility (equilibrium), and the system exists in a so-called

metastable state. Crystal formation can be induced by
changing the operating conditions, such as temperature,
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23.1 Process Modeling and Control in Pharmaceutical Operations 439

so that the supersaturation state cannot be sustained,

and a crystal is nucleated, or created, from the solution.

As the dissolved component moves from the solution to

the solid crystal phase, the concentration is, of course,

lowered. Once a crystal is formed, it continues to grow

as a function of the operating temperature and the

concentration in the solution. In effect, the operation

of crystallization involves the manipulation of this

supersaturation state, trading off the formation of new

crystals against the growth of existing ones.

An industrial crystallizer is operated typically in a

batch mode, so that the management of the supersat-

uration state is accomplished over the course of the

batch cycle time. The available manipulated inputs are

the cooling jacket and steam flow rates for temperature

management, and the inflow of antisolvent (a compo-

nent that lowers the solvation capability of the liquid)

and solvent, to regulate the concentration of the solution

(Zhou et al., 2006). A typical crystallization flowsheet

is depicted in Fig. 23.4. Measurement of temperature

is straightforward, and there are an increasing number

of sophisticated instruments available for measurement

of the crystal properties. These include turbidity sen-

sors (to detect the presence of solids), laser scattering

instruments (to extract the distribution of crystal sizes

in the unit), and spectroscopic instruments, e.g., atten-

uated total reflectance-Fourier transformed infrared

(ATR-FTIR), for measuring solution concentrations

(Fujiwara et al., 2005; Larsen et al., 2006; Nagy and

Braatz, 2012). More recently, a variety of imaging

techniques have been used to measure crystal-shape

properties (morphology), such as width and length.

As mentioned earlier, these size and shape properties

are major determinants for the resulting utility of the

product (e.g., drug solubility), and it may be desir-

able to produce crystals with very uniform properties

(i.e., narrow size distribution). Model-based control

strategies, for example, optimization-based methods,

are being employed to control crystal shape, including

polymorphic forms (Nagy and Braatz, 2012).

23.1.3 Granulation

Granulation is a widely used process in which small
particles agglomerate into larger granules. In wet granu-
lation processes, the coagulation of particles is improved
by the addition of a binder liquid, sprayed over an agi-
tated powder in a tumbling drum or pan. The particles
are wetted by the binder and a nucleate. The resulting
binder-coated granules then collide and stick to form
larger granules. These granules can also compact and
consolidate as the binder liquid is brought to the surface
of the aggregates by stirring in the granulator. Particles
can also break because of collisions with the other par-
ticles or the granulator walls during mixing. Thus, the
main phenomena in granulation processes are granule
wetting and nucleation, consolidation and growth, and
aggregation and breakage (Mort et al., 2001).
Granulation plays a key role in producing parti-

cles with special characteristics, such as time-release
attributes (e.g., fertilizer, pharmaceutical tablet). How-
ever, in practice, inefficient operation, with very small
yields and large recycle ratios (typically 4:1, recycle:
product), often occurs. This inefficiency is due to the dif-
ficulty in designing and controlling granulation circuits
that allow maintenance of specified size ranges for the
granules.
As with crystallization, the key challenges for control-

ling a granulator are to produce particles with desirable
attributes, to simplify downstream processing, and to
realize end-product properties. In the pharmaceutical
industry, granulation is usually accomplished in batch
reactors, owing to the relatively small amount of mate-
rial throughput. The key particle process that must
be regulated is the agglomeration of smaller particles
into larger particles. Manipulated inputs include binder
spray addition (and/or viscosity), particle flow rate, tem-
perature, mixing conditions (including shear), recycle
of oversize (crushed) and undersize (fines) particles,
and changing the rate of agitation (mixing) in the vessel
(Pottmann et al., 2000; Mort et al., 2001; Faure et al.,
2001). Some applications also incorporate heating,
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Figure 23.4 Flowsheet of a typical

industrial batch crystallizer, showing
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440 Chapter 23 Biosystems Control Design
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Conveyer

Recycle
granules

Figure 23.5 Process flowsheet for

granulation circuit with recycle.

which introduces temperature control considerations.

The measurements currently available are the torque

on the agitator (which yields an inference of the load

in the vessel and its size and moisture content) and, in

more recent installations, measurements of particle size

(possibly as a distribution). When a particle size distri-

bution (PSD) is measured (e.g., by imaging methods or

laser scattering), it is typically consolidated into one or

more scalar measures of the distribution (e.g., the mean

size, or dx, the size of the particle in the xth percentile

of the distribution (d5, d90, etc.)).
Process control strategies that utilize these mea-

surements are finding application in wet granulation

processes, that is, pharmaceutical industry (Faure et al.,

2001), fluid bed granulation (Burggraeve, et al., 2011),

and continuous drum granulation processes (Glaser

et al., 2009). A typical continuous granulation flow-

sheet is depicted in Figure 23.5. Batch granulation

operation can benefit from traditional monitoring and

quality approaches, as detailed in Chapters 21 and 22

(Burggraeve et al., 2011).

EXAMPLE 23.2

A simplified granulation flowsheet (Pottmann et al., 2000)

is shown in Fig. 23.6. The manipulated inputs are the liquid

flow rates of binder introduced in three different nozzles,

ProductGranulation
drum

Dryer Screens

Undersize particles

Binder spray nozzles

Fresh
feed

Crushed oversize particles

u1

y1

y2

y3

u2 u3

Figure 23.6 Simplified process flowsheet for granulator example. Here u1, u2, and u3 are, respectively, nozzles 1, 2, and 3,

and y1, y2, and y3 are, respectively, bulk density, d5, and d90.

and the measured controlled variables are the bulk density

and the 5th and 90th percentiles of the particle size distri-

bution (d5 and d90, respectively). Pottmann et al. (2000)

identified a first-order-plus-time-delaymodel for each com-

bination of inputs and outputs (3 × 3 problem) with the

following parameters (time units are dimensionless):

Gij(s) =
Kij

τijs + 1
e−θijs (23-11)

Kij =
⎡⎢⎢⎢⎣
0.20 0.58 0.35

0.25 1.10 1.30

0.30 0.70 1.20

⎤⎥⎥⎥⎦ (23-12)

τij =
⎡⎢⎢⎢⎣
2 2 2

3 3 3

4 4 4

⎤⎥⎥⎥⎦ (23-13)

θij =
⎡⎢⎢⎢⎣
3 3 3

3 3 3

3 3 3

⎤⎥⎥⎥⎦ (23-14)

The units for both themanipulated inputs and themeasure-

ments are dimensionless, and the nominal conditions (on

which deviation variables are based) are 180 for all three

nozzles, 40 for bulk density, 400 for d5, and 1600 for d90.

(a) Using the relative gain array (RGA), determine the

most effective pairings between the inputs and the

outputs.
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23.1 Process Modeling and Control in Pharmaceutical Operations 441

(b) Design three PI + Smith predictor controllers using the

IMC design method (see Table 12.1, and assume that

a value of τc = 5 is employed). Keep in mind that the

IMC/PI tuning is for the delay-free part of the plant

with a Smith predictor. For the Smith Predictor design,

use the method detailed in Chapters 16 and keep in

mind that you need to select one delay value for each

input–output pair.

(c) Simulate the system response for the three PI +
Smith predictor controllers using a step set-point

change of [10 0 0]. Be sure to enforce the constraints

on the manipulated variables (lower bound of 105;

upper bound of 345). Repeat the simulation for a step

set-point change of [50 0 0].

SOLUTION

(a) The relative gain array is calculated as detailed in

Section 18.2 from the process gains:
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Figure 23.7 Closed-loop response of granulator to +10 step change (introduced at time = 5) in set point for y1: left plot is
CVs, right plot is MVs (----, y1 and u1; -⋅-⋅-⋅-⋅, y3 and u3; . . . ., y2 and u2).
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Figure 23.8 Closed-loop response of granulator to +50 step change (introduced at time = 5) in set point for y1, with
constraints enforced on the inputs. The left plot is CVs, right plot is MVs (----, y1 and u1; -⋅-⋅-⋅-⋅, y3 and u3; . . . ., y2 and u2).

RGA = K⊗ (K−1)T

=
⎡⎢⎢⎣

1.0256 0.6529 −0.6785
−1.4103 1.8574 0.5528
1.3846 −1.5103 1.1257

⎤⎥⎥⎦ (23-15)

Hence, the diagonal pairing of the controllers is rec-

ommended (1-1/2-2/3-3), because there are no negative

values, and two of the three loops are paired on RGA
values very close to 1.

(b) The individual controllers are given calculated from

Table 12.1, row A:

Loop 1∶ Kc = (2∕5)∕.2 = 2.0; τI = 2

Loop 2∶ Kc = (3∕5)∕1.1 = 0.545; τI = 3

Loop 3∶ Kc = (4∕5)∕1.2 = 0.667; τI = 4

(c) The simulation results are shown in Figs. 23.7 and 23.8.

Note that enforcing the constraints for the second case

leads to an unattainable set point for the first output.
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442 Chapter 23 Biosystems Control Design

23.2 PROCESS MODELING AND
CONTROL FOR DRUG DELIVERY

The human body is a remarkably complex biochem-

ical process, and it shares many attributes with more

traditional process control problems that have been dis-

cussed in earlier chapters. In the event that a body fails

to achieve the robust level of self-regulation that occurs

naturally (cf. Chapter 24), there are opportunities for

medical intervention, often involving the administra-

tion of a therapeutic agent (or drug) in a prescribed

manner. The therapy can be optimized using open-loop

methods, but it is often advantageous to automate the

process, thus removing the human from the feedback

loop (much as a chemical plant removes the operator

from the loop in the transition from manual control to

automatic feedback control). In some medical appli-

cations (e.g., cancer treatment), control design can be

used for decision support to guide medical interven-

tions, and not strictly for automation. In the medical

field, as in the process domain, there are three essen-

tial requirements for implementing feedback control:

(1) the availability of a measurement that indicates

the condition of the patient, (2) some knowledge of

the underlying process dynamics (e.g., the effect of a

drug on a patient’s response), and (3) a suitable manip-

ulated variable (e.g., drug or medication). Since 1990,

there have been dramatic advances in sensor technol-

ogy, as well as modeling and control strategies, for a

variety of medical problems (see, for example, Morari

and Gentilini, 2001; Hahn et al., 2002; Heller, 2005;

Doyle et al., 2007; Carson and Cobelli, 2013;

Hacısalihzade, 2013).

In the following sections, a diverse range of biomedi-

cal applications that motivate the application of process

control are described.

23.2.1 Type 1 Diabetes

In a healthy individual, the concentration of blood sugar

(glucose), the body’s primary energy source, is regu-

lated primarily by the pancreas, using a combination of

manipulated inputs that are analogous to the brake and

gas pedal system used to control the speed of an auto-

mobile. As the blood sugar falls, the pancreas responds

with the release of the hormone glucagon from the

α-cells, which stimulates the breakdown of glycogen in

the liver to create glucose, thus leading to an increase

in glucose (i.e., the gas pedal). On the other hand, as

blood glucose rises, the pancreatic β-cells release the

hormone insulin that stimulates the uptake of glucose

by muscle and fat tissue (Carson and Cobelli, 2013),

and, consequently, the blood glucose level is decreased

(i.e., the brake).

Type 1 diabetes mellitus is a disease characterized

by failure of the pancreatic β-cells. In contrast, the

primary manifestation of Type 2 diabetes is an inability,

or resistance, of the cells to respond to insulin. The

only treatment for Type 1 diabetes consists of exoge-

nous insulin injections, traditionally administered in

an open-loop manner by the patient. The insufficient

secretion of insulin by the pancreas results in large

excursions of blood glucose outside of the target range

of approximately 80–120 mg/dL, leading to brief, or

often sustained, periods of hyperglycemia (elevated glu-

cose levels). Intensive insulin therapy can often have the

unintended consequence of overdosing, which can then

lead to hypoglycemia (low glucose levels). The conse-

quences of such inadequate glucose regulation include

an increased risk for retinopathy, nephropathy, and

peripheral vascular disease (DCCT, 1993; Jovanovič,

2000; Zisser at al., 2005).

As illustrated in Fig. 23.9, a feedback controller can

be used to regulate blood glucose using an insulin

pump (widely available on the market today). There are

preliminary clinical trials testing the efficacy of PID con-

trollers for this delivery (Steil et al., 2006). The ADA

has published guidelines (American Diabetes Associ-

ation, 2014) recommending the following target zones

for a blood sample drawn from a vein (a whole-blood

sample):

• 70 mg/dL to 130 mg/dL before meals

• Less than 180 mg/dL 1 to 2 hours after meals

Insulin
Controller

Insulin

pump

Glucose

sensor

Glucose

set point

Meal disturbance 

Patient
Blood

sugar

Gsp

Gm

G

Figure 23.9 Block diagram for artificial

β-cell, illustrating the meal as the most

common disturbance.G denotes the blood

sugar of the patient, Gm is the output of the

glucose sensor, andGsp is the glucose set

point.
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23.2 Process Modeling and Control for Drug Delivery 443

As indicated in Chapter 22, batch processes can ben-

efit from recipe modifications in between consecutive

batches or cycles, using a run-to-run (RtR) strategy.

Run-to-run control strategies have also been developed

for diabetes control, by considering glucose data for a

meal response or an entire day to be the batch of inter-

est. The similarities between the diabetic patient and

the batch reactor recipe that motivate the application of

this technique are the following:

1. The recipe (24-h cycle) for a human patient con-

sists of a repeated meal protocol (typically three

meals), with some variation on meal type, timing,

and duration.

2. There is not an accurate dynamic model available

to describe the detailed glucose response of each

individual to the meal profile.

3. There are selected measurements available that

might be used to characterize the quality of the glu-

cose response for a 24-h day, including maximum

and minimum glucose values.

Using currently available glucose meters, the blood

sampling is very sparse, typically about six to eight

measurements per day; hence, the overall quality (i.e.,

glycemic regulation) has to be inferred from these

infrequent samples. The results of a subsequent clinical

trial (Zisser et al., 2005) demonstrated that a large

fraction of the patients responded favorably to this

type of control. Current technology that is available for

patients allows the continuous measurement of (sub-

cutaneous) blood sugar with a 5-min sampling period

(Harvey et al., 2010). This has enabled a wide array of

closed-loop strategies for closed-loop control of insulin

pumps, leading to the so-called artificial pancreas. From
2004 to 2014, there have been over 40 publications that

report closed-loop clinical testing of an artificial pan-

creas, using PID,MPC, and fuzzy logic-based algorithms

(Doyle III et al., 2014).

EXAMPLE 23.3

A patient with Type I diabetes needs an automated

scheme to maintain her glucose within an acceptable range,

widened here to allow less conservative control (54 mg/dL

< G < 144 mg/dL). She has just eaten a large meal (a

disturbance) that you estimate will introduce glucose into

her bloodstream according toD(t) = 9.0e−0.05t, where t is in
minutes and D(t) is in mg/dL-min. She has a subcutaneous

insulin pump that can release insulin up to 115 mU/min

(mU = 10−3 Units of insulin). The “U” is a standard con-

vention used to denote the strength of an insulin solution.

The flow rate of insulin is the manipulated variable.

A simple model of her blood glucose level is given by

Bequette (2002):

dG
dt

= −p1G −X(G +GBasal) +D (23-16)

dX
dt

= −p2X + p3I (23-17)

dI
dt
= −n(I + IBasal) +

U
V1

(23-18)

where the constants are defined as follows: p1 = 0.028735

[min−1], p2 = 0.028344 [min−1], p3 = 5.035E-5 [min−1],

V1 = 12 [L], and n = 0.0926 [min−1]. G, X, and I are values

for glucose concentration (deviation) in the blood (mg/dL),

insulin concentration (deviation) at the active site (mU/L),

and blood insulin concentration, expressed in deviation

variables. Basal values refer to the initial or baseline values

for G and I (GBasal = 81 mg/dL and IBasal = 15 mU/L). D is

the rate of glucose release into the blood (mg/dL-min)

as the disturbance.U is the flow rate of insulin (mU/min) as

the manipulated variable.

(a) What will happen to her blood glucose level if the pump

is shut off initially?

(b) What will happen to her blood glucose level if the pump

injects insulin at a constant rate of 15 mU/min?

(c) Is there a constant value of U that will help her

stay within an acceptable glucose range (54 mg/dL <
G < 170 mg/dL) for the next 400 min?

SOLUTION

(a) As shown in Fig. 23.10, the patient’s blood glucose will

rise in a ramplike fashion if the insulin pump fails (i.e.,

shuts off). This can also occur as a result of a catheter

occlusion (blockage) with the insulin pump.

(b) In this case (Fig. 23.11), the patient’s blood sugar peaks,

at slightly over 175 mg/dL, and takes 4 h to converge

back to a steady-state glucose value of approximately

90 mg/dL.

(c) Asetting of 25mU/min yields the response in Fig. 23.12,

which might be deemed too aggressive by many doc-

tors, because of the low post-meal glucose values, moti-

vating a more advanced (i.e., closed-loop) approach to

glucose management.
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Figure 23.10 Open-loop response of patient’s blood

glucose when the insulin pump is turned off.
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Figure 23.11 Open-loop response of the patient’s blood

glucose to a constant infusion rate of 15 mU/min from her

insulin pump.
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Figure 23.12 Open-loop response of patient’s blood

glucose to a constant infusion rate of 25 mU/min from her

insulin pump.

23.2.2 Blood Pressure Regulation

In both the operating room and postoperative care con-

texts, closed-loop control of blood pressure and related

variables (such as cardiac output and depth of anesthe-

sia) have been studied for a number of years (e.g., Rao

et al., 1999; Dumont and Ansermino, 2013), and human

clinical trials have proved the efficacy of the approach

(Bailey and Haddad, 2005; Araki and Furutani, 2005;

Sarabadani et al., 2013). The postoperative application

was handled typically by the administration of sodium

nitroprusside (SNP) by a nurse via a continuous intra-

venous (IV) pump. SNP is a vasodilator that achieves

blood pressure reduction by relaxing the muscles con-

trolling the vascular resistance to flow through blood

vessels. The current technology for both sensors and

infusion pumps is facilitating the design of completely

automated control strategies.

The context of the operating room is more com-

plicated, with many critical variables that must be

monitored. But an advantage of this setting is that

nonportable sensors can be employed that would be

too cumbersome or impractical for ambulatory appli-

cations. The measured variables include mean arterial

pressure (MAP), cardiac output (CO), and depth of

anesthesia (DOA). The DOA has been the subject of

intense research activity over the last decade, and sen-

sors are available to determine the depth of anesthesia

through correlations. These sensors are inferential (see

Chapter 16), in that they do not directly measure the

medical state of anesthesia, which is characterized by

such patient responses as hypnosis, amnesia, analgesia,

and muscle relaxation (Araki and Furutani, 2005);

rather, they measure the state of electrical activity in

the patient’s brain. One of the more promising methods

is the bispectral index, derived from signal analysis of

an electroencephalograph (EEG) (Bailey and Haddad,

2005). A variety of manipulated inputs are also avail-

able, resulting in an intrinsically multivariable control

problem. Some candidatemanipulated variables include

vasoactive drugs, such as dopamine and SNP, as well as

anesthetics (isoflurane, propofol, etc.).

EXAMPLE 23.4

Consider the following model for predicting the influence

of two drugs: SNP, [μg/kg-min]) and dopamine (DPM,

[μg/kg-min]), on two medical variables (mean arterial pres-

sure MAP, [mmHg]) and cardiac output CO, [L/(kg-min)]),

where time is measured in minutes (Bequette, 2007):

[
MAP

CO

]
=

⎡⎢⎢⎢⎣
−6e−0.75s
0.67s + 1

3e−s

2.0s + 1

12e−0.75s

0.67s + 1

5e−s

5.0s + 1

⎤⎥⎥⎥⎦
[
SNP

DPM

]
(23-19)

(a) Calculate the RGA for this problem and propose the

appropriate control-loop pairing.

(b) Consider the pairing, SNP-MAP and DPM-CO, as is

typically used in practice. Design a pair of PI controllers

for this process, using the IMC tuning rules (Table 12.1)

and choosing a value of τc for each controller that is

equal to the corresponding open-loop time constant for

that subsystem.

(c) Simulate the closed-loop response to a −10 mmHg

change in the MAP set point, while holding CO con-

stant. Discuss the extent of control-loop interactions.

SOLUTION

(a) Using the RGA calculation in Eq. 18-34, λ11 = 0.4545;

therefore, the loop pairings apparently should be the

1-2/2-1 pairing, SNP-CO and DPM-MAP.
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23.2 Process Modeling and Control for Drug Delivery 445

(b) From Table 12.1, the following values for the PI con-

troller settings are calculated:

Loop 1∶ Kc = −(0.67)∕(6∗(0.67 + .75)) = −0.0786
τI = 0.67

Loop 2∶ Kc = (5)∕(5∗(5 + 1)) = 0.1667

τI = 5

(c) The simulated response for the MAP set point change

is depicted in Fig. 23.13, where there is a modest under-

shoot in the MAP response; however, the interacting

nature of the process leads to a large excursion in CO.

The control tuning constant τc could be refined to

trade-off speed versus overshoot and interaction, or by

designing a multivariable controller, such as MPC.
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Figure 23.13 Closed-loop response of patient’s mean

arterial blood pressure and cardiac output to a −10 mmHg

change in the MAP set point.

23.2.3 Cancer Treatment

Cancer treatment has changed dramatically over the
past decade, in large part enabled by advances in imag-
ing technology. Surgery has been the classical method
for attacking cancerous tumors, andmore recently X-ray
radiation has been employed. An unfortunate side effect
in both cases is that healthy tissue can be compromised
by inappropriate surgery or delivery of radiation,
respectively. Chemotherapy is often be used, alone or
in conjunction with surgery or X-ray treatment, and has
the advantage that undetected metastases (cancer cells
that have circulated through the bloodstream) can be
attacked with this method. Thermal therapies (radiofre-
quency, microwave, or laser techniques) have also been
demonstrated to be effective, with similar requirements
on targeting the energy to the localized region of the
tumor (Dodd et al., 2000). In thermal and radiation
treatment, feedback control is finding application to the
optimized delivery of the treatment (radiation, heat)

to the targeted area (Salomir et al., 2000; Davison and

Hwang, 2003; Ledzewicz and Schättler, 2007; Moonen,

2007). In one feedback-based therapy (Salomir et al.,

2000), the heat source power was adjusted based on the

deviation of temperature from a target at a particular

location in the body, including an integral term, very

similar to a PID controller. The desired response was

that the temperature should rise quickly to the target

without overshoot or oscillations.

Parker (2007) describes a strategy for “model-

informed” treatment design for delivery of a chemother-

apeutic agent. Using a combination of pharmacokinetic

and pharmacodynamic models, predictions can be made

about the patient’s response (e.g., tumor volume) to the

manipulated variables, which in this case could include

the drug dosage level and schedule for drug adminis-

tration. This strategy can be implemented by specifying

the time horizon over which the patient’s response is

monitored and by calculating the optimal drug delivery

protocol using the RTO methods of Chapter 19.

More recent developments include chemother-

apy using antiangiogenic agents, which deprive the

tumor from developing blood cells required for growth

(Ledzewicz and Schättler, 2007). In this application,

information about the state of the tumor (e.g., the

tumor volume, derived from MRI data) is used to con-

trol the rate of dosing of the antiangiogenic therapy.

More recently, model predictive control designs have

been proposed for chemotherapeutic protocols, as an

example of a decision support tool, as contrasted with

an automation tool (Florian et al., 2008).

23.2.4 Controlled Treatment for HIV/AIDS

To address the global problem of HIV/AIDS, a number

of mathematical models and control algorithms have

been proposed to help design better treatments for the

disease. The drug categories that have been considered

include reverse transcriptase inhibitors and protease

inhibitors, which affect reproduction of the virus via

transcription and production of the virus from infected

cells, respectively. The most effective strategies to date

have involved a so-called cocktail of multiple drugs, thus

attacking the disease in a vector direction (i.e., multiple,

simultaneous targets). Measurements are problematic,

consisting of relatively slow techniques based on off-line

sampling of blood. However, the slow progression of

the disease does not warrant real-time measurements,

and thus feedback can still be accomplished on this slow

time scale.

In their simplest form, mathematical models have

been developed that describe the interactions of healthy

CD4+ T cells, infected CD4+ T cells, and free viruses

in the form of three coupled ordinary differential

equations (Craig and Xia, 2005). Such a model can be
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446 Chapter 23 Biosystems Control Design

the basis of simple model-based feedback strategies
for control and can also be extended to generate more
complex models suitable for a model predictive control
strategy (Zurakowski et al., 2004), including the design
of optimal treatment protocols (Pannocchia et al., 2012).

23.2.5 Cardiac-Assist Devices

Cardiac-assist devices are mechanical pumps that pro-
vide cardiac output at an appropriate pressure, to allow
normal circulation of blood through the patient’s body,
subject to the changing demands for cardiac output as
a function of the patient’s state (e.g., level of exercise,
emotion, posture, etc.). The ideal device would mimic
the body’s own mechanisms for maintaining cardiac
output at target levels; however, currently available
devices are rather primitive in terms of automation,
requiring the patient to adjust the set point (Boston
et al., 2000). The first such implantable device received
approval by the FDA over a decade ago. Research
continues on the design of control algorithms for
implantable rotary blood pumps, including PID, fuzzy
logic, adaptive control, and optimization-basedmethods
(AlOmari et al., 2013).
One of the more interesting aspects of the control

design problem for ventricular-assist devices is the

placement of the sensors and actuators: there are the

issues of susceptibility to infection, as well as anatomical

placement (Paden et al., 2000).

23.2.6 Additional Medical Opportunities
for Process Control

There are many other challenges in drug therapy, in

which an optimized delivery regimen could be calcu-

lated using principles of process control and process

optimization, e.g., the modeling and control of the

anticoagulant drug, heparin (McAvoy, 2007). Another

medical application is the treatment of acute neuropa-

tients with brain hypothermia, to lower the intracranial

pressure (ICP). A mathematical model can be devel-

oped to relate temperature effects with blood flow.

The model can then be used to create an automated

closed-loop controller (Gaohua and Kimura, 2006) to

adjust the coolant temperature (e.g., by using cold-water

circulating blankets) in an effort to regulate the ICP.

Control design opportunities have been identified for

hemodialysis (Javed et al., 2012), mechanical ventila-

tion for respiration (Li and Haddad, 2013), leukemia

treatment and vaccination (Laurino et al., 2013) and

Parkinsons treatment (Hacısalihzade, 2013).

SUMMARY

Biological and biomedical processes share a great deal

in common with the process applications considered

in preceding chapters. The latter applications have a

characteristic time constant, often exhibit time delays

associated with measurements, and typically are multi-

variable in nature. In contrast, the types of uncertainties

in bioprocesses are quite different, owing to the com-

plex nature of biological regulation (see Chapter 24).

In addition, there are multiple safety and regulatory

issues that are unique to medical closed-loop systems.

Process control strategies for several key unit operations

in the bioprocess industries (fermentation, crystalliza-

tion, and granulation) have been described, along with

biomedical applications, such as drug delivery for dia-

betes and blood pressure control and other examples.

In Chapter 24, we focus on the molecular scale of bio-

logical systems and consider the feedback mechanisms

inherent in naturally occurring biophysical networks.
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Doyle, F., L. Jovanovič, and D. E. Seborg, Glucose Control Strategies

for Treating Type 1 Diabetes Mellitus, J. Process Control, 17, 572
(2007).

Dumont, G., and J. M. Ansermino, Closed-Loop Control of Anesthe-

sia: A Primer for Anesthesiologists, Anesthesia & Analgesia, 117,
1130 (2013).

Faurea, A., P. Yorkb, and R. C. Rowe, Process Control and Scale-up

of Pharmaceutical Wet Granulation Processes: A Review, Eur. J.
Pharm. Biopharm., 52, 269 (2001).

Fleet, G. H. (Ed.), Wine Microbiology and Biotechnology, Taylor &
Francis, London, U.K., 1993.

Florian, J. A., J. L. Eiseman, and R. S. Parker. Nonlinear Model Pre-

dictive Control for Dosing Daily Anticancer Agents: A Tamoxifen

Treatment of Breast Cancer Case Study,Comput. Biol.Med., 38, 339
(2008).

Fujiwara,M., Z. K. Nagy, J.W. Chew, andR.D. Braatz, First-Principles

and Direct Design Approaches for the Control of Pharmaceutical

Crystallization, J. Process Control, 15, 493 (2005).
Gaohua, L., and H. Kimura, A Mathematical Model of Intracranial

Pressure Dynamics for Brain Hypothermia Treatment, J. Theor.
Biol., 238, 882 (2006).

Gatzke, E. P., and F. J. Doyle III, Model Predictive Control of aGranu-

lation SystemUsing SoftOutputConstraints andPrioritizedControl

Objectives, Powder Tech., 121, 149 (2001).
Glaser, T., C. F. W. Sanders, F. Y. Wang, I. T. Cameron,

R. Ramachandran, J. D. Litster, J. M. H. Poon, C. D. Immanuel, and

F. J. Doyle III, Model Predictive Control of Drum Granulation, J.
Process Contr., 19, 615 (2009).

Hacısalihzade, S. S., Biomedical Applications of Control Engineering,
Springer, 2013.

Hahn, J., T. Edison, and T. F. Edgar, Adaptive IMC Control for

Drug Infusion for Biological Systems, Control Eng. Practice, 10,
45 (2002).

Harvey, R., Y. Wang, B. Grosman, M. W. Percival, W. Bevier,

D. A. Finan, H. Zisser, D. E. Seborg, L. Jovanovic, F. J. Doyle III,

and E. Dassau, Quest for the Artificial Pancreas, IEEE Eng. Med.
Biol. Mag., March/April, 53 (2010).

Heller, A., Integrated Medical Feedback Systems for Drug Delivery,

AIChE J., 51, 1054 (2005).
Henson, M. A., and D. E. Seborg, An Internal Model Control Strategy

for Nonlinear Systems, AIChE J., 37, 1065 (1991).
Javed, F., A. V. Savkin, G. S. H. Chan, J. D. Mackie, and N. H. Lovell,

Recent Advances in the Monitoring and Control of Haemodynamic

Variables during Haemodialysis: A Review, Physiol. Meas., 33, R1

(2012).

Jovanovič, L., The Role of Continuous Glucose Monitoring in Gesta-

tional Diabetes Mellitus, Diabetes Technol. Ther., 2, S67 (2000).

Larsen, P. A., D. B. Patience, and J. B. Rawlings, Industrial Crystalliza-

tion Process Control, IEEE Control Systems, 26, 70 (2006).
Laurino, M., M. Stano, M. Betta, G. Pannocchia, and A. Landi,

Combining Pharmacological Therapy and Vaccination in Chronic

Myeloid Leukemia via Model Predictive Control, Proc. IEEE
EMBS Conf ., 3925 (2013).

Ledzewicz, U., and H. Schättler, Antiangiogenic Therapy in Cancer

Treatment as anOptimal Control Problem, SIAM J. Control Optim.,
46, 1052 (2007).

Li, H., and W. H. Haddad, Model Predictive Control for a Multi-

component Respiratory, IEEE Trans. Control Sys. Tech., 21, 1988
(2013).

Mahadevan, R., S. K. Agrawal, and F. J. Doyle III, Differential Flat-

ness Based Nonlinear Predictive Control of Fed-Batch Bioreactors,

Control Eng. Prac., 9, 889 (2001).
Mandenius, C.-F., Process Control in the Bioindustry, Chemistry
Today, 19, 19–22 (1994).

Mascia, S., P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia,

P. I. Barton, R. D. Braatz, C. L. Cooney, J. M. B. Evans,

T. F. Jamison, K. F. Jensen, A. S. Myerson, and B. L. Trout,

End-to-End Continuous Manufacturing of Pharmaceuticals: Inte-

grated Synthesis, Purification, and Final Dosage Formation, Angew.
Chem., 52, 12359 (2013).

McAvoy, T. J., Modeling and Control of the Anticoagulant Drug Hep-

arin, J. Process Control, 17, 590 (2007).
Moonen, C. T. W., Spatio-Temporal Control of Gene Expression

and Cancer Treatment UsingMagnetic Resonance Imaging-Guided

Focused Ultrasound, Clin. Cancer Res., 13, 3482 (2007).
Morari, M., andA. Gentilini, Challenges andOpportunities in Process

Control: Biomedical Processes, AlChE J., 47, 2140 (2001).
Mort, P. R., S. W. Capeci, and J. W. Holder, Control of Agglomeration

Attributes in a Continuous Binder-Agglomeration Process, Powder
Tech., 117, 173 (2001).

Nagy, Z. K., and R. D. Braatz, Advances and New Directions in Crys-

tallization Control, Annu. Rev. Chem. Biomol. Eng., 3, 55 (2012).
O. de Sa, D., Applied Technology and Instrumentation for Process

Control, CRC Press, New York, 2004.

Paden, B., J. Ghosh, and J. Antaki, Control System Architectures for

Mechanical Cardiac Assist Devices, Proc. American Control Conf.,
3478 (2000).

Pannocchia, G., Laurino, M., and A. Landi, A Model Predictive

Control Strategy Toward Optimal Structured Treatment Interrup-

tions in Anti-HIV Therapy, IEEE Trans. Biomed. Eng., 57, 1040
(2012).

Parker, R. S., Modeling for Anti-Cancer Chemotherapy Design,

J. Process Control, 17, 576 (2007).
Pottmann, M., B. A. Ogunnaike, A. A. Adetayo, and B. J. Ennis,

Model-Based Control of a Granulation System, Powder Tech., 108,
192 (2000).

Rao, R. R., J. W. Huang, B. W. Bequette, H. Kaufman, and R. J. Roy,

Control of a Nonsquare Drug Infusion System: A Simulation Study,

Biotechnol. Prog., 15, 556 (1999).
Rohani, S., M. Haeri, and H. C. Wood, Modeling and Control of a

Continuous Crystallization Process Part 1. Linear and Non-Linear

Modeling, Comput. Chem. Eng., 23, 263 (1999).
Salomir, R., F. C. Vimeux, J. A. de Zwart, N. Grenier, and C. T. W.

Moonen, Hyperthermia byMR-Guided Focused Ultrasound: Accu-

rate Temperature Control Based on Fast MRI and a Physical Model

of Local Energy Deposition and Heat Conduction,Magnetic Reso-
nance in Medicine, 43, 342 (2000).

Sarabadani, A., S. Bernasconi, V. Klamroth-Marganska,

S. Nussbaumer, and R. Riener, Model-free Predictive Control

of Human Heart Rate and Blood Pressure, Proc. IEEE Intl. Conf.
Bionformatics and Bioengineering, 1, (2013).

Pr
oc

es
s 

En
gi

ne
er

in
g 

C
ha

nn
el

 
@

Pr
oc

es
sE

ng

OfficePC
Highlight



448 Chapter 23 Biosystems Control Design

Schügerl, K., Progress in Monitoring, Modeling and Control of

Bioprocesses during the Last 20 Years, J. Biotechnol., 85, 149

(2001).

Sheldon, R. A., The E Factor: Fifteen Years On,Green Chem., 9, 1273
(2007).

Steil, G. M., K. Rebrin, C. Darwin, F. Hariri, and M. F. Saad, Feasi-

bility of Automating Insulin Delivery for the Treatment of Type 1

Diabetes, Diabetes, 55, 3344 (2006).
Van Impe, J. F., P. A. Vanrolleghem, and D. M. Iserentant, Advanced
Instrumentation, Data Interpretation, and Control of Biotechnologi-
cal Processes, Kluwer, Dordrecht, 1998.
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EXERCISES

23.1 Consider the fermentor problem in Example 23.1.

(a) Design an IMC controller for the first operating

point (dilution = 0.202 h−1), and simulate the response

to both a +0.5 [g/L] and a −0.5 [g/L] change in the

biomass concentration set point. Then, simulate the response to

both a +1 [g/L] and a −1 [g/L] change in the biomass concen-

tration set point.

(b) Simulate the response of a −12.5% step change in the

maximum growth rate (μm). How well does the controller

perform?

(c) Comment on the observed nonlinearity in the system.

(d) Discuss how the controller design would change if there

were a requirement to operate at the lower dilution operating

point. What do you need to consider in this case?

23.2 Consider the granulation model that was given in

Example 23.2.

(a) Design an MPC controller, using the nominal

process model. Initially consider a control horizon of

M = 2 and a prediction horizon of P = 40 (with a sampling

period of Δt = 1). Use equal weights on the manipulated

inputs and penalize the two percentile outputs equally, but use

a larger weight on the bulk density y1.

(b) Consider the effect of a plant-model mismatch. Use the

problem statement for control design, but assume that the

actual process is characterized by the following parameters:

⌢
Ki, j =

⎡⎢⎢⎢⎣
0.10 0.90 0.15

0.25 1.10 1.30

0.50 0.80 1.00

⎤⎥⎥⎥⎦
⌢τ i, j =

⎡⎢⎢⎢⎣
1 2 1.5

3 3 3

3 3 3

⎤⎥⎥⎥⎦
⌢
θ i, j =

⎡⎢⎢⎢⎣
2 2 4

2 3 4

2 3 4

⎤⎥⎥⎥⎦
(c) These models are in deviation variables, but the actual

steady-state flow rates for the nozzles are 175, 175, and 245,

respectively. The steady-state outputs are 40, 400, and 1620,

respectively. Nozzle flow rates are limited to values between

100 and 340, and it is desired to keep the 5th percentile (y2)

above 350 and the 90th percentile y3 below 1650. Simulate the

response of the controller to the following changes:

(i) Step change in bulk density from 40 to 90.

(ii) Simultaneous change in the 5th percentile from 400 to

375 and 90th percentile from 1620 to 1630.

Comment on the performance of your controller (and retune

as necessary).

23.3 Gaohua and Kimura (2006) derived an empirical

patient model for the manipulation of ambient temper-

ature u (∘C) to influence the patient’s brain intracranial

pressure (ICP) y (mm Hg). The medical data support
the following empirical values for a first-order-plus-time-delay

model to describe the effect of cooling temperature (∘C) on
the ICP (mmHg) in time units of hours:

G(s) = 4.7

9.6s + 1
e−s

The nominal values for the process variables are: ICP = 20

mmHg; ambient temperature = 30 ∘C.
(a) Using the IMC tuning rules, derive an appropriate PI con-

troller for this medical experiment. (Hint: begin with a value

τc =1.0 h). What does that value of τc mean?

(b) Simulate the response of a 10-mmHg reduction in ICP.

What is the overshoot?What is the minimum value of the tem-

perature? What is the settling time?

(c) Comment on whether this is a reasonable controller

design for a biomedical application. How might you improve

the design?

23.4 In a rehabilitation training experiment for a neuro-

logical patient, a step change in treadmill speed of

+2.5 km/h was made. The patient heart rate response

HR is given in Fig. E23.4.

(a) Derive an appropriate first-order-plus-time-delay model

for the patient dynamics.

(b) The doctors wish to control the patient’s heart rate to

a nearly constant value by adjusting treadmill speed. Using

the IMC tuning rules, design a suitable PI controller for this

patient. Simulate the response of the controller for a step

change in the HR of +10 bpm. Calculate the settling time,

overshoot, and rise time for the controller. Do these values

seem reasonable for a medical application?

(c) How would you improve the procedure for fitting the

patient’s initial dynamics?
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Figure E23.4

23.5 A crystallizer is used to separate a pharmaceutical

product from the fermentation extract. The three manipulated

variables are the fines dissolution rate u1, the crystallizer

temperature u2, and the flow rate in the overflow u3. The
nominal values of these three inputs are 2.25 × 10−6 m3/s,

310 K, and 1.5 × 10−6 m3/s, respectively. The three variables to

be controlled are the crystal size distribution, as calculated by

the fines suspension density y1; the crystal purity, as calculated
by supersaturation conditions y2; and the product rate y3. The
nominal values of these three inputs are 0.55 K, 11.23 K, and

0.12 kg/kg H2O, respectively. These variables have multiple

interactions, and the following model has been identified from

experimental data for a continuous crystallizer, where time is

measured in s (Rohani et al., 1999):

⎡⎢⎢⎣
y1
y2
y3

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

72,600

s + 0.2692

0.025082(s − 20.0)(s − 10.4)
s2 + 10.11s + 96.57

125,000(s − 1.25)
s + 0.39

568,000

s + 2.11

−0.15095
s + 0.1338

−1,830, 000(s + 0.089)
s + 0.43

−1870
s + 0.21

−0.0071
s + 0.235

16,875

s + 0.2696

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
u1
u2
u3

⎤⎥⎥⎦

(a) Calculate the RGA, and determine the appropriate pair-

ings for SISO feedback control. Comment on the role of

dynamics in your decision.

(b) Using the IMC tuning rules, design three PI controllers for

this process.

(c) Simulate the process response to a step set point, sepa-

rately, in each of the controlled outputs [use a magnitude of

+10% (relative) change]. Next, simulate the response of the

system to a simultaneous pair of step changes (again, use a

magnitude of+10% relative) in each of the second (purity) and

third (product rate) controlled outputs. Try to tune the con-

troller to improve the transient response to the simultaneous

step changes.

23.6 Consider the diabetic patient inExample 23.3. Your goal

is to design an automated device to administer insulin

infusion in response to meal disturbances.

(a) Considering only the insulin-glucose dynamics, calculate

an approximate second-order patient model by fitting the

responses (changes in insulin) obtained from simulations of

the equations given in the example.

(b) Using the IMC tuning rules, design a PID controller for

this process.

(c) Simulate the closed-loop system response to a step set

point change in blood glucose of −20 mg/dl. Try to tune the

controller to improve the transient response.

(d) Simulate the closed-loop system response to the meal dis-

turbance described in Example 23.3. Is the controller able to

maintain the safety boundaries for blood glucose (54 mg/dL <
G < 144 mg/dL)?

(e) In practice, sensors are available for measuring blood

glucose sample from the subcutaneous tissue (the layer of fat

under the skin, as opposed to directly from the blood stream).

Assuming that such a procedure introduces a pure time delay,

repeat the simulation from part (d) with a 10-min sensor delay.

How has the performance changed? What is the maximum

time delay that the closed-loop design will tolerate before it

becomes unstable?Pr
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23.7 Recall the artificial pancreas control problem from

Section 23.2. In order to regulate blood glucose BG, you have

two possible manipulated variables to choose from: pumping

insulin FI and pumping glucagon FG. As you already learned,

insulin can be a life-saving drug, but an overdose of insulin can

send the body into a coma. Glucagon operates by converting

glycogen in the liver to glucose. Their corresponding transfer

functions are given below (time is in minutes):

Gp1(s) =
BG(s)
FI(s)

= −1.5e−30s
(20s + 1)(25s + 1)

Gp2(s) =
BG(s)
FG(s)

= 3.4e−15s

15s + 1

In addition, you have the following information relating the

BG to a meal (disturbance) D:

Gd(s) =
BG(s)
D(s)

= 5e−10s

30s + 1

(a) Using principles you have learned about processes in

general, which manipulated variable would you select (insulin

pump or glucagon pump) for the design of a feedback control

device? Be very specific.

(b) For the insulin pump, design an appropriate PID con-

troller for the system, using IMC tuning rules (assuming

τc = 20 min).

(c) Derive the theoretically optimal feedforward controller

for this device, assuming you use insulin as the MV. Is this

controller realizable? (explain why or why not) If not, what

might you do to implement an appropriate controller?

(d) For the insulin pump controller you designed above, you

are now asked to design a control system for the pump sub-
system only. Of particular concern is the situation where the

pump is not delivering insulin because of an occluded tube.

Draw a block diagram for the loop consisting of the pump and

a flow controller. Include a type 4 alarm system for safety (See

Chapter 10).

23.8 Data from an actual clinical trial for the closed-loop

artificial pancreas is summarized in the following cumulative

histograms, where the percentage of blood glucose measure-

ments below a particular value is plotted against the blood

glucose value. The three curves denote: (i) actual blood

glucose BG measurements collected from finger stick mea-

surements (solid), (ii) one continuous glucose measurement

sensor CGM2 (dashed), and (iii) a (redundant) second glucose

measurement sensor CGM2 (dotted).
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From a medical safety perspective, one would like to keep the

blood glucose measurements in the range of 70–180 mg/dL.

(a) For each of the three measurements (two CGMs and

actual BG), compute the fraction of the data that lies in the

range 70–180 mg/dL. Comment on the absolute and relative

safety of an algorithm that uses these measurements.

(b) Repeat the calculations for the more stringent perfor-

mance range of 80–140 mg/dL.

(c) Using the concepts introduce in Chapter 9, comment on

the error characteristics of the two sensors, using the nomen-

clature introduced in Section 9.4.3.
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