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Abstract—This paper proposes a novel event-triggered adap-
tive dynamic programming (ADP) control method for nonlinear
continuous-time system with unknown internal states. Comparing
with the traditional ADP design with a fixed sample period, the
event-triggered method samples the state and updates the con-
troller only when it is necessary. Therefore, the computation cost
and transmission load are reduced. Usually, the event-triggered
method is based on the system entire state which is either infeasi-
ble or very difficult to obtain in practice applications. This paper
integrates a neural-network-based observer to recover the system
internal states from the measurable feedback. Both the proposed
observer and the controller are aperiodically updated according
to the designed triggering condition. Neural network techniques
are applied to estimate the performance index and help calculate
the control action. The stability analysis of the proposed method
is also demonstrated by Lyapunov construct for both the con-
tinuous and jump dynamics. The simulation results verify the
theoretical analysis and justify the efficiency of the proposed
method.

Index Terms—Adaptive dynamic programming (ADP), event-
trigger, neural network, observer, online learning and control.

I. INTRODUCTION

ADAPTIVE dynamic programming (ADP) has
been studied and adopted for solving the

Hamilton–Jacobi–Bellman (HJB) equation [1]–[4] in recent
years. It has been widely recognized as one of the “core
methodologies” to achieve the optimal control for intelligent
systems in a general case [5]–[8]. Extensive efforts have been
dedicated to developing ADP method from both the theo-
retical researches and real-world applications [9], [10]–[12].
A policy iteration ADP algorithm was developed for the
discrete-time nonlinear system with stability analysis in [13].
A new performance index was established in [14] to solve the
infinite-horizon optimal control problems of continuous-time
complex-valued nonlinear systems. In [15] and [16], the
systems with control constrains were considered and the
corresponding control designs were developed based on ADP.
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Then, the ADP-based control scheme was also introduced
into the robust control problems [17]–[19] to fill up the gap
that dynamics uncertainties were not addressed. So far, most
ADP control designs are based on entire state measurements
in [20]–[22]. This is because ADP design needs to carefully
evaluate the costs and benefits of the immediate action, as
well as the choices which may acted in the future. If the
system feedback are imperfect or unreliable indicators of the
underlying process, this evaluation will become difficult [23].
However, in many real-world applications, the likelihood
to access the complete knowledge of system state is either
infeasible or very difficult to obtain. In other words, the
feedback can only represent parts of the system states in these
situations. In order to achieve better performance, estimating
or reconstructing the state variables needs to be considered.
Over the past decades, partially observable processes have
attracted significantly increasing attention from both the
artificial intelligence and machine learning areas. One major
idea of most existing methods is to obtain the belief state,
which is a sufficient statistic of the complete information of
system and is also updated after each observation [24]–[26].
However, intensive computational burden will be caused
when we try to obtain the belief state, especially when
the dimension of the system state increases (i.e., curve of
dimensionality). In these years, new iterative algorithms were
developed under the partially observable environment based
on reinforcement learning approach [27], [28]. Many of these
methods, however, were still based on parameters/probability
and required solid mathematic background to apply. Recently,
ADP has been applied in this field and achieved some
promising results. In [29], both the policy iteration and value
iteration were provided using only the input–output data to
obtain an optimal controller. This idea was extended on a
linear tracking problem for unknown discrete-time system
in [30]. Only the reduced information of the system dynamics
was used in their method. In [31] and [32], an observer
was established based on neural networks to determine a
mapping between the behavior of the system and the external
influences.

Because of the integration of an observer, the computation
of ADP control design increases. Generally, the observer-based
ADP methods rely on the periodic transmitted data with the
fixed sampling period. This may bring huge number of the
transmitted data and cause subsequently tremendous computa-
tion. This disadvantage becomes severe when the computation
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bandwidth or sensor power sources are constrained. In recent
years, the event-triggered control method [33]–[36] is intro-
duced in ADP design. Different from the traditional method,
the event-triggered method only transmits the system data
and updates the control law when a specific event is trig-
gered. In this way, the transmission load and computation
burden are significantly reduced. Vamvoudakis in [37] online
solved an event-triggered controller for a nonlinear system
with guaranteed performance and without any linearizing pro-
cess. In [38], a near optimal event-triggered condition of a
nonlinear discrete-time system in affine form was provided.
The authors extended this idea on the multi-input multi-output
continuous-time system in [39] and provided the correspond-
ing neural-network-based event-triggered condition.

In this paper, inspired by the above observations and lit-
erature studies, we propose a novel event-triggered ADP
control method for the nonlinear continuous-time system with
unknown internal states. The triggering condition is designed
to make sure the control stability with the reduced informa-
tion. Then, a neural-network-based observer is developed to
recover the entire state from the system feedback. A critic
network is established to approximate the performance index
and help calculate the control law. Note that, in this paper,
both the observer and the control law are updated according
to the triggering condition. This means the observer and the
control law are updated only when an specific event is trig-
gered and held constant otherwise. The stability analysis for
the close-loop system is presented using the Lyapunov con-
struct for both the continuous and the jump dynamics. The
major contributions of this paper include the following.

1) A neural-network-based observer is established and
aperiodically updated with guaranteed stability to recon-
struct the system internal states.

2) A triggering condition is designed for nonlinear
continuous-time system only using the input–output
measurements.

3) The event-triggered controller is designed based on the
ADP technique.

4) The stability analysis for the close-loop system is explic-
itly provided for both the continuous and the jump
dynamics.

5) The learning process for the observer used in this
method is online rather than offline.

Comparing with [40], our proposed method only uses the trig-
gered samples to update the observer and the control law,
which reduces the transmission load and computation burden.
Comparing with the works in [31] and [32], the proposed
method can recover the details of what actually happened
inside the partially observable dynamic processes.

The rest of this paper is organized as follows. In Section II,
we formulate the problem of the event-triggered ADP method
for partially observable nonlinear continuous-time system. The
major results of this paper is provided in Section III, includ-
ing four parts. First, an event-triggered regulator is designed
based on the system input/output data with the correspond-
ing stability proof. Then, a neural-network-based observer is
established to recover the entire state from the reduced feed-
back. The designed observer is only updated when an event

is triggered. Furthermore, the event-triggered ADP control
scheme is presented. A critic network is built to approximate
the performance index and help calculate the control law. In
order to save the transmission load and computation burden,
the control law is only updated according to the triggering
data. The stability analysis of the close-loop system is then
provided for both the continuous and the jump dynamics. In
Section IV, a single-link robot arm case with reduced state
dynamics is considered to verify the proposed method and
theoretical analysis. Finally, Section V concludes this paper.

II. PROBLEM STATEMENT

Consider the nonlinear continuous-time system given as

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = Cx(t) (1)

where x(t) ∈ R
n is the state vector with the initial state x(0) =

x0, u(t) ∈ R
m is the control input vector, y(t) ∈ R

p is the
output vector, f (x(t)) : R

n → R
n and g(x(t)) : R

n → R
m are

the unknown continuous-time state functions, and f (0) = 0.
Assume that f + gu is Lipschitz continuous on a set � ⊆ R

n

containing the origin. C ∈ R
p∗n is the known output matrix.

Generally, the digital communication network is used to
connect system, sensor, controller, and actuator in practi-
cal applications. Consider the limitation of the computation
bandwidth or sensor power sources, an aperiodic updating
and transmission rule for control action and system states
is designed in this paper. In order to achieve this goal, a
sampled-data system is introduced, which is characterized
by a monotonically increasing sequence of sampling instants
{δj}∞j=0, where δj < δj+1 for j = 0, 1, 2, . . . ,∞. The time δj

denotes the jth consecutive sampling instant. The output of the
sample-data system is a sequence of the sampled states which
can be denoted as

x̂j = x
(
δj
)
. (2)

For simplicity, we assume that the sampled-data system has
zero task delay.

Assumption 1 [40]: The nonlinear continuous-time system
described in (1) is controllable and observable. Here, the
system output, y(t), is considered measured.

Therefore, a stabilizing controller can be guaranteed to be
designed due to the controllability and the internal state can
be ensured to be estimated from output measurement because
of the observability. The control objective is to determine a
feedback control law u(t) = μ(x(t)) which minimizes the
following infinite-horizon performance index:

V(x0) =
∫ ∞

0

(
yT(τ )Qy(τ ) + uT(τ )Ru(τ )

)
dτ

=
∫ ∞

0
U(y(τ ), u(τ ))dτ (3)

where U(y(t), u(t)) = yT(t)Qy(t) + uT(t)Ru(t) is the utility
function with U(0, 0) = 0. Note that Q and R are symmetric
positive definite matrices with appropriate dimensions. Here,
the state-feedback control law is designed as u(t) = μ(x̂j, t),
which maps the sampled state, rather than the continuous state
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in literature, onto a control vector. Therefore, the control signal
μ(x̂j, t) is a piecewise constant function and consists of the
control sequence {μ(x̂j)}∞j=0. In particular, {μ(x̂j)}∞j=0 becomes
a continuous-time signal μ(x̂j, t) through a zero-order hold.

Let us recall the performance index in the traditional ADP
method (time-triggered case)

V(x0) =
∫ ∞

0
U(Cx(τ ), μ(x(τ )))dτ

=
∫ t

0
U(Cx(τ ), μ(x(τ )))dτ + V(x(t)). (4)

If the performance index (4) is continuously differentiable,
then after transformation, we obtain

lim
t→0

[V(x(t)) − V(x0)]/t = − lim
t→0

1

t

∫ t

0
U(Cx(τ ), μ(x(τ )))dτ.

(5)

Therefore, the infinitesimal version of (4) is provided as

V∗T
x ( f (x(t)) + g(x(t))μ(x(t))) + U(Cx(t), μ(x(t))) = 0 (6)

where V∗
x = ∂V∗(x(t))/∂x(t) is the partial derivatives of the

optimal performance index V∗(x(t)) with respect to x(t).
Assume that the minimum of the left-hand side of (6) exists

and is unique [41]. Therefore, the optimal control μ∗(x(t))
satisfies the first-order necessary condition, which is given by
the gradient of (6) with respect to μ(x(t)). Hence, the optimal
control law for the time-triggered case can be described as

u∗(t) = μ∗(x(t)) = −1

2
R−1gT(x(t))V∗

x . (7)

In our event-triggered control design, the controller is only
updated when an event is triggered. This means the controller
is designed based on the sampled state x̂j instead of the cur-
rent state x(t). Therefore, we obtain the event-triggered control
law as

u∗(t) = μ∗(x̂j, t
) = −1

2
R−1gT(x̂j

)
V∗

x̂j
(8)

where V∗
x̂j

= ∂V∗(x̂j)/∂ x̂j. Note that, we use μ(x̂j) to represent
μ(x̂j, t) to simplify the expression in the following presenta-
tion. By applying event-triggered control law (8) into (6), we
obtain the event-triggered HJB equation

H
(
x(t), μ∗(x̂j

)
, V∗

x

) = V∗T
x

(
f (x(t)) − 1

2
g(x(t))gT(x̂j

)
V∗

x̂j

)

+ 1

4
V∗T

x̂j
g
(
x̂j
)
gT(x̂j

)
V∗

x̂j

+ xT(t)CTQCx(t). (9)

By using the event-triggered ADP method, the transmis-
sion load and computation burden can be significantly relaxed.
However, we can observe that the system internal states x(t),
x̂j are used in (8) and (9) to calculate the event-triggered con-
troller and HJB equation. Since the knowledge of the system
functions is completely unknown and the measured output can
only represent parts of the system internal states, the existing
ADP methods cannot be applied directly in this situation. In
the next section, we will propose an event-triggered ADP con-
trol method using only the system input–output data. Note that,
in order to simplify the presentation, we omit the time index
t in the following statement.

III. EVENT-TRIGGERED CONTROLLER DESIGN USING

ONLY THE INPUT–OUTPUT DATA

In this section, an event-triggered ADP control scheme
using only the system input–output data is provided for
continuous-time system. The general architecture of the pro-
posed control method is shown in Fig. 1. First, because of the
unavailability of the system internal state vectors and the sys-
tem functions, a neural-network-based observer is designed to
reconstruct both the state vector x and the control coefficient
function g(x) through an online manner. Therefore, the pro-
posed observer design relaxes the requirement of an explicit
identifier for g(x) or an action network for μ(x). Then, the
ADP framework is applied to approximate the performance
index and calculate the optimal control vector. The critic net-
work is established to estimate the performance index and it
is trained online with a corresponding error term minimized
overtime. Moreover, it is important to note that a sampled-
data system is introduced with a sequence of sampling instants
{δj}∞j=0 for both the neural network observer and the controller.
This means both the observer and the controller are updated
only when an specific event is triggered. The corresponding
triggering condition is also provided. Due to the limitation of
the communication bandwith and sensor power sources, this
can significantly reduce the huge number of the transmitted
data and subsequently tremendous computation.

In the following part, we will explicitly present the event-
triggered ADP design using only the system input and output
data. Specifically, in the first section, the triggering condition
is derived for the sampled-data system. The corresponding
stability analysis is also provided. A neural-network-based
observer is designed in the second section, so that the con-
trol scheme can be developed using only the input and the
output data measured during the operation of the system. A
proof is also provided in this section to guarantee the stability
of the observer and the accuracy of its estimation during the
continuous and the jump dynamics. In the third section, neu-
ral network techniques are used to implement the proposed
method. The weights updating rules for the critic network are
also provided. Finally, the stability of the close-loop system is
demonstrated using the Lyapunov theory for both dynamics.
It is proved that the system state and parameter estimations
are bounded, even when the trigger occurs.

A. Event-Triggered Regulator Design

Note that, since the internal state is unknown, an observer is
designed to recover the system state. Therefore, the sampled
states should be described as

x̂j = x̂
(
δj
)

(10)

where x̂(δj) is the estimated state at the sampled instants.
Now, define the gap function for ∀t ∈ [δj, δj+1) as

eyj(t) = Cx̂j − y(t) (11)

which is the difference between the term Cx̂j and the current
system output.
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Fig. 1. Block diagram of the nonlinear continuous-time system control with only the input–output data.

Assumption 2: The controller is Lipschitz continuous with
respect to the gap

∥
∥μ(x(t)) − μ

(
x̂j
)∥∥ ≤ L

∥
∥exj

∥
∥ (12)

where L is a positive real constant and exj = x̂j − x(t).
Theorem 1: If there exists a positive definite function V(x)

that satisfies the HJB equation (9) with V(0) = 0, and the
control law is given in (8) with the triggering condition

∥∥eyj

∥∥2 ≤
(
1 − α2

)
λ(Q)‖C‖2‖y‖2 + ‖C‖2

∥∥rTμ
(
xj
)∥∥2

L2‖r‖2
(13)

then the close-loop system can be asymptotically stabilized,
where α ∈ (0, 1) is the designed parameter.

Proof: With the event-triggered control law (8), the orbital
derivative of V∗(x) along the system trajectory can be given as

V̇∗(x) =
(

∂V∗(x)
∂x

)T

ẋ

= V∗
x f (x) + V∗T

x g(x)μ∗(x̂j
)
. (14)

Here, consider the optimal control law and HJB equation in
the traditional ADP method as

u∗ = μ∗(x) = −1

2
R−1gT(x)V∗

x (15)

and

V∗T
x f (x) − 1

4
V∗T

x g(x)R−1gT(x)V∗
x + yTQy = 0. (16)

Therefore, we have

gT(x)V∗
x = −2Rμ∗(x) (17)

V∗T
x f (x) = 1

4
V∗T

x g(x)R−1gT(x)V∗
x − yTQy. (18)

Substitute (17) and (18) into (14), we obtain

V̇∗(x) = 1

4
V∗T

x g(x)R−1gT(x)V∗
x − yTQy − 2μ∗T(x)Rμ∗(x̂j

)

= μ∗T(x)Rμ∗(x) − 2μ∗T(x)Rμ∗(x̂j
)− yTQy. (19)

Since R is a symmetric positive definite matrix, we can
describe R as R = r · rT . Therefore, we have

μ∗T(x)Rμ∗(x) − 2μ∗T(x)Rμ∗(x̂j
)

= ∥∥rTμ∗(x) − rTμ∗(x̂j
)∥∥2 − ∥∥rTμ∗(x̂j

)∥∥2
. (20)

By using the Lipschitz condition in Assumption 2, we
can write

V̇∗(x) = ∥∥rTμ∗(x) − rTμ∗(x̂j
)∥∥2 − ∥∥rTμ∗(x̂j

)∥∥2 − yTQy

≤ −∥∥rTμ∗(x̂j
)∥∥2 + L2‖r‖2

∥
∥exj

∥
∥2 − λ(Q)‖y‖2

= −α2λ(Q)‖y‖2 +
[
−
(

1 − α2
)
λ(Q)‖y‖2

+ L2‖r‖2
∥∥exj

∥∥2 − ‖rTμ∗(x̂j
)‖2
]
.

(21)

We know when the following inequality is satisfied:

∥∥exj

∥∥2 ≤
(
1 − α2

)
λ(Q)‖y‖2 + ∥∥rTμ

(
x̂j
)∥∥2

L2‖r‖2
(22)

we have V̇∗(x) < 0.
Due to the unavailability of the current internal state, we

obtain an equivalent condition (13) from (11). This is to say,
when (13) is satisfied, we have V̇∗(x) < 0. Thus, in this
way, u∗ = μ∗(x̂j) can asymptotically stabilize the nonlinear
continuous-time system (1). The conclusion holds.

It can be seen that the controller is guaranteed stable with
the event-triggered sample data. The sampled-data system will
continuously monitor the triggering condition (13). When a
violation is about to occur, the sampled-data system will be
triggered to sample the estimated system state, and according
to the new sampled data, both the observer and the controller
will be updated again.

B. Neural-Network-Based Observer Design

In this section, a neural-network-based observer is estab-
lished to reconstruct the system state x and the control
coefficient function g(x). Consider system (1) with the
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event-triggered control law μ(x̂j). Choose a Hurwitz matrix A,
such that the pair (C, A) is observable. The system dynam-
ics (1) can be reformulated as

ẋ = Ax + FA(x) + g(x)μ
(
x̂j
)

y = Cx (23)

where FA(x) = f (x) − Ax. In order to reconstruct the state,
we should identify the nonlinearity of the system. Since x is
restricted to a compact set of x ∈ R

n, the unknown system
function can be described as a multilayer neural network with
sufficiently large number of hidden layer neurons [42], then

FA(x) + g(x)μ
(
x̂j
)

= ω∗T
o2F	F(x) + ω∗T

o2g	g(x)μ
(
x̂j
)+ εF(x) + εg(x)μ

(
x̂j
)

=
[
ω∗T

o2F, ω∗T
o2g

][
	F(x) 0

0 	g(x)

][
1

μ
(
x̂j
)
]

+ [εF(x), εg(x)]

[
1

μ
(
x̂j
)
]

= ω∗T
o2 	(x) + ε(x) (24)

where ω∗
o2 is the ideal weights of the neural network output

layer, ‖ε(x)‖ ≤ εM is the bounded neural network approxima-
tion error, 	(·) is the bounded sigmoid function that can be
expressed as

‖	(·)‖ =
∥
∥∥∥∥

1 − e−(·)

1 + e−(·)

∥
∥∥∥∥

≤ 	M. (25)

It is assumed that the ideal weights are bounded as ‖ω∗
o2‖ ≤

ωo2M . Moreover, we have

ω∗
o2 =

[
ω∗

o2F, ω∗
o2g

]
(26)

	(x) =
[

	F(x) 0
0 	g(x)

][
1

μ
(
x̂j
)
]

(27)

ε(x) = [εF(x), εg(x)]

[
1

μ
(
x̂j
)
]
. (28)

Hence, the system states can be identified by updating the
corresponding neural network weights. Since the ideal weights
ω∗

o2 are unknown, we establish a neural network, which is
called the function network in this paper, to identify the
nonlinearity by using the current estimates ω̂o2 of the ideal
weights ω∗

o2

F̂A
(
x̂
)+ ĝ

(
x̂
)
μ
(
x̂j
) = ω̂T

o2	
(
x̂
)
. (29)

It is important to note that in order to save the resource, the
function network weights are only updated when an event is
triggered, that is

ω̂o2j = ω̂o2
(
δj
)
. (30)

Then, (29) becomes

F̂A
(
x̂
)+ ĝ(x)μ

(
x̂j
) = ω̂T

o2j	
(
x̂j
)
. (31)

Hence, we design the following neural-network-based
observer which is assumed to be of the Luenberger like
structure:

˙̂x = Ax̂ + ω̂T
o2j	

(
x̂j
)+ G

(
y − ŷ

)

ŷ = Cx̂ (32)

where x̂ and ŷ are the estimated state and output of the
observer, respectively, x̂j is the estimated sampled state, and
G ∈ R

n∗m is the observer gain. Here, 	(x̂j) = 	(ωo1X̂oj), in
which X̂oj = [x̂j, μ(x̂j)] is the input of the function network,
and ωo1 is the weights of the function network hidden layer.
Now, define the state estimation error as

˙̃x = ẋ − ˙̂x
= Ax + ω∗T

o2 	(x) − Ax̂ − ω̂T
o2j	

(
x̂j
)

− G(y − ỹ) + ε(x). (33)

By adding and subtracting ω∗T
o2 	(x̂j) from (33), such error

dynamics become

˙̃x = Acx̃ + ω̃T
o2j	

(
x̂j
)+ ξ(x) (34)

where ω̃o2j = ω∗
o2 − ω̂o2j is the neural network estima-

tion error, Ac = A − GC is a Hurwitz matrix, and ξ(x) =
ω∗T

o2 [	(x)−	(x̂j)]+ ε(x) is a bounded disturbance term. This
means, ‖ξ(x)‖ ≤ ξM for some positive constant, due to the
boundedness of the sigmoid function and the ideal neural
network weights ω∗

o2.
Note that, in this paper, the input-to-hidden layer weights

ωo1 are randomly chosen and kept constantly during the train-
ing process. Therefore, our goal now should be to find the
updating rule for the hidden-to-output layer weights ω̂o2j.
Adjusting the weights of the function network is to minimize
the squared error

Eo = 1

2

(
y − ŷ

)2 = 1

2
ỹ2 (35)

where ỹ = y − ŷ. Since the updating law for the observer
will have an aperiodic nature, it has to be updated only at the
trigger instants and held constant otherwise. We can describe
the following updating laws: when an event is not triggered,
we have

˙̂ωo2j = 0, for δj−1 ≤ t < δj (36)

and when an event is triggered, the jump equation to calculate
ω̂o2j is given by

ω̂+
o2j = ω̂o2j − βo

∂Eo

∂ω̂o2j
− ρ‖ỹ‖ω̂o2j

= ω̂o2j − βo
∂Eo

∂ ỹ

∂ ỹ

∂ x̂

∂ x̂

∂ω̂o2j
− ρ‖ỹ‖ω̂o2j for t = δj (37)

where βo > 0 is the learning rate of the function network
and ρ > 0 is a small positive number. Note that the second
term in (37) is the backpropagation term and the third term is
the e-modification term for incorporating damping. We have
(∂Eo/∂ ỹ) = ỹ and (∂ ỹ/∂ x̂) = CT according to (35) and (23),
respectively. The updating rule can thus be achieved for solv-
ing the gradient (∂ x̂/∂ω̂o2j). To solve this problem, we apply
the static approximation of the gradient by setting ˙̂x = 0
in (32). Then, after transformation, we obtain

∂ x̂

∂ωo2j
= −A−T

c 	
(
x̂j
)
. (38)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Hence, we have the updating rule for the function network
at the trigger instants as

ω̂+
o2j = ω̂o2j − βo

(
ỹTCA−1

c

)T
	
(
x̂j
)− ρ‖ỹ‖ω̂o2j for t = δj.

(39)

In order to guarantee the stability of the neural-network-
based observer and the accuracy of the estimation, the bound-
edness of the observer error should be provided for both the
continuous and the jump dynamics.

Theorem 2: Consider the nonlinear continuous-time system
given by (1) with the event-triggered neural-network-based
observer given by (32). If the tuning laws for the function
network of the observer are provided as (36) and (39) for
different time instants, then the state estimation error x̃ and
weight estimation errors ω̃o2j = ω∗

o2j − ω̂o2j are uniformly
ultimately bounded (UUB).

Proof: Since the observer is updated only when the event
is triggered, we have to consider both the continuous and
the jump dynamics separately. Initially, we will consider the
following Lyapunov function Lo:

Lo = 1

2
x̃TPx̃ + 1

2
tr
(
ω̃T

o2jω̃o2j

)
(40)

where x̃ is the state estimation error given by (34) and ω̃o2j

is the weight estimation error. P is a positive definite matrix
that satisfies

AT
c P + PAc = −M (41)

where M is a positive definite matrix.
For the continuous dynamics of the observer model, by tak-

ing the time derivative of (40) with respect to the close-loop
system trajectories, the second term has a zero derivative due
to the function network continuous dynamics (36). Therefore

L̇o = 1

2
˙̃xTPx̃ + 1

2
x̃TP ˙̃x

= 1

2

(
Acx̃ + ω̃T

o2j	
(
x̂j
)+ ξ(x)

)T
Px̃

+ 1

2
x̃TP

(
Acx̃ + ω̃T

o2j	
(
x̂j
)+ ξ(x)

)
. (42)

By using some polynomial adjustments and (41), (42) can
be rewritten as

L̇o = −1

2
x̃TMx̃ + x̃TP

(
ω̃T

o2j	
(
x̂j
)+ ξ(x)

)

≤ −1

2
λ(M)‖x̃‖2 + ‖x̃‖‖P‖(‖ω̃o2‖	M + ξM

)

≤ −1

2
λ(M)‖x̃‖2 + (

2ωoM	M‖P‖ + ‖P‖ξM
)‖x̃‖ (43)

where λ(M) is the minimal eigenvalue of M. Hence, in order
to guarantee the negativeness of the time derivative L̇o at
the continuous dynamics, the following condition on the state
estimation error should hold:

‖x̃‖ ≥ 4ωM	M‖P‖ + 2ξM‖P‖
λ(M)

= d. (44)

According to the Lyapunov extension theorem, as long as
condition (44) is satisfied, it demonstrates that the state and
the weights estimation errors are UUB.

Note that L̇o for continuous dynamics is negative definite
under the condition (44), which means x̃ is UUB outside the
ball with radius d described as X = {x̃|‖x̃‖ > d}. The size of
the estimation error bound d can be kept arbitrarily small by
proper selection of the parameters.

Next, we have to consider the jump dynamics. The function
network weights are updated at these instants. For that reason,
we consider the following form:

�Lo = 1

2

(
x̃T)+Px̃+ − 1

2
x̃TPx̃

+ 1

2
tr

((
ω̃T

o2j

)+
ω̃+

o2j

)
− 1

2
tr
(
ω̃T

o2jω̃o2j

)
, t = δj.

(45)

Since we have proved that the state estimation error is
asymptotically stable, there exists

1

2

(
x̃T)+Px̃+ ≤ 1

2
x̃TPx̃. (46)

Therefore, the problem becomes to find a bound for the
following term:

�Lo1
(
ω̃o2j

) = 1

2
tr

((
ω̃T

o2j

)+
ω̃+

o2j

)
− 1

2
tr
(
ω̃T

o2jω̃o2j

)
, t = δj.

(47)

Consider (39), we obtain

ω̃+
o2j = ω∗

o2j − ω̂+
o2j

= ω̃o2j + βo

(
ỹTCA−1

c

)T
	
(
x̂j
)+ ρ‖ỹ‖ω̂o2j. (48)

Substituting (48) into (47) and after some mathematical
manipulation, the first difference �Lo1(ω̃o2j) becomes

�Lo1
(
ω̃o2j

) = tr

(
ω̃T

o2j

(
βo

(
ỹTCA−1

c

)T
	
(
x̂j
)+ ρ‖ỹ‖ω̂o2j

))

+
∥∥
∥∥βo

(
ỹTCA−1

c

)T
	
(
x̂j
)+ ρ‖ỹ‖ω̂o2j

∥∥
∥∥

2

= tr
(
ω̃T

o2jβoA−T
c CT ỹ	

(
x̂j
)+ ρ‖ỹ‖ω̃T

o2jω
∗
o2j

− ρ‖ỹ‖ω̃T
o2jω̃o2j

)
+ ∥∥βoA−T

c CT ỹ	
(
x̂j
)∥∥2

+ 2	T(x̂j
)
ỹT(βoA−T

c CT)T

· ρ‖ỹ‖ω̂o2j + ρ2‖ỹ‖2ω̂T
o2jω̂o2j

≤ −ρ‖C‖‖x̃‖∥∥ω̃o2j
∥∥2 + ‖m‖‖x̃‖∥∥ω̃o2j

∥∥	M

+ ρ‖C‖‖x̃‖∥∥ω̃o2j
∥∥ωoM + ‖m‖2‖x̃‖2	2

M

+ 2ρ‖C‖‖m‖‖x̃‖2	M
∥∥ω̂o2j

∥∥

+ ρ2‖C‖2‖x̃‖2ω2
oM (49)
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where m = βoA−T
c CTC. By completing the square of ‖ω̃o2j‖,

(49) becomes

�Lo1
(
ω̃o2j

) ≤ −1

2

(
‖m‖	M + ρ‖C‖ωM − ∥∥ω̃o2j

∥∥
)2‖x̃‖

−
(

ρ − 1

2

)∥
∥ω̃o2j

∥
∥2‖x̃‖

+ 1

2

(
‖m‖	M + ρ‖C‖‖ωoM‖

)2‖x̃‖
+
(
‖m‖2	2

M + 2ρ‖m‖‖C‖‖ωM‖2	M

+ ρ2‖C‖2ω2
oM

)
‖x̃‖2. (50)

Since ‖x̃‖ is guaranteed positive, then �Lo(ω̃o2j) ≤ 0 is
equivalent to the following condition holding:

−1

2

(‖m‖	M + ρ‖C‖ωM − ∥
∥ω̃o2j

∥
∥)2 −

(
ρ − 1

2

)∥
∥ω̃o2j

∥
∥2

+ 1

2
(‖m‖	M + ρ‖C‖‖ωoM‖)2

+
(
‖m‖2	2

M + 2ρ‖m‖‖C‖‖ωM‖2	M

+ ρ2‖C‖2ω2
oM

)
‖x̃‖ ≤ 0. (51)

By defining

γ 2 = 1

2
(‖m‖	M + ρ‖C‖‖ωoM‖)2

+
(
‖m‖2	2

M + 2ρ‖m‖‖C‖‖ωM‖2	M

+ ρ2‖C‖2ω2
oM

)
‖x̃‖ (52)

condition (51) becomes

−1

2

(
‖m‖	M + ρ‖C‖ωM − ∥∥ω̃o2j

∥∥
)2

−
(

ρ − 1

2

)∥∥ω̃o2j
∥∥2 + γ 2 ≤ 0. (53)

Note that due to the boundedness of the state estimation error
has been proved, there exists a bound for γ 2. Therefore, we
can prove that the jump dynamics are UUB as long as the
following conditions satisfied:

ρ >
1

2
(54)

∥∥ω̃o2j
∥∥ ≥

√√√
√

γ 2
(
ρ − 1

2

) . (55)

Hence, the system states estimation error and the neural net-
work weight estimation errors are UUB in both the continuous
and the jump dynamics. This completes the proof.

C. Optimal Event-Triggered Control Scheme Design

Neural network technique is applied in this section to imple-
ment the proposed event-triggered ADP method. A critic
network is built to approximate the performance index which
can be formulated as

V∗(x) = ω∗T
c2 	(m(x)) + εc(x) (56)

where ω∗
c2 is the optimal weights between the hidden and

the output layer of the critic network, m(x) = ω∗T
c1 Xc to

which ω∗
c1 is the optimal input-to-hidden layer weights, Xc =

[xT , μT(x)]T , and ‖εc(x)‖ ≤ εcM is the bounded critic network
error.

According to (56), the performance index V∗(x) in the
event-triggered control scheme can be approximated as

V̂
(
x̂
) = ω̂T

c2	
(
m
(
x̂
))

(57)

where V̂(x̂) represent the estimated performance index, ω̂T
c2

is the approximated hidden-to-output layer weights of the
critic network, and m(x̂) = ω̂T

c1X̂c to which ω̂c1 is the esti-
mated input-to-hidden layer weights of critic network and
X̂c = [x̂, μ(x̂j)] is the input of the critic network. We fix
the input-to-hidden layer weights as ωc1, which are chosen
randomly at initial. Therefore, only the hidden-to-output layer
weights ω̂c2 need to be updated.

Define the error function for the critic network as

ec = H
(

x̂, μ
(
x̂j
)
, V̂x

)
− H

(
x, u∗, V∗

x

))

=
⎛

⎝

(
∂	
(
m
(
x̂
))

∂ x̂

)T

ω̂c2

⎞

⎠

T

˙̂x + U
(
x̂, μ

(
x̂j
))

. (58)

We know that H(x, u∗, V∗
x ) = 0 from (9). Adjusting the

weights of the critic network is to minimize the objective
function

Ec = 1

2
e2

c . (59)

Therefore, the hidden-to-output layer weights of the critic
network can be updated as

˙̂ωc2 = −βc
∂Ec

∂ω̂c2
= −βc

∂Ec

∂ec

∂ec

∂ω̂c2

= −βc
κ

(
κTκ + 1

)2
(
ω̂T

c2κ + U
(
x̂, μ

(
x̂j
)))2

(60)

where κ = ((∂	(m(x̂))/∂ x̂))T ˙̂x and βc > 0 is the learning rate
of the critic network.

The control law is only updated when the triggering condi-
tion (13) is violated. Since the design of the neural-network-
based observer can reconstruct both the system internal state
and the control coefficient function, the control law can be
directly calculated as

μ
(
x̂j
) = −1

2
R−1gT(x̂j

)
V̂x̂j (61)

where V̂x̂j is the partial derivative of the estimated performance
index with respect to the sampled state x̂j. According to (57),
V̂x̂j can be formulated as

V̂x̂j = ∂V̂
(
x̂j
)

∂ x̂j

= ∂V̂
(
x̂j
)

∂	
(
m
(
x̂j
))

∂	
(
m
(
x̂j
))

∂m
(
x
(
x̂j
))

∂m
(
x
(
x̂j
))

∂ x̂j

= 1

2
ω̂T

c2j

(
1 − 	2(m

(
x̂j
)))

ωc1(x̂j) (62)
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Algorithm 1 Event-Triggered ADP Control Design Using
Only the Measurable Input–Output Data

Set i = 0, j = 0, x̂0 = x0
Calculate μ(x̂j) = − 1

2 R−1gT(x̂j)V̂x̂j

Initialize all the neural network weights
for all i < Nrun do

State estimation:˙̂x = Ax̂ + ω̂T
o2j	(x̂j) + G(y − Cx̂)

Policy evaluation:
V(x̂) = min

μ(x̂j)

∫∞
0 U(x̂(τ ), μ(x̂j))dτ

if x̂j − x̂ = êj > eT then
Set j = j + 1, x̂j = x̂
Update ω̂o2j according to (39)
Update μ(x̂j) = arg min

μ(x̂j)
{V(x̂j)}

end if
Update system information ẋ = F(x, μ(x̂j)); y = Cx
Set i = i + 1

end for

to which ωc1(x̂j) is the fixed weights of x̂ component for the
input to the hidden layer of the critic network at the jump
instant δj.

Also, considering (29), g(x̂j) can be described by

g
(
x̂j
) = ∂

(
FA
(
x̂j
)+ g

(
x̂j
)
μ
(
x̂j
))

∂μ
(
x̂j
)

= ∂
(
FA
(
x̂j
)+ g

(
x̂j
)
μ
(
x̂j
))

∂	
(
x̂j
)

∂	
(
x̂j
)

∂μ
(
x̂j
)

= 1

2
ω̂T

o2j

(
1 − 	2(x̂j

))
ωo1

(
μ
(
x̂j
))

(63)

where ωo1(μ(x̂j)) is the input-to-hidden layer weights of
μ(x̂j) component for the function network at jump instant δj.
Because the control law is only updated when the trigger-
ing condition (13) is violated, we then have the following
description:

u(t) =

⎧
⎪⎨

⎪⎩

μ
(
x̂j−1

)
, Event is not triggered,

δj−1 ≤ t < δj

−1

2
R−1gT

(
x̂j
)
V̂x̂j , Event is triggered, t = δj.

(64)

The algorithm of the proposed event-triggered ADP con-
trol using the measurable input–output data is provided in
Algorithm 1.

D. Stability Analysis of the Closed-Loop System

In this section, the stability analysis for the close-loop sys-
tem will be investigated. A Lyapunov function candidate is
considered as a combination of the Lyapunov functions for
the neural-network-based observer and the designed control
law. Both of them have two dynamics. The following theorem
provides the stability of the whole system.

Theorem 3: Consider the nonlinear continuous-time
system (1) with the event-triggered observer (32) and
control law (64). The tuning laws for the impulsive
observer and the continuous critic network are provided

by (36), (39), and (60), respectively. Then, the system state x,
sampled state x̂j, observer error x̃, function network weights
estimation error ω̃o2, and the critic network weights estimation
error ω̃c2 are all UUB given the following triggering condition:

∥∥eyj

∥∥2 ≤
(
1 − α2

)
λ(Q)‖C‖2‖y‖2 + ‖C‖2‖rTμ

(
xj
)‖2

L2‖r‖2
(65)

where α ∈ (0, 1).
Proof: The proof of the boundedness is carried out in

two parts, which are the continuous and the jump dynamics,
respectively. The objective is to prove that both dynamics of
the impulsive close-loop model are UUB. First, let us consider
the following Lyapunov function:

Lcl = 1

2
x̃TPx̃ + 1

2
tr
(
ω̃T

o2ω̃o2
)+ V∗(x) + V∗(x̂j

)

+ β−1
c

2
tr
(
ω̃T

c2ω̃c2
)

= Lo + Lc, t ∈ (δj, δj+1
]

(66)

where

Lo = 1

2
x̃TPx̃ + 1

2
tr
(
ω̃T

o2ω̃o2
)

(67)

Lc = V∗(x) + V∗(x̂j
)+ β−1

c

2
tr
(
ω̃T

c2ω̃c2
)

(68)

and V∗(x) and V∗(x̂j) are the optimal performance index for
the continuous and event-triggered sampled system.

For the continuous dynamics of the impulsive model, we
take the time derivative of (66). L̇o is provided in (43). Now
L̇c needs to be considered. Note that the second term in (68)
has a zero derivative. Hence, we obtain

L̇c = ∂V∗T(x)

∂x
ẋ + β−1

c tr
(
ω̃T

c2
˙̃ωc2

)
(69)

where ω̃c2 = ω∗
c2 − ω̂c2, and

˙̃ωc2 = βc
κ

(
κTκ + 1

)2
(
ω̂T

c2κ + U
(
x̂, μ

(
x̂j
)))2

= −βc
κκT

(
κTκ + 1

)2 ω̃c2

+ βc
κ

(
κTκ + 1

)2
(
κTω∗

c2 + U
(
x̂, μ

(
x̂j
)))

= −βc
κκT

(
κTκ + 1

)2 ω̃c2 + βc
κ

(
κTκ + 1

)2 σc (70)

where σc = −(∂εc/∂ x̂) ˙̂x.
Now, we will consider the following two terms separately:

L̇c1
(
V∗) = ∂V∗T(x)

∂x
ẋ (71)

L̇c2(ω̃c2) = β−1
c tr

(
ω̃T

c2
˙̃ωc2

)
. (72)

Then, (71) can be rewritten as

L̇c1
(
V∗) = ∂V∗T(x)

∂x

(
f (x) + g(x)μ

(
x̂j
))

= ∂V∗T(x)

∂x
f (x) + ∂V∗T(x)

∂x
g(x)μ

(
x̂j
)
. (73)
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Consider (17) and (18), we obtain

L̇c1
(
V∗) = 1

4
V∗T

x g(x)R−1gT(x)V∗
x − yTQy − 2μ∗T(x)Rμ∗(x̂j

)

= μ∗T(x)Rμ∗(x) − 2μ∗T(x)Rμ∗(x̂j
)− yTQy (74)

where R = r · rT is a symmetric positive definite matrix.
Therefore, we have

μ∗T(x)Rμ∗(x) − 2μ∗T(x)Rμ∗(x̂j
)

= ∥∥rTμ∗(x) − rTμ∗(x̂j
)∥∥2 − ∥∥rTμ∗(x̂j

)∥∥2
. (75)

By using the Lipschitz condition in Assumption 2, we have

L̇c1
(
V∗) ≤ −∥∥rTμ∗(x̂j

)∥∥2 + L2‖r‖2
∥∥exj

∥∥2 − λ(Q)‖y‖2

= −α2λ(Q)‖y‖2 +
[
−
(

1 − α2
)
λ(Q)‖y‖2

+ L2‖r‖2
∥∥exj

∥∥2 − ∥∥rTμ∗(x̂j
)∥∥2
]
.

(76)

Considering the triggering condition (65), we have

L̇c1
(
V∗) ≤ −α2λ(Q)‖y‖2. (77)

Next, for the term L̇c2(ω̃c2) in (72), we obtain

L̇c2(ω̃c2) = β−1
c tr

(

−βcω̃
T
c2

κκT

(
κTκ + 1

)2 ω̃c2

+ βcω̃
T
c2

κ
(
κTκ + 1

)2 σc

)

≤ −
∥
∥∥∥

κκT

κTκ + 1

∥
∥∥∥

2

‖ω̃o2‖2

+ 1

2βc

(

β2
c

∥
∥∥∥

κκT

κTκ + 1

∥
∥∥∥

2

‖ω̃o2‖2 + σ 2
c∥∥κTκ + 1

∥∥2

)

≤ −
(

1 − βc

2

)∥∥
∥∥

κκT

κTκ + 1

∥∥
∥∥

2

‖ω̃o2‖2 + σ 2
c

2βc
. (78)

It is important to note that the gradients of the critic network
error is upper bounded, i.e., σc ≤ σcM . Hence, we have

L̇c2(ω̃c2) ≤ −
(

1 − βc

2

)∥∥∥∥
κκT

κTκ + 1

∥
∥∥∥

2

‖ω̃o2‖2 + σ 2
cM

2βc
. (79)

Based on (43), (77), and (79), then L̇cl becomes

L̇cl ≤ −1

2
λ(M)‖x̃‖2 + (2ωoM	M‖P‖ + ‖P‖ξM)‖x̃‖

− α2λ(Q)‖y‖2 −
(

1 − βc

2

)∥∥∥∥
κκT

κTκ + 1

∥∥∥∥

2

‖ω̃o2‖2

+ σ 2
cM

2βc
. (80)

Therefore, if the following conditions are satisfied:

βc < 2 (81)

‖x̃‖ ≥ 4ωM	M‖P‖ + 2ξM‖P‖
λ(M)

(82)

‖ω̃o2‖ ≥
√√
√√√

σ 2
cM

/
2βc

(
1 − βc

2

)∥∥
∥ κκT

κTκ+1

∥∥
∥

2
(83)

then L̇cl < 0. This means the continuous dynamics of the
impulsive model are UUB.

Now, we will consider the boundedness of the jump dynam-
ics. The first difference of the Lyapunov function is shown as
follows:

�Lcl = V∗(x+)− V∗(x) + V∗(x̂+
j

)
− V∗(x̂j

)

+ β−1
c tr

((
ω̃+

c2

)T
ω̃+

c2

)− β−1
c tr

(
ω̃T

c2ω̃c2
)

+ 1

2

(
x̃T)+Px̃+ − 1

2
x̃TPx̃

+ 1

2
tr
((

ω̃T
o2

)+
ω̃+

o2

)
− 1

2
tr
(
ω̃T

o2ω̃o2
)

= �Lc + �Lo, t = δj (84)

where �Lo is defined in (45), which is UUB under the con-
ditions (54) and (55). Now, we consider the boundedness of
�Lc which is defined as

�Lc = V∗(x+)− V∗(x) + V∗(x̂+
j

)
− V∗(x̂j

)

+ β−1
c tr

((
ω̃+

c2

)T
ω̃+

c2

)
− β−1

c tr
(
ω̃T

c2ω̃c2
)
. (85)

Since the states and the critic network estimation error are
UUB from the first part of the proof, there exists V∗(x+) ≤
V∗(x) and tr((ω̃+

c2)
T ω̃+

c2) ≤ tr(ω̃T
c2ω̃c2) at the jump instants

t = δj. Moreover, for the sampled data, because during the
jump instants, one has x̂+ = x̂+

j and we have proved that
the state estimation error is UUB, then V∗(x̂+

j ) ≤ V∗(x̂j).
Therefore, we have �Lc < 0, then �Lcl < 0. This means the
jump dynamics of the close-loop system is also UUB. This
completes the proof.

IV. SIMULATION RESULTS

Consider a single link robot arm system giving by

θ̈ (t) = −MgH

G
sin(θ(t)) − D

G
θ̇ (t) + 1

G
u(t) (86)

where
g = 9.81 is the acceleration of gravity;
H = 0.5 is the length of the arm;
D = 2 is the viscous friction;
M = 10 is the mass of the payload;
G = 10 is the moment of inertia;
θ(t) is the angle position of robot arm;
u(t) is the control input.
We assume that only the angle position θ(t) of the robot

arm is observable. Defining x1(t) = θ(t) and x2(t) = θ̇ (t), the
dynamic function (86) can be described as

⎧
⎪⎨

⎪⎩

ẋ1 = x2

ẋ2 = − 2

10
x2 + 1

10
u − 49.05 sin(x1)

10
y = x1.

(87)

We can clearly observe that y = x1 is the system measurable
feedback in (87). This means the output matrix is C = [1, 0]
in this case.

We use the proposed event-triggered ADP method to solve
the problem. In order to recover the internal system state, an
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Fig. 2. System responses (x1/x̂1) with the event-triggered observer and ADP
controller.

Fig. 3. System responses (x2/x̂2) with the event-triggered observer and ADP
controller.

observer is built with the following parameters:

A =
[

0 1
−4 −0.4

]
; G = [

10 −1
]T

. (88)

The designed observer includes a three-layer function net-
work with the neuron structure as 3–6–2 (i.e., three input
neurons, six hidden neurons, and two output neurons). Based
on the estimated internal state from the observer, a critic net-
work is established to approximate the performance index and
help to obtain the control law. The neuron structure of the
critic network is 3–8–1.

Choose the triggering condition as (13) with L = 3 and
α = 0.95. Set Q, r as the identity matrix with appropriate
dimensions. Therefore, we have the triggering condition for
this case as

∥∥eyj

∥∥2 ≤
(
1 − 0.952

)‖C‖2‖y‖2 + ‖C‖2
∥∥rTμ

(
xj
)∥∥2

32
. (89)

The trigger instants are decided according to (89). When the
gap eyj = Cx̂j − y violates condition (89), the system state
is sampled again by setting x̂j = x̂(t). The event-triggered
observer and control law are updated again according to the
sampled state.

Fig. 4. Errors between the estimated state and the true state.

Fig. 5. Trajectory of the weights in function network.

Set the initial learning rates for both the function and the
critic network as βo = βc = 0.1. Learning rates are decreased
by 0.05 every five time steps until they reach βo = βc = 0.005
and stay thereafter. The initial weights of both networks are
chosen randomly within [−1, 1]. The initial state is set to x0 =
[0.5,−0.5]T . The sampling period for discretization is chosen
as 0.03s.

By employing the event-triggered ADP control method pro-
posed in this paper, we stabilize the partially observable
system (87) only using the system input–output data. The
trajectories of the system estimated state and true state are
provided in Figs. 2 and 3. It can be seen that the estimated
state x̂1 and x̂2 can quickly approach the true state x1 and x2,
respectively. This means the designed observer can recover
the system internal state from the output feedback, even with
the reduced sampled data. The errors between the estimated
state and the true state are provided in Fig. 4. The learning
process of the function network weights are shown in Fig. 5.
It is clearly that the weights updating law is aperiodic and
only based on the sampled data. The observer is online train-
ing. The trajectory for the event-triggered control law in this
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Fig. 6. Trajectory of the event-triggered control law.

Fig. 7. Comparison of the gap ‖eyj‖ and the threshold ‖eT‖.

Fig. 8. Inter-event time during the learning process.

process is shown in Fig. 6. We can observe that the control
law is a piecewise signal. This means the control law keeps
the same at period [δj, δj+1) and is only updated when an
event is triggered. The relationship between the gap ‖eyj‖ and
the threshold is shown in Fig. 7. It can be clearly observed
that the gap ‖eyj‖ is always smaller than the threshold to

Fig. 9. Cumulative number of the sampled data for both the event-triggered
ADP method and traditional ADP method.

make sure the close-loop system is stable. The inter-event time
between two consecutive transmissions is shown in Fig. 8. We
know the inter-event time exists and is up to 0.9 s in this case.
Finally, the cumulative number of the sampled data during the
control process for both the proposed event-triggered ADP
method and the traditional ADP method in [40] are provided
in Fig. 9. The event-triggered ADP method uses 118 samples
while the traditional ADP method needs 1200 sample data.
This means by efficiently reducing the sampled instants, the
performance of the control method will not be influenced.

V. CONCLUSION

An event-triggered ADP control method was proposed in
this paper for nonlinear continuous-time system using only
the input–output data. A neural-network-based observer was
established to reconstruct the system internal states and the
control coefficient function. Neural network techniques were
applied to approximate the performance index and help calcu-
late the control law. In order to save the computation resource
and transmission load, the designed observer and the controller
were only updated when an event was triggered. The stability
of the close-loop system was analyzed by Lyapunov construct
for both the continuous and the jump dynamics. The simu-
lation results demonstrated the effectiveness of the proposed
method and also verified the theoretical analysis.
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