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A B S T R A C T   

The increasing penetration of renewable energy sources that have intermittent outputs challenge the Indepen-
dent System Operator while managing transmission congestion. A new Real-Time Hierarchical Congestion 
Management (RHCM) technique is proposed that reschedules generators in two stages based on Available 
Congestion Clearing Time (ACCT) of the transmission lines in presence of renewable energy sources. Chaotic 
Darwinian Particle Swarm Optimization (CDPSO) is used for determining the optimal schedules of demand 
response loads and reschedules of conventional generators to mitigate congestion. The solar and wind energy 
sources are modelled using Rayleigh and Beta probability density functions; Latin Hyper cube sampling is 
adopted for sampling. IEEE 39 bus system is simulated for cases of overloads and contingencies and RHCM using 
CDPSO is tested to ensure the security of the system. The benefit of RHCM incorporating demand response is 
presented in terms of reduced congestion relieving costs and decreased power loss.   

1. Introduction 

Ensuring continuous and reliable power supply through a congestion 
free transmission network under all operating conditions is quite chal-
lenging to the Independent System Operator (ISO) in a deregulated 
environment. Transmission congestion may prevent the existence of 
new contracts, leads to additional outages, increases the electricity 
prices in some regions of the electricity markets, and can threaten sys-
tem security and reliability [11,18]. Although Generation Rescheduling 
(GR) is being adopted to manage congestion, deregulated market 
structure imposes a restriction on the quantity of power that can be 
rescheduled in the process of managing congestion to maintain security 
of the system. Moreover, the ramp rates of the generators confine the 
amount of power that can be ramped up to mitigate congestion within 
the available time. 

There is an increasing participation of Renewable Energy Sources 
(RES) and this complicates the task of dispatching the conventional 
generators during different blocks of time in a day-ahead market. Output 
power of these RES is very intermittent and volatile in nature, and varies 
according to the time of the day and season of the year [23]. Demand 
Response (DR) is also devised as one of the strategies to ensure secure 
and reliable operation of the system during times of emergency. Market 

operations need to schedule the participation of DR loads while 
addressing contingencies. Hence, an efficient congestion management 
procedure needs to be designed that reschedules the generators within 
the available time limits considering accurately forecasted power out-
puts of RES and optimal participation of DR loads in a day-ahead power 
market. 

Management of congestion deals with the set of procedures 
conceived and executed by the ISO in a deregulated market scenario in 
order to maintain system reliability and security during emergencies. 
Generation rescheduling, transmission switching, demand response, 
load shedding, deploying Flexible AC Transmission Systems (FACTS) 
devices and phase shifters are some of the methods using which 
congestion management is implemented [10,27]. Rescheduling of 
generator real and reactive powers is done for managing congestion 
using a zonal or cluster-based approach. The generators with strongest 
and non-uniform distribution indices, in the most sensitive zones are 
chosen for rescheduling in this approach [2]. Relative Electrical Dis-
tance concept has been utilized by Yesuratnam et al. for rescheduling of 
generators to manage congestion. This method results in minimum 
transmission losses and better voltage stability profile of the system 
[27]. Though all these works involve rescheduling of generators, the 
ramp rates of the generators were not considered to increase or decrease 

* Corresponding author. 
E-mail address: srilatha.n@uceou.edu (S. Namilakonda).  

Contents lists available at ScienceDirect 

International Journal of Electrical Power and Energy Systems 

journal homepage: www.elsevier.com/locate/ijepes 

https://doi.org/10.1016/j.ijepes.2020.106632 
Received 22 May 2020; Received in revised form 21 September 2020; Accepted 3 November 2020   

mailto:srilatha.n@uceou.edu
www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
https://doi.org/10.1016/j.ijepes.2020.106632
https://doi.org/10.1016/j.ijepes.2020.106632
https://doi.org/10.1016/j.ijepes.2020.106632
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2020.106632&domain=pdf


International Journal of Electrical Power and Energy Systems 128 (2021) 106632

2

the output powers in a specific amount of time. The safe amount of time 
available for rescheduling was never a constraint in rescheduling 
process. 

1.1. Literature survey 

Most of the literature handles mitigating of congestion using gener-
ation rescheduling, utilizing various optimization algorithms [18,17]. 
Multi objective congestion management is proposed to optimize 
congestion mitigation cost, voltage security and dynamic security 
simultaneously by Esmaili et al. [14] using augmented ε-constraint 
method. Each of the market participants can obtain maximum benefits 
using the decentralized approach in the process of managing congestion 
as presented by Brijesh Singh et al. [4], that uses Interior point pro-
cedure of optimization. Hybrid of Firefly optimization and Differential 
evolution optimization has been used for location and placement of 
Distributed generation in order to manage congestion [9]. Constriction 
based Particle Swarm Optimization (PSO) is utilized by Jagadeesh et al. 
in [7] to reschedule the generators considering critical constraint vio-
lations. Satin Bowerbird Optimization is opted to minimize the 
congestion cost while rescheduling the generators for congestion man-
agement in [5]. Glow worm swarm optimization is utilized for mini-
mizing congestion rentals and transmission losses in the system for 
rescheduling of generators in [21]. Most of these optimization algo-
rithms, used for transmission congestion management, have conver-
gence problems for large systems and local optima trapping is found 
after few iterations. To this end, to improve upon convergence and 
reaching near global optimal values, Chaotic Darwinian PSO (CDPSO) 
has been proposed recently in [25] that proves to be addressing the 
above problems in an efficient way. The random sequences are replaced 
by chaotic sequences for a better searching capability, and the 
Darwinian model further helps in avoiding premature local conver-
gence. Authors in [13] re-iterate the advantages of CDPSO that is based 
on Darwinian principle of natural selection. 

The process of congestion management is aided by the contribution 
of DR loads. It is used as a cheaper alternative compared to load shed-
ding in a highly capital-intensive power system in order to ensure se-
curity under all operating conditions. The authors in [1] have analyzed 
various methods of DR and ascertained the advantages of DR to be 
reduced electricity prices, improved system reliability and reduced-price 
volatility. In this direction, Dehnavi and Abdi in [6] have illustrated the 
method of finding the optimal location and time of the loads willing to 
participate in DR. While power transfer distribution factors and Avail-
able Transfer Capacity of the system are used as basis for optimal 
location, numerous benefits of implementing optimal DR strategy is 
envisioned in terms of improving load curve characteristics, mitigating 
congestion, ease of ISO operation and reduction of contingencies and 
blackouts in the long run. But DR alone cannot completely be respon-
sible for handling congestion, as the amount of congestion is quite large 
in a transmission system. 

Another important aspect that needs attention of the ISO is the 
various RES that are increasingly becoming part of the power system. 
Output power from RES like solar and wind systems is uncertain and 
hence needs to be forecasted accurately using appropriate mathematical 
models for use in day-ahead scheduling. Mazidi et al. in [15] have 
modelled forecast errors of wind, solar generation using probability 
density functions, and have generated samples of close correlation to 
actual values. GR for managing congestion has been implemented in a 
smart grid environment where wind sources, DR and Gridable vehicles 
are considered in [12]. Moreno et al. [19] have developed an integrated 
OPF model for demand response incorporating wind power for day 
ahead markets. The loads that are willing to be flexible and bid day- 
ahead are incorporated as demand response models, thus resulting in 
an enormous saving in generation costs [8]. Prajapati and Mahajan [26] 
have demonstrated the effect of various types of demand response 
strategies in an uncertain environment created by renewable sources 

while managing the congestion during certain times of the day. How-
ever, all these strategies may fail to keep up security levels of operation 
during unforeseen contingencies 

Therefore, this paper proposes an efficient GR methodology using 
Real-Time Hierarchical Congestion Management (RHCM) technique 
that reschedules the generators in two stages based on ACCT, owing to 
intensity of the congestion in transmission lines, with presence of un-
certain RES. Optimal participation strategy of DR loads is determined to 
aid the GR in a deregulated environment using CDPSO algorithm that is 
based on Darwinian Theory of natural selection. Uncertainty in gener-
ated power output of RES are modelled using probability density func-
tions to enable forecast of the schedules of generators in the day-ahead 
electricity markets. Congestion is simulated for contingencies and sud-
den overloads over a 24-hour period considering typical load variation 
throughout the day. 

1.2. Contributions  

(1) The optimal schedules of Demand Response (DR) loads and 
Generation Rescheduling (GR) are determined in presence of 
uncertain Renewable Energy Sources (RES) using a novel two- 
stage Real-Time Hierarchical Congestion Management (RHCM) 
for ensuring security of the power system during times of 
congestion that aim for minimum congestion relieving cost and 
better system performance.  

(2) Optimization is implemented using Chaotic Darwinian Particle 
Swarm Optimization (CDPSO) algorithm to ensure better 
searching capability and to avoid premature local convergence.  

(3) The uncertainties of RES, wind and solar energy sources are 
modelled using probability density functions, utilizing Latin 
Hypercube sampling (LHS) to generate samples of wind speed 
and solar irradiation uniformly.  

(4) Two-stage RHCM using GR is implemented considering ramp 
rates of the generators and Available Congestion Clearing Time 
(ACCT) to clear congestion well before thermal failure of the line 
and avoid cascading outages. 

IEEE 39 bus system is considered as a case study to present the 
findings of the above-mentioned proposals. The paper is organized as 
follows. Section 2 deals with the mathematical background of the 
optimization problem formulation and presents modelling of demand 
response and renewable energy sources. Section 3 presents the proposed 
methodology for congestion management and Section 4 provides results 
and discussion. Conclusions are presented in Section 5. 

2. Problem formulation 

The objective is to relieve the congestion by re-dispatching the active 
power of generating units and including demand response in presence of 
uncertain RES, with minimum cost of relieving congestion. Congestion 
is modelled as a non-linear problem and solved through OPF 
based method. Thus, the objective function for this work may be 
modelled as 

Minimize

(
∑ng

p=1

(
ap + bpPgp + cpP2

gp

)
+
∑nDR

n=1
incn

)

(1)  

ap, bp and cp → cost coefficients of generators  

Pgp → real power generation of pth unit  

ng → number of generating units  

nDR → number of loads in demand response  

incn → net incentive rewarded to nth bus 
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The first part of the objective function corresponds to reduction of 
the cost of rescheduling/ re-dispatch and the second part of the objective 
function corresponds to having effective demand side response with 
minimum incentives. 

The equality and inequality constraints for the above objective 
function can be defined as follows. 

2.1. Equality constraints 

The equality constraints guarantee the balance in power at every 
node during power flow. The equality constraints of the model are 
described by the real and reactive power equations as described. Also, 
the active power of generator and demand has to be adhered as per the 
equations for market equilibrium. 

(a) Active and Reactive Power balance 

Pgk − Pdk =
∑nb

j=1

⃒
⃒Vj
⃒
⃒|Vk|

⃒
⃒Ykj
⃒
⃒cos

(
δk − δj − θkj

)
(2)  

Qgk − Qdk =
∑nb

j=1

⃒
⃒Vj
⃒
⃒|Vk|

⃒
⃒Ykj
⃒
⃒sin
(
δk − δj − θkj

)
(3)  

Pgk,Qgk→real and reactive power generated at bus k  

Pdk,Qdk→real and reactive power demands at bus k  

Ykj→bus admittance between nodes k and j  

Vj, Vk→ voltages of buses j and k  

δj, δk→ voltage angles of buses j and k  

θkj→ admittance angle of line connected between j and k  

nb→number of buses  

ng→number of generators  

nd→number of demands 

(b) Market Equilibrium 

Pgk = PC
gk + ΔP+

gk − ΔP−
gk; k = 1, 2, ..., ng (4)  

Pdj = PC
dj; j = 1, 2, ..., nd (5)  

PC
gk→active power generated by generator k, through market clearing  

PC
dj→active power consumed by load j, through market clearing  

ΔP+
gk→incremental power of generator k  

ΔP−
gk→decremental power of generator k  

2.2. Inequality constraints 

The inequality constraints govern the operating bounds of the system 
pertaining to the line flow (active and reactive power), voltages (gen-
erators and load buses) and the apparent power of transmission lines and 
transformers. Also, they enforce limits on the controlling variables. 

(c) Generator Active Power Limits 

Pgimin ≤ Pgi ≤ Pgimax (6)  

gi → number of generator buses 

(d) Generator Reactive Power Limits 

Qgimin ≤ Qgi ≤ Qgimax (7) 

(e) Generation Voltage Limits 

Vgimin ≤ Vgi ≤ Vgimax (8) 

(f) Load Bus Voltage Limits 

VLimin ≤ VLi ≤ VLimax (9)  

Li → number of load buses 

(g) Line Flow Limits 

SL ≤ SLmax (10)  

2.3. Demand response modelling 

Demand response (DR) is an approach to reduce or shift load from 
peak hours of the day, when the demand for electricity is the greatest to 
leaner demand periods. It is utilized only during congestion in the 
network in this paper. This comes under the category of market-based 
Incentive-type DR program according to Albadi and El-Saadany [1]. 
DR services can be utilized by the ISO only during emergencies, or 
during ancillary service requirement. The maximum allowable reduc-
tion in DR loads is limited to 20% of their maximum demand. Few loads 
are selected to contribute for DR depending on their influence on 
transmission line loading and willingness. Penalty will be levied on the 
DR load that is non-responsive during critical loading, once the contract 
has been signed. The penalty and incentives are specific to a particular 
market and are prescribed by the ISO. In this work, it is supposed that 
DRs are encouraged to participate consistently for longer periods if the 
penalty imposed is zero. 

The difference in load at nth bus after executing the Demand 
Responsive Program is represented as, 

ΔLn = L0n − Ln (11)  

L0n→load at the nth responsive bus prior to demand response  

Ln→load at the nth responsive bus after demand response 

The total incentive rewarded to the demand response at nth bus is 
given by, 

incn = inc × ΔLn (12)  

inc→incentive factor  

incn→net incentive rewarded to the nth bus 

The load reduction is determined by the ISO for the nth responsive 
demand and is denoted as LRn. In case, if the consumers of contributing 
DR are not committing to the previously agreed load as per the contract, 
then a penalty will be levied from them. The overall penalty of nth load 
to respond can be calculated by the use of the following formula. 

Penn = Pen × [LRn − ΔLn] (13)  

Pen→penalty factor  

Penn→factor of penalty of the nth responsive bus 

The revenue for participating in demand response to the consumer 
could be stated via different functions that include power, logarithmic, 
linear and exponential functions. A linear model is considered in this 
work, which can be described through the following equation: 

Ln = L0n ×

[

1+E ×

(
ρ − ρ0 + inc − pen

ρ0

)]

(14)  

E→elasticity of load  

ρ, ρ0→price for using electricity after using DR and before use of DR 
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inc→incentive factor  

L0n→load at the nth responsive bus prior to demand response  

Ln→load at the nthresponsive bus after demand response 

The incentive coefficient is assigned a value between 0.1 and 10 
times of the price fixed for electricity before applying DR and the penalty 
factor is made zero to encourage the commitment for load response. 

2.4. Renewable energy sources modelling 

Distributed energy resources like the renewable energy from solar 
and wind sources are assumed to be placed at certain buses in the sys-
tem. As the wind speed and solar irradiation have uncertain behaviour 
and are probabilistic in nature, the output power of these units is un-
certain. To mathematically model the uncertain sources of power, 
probability density functions are used. 

2.4.1. Solar power 
The output power of a solar cell mostly depends on irradiance of the 

sun. The distribution of hourly irradiance at a particular location usually 
follows a bimodal distribution that is actually a linear combination of 
two unimodal distribution functions [15]. A Beta PDF is utilized for a 
unimodal function in the given range of si, α and β and its value is zero 
for other values of si, α and β. It can be described as follows: 

fb(si) =
Γ(α + β)
Γ(α)Γ(β) × si(α− 1) × (1 − si)(β− 1)

;
for 0 ≤ si ≤ 1, α ≥ 0, β ≥ 0

(15)  

si→solar irradiance
(
kW
/

m2)

α and β, the parameters of Beta distribution function are determined 
from the mean (µ) values and standard deviation (σ) values at different 
instants of time. 

β = (1 − μ) ×
(

μ × (1 + μ)
σ2 − 1

)

(16)  

α =
μ × β
1 − μ (17) 

The amount of solar power is calculated by using irradiation distri-
bution and irradiation to power conversion function is given as 

Ppv(si) = ηpv × Spv × si (18)  

Ppv(si)→solar output power for irradiance si (kW)

η→efficiency of solar panel (%)

Spv→total area of solar panel (m2)

2.4.2. Wind power 
Rayleigh probability density function (PDF) is applied for uncer-

tainty modelling of the wind speed patterns Mazidi et al. [15] and is 
defined as follows: 

fw(v) =
(

2v
c2

)

exp
[

−
(v

c

)2
]

(19)  

fw(v)→Rayleigh PDF  

c→Rayleigh scale index  

v→wind speed 

If the mean speed of the wind is known, the scale index, c is calcu-
lated as 

vm =

∫ ∞

0
vf w(v)dv =

∫ ∞

0

(
2v2

c2

)

exp
[

−
(v

c

)2
]

dv =

̅̅̅
π

√

2
c (20)  

c ≃ 1.128vm (21) 

The output power of the wind turbine for an actual wind speed of vaw 
is calculated using the following equation: 

Pw(v) = Prated ×
(vaw − vci)

(vr − vci)
; for vr ≤ vaw ≤ vco, vci ≤ vaw ≤ vr

Pw(v) = 0; for 0 ≤ vaw ≤ vci and vco ≤ vaw

(22)  

vci→cut − in speed of the wind turbine  

vr→rated speed of the wind turbine  

vco→ cut − off speed of the wind turbine  

3. Proposed real-time hierarchical congestion management 

A two-stage real-time hierarchical congestion management (RHCM) 
scheme is proposed in this work wherein real power outputs of the 
generators are rescheduled optimally depending upon two important 
criteria:  

• Available Congestion Clearing Time (ACCT)  
• Most Sensitive Generators (MSG) 

ACCT depends on the extent of overload in the congested line. The 
extent of overload determines the time available to manage the 
congestion by considering generator ramp rates and quasi dynamic 
thermal ratings of the transmission lines. MSG are the set of generators 
that highly effect the flow in the congested line. The rescheduling of real 
power outputs of highly sensitive generators enables the power flow 
through the congested line to be redirected to other transmission lines so 
that power flow through it reduces. 

3.1. Available congestion clearing time (ACCT) 

ACCT is the longest duration of time slot available for the trans-
mission line to withstand an overload. There is a thermal failure of the 
transmission line after the end of this time limit due to persistent 
overload. Temperature and weather conditions also have an influence 
on this time. During overload, current through the conductor increases, 
thermal inertia allows this increase to certain extent for a specific 
amount of time before the temperature reaches the maximum value. The 
Short Term Rate (STR) is 118% and the Emergency Term Rate (ETR) is 
147% of the long-term rate [16]. STR can last up to 15 min and ETR can 
last up to 5 min before thermal breakdown. Any loading beyond ETR 
cannot be tolerated for any time and overload relay trips 
instantaneously. 

These times are clear indicators of the congestion clearing time 
limits. Congestion should be cleared within the mentioned STR or ETR 
times, to avoid thermal breakdown. This clearing time should also 
include the time of execution of the optimization algorithm. Considering 
these limits as basis, a two-stage hierarchical congestion management 
process is adopted here. 

If the overload in the congested line comes under ETR region, 
amount of change in generation is limited to 5 min. Hence, in the first 
stage, optimization algorithm reduces the overload such that the flow in 
the line is about 118%. This should also include the execution time of the 
optimization algorithm. 
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The second stage of the overload relieving process now comes into 
picture after first 5 min. At this instant the overload comes under STR 
region. The optimization algorithm now aims at reducing congestion in 
the line to the possible extent in 15 min time. The rescheduling power 
quantity is now more compared to ETR region as the available time is 
more. In both the stages, real power output of few generators is 
increased, while output of few other generators is decreased as 
explained in the next section. 

3.2. Most sensitive generators (MSG) 

Generation rescheduling is the most sought-after method of man-
aging congestion, and is a non-cost-free means, particularly in the 
deregulated environment [18]. For a given operating condition, power 
flow tracing is done initially to determine the set of generators that 
actually contribute to the flow through the congested line. The decrease 
of generation on these generators reduces the flow through the con-
gested line, as these are contributing generators. Similar amount of 
power is increased on the other set of generators, depending on their 
available margins, so that the load balance is achieved. Both these ac-
tions together result in reduction of flow in the congested line owing to 
the physical laws of power flow through the network. Hence, these 
conditions are included as one of the constraints in the optimization 
problem formulation. The set of contributing generators are only 
allowed to decrease their generation, whereas non-contributing gener-
ators are allowed to increase their generation according to the margins 
available. 

Among the non-contributing generators, only the generators that are 
highly sensitive are chosen for increasing their output, rather than all 
the generators in that group. The sensitivity values are obtained from the 
Generation Shift Sensitivity factors using [22]. The most sensitive gen-
erators (MSG) are hence selected for the purpose of rescheduling to 
reduce the number of control actions to be implemented and to mini-
mize the time and cost involved in the process. 

3.3. Methodology for RHCM aided by demand response 

In a restructured environment, the power from a generator flows in 
accordance to contractual arrangements and the generators are 
restricted to change their output in order to mitigate congestion. Hence, 
Demand Response (DR) is chosen to aid the process of congestion 
management that is implemented using GR. This work focuses on 
determining the schedules of loads participating in demand response 
and GR of conventional generators to mitigate congestion. Presence of 
RES like solar and wind farms in the system supply power at the place of 
their installation, but the nature of power generated is uncertain. So, 
LHS sampling of density functions of RES helps to forecast power from 
these sources to determine the schedules of DR and GR. Fig. 1 indicates 
the flow of simulation process in order to implement RHCM using both 
GR and DR in presence of RES. 

3.4. Algorithm of CDPSO for RHCM 

Particle Swarm Optimization (PSO) is used as the tool for optimally 
deciding the DR strategy and GR for mitigating congestion. 

Traditional PSO, one of the evolutionary computing techniques, 
mimics the swarm intelligence of birds and fishes. The particles are 
initialized with random values and move through the search space for an 
optimal solution. In the process, the coordinates of the best solution 
(fitness) of a particle is saved as Pbest. The best solution among the total 
swarm is saved as Gbest. The positions of all the particles are updated to 
reach the best fitness through velocities, so that particles can move in the 
desired direction. The position and velocity are depicted and updated as 
follows in a search space. 

xp =
(
xp1, xp2,⋯, xpn

)
(23)  

vp =
(
vp1, vp2,⋯, vpn

)
(24)  

v(iter)
p = wv(iter− 1)

p + r1ϕ1

(
x(iter− 1)

pbest − x(iter− 1)
p

)
+ r2ϕ2

(
x(iter− 1)

gbest − x(iter− 1)
p

)
(25)  

x(iter)
p = x(iter− 1)

p + v(iter)
p (26)  

here, w is the inertia weight meant for limiting velocity changes and 
controls the balance between the global exploration and the local search 
ability. Global search is enhanced by large value of inertia, while a small 
inertia weight enhances the local search. Hence, w is considered to be a 
linearly decreasing value from 0.9 to 0.4 through the iterations. r1 and 
r2 are the acceleration coefficients for exploration and exploitation 
search capabilities respectively. ϕ1 and ϕ2 are random positive numbers 
derived from uniform distribution. 

The positions and velocities of particle p are assigned randomly in 
the beginning denoted by xp and vp. These are updated using equations 
(25) and (26) respectively. As the particles keep moving from one 
location to another depending on velocities, their values of position and 
velocity are referred to on time basis, or mathematically in iterations. 
But it is observed that PSO results in premature convergence. Hence, 
CDPSO is used for overcome such difficulties. Here, particles and ve-
locities are initialized with chaotic values in place of random numbers. 
Logistic chaotic function provides best features of searching capability 
among others and helps to avoid premature local convergence [25]. The 
position and velocity are initialized and updated as follows for CDPSO. 

xp = xpmin + chaos(0, 1)
(
xpmax − xpmin

)
(27)  

vp = vpmin + chaos(0, 1)
(
vpmax − vpmin

)
(28)  

v(iter)
p = wv(iter− 1)

p + r1chaos(0, 1)
(

x(iter− 1)
pbest − x(iter− 1)

p

)
+ r2chaos(0, 1)

(
x(iter− 1)

gbest

− x(iter− 1)
p

)

(29) 

Consider amount of load, generation from conventional 
generators, wind and solar sources at regular periods of 

the day for the corresponding operating condition

Amount of congestion decides ETR and 
STR regions requirement

Calculate generator sensitivities towards the most congested 
line, and decide which generators should increase and 

decrease their outputs, which of them need not participate

Calculate the maximum allowable change in power based 
on ramp rates of generators in ETR and STR regions

Run the CDPSO algorithm in one or two stages 
as per requirement and decide the generator 

and demand response schedule

Repeat 
for the 

next 
hour of 
the day

Check for congestion 
in all the lines

Yes

No

Fig. 1. Flowchart for RHCM aided by DR using CDPSO.  
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x(iter)
p = x(iter− 1)

p + v(iter)
p (30) 

Here, chaos (0,1) is the logistic chaotic operator. xpmax and xpmin 
represent maximum and minimum values of the particle xp. Incorpo-
rating Darwinian principle of natural selection in PSO for finding the 
fittest candidate is realized by the use of multiple number of swarms and 
this helps in improving its search capacity to a better extent. CDPSO that 
combines the chaotic maps to the algorithm helps in improving 
convergence efficiency. 

In CDPSO for every iteration, the new fitness value is checked against 
the fitness of the previous iteration. If the new fitness is better, a new 
particle is spawned to indicate swarm is increasing its adaptability by 
increasing number of particles in the swarm. In case of a bad fitness, 
Swarm Cycles (SC) are executed. For a count of SCmax, starting from 
zero, if there are particles that are continuously resulting in bad fitness 
value, the worst particle with least fitness in the swarm will be deleted at 
the end of SCmax. This is the way in which the number of particles in 
swarm keep varying between Smin and Smax. If the particle count has 
reached Smin, and still there are particles to be deleted, this results in 

deletion of the swarm itself, indicating this particular swarm is not 
adaptable. If no particles of a swarm are deleted in a given iteration, a 
new swarm can be spawned until the count reaches Nsmax, indicating 
multiple swarms can co-exist as long as they are adaptable. The swarm 
cycle count (SC) is updated to zero once it reaches maximum after the 
execution of swarm cycle. The pseudo code of the CDPSO algorithm for 
spawning and deleting particles and swarms is presented in Table 1. 

4. Simulation results and discussion 

In order to demonstrate the effectiveness of the proposed method, 
IEEE 39 bus system is chosen as the case study. This system consists of 10 
generators, 29 load buses and 46 transmission lines. Of these buses, 
loads present at 18, 23, 28 and 35 are selected as DR loads. 20% of the 
load present at each of the DR Loads will be available in response to the 
congestion clearing procedure. A wind farm of 100 MW installed ca-
pacity (20 wind turbines each of 5 MW capacity) is present at bus 14. A 
solar generation of 100 MW (400,000 solar panels each of 250 W) is 
present at bus 22. The load present in the system varies throughout the 
day that follows a considered daily load curve. The power from wind and 
solar energy are modelled and incorporated on an hourly basis all 
through the day. The system is analyzed for the effect of the proposed 
congestion management procedure using the following cases. 

Case. A: Critical contingency condition (outage of line connecting buses 14 
and 34). 

Case. B: 2% and 5% increase in load during peak hour. 

In Case-A, congestion is result of contingency that is simulated and in 
Case-B, congestion is observed because of sudden increase in loading. 
Both these cases are further analyzed in the following possible scenarios. 

Table 1 
Pseudo code of the proposed CDPSO algorithm.  

Table 2 
Parameters used in CDPSO.  

Parameter Description Value 

S Population of a swarm (No. of particles) 30 
Ns No. of swarms 4 
Nsmin Min. No. of swarms 2 
Nsmax Min. No. of swarms 6 
Maxiter No. of iterations 100 
Smin Min. population in a swarm 10 
Smax Max. population in a swarm 50 
w Inertia weight 0.9 < w < 0.4 
r1, r2 Acceleration coefficients 1.2, 0.8 
SCmax Max. Swarm cycles 10  
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• Scenario-I: Mitigation of congestion using only optimal GR through 
RHCM technique. This scenario is considered when the DR loads fail 
to respond / unavailable.  

• Scenario-II: Mitigation of congestion using optimal schedules of 
both GR and DR loads through RHCM technique. 

In all the above cases and scenarios, CDPSO is used for optimization 
purpose. The values of parameters used in CDPSO algorithm for case 
study are listed in Table 2. 

In order to analyze the performance of the proposed RHCM using 
CDPSO, the example of outage of line connecting the buses 14 and 34 in 
the test system is considered, that results in overflow of line between 15 
and 16 buses. RES and DR loads are not considered in this example. This 
is to enable comparison of the proposed technique with techniques 
available in literature. The results of the proposed RHCM technique for 
reducing the overload in line 15–16 is compared with the results of 
various methods applied as mentioned in Yesuratnam and Thukaram 
[27], Dutta and Singh [24], Sadhan [20]. The results obtained are also 
compared with recently proposed efficient methods like Chaotic Particle 
Swarm Optimization (CPSO) and Twin Extremity Chaotic Map Adaptive 
Particle Swarm Optimization (TECMPSO) [3] as illustrated in Table 3. 
CDPSO is utilized to implement RHCM technique in this work and the 
algorithm is developed in MATPOWER [28]. Observations reveal that 
the proposed method gives better results in terms of the optimized 
variable, the total rescheduling cost of GR compared all the listed 
methods. 

The system behaviour is now analyzed using Case-A and Case-B, as 
mentioned earlier in this section. Table 4 gives the calculated sensitivity 

values of all the generators with respect to the congested line (15–16) 
and generator ramp rates Esfahani et al. [16]. The sensitivities of the 
contributing generators [22] to the overloaded line are specified to be 
Not Applicable (NA). The non-contributing generators only with high 
sensitivity are considered for GR to increase their generation as 
mentioned in Section 3.2. Ramp powers in ETR and STR regions indicate 
the limit of rescheduling power for respective generators depending on 
their ramp rates. Table 5 lists the buses selected [19] for demand 
response. 

Solar and wind powers are modelled using Beta and Rayleigh prob-
ability density functions to justify the uncertainty as explained in the 
previous section. The mean values and standard deviation are provided 
on an hourly basis, for a 24-hour period. These values are used to 
develop the database consisting of wind speeds and solar irradiance, 
based on the designed probability density functions Mazidi et al. [15]. 
LHS is utilized to generate uniformly distributed samples from the 
considered probability density functions. The LHS method is highly 
beneficial in terms of increased sampling efficiency and reduced 
execution time compared to the traditional Monte Carlo sampling 
method. 1000 random and uniform samples per hour are generated 
using LHS to represent the actual wind speed and solar irradiance to 
have more accurate representation of the actual system parameters. The 
quantity of wind power and solar power generated for the corresponding 
24,000 samples are calculated based on Mazidi et al. [15]. Considering 
these calculated powers, Fig. 2 represents the availability of RES power 
throughout the day. Solar power and wind power are together repre-
sented in terms of the produced power at different instances in a day. 

In a day ahead dispatching market framework, a typical daily load 
curve of IEEE 39-bus New England system is shown in Fig. 3. The peak 
load of 6100 MW occurs at 20.00 hours in the system, the morning peak 
is approximately identical to the load throughout the active working 
hours of the day with slight variation [19]. This load pattern is consid-
ered as one of the inputs for determining the contributions of DR loads 
while mitigating congestion. The generators are dispatched economi-
cally for varying load conditions and there is no congestion observed 
during normal operating schedules. 

In Case-A, outage of line between 14 and 34 buses leads to 

Table 3 
Comparison of GR using RHCM and other techniques.   

Results using 
RED [27] 

Results using 
PSO [24] 

Results using 
FA[20] 

Results of proposed 
RHCM using PSO 

Results of proposed 
RHCM using CPSO 

Results of proposed 
RHCM using TECMPSO 

Results of proposed 
RHCM using CDPSO 

ΔG1 (MW) − 99.59 − 149.1 − 75.34 –222.9 − 220.58 − 224.87 − 217.79 
ΔG2 (MW) 98.75 65.6 –33.61 42 130 105 103 
ΔG3 (MW) − 159.64 − 129.0 − 45.45 − 50 − 50 − 45 − 50 
ΔG4 (MW) 12.34 * * * * * * 
ΔG5 (MW) 24.69 * * * * * * 
ΔG6 (MW) 24.69 * * * * * * 
ΔG7 (MW) 12.34 * * * * * * 
ΔG8 (MW) 24.69 75.4 18.33 47 0 18 0 
ΔG9 (MW) 12.34 52.1 − 105.03 20 20 20 0 
ΔG10 (MW) 49.38 83.0 250.00 171 122 130 166 
Rescheduled Power 

(MW) 
518.45 554.2 527.77 552.86 542.58 542.87 536.79 

Cost of 
Rescheduling 
($/hr) 

6795.5 6093.2 5781.4 6205.2 6114.6 6160.7 5642.5 

*Not participating (least sensitive generators). 

Table 4 
Characteristics of Generators.  

Generator 
Bus 

Ramp 
Rate 
MW/ 
min 

Ramp 
Power in 
ETR 
(MW) 

Ramp 
Power in 
STR (MW) 

Sensitivity Remarks 

1 10 50 150 NA Contributing 
generator 

2 9 45 135 − 0.53 High 
3 9 45 135 NA Contributing 

generator 
4 9 0 0 − 0.36 Moderate 
5 8 0 0 − 0.36 Moderate 
6 6 0 0 − 0.37 Moderate 
7 8 40 120 − 0.37 Moderate 
8 8 40 38 − 0.49 High 
9 8 0 0 − 0.42 High 
10 9 45 135 − 0.52 High  

Table 5 
Load details of DR Load buses.  

Bus Power Demand (MW) Available power for DR Loads (MW) 

18 522 104.4 
23 247.5 49.5 
28 206 41.2 
35 320 64  
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congestion during some of the highly loaded periods of the day. In Case- 
B, the increase in loading of the system beyond the value predicted in 
daily load curve causes congestion in the network. Hence increase of 2% 
and 5% load during the peak loading hour is considered for analysis in 
this case. The congestion particulars of both these cases is listed in 
Table 6. In all the instances of these cases, line between 15 and 16 gets 
overloaded, and the ACCT values are given based on severity of the 
overload. 

The results of congestion management in Case-A analyzed for peak 
hour 20.00 in all the possible scenarios are presented in Table 7. The 
quantity of rescheduling power of conventional generators and the share 
of DR loads in appropriate scenarios are listed in this table. The effect of 
single-stage optimization is also included to highlight the advantages of 
two-stage optimization. It is evident from the results that single-stage 
optimization results in sub-optimal solution, as the time available for 
managing congestion is limited by ACCT and ramp rates of the gener-
ators. The time of execution of the proposed CDPSO algorithm is also 
provided to understand the time available for congestion management 
process. 

Table 8 provides a comparison of efficiency of the proposed method 
with existing method like PSO, for scenarios in Case-A in terms of 
rescheduling power and costs. Scenario-I reveals that if DR loads fail to 
contribute as per the contract, only conventional generators are 
rescheduled. In this scenario, the rescheduling of generators is 

maximum when compared to the other scenarios. Scenario-II schedules 
the conventional generators and DR loads optimally such that all the 
conditions of the system like load, RES availability and extent of 
congestion are taken into account. In this scenario, it can be observed 
that the share from DR is optimally utilized to mitigate congestion. The 
share of the GR is also reduced when compared to Scenario-I, enabling 
the ISO to allow the rescheduling of conventional generators in 
rescheduled market within defined limits. It can be observed that the 
total congestion relieving cost is optimal in Scenario-II compared to 
Scenario-I. This is a combination of the rescheduling cost of GR and the 
incentives offered to DR loads. The system losses also have reduced in 
this scenario compared to others resulting in better performance of the 
system. The result of the proposed method is further compared with the 
analytical Interior Point method to demonstrate that the fast and robust 
analytical methods cannot provide a global optimal solution for a 
complex problem that has multiple peaks in its search space. Hence, the 
usage of metaheuristic method like CDPSO is advantageous in terms of 
better quality of solution. 

Similar analysis has been carried out for all the congestion instances 
in Case-A. Congestion is observed from Hour 9 to Hour 22 in presence of 
the mentioned contingency. Fig. 4 presents the cost components of 
congestion relieving cost for all the congestion instances in Scenario- I & 
II to demonstrate the advantage of reduced GR cost in Scenario-II. It can 
be observed that in Scenario-I, the cost of relieving congestion is 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Solar Power 0 0 0 0 0 2.4 14 29 53 68 87 92 90 87 75 53 29 11 5.8 0 0 0 0 0
Wind Power 59 76 88 88 72 59 39 28 24 18 9.3 13 15 24 33 59 88 76 72 59 51 47 39 43
Total Power  from Renewables 59 76 88 88 72 62 53 57 77 86 9610510511110811211787 78 59 51 47 39 43
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Table 6 
Congestion particulars in Case A and Case B.  

Case under Study Time of the Day 
(in Hours) 

Percentage of Overload 
(in Line 15–16) 

No. of stages required for RHCM Available Congestion Clearing Time (ACCT) 

Case-A 9 18 2 5 min from ETR to STR in stage1 
15 min from STR to safe loading in stage 2 

10 16 1 15 min from STR to safe loading in stage 1 
11 17 1 15 min from STR to safe loading in stage 1 
12 28 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
13 27 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
14 26 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
15 23 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
16 16 1 15 min from STR to safe loading in stage 1 
17 14 1 15 min from STR to safe loading in stage 1 
18 16 1 15 min from STR to safe loading in stage 1 
19 32 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
20 29 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
21 28 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
22 23 2 5 min from ETR to STR in stage1 

15 min from STR to safe loading in stage 2 
Case-B 20 with 2% extra load 12 1 15 min from STR to safe loading in stage 1 

20 with 5% extra load 30 2 5 min from ETR to STR in stage1 
15 min from STR to safe loading in stage 2  

Table 7 
Congestion Management Results of proposed RHCM using CDPSO for Case-A.   

Case-A, Scenario-I 
(Only optimal GR 
using RHCM) 

Case-A, Scenario-I 
(Only optimal GR using RHCM) 
Only one stage 

Case-A, Scenario-II 
(optimal GR and DR 
using RHCM) 

Case-A, 
Scenario-II 
(optimal GR and DR using RHCM) 
Only one stage Stage-1 Stage-2 Stage-1 Stage-2 

ΔG1 (MW) − 63.1 − 142.3 − 71.9 − 72.9 − 50.1 − 240.9 
ΔG2 (MW) 50.0 87.0 33 0.0 50.0 48 
ΔG3 (MW) − 45.0 − 44.0 − 45 − 45.0 − 135.0 − 43 
ΔG4 (MW)* – – 0 – – 0 
ΔG5 (MW)* – – 0 – – 0 
ΔG6 (MW)* – – 0 – – 0 
ΔG7 (MW)* – – 0 – – 0 
ΔG8 (MW) 25.0 18.0 40 0.0 0.0 19 
ΔG9 (MW) 0.0 0.0 0 0.0 0.0 0 
ΔG10 (MW) 33.0 82.0 45 0.0 135.0 16 
ΔL18 (MW) 0.0 0.0 0 104.0 0.0 100 
ΔL23 (MW) 0.0 0.0 0 0.0 0.0 0 
ΔL28 (MW) 0.0 0.0 0 0.0 0.0 39 
ΔL35 (MW) 0.0 0.0 0 12.0 0.0 62 
Time of execution of CDPSO (seconds) 14.15 14.85 9.7 14.26 14.97 9.2 
Reschedule of Conventional Generation (MW) 589.5 234.9 488.1 366.9 
Load Reduction by DR Loads (MW) 0 0 116.0 201 
Total cost of relieving congestion ($/hr) 6147.3 3120.6 6808.1 6971.9 
Flow in congested line after Congestion Management No overload 17% overload No overload 3% overload 
System Loss after Congestion Management (MW) 52.7 53.3 49.7 52.2 

* Not Participating (Least sensitive generators). 

Table 8 
Comparison Results of Case-A Scenarios.   

Scenario-I using 
PSO 

Scenario-I using 
CDPSO 

Scenario-II using 
PSO 

Scenario-II using 
CDPSO 

Scenario-II using Interior Point 
Method 

System Loss after Congestion Management 
(MW) 

54.8 52.7 49.3 49.7 52.7 

Reschedule of Conventional Generation (MW) 623.4 589.5 489.5 488.1 507.1 
Rescheduling Cost ($/hr) 6747.1 6147.3 5225.1 5133.6 5769.1 
Load Reduction by DR Loads (MW) 0 0 115.0 116.0 94 
Incentives for DR Loads($/hr) 0 0 1668.0 1674.4 1530 
Total power rescheduled (MW) 623.4 589.5 604.5 604.1 601.1 
Total cost of relieving congestion ($/hr) 6747.1 6147.3 6893.1 6808.1 7299.1 
Flow in congested line before Congestion 

Management 
129% (ETR) 

System Loss before Congestion Management 52.2 MW  
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Table 9 
Congestion Management Results of proposed RHCM using CDPSO for Case-B.   

102% Loading at Hour 20 105% Loading at Hour 20 
Case-B, Scenario - I 
(Only optimal GR using RHCM) 

Case-B, 
Scenario-II 
(optimal GR and DR using RHCM) 

Case-B, Scenario-I 
(Only optimal GR using 
RHCM) 

Case-B, 
Scenario-II 
(optimal GR and DR using 
RHCM) 

Stage-1 Stage-2 Stage-1 Stage-2 

ΔG1 (MW) − 84.7 − 92.1 − 89.2 − 92.4 − 96.8 − 90.8 
ΔG2 (MW) 50.0 0.0 50.0 73.0 0.0 59.0 
ΔG3 (MW) − 45.0 − 45.0 − 45.0 − 135.0 − 45.0 − 123.0 
ΔG4 (MW)* – – – – – – 
ΔG5 (MW)* – – – – – – 
ΔG6 (MW)* – – – – – – 
ΔG7 (MW)* – – – – – – 
ΔG8 (MW) 35.0 13.0 39.0 20.0 37.0 20.0 
ΔG9 (MW) 0.0 0.0 0.0 0.0 0.0 0.0 
ΔG10 (MW) 45.0 19.0 45.0 135.0 0.0 135.0 
ΔL18 (MW) 0.0 104.0 0.0 0.0 104.0 0.0 
ΔL23 (MW) 0.0 0.0 0.0 0.0 0.0 0.0 
ΔL28 (MW) 0.0 0.0 0.0 0.0 0.0 0.0 
ΔL35 (MW) 0.0 0.0 0.0 0.0 0.0 0.0 
Reschedule of Conventional Generation (MW) 259.7 169.1 723.6 606.6 
Load Reduction by DR LOADS(MW) 0 104.0 0 104.0 

* Not Participating (Least sensitive generators) 

S. Namilakonda and Y. Guduri                                                                                                                                                                                                              



International Journal of Electrical Power and Energy Systems 128 (2021) 106632

11

Table 10 
Comparison Results of Case-B Scenarios for 2% sudden increase of load.   

102% Loading at Hour 20 
Scenario-I using PSO Scenario-I using CDPSO Scenario-II using PSO Scenario-II using CDPSO 

System Loss after Congestion Management (MW) 50.3 49.7 49.1 48.3 
Reschedule of Conventional Generation (MW) 261.1 259.7 170.3 169.1 
Rescheduling Cost ($/hr) 3749.7 3334.6 2417.6 2309.2 
Load Reduction by DR Loads (MW) 0 0 104.0 104.0 
Incentives for DR Loads ($/hr) 0 0 1138.4 1138.4 
Total power rescheduled (MW) 261.1 259.7 274.3 273.1 
Total cost of relieving congestion ($/hr) 3749.7 3334.6 3555.6 3447.6 
Flow in congested line before Congestion Management 112% (STR) 
System Loss before Congestion Management 49.37  

Table 11 
Comparison Results of Case-B Scenarios for 5% sudden increase of load.   

105% Loading at Hour 20 
Scenario-I using PSO Scenario-I using CDPSO Scenario-II using PSO Scenario-II using CDPSO 

System Loss after Congestion Management (MW) 49.6 50.4 48.2 48.9 
Reschedule of Conventional Generation (MW) 700.3 723.6 596.4 606.6 
Rescheduling Cost ($/hr) 7455.9 7246.2 6132.4 6211.8 
Load Reduction by DR Loads (MW) 0 0 123.0 104.0 
Incentives for DR Loads($/hr) 0 0 1716.2 1138.4 
Total power rescheduled (MW) 700.3 723.6 719.4 710.6 
Total cost of relieving congestion ($/hr) 7455.9 7246.2 7848.5 7350.2 
Flow in congested line before Congestion Management 130% (ETR) 
System Loss before Congestion Management 49.97  
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minimum, but all of the rescheduling is done using GR only. This is the 
scenario where generators may not be allowed to reschedule beyond 
certain limits. To ease this situation, DR is introduced, but DR when 
optimally scheduled along with GR in Scenario-II gives better results in 
terms of congestion relieving cost as well as system losses. For Hours 10, 
11, 16, 17 and 18, it can be seen that share of GR is zero in Scenario-I, 
indicating that GR alone cannot mitigate the congestion completely. It 
is even in such cases, DR becomes inevitable. 

The comparison of losses in the system are shown in Fig. 5, indicating 
the values before and after managing the congestion, using different 
optimization techniques, PSO and CDPSO. It is clearly concluded from 
this figure that introduction of DR not only reduces the burden of con-
ventional generators, but also improves the system performance by 
reduction in losses when compared to other scenarios and other 
algorithms. 

The system is also analyzed for increase of load during peak hour in 
Case-B. Table 9 provides the results of congestion management for Case- 
B. It can be observed that the management of congestion is implemented 
efficiently using Scenario-II. If the amount of congestion corresponds to 
STR, one stage is required and two stages are required if congestion 
amount falls in ETR respectively. The cost comparison of various sce-
narios reveal that Scenario-II gives an optimal mix of GR and DR loads. 
These comparisons are also presented with respect to PSO and CDPSO in 
Table 10 and Table 11 for 2% and 5% increase in loading respectively. It 
is clear from these statistics that CDPSO performs better than PSO, and is 
better in Scenario-II compared to others. 

Fig. 6 gives the comparison of various optimization techniques in 
terms of the final objective, the congestion relieving cost. It is clear from 
the comparison that CDPSO fares fairly well for all the loading condi-
tions. Fig. 7 depicts the participation of DR loads at various instants of 
loads. It can be observed that for more optimal relieving of congestion 
the share of DR participation is more. That is evident from PSO and 
CDPSO comparison of DR share. 

5. Conclusion 

A new real-time Hierarchical Congestion Management (RHCM) 
method using Chaotic Darwinian Particle Swarm Optimization 
(CDPSO) has been proposed in this work that is aided by demand 
response mechanism in the presence of Renewable energy sources 
(RES). HCM is achieved by rescheduling of the most sensitive genera-
tors in multiple stages and optimal scheduling of Demand Responsive 
Loads (DR Loads). Furthermore, the modelling of RES that vary 
according to the time of the day and its incorporation has realized the 
mitigation of congestion in real time environment. All the market 
participants can make use of the proposed two-stage RHCM in 
providing congestion management as an ancillary service in a 
deregulated environment. Different cases of congestion and various 
scenarios of exploring the performance of RHCM technique using 
CDPSO has revealed through numerical examples that the optimal mix 
of Generation Rescheduling (GR) and Demand Responsive Loads (DR 
Loads) using RHCM is feasible and cost-effective technique of miti-
gating congestion in a deregulated environment. CDPSO performs 
better than other optimization methods without converging in local 
optima. The proposed technique proves to improve the security and 
reliability of the system when GR alone fails to mitigate the congestion 
for certain loading conditions. The proposed two-stage RHCM method 
provides feasible solution to ISO to mitigate congestion in terms of 
reduced rescheduling power of conventional generators and minimum 
cost of relieving congestion. 
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