
Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
An efficient and autonomous scheme for solving IoT service placement
problem using the improved Archimedes optimization algorithm
https://doi.org/10.1016/j.jksuci.2023.02.015
1319-1578/� 2023 Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: zzj@wfust.edu.cn (Z. Zhang), huisun221@126.com (H. Sun),

haajjr01@gmail.com (H. Abutuqayqah).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Zhijun Zhang a, Hui Sun a,⇑, Hajar Abutuqayqah b

aWeifang University of Science and Technology, Shouguang, Shandong 262700, China
bMathematics Department, University College of Duba, University of Tabuk, 49311, Saudi Arabia

a r t i c l e i n f o
Article history:
Received 16 December 2022
Revised 19 January 2023
Accepted 15 February 2023
Available online 21 February 2023

Keywords:
IoT
SPP
AOA
Deployment Distribution
Shared Parallel Architecture
a b s t r a c t

The ever-increasing growth of the number of Internet of Things (IoT) devices connected to the network
has led to the emergence of cloud computing shortcomings such as delay, storage and bandwidth. Fog
computing has been developed as an emerging computing paradigm to overcome the challenges of cloud
computing. This paradigm can support delay-critical and computationally intensive applications by pro-
viding resources at the network edge. As fog nodes appear with limited resources, IoT service placement
schemes can improve the Quality of Service (QoS) and system performance. In general, the mapping
between fog nodes and IoT services is known as the Service Placement Problem (SPP) in fog computing.
To date, various meta-heuristic approaches have been introduced to solve SPP, but few are known in the
research society due to computational complexity. Hence, this study proposes an efficient and autono-
mous scheme to solve SPP using meta-heuristic approaches with shared parallel architecture that can
overcome the problem complexity. Specifically, we use the Archimedes Optimization Algorithm (AOA)
as a new meta-heuristic approach inspired by the physics law of Archimedes’ Principle. The proposed
scheme, as SPP-AOA, formulates SPP as a multi-objective problem and performs the placement of auton-
omous services on distributed fog domains. Our main concerns in SPP are related to resource utilization,
service cost, energy consumption, delay cost and throughput. SPP-AOA performs placement based on
extracting resource distribution over time, which can save more resources to handle future requests.
The effectiveness of the proposed scheme has been proven through evaluation on Barabasi-Albert net-
work topology. Compared to the state-of-the-art methods, SPP-AOA deploys an average of 5% more ser-
vice in fog, lowers costs by 2% and waiting time by 20%, and reduces placement on the cloud by 14%.
� 2023 Published by Elsevier B.V. on behalf of King Saud University. This is anopen access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Various computing resources such as grid computing, cloud
computing, and fog computing have led to the emergence of Inter-
net of Things (IoT) devices (Shakarami et al., 2022). The concept of
IoT was introduced as an Internet-connected smart device in the
early 2000 s, and billions of it is now used to collect and exchange
data worldwide (Xavier et al., 2020). The increasing development
of the Internet and computer computing technology has made
online services very popular. End users can use online services in
computing resources to process data produced by IoT devices. This
reduces processing, cost, memory and energy consumption in the
end-user devices. In this regard, the cloud computing paradigm
can meet the demands of IoT devices without worrying about pro-
cessing, memory and storage (Khosroabadi et al., 2021).

With the expansion of the number of IoT devices to 46 billion in
2021 and its increase to 75 billion in 2025, the speed and quality of
data transmission has become even more important (Shahidinejad
et al., 2021). Today, IoT applications based on real-time data pro-
cessing have become very common (Li et al., 2020; Si et al.,
2021). Cloud computing with a centralized architecture for pro-
cessing these applications faces the problem of high delay because
cloud servers are too far from the data source (Shakarami et al.,
2022). In addition to delay, cloud computing faces challenges such
as network congestion, bandwidth, and response time due to the
enormous amount of data produced by IoT devices (Cao et al.,
2023). Therefore, cloud computing alone will not be able to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2023.02.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2023.02.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zzj@wfust.edu.cn
mailto:huisun221@126.com
mailto:haajjr01@gmail.com
https://doi.org/10.1016/j.jksuci.2023.02.015
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
support the future needs of IoT devices. After proving the ineffi-
ciency of the current cloud infrastructure, a new paradigm called
fog computing evolved (Ibrahim et al., 2020). In fact, fog computing
moves the network core from cloud computing to the edge of the
network, where it can overcome the challenges of advancing cloud
computing such as delay.

In general, IoT has led to the presence of various network com-
puting equipment in large public and private spaces (Dokeroglu
et al., 2019). This equipment is part of the computing and storage
resources of the network that define the theoretical foundations of
fog computing. This equipment, known as heterogeneous and
decentralized devices, can work together to provide services to
IoT devices. The idea of fog computing is the efficient use of these
devices, which can bring the provision of services closer to the data
source (Cheng et al., 2022; Tan et al., 2022). Therefore, fog comput-
ing provides better Quality of Service (QoS) solutions than cloud
computing. This is especially important for real-time IoT applica-
tions (Farahbakhsh et al., 2021; Zhang et al., 2022a). In addition,
fog computing improves network congestion and bandwidth con-
sumption by significantly reducing requests to cloud data centers
(Skarlat et al., 2017).

The location of fog computing is somewhere between the cloud
and IoT devices, which acts as a bridge of communication (Li et al.,
2022; Trik et al., 2023). In cloud-fog-IoT architecture, moving
towards the cloud will provide high storage access and processing
power. However, issues such as high delay and network congestion
will also appear. Nevertheless, moving towards fog has apt
response time, low delay and real-time data processing capability,
but computing and storage resources are limited. The concept of
fog computing has been proposed as a local and decentralized
infrastructure for managing IoT requests (Skarlat et al., 2017).
The main components of fog computing are IoT devices (end users)
and fog nodes (heterogeneous and decentralized devices). IoT
devices can be any smart device connected to the Internet (such
as smartphones, smart door locks, and smart fire alarms), and fog
nodes are devices with limited resources such as access points,
routers, and set-top boxes. Meanwhile, due to the geographical dis-
tribution of fog nodes, fog computing management is done as non-
overlapping domains.

Requests are sent from IoT devices to the fog landscape where
each request is treated as an IoT application. Each IoT application
consists of one or more independent IoT services, where each IoT
service requires resources that can be provided by fog nodes (Liu
et al., 2022). Since fog nodes have resource limitations, it is chal-
lenging to effectively allocate IoT services to fog nodes. This prob-
lem is expressed in fog computing as Service Placement Problem
(SPP) (Ayoubi et al., 2021). It is proved that the complexity of solv-
ing SPP for QoS improvement due to the geographical distribution
of fog nodes is an NP-hard problem (Liu et al., 2022). Resolving SPP
is very important because of the decentralized fog resources and
the dynamics of incoming IoT applications. In addition, there are
many objectives for improving SPP, including resource utilization,
delay, cost, throughput, response time, reliability, availability, scal-
ability, and energy consumption (Skarlat et al., 2017). When there
are several conflicting objectives to improve SPP, it is necessary to
determine a compromise between objectives that complicates the
problem.

SPP aims to deploy each IoT service on a fog node with limited
resources, where QoS requirements are satisfied. The International
Business Machines (IBM) corporation introduced the MADE-k
(Monitoring, Analysis, Decision-making, and Execution with
knowledge base) model to perform autonomous computing, which
can make decisions about deploying IoT services on fog nodes (Liu
et al., 2022). A wide range of optimization-based metaheuristic
approaches have been presented in previous studies to solve SPP
through MADE-k (Ayoubi et al., 2021). In this regard, this paper
158
proposes an algorithm based on metaheuristic approaches to effi-
ciently solve SPP through MADE-k.

As emphasized in the ‘‘No Free Lunch Theorems for Search” the-
ory, there is no meta-heuristic algorithm that can dominate all
optimization problems (Joyce and Herrmann, 2018). Hence, the
use of meta-heuristic algorithms in solving different problems is
an open problem. In recent years, extensive studies have been con-
ducted to solve SPP more effectively with meta-heuristic
approaches. For example, Zhao et al. (2022) used the Open-
source Development Model Algorithm (ODMA), Liu et al. (2022)
used the Cuckoo Search Algorithm (CSA), and Ghobaei-Arani and
Shahidinejad (2022) used the Whale Optimization Algorithm
(WOA) to solve SPP. Here, we use Archimedes Optimization Algo-
rithm (AOA) as a new meta-heuristic approach to solve SPP. AOA
is very popular in solving optimization problems and its superior-
ity has been proven in many applications (Hashim et al., 2021). We
use the abbreviation SPP-AOA for the proposed scheme. SPP-AOA
performs the placement process based on the MADE-k autono-
mous model and considering the resource usage distribution of
fog nodes. Meanwhile, SPP-AOA formulates SPP as a multi-
objective problem by compromising between different objectives.
In addition to the above, the performance of AOA is improved by
configuring the evolution process through a shared parallel
architecture.

The main contributions to this work can be summarized as
follows:

� We develop a conceptual computational framework based on
the MADE-k autonomous model.
� We propose a parallel version of AOA with a shared memory as
a meta-heuristic approach to solve SPP.
� The distribution of the use of fog nodes is considered to improve
resource management in future requests.
� The performance of the proposed placement scheme has been
evaluated through extensive experiments in a synthetic fog
environment.

The rest of the paper is organized as follows: Section 2 reviews
previous work related to SPP; Section 3 deals with the background
of the system model, objective function and heuristic approaches;
Section 4 describes the conceptual framework for cloud-fog-IoT
ecosystem; Section 5 describes the details related to the proposed
SPP-AOA scheme; Section 6 explains the details of the experimen-
tal study and analysis of the results; and finally, Section 7 presents
the conclusions and future works.
2. Related work

So far, extensive studies on SPP in fog computing have been pre-
sented and the importance of this issue has been understood by the
research society (Liu et al., 2015; Cao et al., 2022; Azad et al., 2022;
Tang et al., 2022). Unlike the cloud, research in fog is still immature
and there are still challenges and shortcomings. Many works such
as Zhang et al. (2019) have been done in the field of service deploy-
ment planning with different objectives. However, in most of these
studies, the association quantity between the objectives is not con-
sidered. In general, compromise between objectives and different
limitations in SPP can lead to improved overall system perfor-
mance. In general, the presented methods for solving SPP can be
examined from different aspects. For example, offline or online
placement, centralized or distributed placement, static or dynamic
placement, single-objective or multi-objective placement, and etc.
(Berahmand et al., 2021; Ali et al., 2022; Nasiri et al., 2022).
Accordingly, Fig. 1 shows a taxonomy of different aspects for
solving SPP.

Fig. 1. Taxonomy of available methods to solve SPP.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
As illustrated, there are many factors involved in analyzing SPP
algorithms in fog computing. In this study, we compare SPP-related
algorithms with different strategies based on single-objective and
multi-objective. The purpose of this study is to highlight the
importance of multi-objective algorithms compared to single-
objective algorithms. In general, service providers are interested
in solving SPP by considering several objectives to increase their
profits and improve QoS (Ghobaei-Arani and Shahidinejad, 2022).
However, many studies have attempted to solve SPP with single-
objective algorithms (Skarlat et al., 2017; Liu et al., 2022; Zhang
et al., 2022b). In most studies, researchers seek to reduce costs
and delays in resolving SPP; however, objectives such as resource
utilization, service cost, energy consumption, delay cost, through-
put, response time, deadline, two-level fog, reduced data transfer
to the cloud, service-level agreement violations, resource effi-
ciency, reliability, availability and scalability have also been con-
sidered in some studies (Zhang et al., 2022b). Given the breadth
of studies in this area, we will review only some of them. Table 1
summarizes the studies reviewed.

A Double Matching Strategy (DMS) is proposed by Jia et al.
(2018) for resource management in the fog. DMS can provide
cost-effective resources using a deferred acceptance algorithm.
The lightweight QoS-aware Dynamic Fog Service Provisioning
(QDFSP) algorithm was introduced by Yousefpour et al. (2019).
QDFSP can solve SPP with low complexity considering delay and
cost requirements. Chen et al. (2020) used Stackelberg game-
Table 1
A summary of the studies reviewed.

Authors Model
name

Optimization
type

Resource
utilization

Jia et al. (2018) DMS Single objective –
Yousefpour et al. (2019) QDFSP Single objective –
Chen et al. (2020) – Single objective –
Xavier et al. (2020) CRAA Single objective –
Murtaza et al. (2020) LRFC Single objective –
Hassan et al. (2020) MinRE Single objective –
Salimian et al. (2021) SPP-GWO Single objective –
Natesha and Guddeti (2021) EGA Multi-objective

p
Baranwal and Vidyarthi (2021) FONS Multi-objective –
Khosroabadi et al. (2021) SCATTER Multi-objective

p
Salimian et al. (2022) SPP-PSO Multi-objective

p
Liu et al. (2022) CSA-FSPP Multi-objective

p
Zhao et al. (2022) FSP-ODMA Multi-objective

p
Ghobaei-Arani and Shahidinejad

(2022)
WOA-FSP Multi-objective –

Azimzadeh et al. (2022) FSPCN Multi-objective
p

Proposed scheme SPP-AOA Multi-objective
p

159
based techniques to solve SPP. The purpose of this method is to
balance resource allocation when deploying services.

Xavier et al. (2020) proposed a Collaboration Resource Alloca-
tion Algorithm (CRAA) for the Cloud of Things (CoT) architecture,
which simultaneously supports heterogeneity of applications and
nodes. This approach uses the distributed nature of fog nodes to
enhance cooperation in the allocation process. Murtaza et al.
(2020) introduced an approach to managing delayed sensitive IoT
applications. Here, an intelligent layer is embedded between IoT
devices and fog nodes to perform an efficient resource allocation
plan through the Learning Repository Fog-Cloud (LRFC). Hassan
et al. (2020) solved SPP with the aim of minimizing energy con-
sumption (called MinRE) in cloud-fog based networks. The authors
divided the IoT services into critical and normal categories and
proposed two different algorithms to solve it. The objective of
the critical service-based algorithm is to minimize response time,
while the objective for normal services is to reduce energy
consumption.

Natesha and Guddeti (2021) used an Elitism-based Genetic
Algorithm (EGA) to solve SPP in fog computing. EGA is based on
the provision of two-level resources using containers. The authors
optimized IoT services to ensure QoS with several objectives such
as energy consumption, cost and response time. Baranwal and
Vidyarthi (2021) proposed a Fog Orchestrator Node Selection
(FONS) approach to solving SPP. The authors emphasize the impor-
tance of the orchestrator node in a decentralized form and use
Response
time

Cost Delay Deadline Energy
consumption

Throughput

–
p

– – – –
–

p p
– – –p

– – – – –
– –

p
– – –

– – – –
p

–p
– – –

p
–

–
p

– – – –p p
–

p p
–

– – –
p p p

p p p
– – –p p

– – –
p

p p p
–

p
–p p p

–
p

–
– – – –

p p

– –
p

– – –
–

p p
–

p p

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
FONS to improve the overall performance of the system. FONS is a
lightweight model that can solve even SPP through least powerful
IoT devices as an orchestrator node. Khosroabadi et al. (2021)
introduced a heuristic algorithm called clustering of fog devices
and requirement-sensitive service first (SCATTER) to solving SPP.
SCATTER evaluation is performed by considering a smart home
application and various QoS criteria.

Salimian et al. (2021) proposed the SPP-GWO algorithm for
solving SPP, which uses Gray Wolf Optimization (GWO) to perform
efficient deployment of services. SPP-GWO offers an autonomous
resource management system that is compatible with the dynamic
behavior of the fog environment by considering the service cost
and blocking of fog resources. Salimian et al. (2022) proposed an
extended version of Particle Swarm Optimization (PSO) to solve
SPP, which takes into account some limitations and heterogeneity
of application and resources in the deployment process. This algo-
rithm, called SPP-PSO, uses the MADE-k model for resource man-
agement and prioritizes requests based on deadlines. The
purpose of the SPP-PSO is to compromise between costs, delay
and resource utilization. Liu et al. (2022) proposed an approach
called CSA-FSPP that uses CSA to solve the Fog Service Placement
Problem (FSPP). CSA-FSPP deploys services using a centralized
cloud-fog control middleware that manages cloud-to-fog commu-
nications to reduce data exchange. Here, FSPP is considered as a
multi-objective optimization problem based on the Pareto archive.

Zhao et al. (2022) proposed a QoS-aware placement approach to
minimize response time, delay, energy consumption, service cost,
and maximize the utilization of fog resources. The authors used
ODMA as a metaheuristic approach to fog service placement
(FSP-ODMA). This approach uses a three-tier conceptual computa-
tional framework to describe the interactions between system
components. FSP-ODMA reduces the cost of deploying IoT applica-
tions by an average of 10 % over similar metaheuristic approaches.
Ghobaei-Arani and Shahidinejad (2022) proposed a cost-effective
approach using the WOA for fog service placement (WOA-FSP).
WOA-FSP is an autonomous placement approach based on the
MADE-k model that solves SPP by considering energy consumption
and throughput while satisfying QoS requirements. Azimzadeh
Fig. 2. Basic architecture of c

160
et al. (2022) introduced an approach to solving the Fog Service
Placement algorithm based on Complex Networks feature (FSPCN).
The FSPCN seeks to reduce the complexity of the SPP by consider-
ing the concept of community. The authors use network structure
and nodes and link feature to build communities to improve
resource utilization and delay. FSPCN works on the basis of a
genetic algorithm (GA), which uses a new neighborhood distance
metric to form communities and prioritize them.

As mentioned above, there are many meta-heuristic approaches
to solve SPP in the past literature. Although these works are similar
to the current paper, but there are potential differences. These dif-
ferences have proven the superiority of our method. The proposed
scheme performs the placement process based on the MADE-k
autonomous model and considering the resource usage distribu-
tion of fog nodes. Distributing resources over time can save more
resources to handle future requests. In addition to the above, the
performance of AoA is improved by configuring the evolution pro-
cess through a shared parallel architecture. In general, considering
the distribution of resource usage over time as well as AoA config-
uration by a shared parallel architecture is the main contribution of
this paper compared to past literature.

3. Background

In this section, we discuss the systemmodel and objective func-
tions related to SPP. We also briefly review the metaheuristic
approaches that are very popular for solving SPPs.

3.1. System model

The basic architecture of fog infrastructure consists of three lay-
ers: cloud (at the highest level), fog (middle level) and IoT devices
(at the lowest level). A schematic of the basic cloud-fog-IoT ecosys-
tem architecture is shown in Fig. 2. Resource requests are sent
from IoT devices (as end users) to the fog layer. Since the fog ele-
ments are located at the network edge, the fog layer has the ability
to process real-time requests with low delay. Nevertheless, non-
real-time requests or non-executable requests in the fog can be
loud-fog-IoT ecosystem.

Table 2
Description of the symbols used.

Symbols Description Symbols Description

t Current time RTak Response time of ak
s Time period Rak Time of sending ak by the user
F Set of fog colonies k Impact coefficient Dak relative to Rak

A Set of IoT applications e The free resource rate of a fog node
S Set of IoT services P akð Þ Priority of ak to execute
f i Fog colony i (set of nodes) xslnj Binary decision variable for nj about executing sl
ak Application k xslo Binary decision variable for FOCN about executing sl
f A fog colony xslnn Binary decision variable for NNFC about executing sl
Fj j Total number of fog colonies xslmw Binary decision variable for CFCM about executing sl
Aj j Number of applications cp Computation cost for a service
Sj j Total number of IoT services Pdv Computation unit price
oi FOCN in f i cm Communication cost for a service
o FOCN in a fog colony Cdv Communication unit price

nj
i

Fog node j in f i (ta , tb) Time range of service execution

slk IoT service l in ak cva;b Data size between ta and tb

nj Fog node j in a fog colony BW Output bandwidth
sl IoT service l in an application EslPS Energy consumption associated with the deployment of sl
f ij j Number of fog nodes in f i EslES Energy consumption associated with the execution of sl
akj j Number of IoT services in ak SSsl Number of bits in sl
fj j Number of fog nodes in a fog colony eC Energy consumption per CPU cycle
Usl CPU required for sl NC Number of cycles required to process a bit
Uo CPU usage by FOCN esl tð Þ Energy consumed to execute sl at time t
Unj CPU usage by nj Tsl Number of tasks executed in sl
Msl RAM required for sl EPmax Energy consumption at the peak load
Mo RAM usage by FOCN EPmin Minimum energy consumption in active mode
Mnj RAM usage by nj Nsl Number of cycles required to execute sl
Ssl Storage required for sl # Assigned node frequency
So Storage usage by FOCN SrvD Number of services executed before the deadline
Snj Storage usage by nj SrvTD All services sent to fog colony
Dsl Deadline required for sl RU Resource utilization
Dak Deadline required for ak nru Weight associated with RU

dn
j

o
FOCN delay in communication with nj SC Service cost

dmw
o FOCN delay in communication with CFCM nsc Weight associated with SC

dIoTo
FOCN delay in communication with IoT devices EC Energy consumption

dnno FOCN delay in communication with NNFC nec Weight associated with EC

dslnj Delay processing of sl on nj DC Delay cost

dslo Delay processing of sl on FOCN ndc Weight associated with DC

dslmw Delay processing of sl on CFCM TP Throughput

dslnn Delay processing of sl on NNFC ntp Weight associated with TP

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
processed by powerful cloud servers. In addition, the Cloud-Fog
Control Middleware (CFCM) centralized between the cloud and
fog layers is considered to better manage the cloud-fog-IoT ecosys-
tem. Although fog nodes have less powerful computing than cloud
servers, but they are still closer to the end users and can ensure
QoS improvements for real-time applications.

The fog computing layer is organized by non-overlapping
domains as fog colonies (Liu et al., 2022). Each fog colony contains
a number of fog nodes with limited resources that can provide the
resources required by IoT services. In addition, each fog colony has
a dedicated node as Fog Orchestration Control Node (FOCN), which
is in charge of managing and supporting the subordinate fog col-

ony. Suppose F ¼ f 1; f 2; � � � ; f i; � � � f Fj j
h i

is the set of fog colonies,

where f i refers to the i-th fog colony. In this text, �j j represents
the number of elements in a set, for example Fj j is the total number
of colonies. The components of f i are defined as

f i ¼ oi;n1
i ;n

2
i ; � � � ;nj

i; � � � ;n f ij j
i

h i
, where oi and nj

i refer to the FOCN

and j-th fog node in f i, respectively. Let
f ¼ o;n1;n2; � � � ;nj; � � � ;n fj j� �

be the details of the current fog colony.
Meanwhile, let A ¼ a1; a2; � � � ; ak; � � � a Aj j

� �
be the set of IoT appli-

cations received by f , where ak is the kth IoT application. According
to the microservice architecture, ak contains several independent
161
IoT services, i.e., ak ¼ s1k ; s
2
k ; � � � ; slk; � � � ; s akj j

k

h i
. Here, slk refers to the

l-th IoT service in ak. Meanwhile, let S ¼ s1; s2; � � � ; sl; � � � s Sj j
� �

be
the entire set of IoT services. Each sl 2 S has CPU, RAM, storage
and deadline requirements for execution, which are expressed by
symbols Usl , Msl , Ssl and Dsl , respectively. On the other hand, the
usage of CPU, RAM and storage by nj is represented by Unj , Mnj

and Snj respectively. Similarly, Uo, Mo and So are associated with
FOCN.

All cloud-fog-IoT ecosystem components have two-way com-
munication links, where each communication link has a delay.

Let db
a be the delay between a and b devices in the ecosystem. In

this regard, dnj

o , d
mw
o , dIoT

o and dnn
o are the delays between FOCN

and nj, CFCM, IoT devices, and Nearest Neighboring Fog Colony
(NNFC), respectively. In general, the total resources required by
services deployed on o or nj should not exceed its available
resources. This constraint for CPU, RAM and storage resources is
defined in Eq. (1). Also, each ak 2 A contains a deadline as Dak for
execution that must be satisfied for all slk 2 ak. This constraint is
defined in Eq. (2).

P
sl2SRRsl � eRRnj ; 8nj 2 f ;RR ¼ fU;M; Sg ð1Þ

Table 3
Details of abbreviations used.

Acronyms Definition

IoT Internet of Things
QoS Quality of Service
SPP Service Placement Problem
AOA Archimedes Optimization Algorithm
SPP-AOA Service Placement Problem - Archimedes Optimization

Algorithm
MADE-k Monitoring, Analysis, Decision-making, and Execution with

knowledge base
ILP Integer Linear Programming
FOCN Fog Orchestration Control Node
NNFC Nearest Neighboring Fog Colony
CFCM Cloud-Fog Control Middleware

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
RTak � Dak ;8ak 2 A ð2Þ
where, e is the free resource rate of each node and RTak is the
response time of ak.

To better cover the text, we have summarized all variables and
symbols used in Table 2. Also, the description of all abbreviations
used is given in Table 3.

3.2. Objective function

Basically, SPP can be formulated as a multi-objective problem.
In this paper, SPP-AOA solves SPP as a multi-objective problem
by making compromises between five different objectives (i.e.,
resource utilization, service cost, energy consumption, delay cost
and throughput). Therefore, the proposed objective function is a
combination of different objectives related to SPP, which are dis-
cussed below.

Resource Utilization (RU): This factor refers to the number of
locations utilized in fog by IoT services, which should be maxi-
mized. Each IoT service can be execute by a fog node or FOCN in
the current colony, a fog node in NNFC, or in the cloud. Therefore,
the deadline for executing applications in the RU calculation must
be considered (Zhang et al., 2022c). The resource utilization factor
is defined in Eq. (3).

RU ¼P
ak2A P akð Þ �

P
sl2ak

P
nj2f x

sl
nj

� �
þ xslo þ xslnn þ xslmw

h i
ð3Þ

where, xslnj , x
sl
o , x

sl
nn and xslmw are binary decision variables for nj, FOCN,

NNFC, and CFCM, respectively. For example, xslnj ¼ 1 indicates that

the service sl is placed on nj, otherwise it is xslnj ¼ 0. Also, P akð Þ is
the priority of ak, which is calculated through Eq. (14).

Service Cost (SC): This factor refers to the service execution
time (i.e., communication cost) as well as the monetary cost of ser-
vice execution (i.e., computing cost). Meanwhile, communication
and computing costs for a service must be calculated based on
where it is executed. Let cmnj and cpnj be the communication and
computing costs of a service to execute on nj, respectively. Also,
cmo, cmnn and cmmw are the communication cost for executing a
service on FOCN, NNFC or CFCM respectively. Similarly, cpo, cpnn

and cpmw related to the communication cost are placed by device
type. Ayoubi et al. (2021) calculates cm and cp based on Eq. (4)
and Eq. (5), respectively.

cm ¼ Cdv :
cva;b
BW

ð4Þ

cp ¼ Pdv tb � ta
� � ð5Þ

where, Cdv and Pdv refer to the unit costs of communication and
computing on the device dv , respectively, ta and tb are the time
range of service execution, cva;b is the data size between ta and tb,
162
and BW is the output bandwidth. Liu et al. (2022) use
BW ¼ 20Mbps and Cdv ¼ 0:1 in their simulations.

According to the definition of cm and cp, the service cost factor
can be calculated by Eq. (6) for all IoT applications.

SC ¼P
ak2A

P
sl2ak xsl

nj
cpnj þ cmnjð Þþ xslo cpo þ cmoð Þþ xslnn cpnn þ cmnnð Þþ xslmw cpmwþ cmmwð Þ

h i
ð6Þ

Energy Consumption (EC): This factor is calculated based on
the energy consumed for placement in the FOCN as well as the
energy consumed to service executing in the fog node, which
should be minimized (Ayoubi et al., 2021; Liu et al., 2022). The
energy consumption factor is defined in Eq. (7).

EC ¼P
ak2A

P
sl2akE

sl
PS þ Esl

ES ð7Þ

where, Esl
PS and Esl

ES are energy consumption related to placement and
service execution of sl, respectively. Liu et al. (2022) defines these
parameters based on Eq. (8) and Eq. (9).

Esl
PS ¼ SSsl :eC :NC ð8Þ

Esl
ES ¼

Z tb

ta

esl tð Þdt ð9Þ

where, SSsl is the number of bits in sl, eC is the energy consumed per
CPU cycle, NC is the number of cycles required to process one bit,
and esl tð Þ is the energy consumed to sl executing at time t. Here,
esl is calculated based on the total number of tasks in sl (Ibrahim
et al., 2020; Azimirad et al., 2022), as shown in Eq. (10).

esl ¼ EPmax � EPminð ÞTsl þ EPmin ð10Þ
where, Tsl is the number of tasks executed in sl, EPmax is the energy
consumption at the peak load (100 % CPU usage) and EPmin is the
minimum energy consumption in active mode (1 % CPU usage).

Delay Cost (DC): This factor includes processing delay and com-
munication link delay that must be considered for each service.

According to the system model, dnj

o , d
mw
o , dIoT

o and dnn
o are the com-

munication link delays. Meanwhile, the processing delay is calcu-
lated based on the workloads of the service and the device
allocated to the placement. In general, the processing delay for sl
is calculated by Eq. (11).

dsl ¼ SSsl :Nsl

#
ð11Þ

where,Nsl is the number of cycles required to execute sl and # is the
frequency of the device selected for placement.

Liu et al. (2022) and Zhang et al. (2022c) calculate the delay cost
according to Eq. (12). Since the placement is done by the FOCN, the
processing delay associated with the FOCN must always be taken
into account.

DC ¼P
ak2A

P
sl2akd

sl
o þ xsl

nj
:dsl

nj þ xslo :d
sl
o þ xslnn:d

sl
nn þ xslmw:d

sl
mw

h i
ð12Þ

where, dsl
nj , d

sl
o , d

sl
nn, and dsl

mw are the processing delay of sl on nj, FOCN,
NNFC, and CFCM (as cloud), respectively.

Throughput (TP): This factor is related to the number of ser-
vices executed relative to the total services sent to the fog colony,
which should be maximized (Ghobaei-Arani and Shahidinejad,
2022). The throughput factor is defined in Eq. (13).

TP ¼ SrvD

SrvTD
ð13Þ

where, SrvD is the number of services that have been deployed and
executed on the fog nodes before the deadline, and SrvTD refers to
all the services sent to the fog colony.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
3.3. Metaheuristic approach

In general, SPP is an NP-Hard problem and has no definitive
solution (Sami and Mourad, 2020). So far, various classical
approaches to this problem have been proposed, which usually
do not work well for big data problems. Metaheuristic approaches
are a type of stochastic algorithms that are used to find optimal
solutions to large-scale problems (Dokeroglu et al., 2019). These
approaches offer far better solutions to placement problems
(Sami and Mourad, 2020). Various classes of metaheuristic
approaches have been developed in recent decades, such as GA,
PSO, Harmony Search Algorithm (HSA), WOA, CSA, GWO, ODMA,
Imperialist Competitive Algorithm (ICA), AOA (Dokeroglu et al.,
2019). Most metaheuristic algorithms imitate natural phenomena
for optimization work. For example, GA is inspired by Charles Dar-
win’s of evolution theory, PSO is inspired by the concept of swarm
intelligence in bird and fish groups, HAS is inspired by musical per-
formance process, WOA is inspired by the behavior of humpback
whales in hunting, CSA is inspired by the spawning of cuckoo birds
in bird nests hosting other species, GWO is inspired by grey wolves
during hunting, ODMA is inspired by the open source development
model and user communities, ICA is inspired by the human’s socio-
political evolution process, and AOA is inspired by Archimedes’
Principle.

Among metaheuristic algorithms, AOA has high convergence
speed and avoid local minima, which provides better performance
compared to similar algorithms such as GA, PSO, CSA and WOA
(Hashim et al., 2021). In addition, AOA has been successfully used
to solve optimization problems in various fields such as data min-
ing, social networking, image processing, IoT, and cloud computing
(Hashim et al., 2021). AOA is presented by Hashim et al. (2021) as a
global optimization algorithm because it includes both exploita-
tion and exploration techniques. The optimization process in
AOA is based on the law of physics Archimedes’ Principle. In gen-
eral, AOA simulates the buoyancy force when objects of different
weights and emulates are immersed in a fluid. AOA is a
population-based meta-heuristic approach where each individual
is considered as an immersed object. Like other meta-heuristic
approaches, AOA creates the initial population from random solu-
tions with different volumes, densities, and accelerations. More-
over, each solution has an initial random position in the fluid.
After evaluating the fitness of the initial population, AOA tries to
evolve the population in successive iterations until the termination
condition is satisfied. The evolution process in AOA is done by
updating volume and density as well as updating acceleration
based on the conditions of collision with neighboring objects/solu-
tions. By updating the factors of volumes, densities, and accelera-
tions, the new position of each solution can be calculated. In this
study, AOA is used to efficiently deploy IoT services on fog nodes.
4. Proposed framework

This section is related to the analysis of the interactions
between different components in the cloud-fog-IoT ecosystem
through a conceptual computing framework. This conceptual
framework is developed based on the SPP solving strategy in
Fig. 3. In fog computing, resources are organized in several fog
colonies in a distributed manner. Colonies can be formed and man-
aged based on geographic distribution. Accordingly, the resource
needs of IoT devices can be met by the nearest fog colony, which
leads to a reduction in delay. Since each colony may receive IoT
services independently, it is necessary to configure the autono-
mous computing model (i.e., MADE-k) to manage resources in each
colony (Salimian et al., 2022).
163
As illustrated, the proposed framework consists of three layers
(i.e., IoT devices, fog and cloud). The IoT devices layer can include
any smart device connected to the Internet. Smartwatch, smart
bicycle, smart fire alarm, smartphone and medical sensor are
examples of IoT devices. Each device can have some processing
requests such as real-time applications. Requests are sent to the
fog layer for processing by IoT devices (i.e., end users) and through
fog gateways. Basically, the fog computing layer is managed locally
by fog colonies. It can be organized by geographic regions, where
requested IoT applications are processed by the nearest fog colony.
Fog colonies consist of one or more fog nodes with limited
resources. Switch, gateway, router, server, base station, set-top
box, and access point are examples of fog nodes. As mentioned ear-
lier, user requests are considered as IoT applications, and each
application can contain several independent IoT services. In this
regard, each fog node includes a set of virtual machines that can
host multiple IoT services depending on the resources available.

In addition, a FOCN is embedded in each fog colony that can
manage and support the functional elements. The most important
task of FOCN is to plan the deployment of IoT services in the cur-
rent time period. FOCN uses an admission control unit for place-
ment. This unit receives the services from the fog gateways and
then decides on the deployment location of each service. This is
done by considering the deadline of each service and subordinate
fog colony resources. Since we formulate the SPP as an optimiza-
tion problem, the placement must be done in each time period s.
Based on this, the requests are placed in a queue and wait until
the next time period.

4.1. Fog colony

The fog layer can be considered as a set of non-overlapping
colonies/domains for efficient management. Each colony contains
a set of fog nodes that aremanaged by a dedicated node called FOCN.
Each colony contains a set of fog nodes that are managed by a dedi-
cated node called FOCN. Fog colonies can communicate with each
other through FOCN to deploy IoT services. Also, each fog colony is
supported by a head element in the cloud called CFCM. Thismiddle-
ware acts as a bridge of communication between fog and cloud
through the cloud gateways. Therefore, non-real-time requests can
be transmitted to CFCM via FOCN to be processed in the cloud. Each
colony has a knowledge base managed by FOCN and is used to store
details of IoT services and available resources of active fog nodes.
According to theknowledgebase, the fog colonycanplan thedeploy-
ment of IoT services by FOCN.

Fog nodes are the main entities of any fog colony. These nodes
have limited computing and storage resources and can host IoT ser-
vices. Communicationbetween fognodes isprovided throughproto-
cols such as NETwork CONFiguration (NETCONF), Constrained
Application Protocol (CoAP) and Simple Network Management Pro-
tocol (SNMP) (Slabicki and Grochla, 2016). Each fog node is a soft-
ware development technology and consists of five components:
listener, monitor, database, control manager, and compute. The lis-
tener receives the details of the services from FOCN. The monitor
can supervise the execution of services in the compute component.
Details of services for processing and available resources are stored
in the database. The control manager can perform some actions
and the compute component provides the resources required for
executing services. In general, fog nodes are one of the thin and fat
types that only the fat type can host IoT services and thin nodes
are often used as sensors (Skarlat et al., 2017).

4.2. Fog orchestration control node

Each colony contains a dedicated node called FOCN, which man-
ages the subordinate fog colony. Other tasks of the FOCN include

Fig. 3. Proposed conceptual framework for the cloud-fog-IoT ecosystem.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
subordinate fog colony reconstruction and resource efficiency
analysis. The admission control unit and the MADE-k autonomous
model are the main components of FOCN. The admission control
unit is responsible for processing requests received from the IoT
device layer, and MADE-k solves the SPP in each time period.
164
FOCN consists of six components: listener, reasoner, propaga-
tion, watchdog, registry, and storage (Vashani et al., 2016). The lis-
tener receives details of IoT applications from IoT devices. The
reasoner component analyzes the placement details of IoT services.
Requests whose resources are not satisfied by the current fog col-

Fig. 4. Architecture of admission control unit.

Fig. 5. Architecture of MADE-k autonomous model.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
ony are transmitted by the propagation component to the NNFC
(for processing by fog nodes in another colony) or CFCM (for pro-
cessing by the cloud). In general, NNFCs are detected by examining
communication link delays between FOCNs. The watchdog ana-
lyzes QoS requirements and resources occupied in the fog colony.
The placement of services in the compute component of the nodes
is provided by the registry component and the placement pattern
is maintained by the storage component.

4.2.1. Admission control unit
All requests sent by IoT devices are processed in the admission

control unit. The architecture of this unit is shown in Fig. 4. The
unit identifies real-time applications to be executed by subordi-
nate fog nodes based on the application deadline and available
resources of the colony. Some real-time applications may not be
able to deploy on subordinate fog nodes due to lack of resources.
These applications are sent to NNFC by the admission control unit.
This can be repeated by other colonies, where it increases delay
and makespan. Meanwhile, the admission control unit sends
non-real-time applications to the CFCM to execute on the cloud.

4.2.2. MADE-k autonomous model
Autonomous computing has been introduced by IBM to

describe system activities without user intervention (Ayoubi
et al., 2021). The purpose of this paradigm is to adapt to the envi-
ronment through self-managing theory. Self-managing can ensure
the privacy, availability and reliability of computer systems. The
MADE-k model as a control loop model has the ability to manage
and schedule resource requests, as shown in Fig. 5 (Zhao et al.,
2022). MADE-k consists of four main phases: monitoring, analysis,
decision-making, and execution. Data related to all these phases
are shared by a knowledge base. The pseudocode of the MADE-k
model for managing requests received by the current fog colony
is shown in Algorithm 1.

Monitoring phase: This phase is responsible for monitoring the
status of subordinate nodes, available resources of nodes, and
resources required by IoT applications. This phase also monitors
resource usage (i.e., CPU, memory and storage) and requests trans-
mitted to NNFC and CFCM. Monitoring is performed in each time
period s and related reports are stored in the knowledge base.

Analysis phase: In this phase, the priority of executing requests
for each IoT application is calculated. Numerous studies have
shown that the time interval before the deadline of applications
can well express the execution priority of applications (Liu et al.,
2022; Ghobaei-Arani and Shahidinejad, 2022; Zhang et al.,
2022c). Let PðakÞ be the execution priority of application ak, as
shown in Eq. (14).
165
P akð Þ ¼ k:
1
Dak

þ 1� kð Þ: 1
t � Rak

ð14Þ

where, Dak is the deadline for ak, Rak is the sending time of ak by the
user, t is the current time, and k is a coefficient for considering the
effect of Dak on Rak .

Decision-making phase: This phase is responsible for deploying
IoT services on the subordinate fog nodes. In each time period s,
the received IoT services are processed for placement. This can
ensure system dynamics in the presence of real-time applications.
SPP is a placement problem for deciding whether to deploy IoT ser-
vices efficiently on subordinate fog nodes. Here, the SPP is dis-
solved in a distributed form for each fog colony. In this paper,
the decision-making process is performed by AOA as a metaheuris-
tic approach, which is discussed in Section 5. The AOA makes deci-
sions about the placement of each IoT service based on the
available resources of the nodes, the resources required by the ser-
vices, and the application prioritization. After placement, the
details of deploying the services are stored in the knowledge base.

Execution phase: IoT services placement planning is executed in
this phase. Here, each IoT service is deployed on a fog node accord-
ing to the decision-making phase. The node then provides the

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
resources required for the service and stores the execution results
in the knowledge base.
Algorithm 1. Pseudocode of the MADE-k autonomous model
for request management
Input: IoT services/applications and the available
resources of the fog nodes.

Output: Details of the deployment of each IoT service.
1:
 for
 each s time period do

2:
 for
 each application ak 2 A do // Monitoring

phase

3:
 Monitor (set of the IoT services requested for

ak).
4:
 Monitor (Usl , Msl , Ssl , Dsl).

5:
 Storing details of the IoT services in the

knowledge base.

6:
 end
7:
 for
 each fog node nj in the subordinate fog
colony do // Monitoring phase
8:
 Monitor (status of fog node nj).

9:
 Monitor (Unj , Mnj , Snj).

10:
 Storing details of the fog nodes status in the

knowledge base.

11:
 end
12:
 for
 each set of application ak 2 A do // Analysis
phase
13:
 Calculate the priority of ak through Eq. (14).

14:
 Storing details of the application

prioritization in the knowledge base.

15:
 end
16:
 for
 each IoT service sl 2 S do // Decision-making
phase
17:
 Placement of the IoT service sl is done by
AOA taking into account the priority of the
applications.
18:
 Storing the placement details of the IoT
service sl in the Knowledge base.
19:
 end
20:
 for
 each IoT service sl 2 S do // Execution phase

21:
 Deploy and execute the IoT service sl on the

fog node according to the placement
decision.
22:
 Storing the execute result of the IoT service
sl in the knowledge base.
23:
 end
24:
 end
25:
 Return the placement plan discovered by AOA as output.
Fig. 6. AOA framework based on shared parallel architecture.
5. Proposed placement scheme

Given the effectiveness of metaheuristic techniques in solving
placement problems, we model placement based on AOA as a
multi-objective optimization problem. AOA is a new metaheuristic
approach that has proven effective in solving optimization prob-
lems over most equivalence methods. We refer to the proposed
scheme as SPP-AOA, which solves SPP through AOA. SPP-AOA seeks
166
to improve overall system performance and QoS satisfaction by
compromising between different objectives. The decision for the
placement of each service is made through the MADE-k autono-
mous model in each time period s. Here, the MADE-k model within
each fog colony is configured to perform placement in a distributed
manner. This means that IoT requests received will have to wait
until the next time period. Based on the proposed conceptual
framework, MADE-k performs placement only on available fog
nodes from the current colony.

To improve placement performance, SPP-AOA extracts the dis-
tribution of resources consumed by sensor nodes over time to han-
dle more future requests. In addition to the above, AOA is
configured based on a shared parallel architecture to improve over-
all system performance by reducing placement time. Fig. 6 shows
the AOA framework based on shared parallel architecture. In this
architecture, Z AOA algorithm is configured and executed simulta-
neously by parallel computing toolbox with Simulink in MATLAB.
This toolbox in MATLAB provides multicore processors and com-
puter clusters to solve computationally intensive problems. Simu-
link allows the use of full multi-core processing power. Here,
Simulink and parallel for-loops are used to implement the AOA
architecture in parallel. Each ICAi implemented in parallel is shared
by one memory. This memory contains elite solutions discovered
by all AOA algorithms. Each ICAi exchanges its solutions with the
shared memory based on a predefined exchange threshold, where
the final solution is the best solution from the shared memory.

Moreover, SPP-AOA is equipped with a retracing mechanism
that can backtrack to the state before service processing during
unsuccessful deployment. If the resources required for even one
service of the IoT application are not successfully satisfied, the
placement for that application will fail. In this case, the retracing
mechanism is responsible for resetting the fog colony to the pre-
placement conditions of the application’s services (i.e., freeing up
occupied resources). The proposed scheme sends the IoT service
to the NNFC when encountering failed deployment, and this can
be repeated for other colonies as well.

In general, like other evolutionary approaches, AOA includes
steps 1) solution encoding scheme, 2) generate the initial popula-
tion, 3) fitness function, 4) population evolution, and 5) stop con-
ditions. The details of the AOA steps in the proposed SPP-AOA
scheme are described in detail below.
5.1. Solution encoding structure

The encoding structure represents SPP mapping based on Inte-
ger Linear Programming (ILP), which provides the necessary condi-

Fig. 8. Architecture of initial population generation with random-innovative
technique.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
tions for analyzing and searching for the optimal solution. In gen-
eral, different IoT services can be assigned to the same fog nodes,
where the nodes must have the resources required by the services.
In this regard, SPP-AOA proposes the reuse of fog nodes in various
IoT services to achieve computation acceleration. MADE-k per-
forms placement only on available fog nodes from the current col-
ony based on the proposed conceptual framework. Therefore, the
purpose of deploying Sj j IoT service from Aj j application received
on fj j nodes is the current available colony in time s. In addition,
FOCN is considered as a fog node and can host IoT services. Fig. 7
shows the solution encoding structure in SPP-AOA, where the solu-
tion vector is highlighted in blue. Moreover, each solution is recog-
nized in the AOA as a ‘‘country”.

As depicted, every IoT application such as ak contains akj j IoT
service, and in total there are Sj j IoT services in time period s for
placement. Every IoT service such as sl must be deployed on a node
such as na 2 f . na can be a fog node with sufficient resources among
the fj j fog nodes in the current colony. Therefore, multiple IoT ser-
vices can be deployed on na. According to the encoding structure,
each solution consists of a vector of length Sj j, where each element
of this vector refers to an IoT service and the value of each element
refers to the assigned fog node index.

5.2. Generate the initial population

Generating an initial population is the first step in the process of
optimizing evolutionary algorithms. The population is a subset of
the solutions in the current iteration. In general, the initial popula-
tion is generated randomly or through innovative methods based
on a defined encoding structure (Rezaeipanah et al., 2021). Usually,
the randommethod due to various limitations and requirements in
SPP leads to impossible solutions or low quality. In addition, inno-
vative methods can reduce population diversity and lead to a con-
dition called Premature Convergence (Ali et al., 2020; Mojarad
et al., 2021).

The random-innovative technique is modeled based on the dis-
tribution of resources. Because fog nodes with sufficient resources
can host multiple IoT services, considering the distribution of
resources in the initial population generation could lead to an
increase in the number of successful placements in the future. In
this technique, the first solution is created randomly. Then, the
average computing resources occupied by each fog node associated
with the current request is stored in memory. This memory can
show the distribution of resource consumption in fog nodes
according to the deployment of IoT services. In this regard, the sec-
ond solution is greedy generated. In the greedy method, the ser-
vices are sorted in ascending order based on the average
Fig. 7. Solution encoding s

167
computing resources, and each service is assigned to the fog node
with the most resources, respectively. This greedy method ulti-
mately generates an innovative placement solution that considers
efficient distribution of services over fog nodes. Other solutions are
then generated, where after each random solution a solution is
greedy method generated. In general, the efficient distribution of
resources consumed during initial population generation can lead
to an increase in the number of successful placements. The archi-
tecture of generating the initial population with random-
innovative technique is shown in Fig. 8.

According to this technique, the initial population consists of NP

solutions (as immersed objects) that are generated randomly-
innovative. According to the AOA, each solution is presented as
position of an immersed object. Let Pk; 8k ¼ 1;2; � � � ;NP be the
position of k-th solution of the population and OFðPkÞ denote the
fitness value for Pk. Accordingly, SPP-AOA performs the initial pop-
ulation generation using a random-innovative technique, as shown
in Algorithm 2. Here, the random solution is generated according
to the encoding structure defined in Fig. 7. Eq. (15) is used to gen-
erate a random solution.

Pi
k ¼ lbk þ rand: ubk � lbkð Þ;8i ¼ 1;2; � � � ; Sj j; k ¼ 1;2; � � � ;NP ð15Þ

where, Pi
k is the i-th element of the k-th solution, lbk is the lower

bound of the search space, ubk is the upper bound of the search
space, and rand generates a random number between [0, 1]. Here,
lbk ¼ 1 and ubk ¼ fj j.
tructure in SPP-AOA.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
In addition to position, AOA considers volume, density and
acceleration parameters for each solution. Let volk, denk and acck
be the volume, density, and acceleration for Pk, respectively, which
are initialized according to Eq. (16).

volik ¼ rand ð16Þ

deni
k ¼ rand

accik ¼ lbk þ rand: ubk � lbkð Þ
Algorithm 2. Pseudocode of the generating the initial
population with the random-heuristic technique
Input: Details of IoT services, details of fog resources and
AOA parameter values.

Output: The initial population and values of fitness.
1:
 Ascending sorting of IoT services based on the average
resources required.
2:
 for
 k = 1 to NP=2 do
3:
 Pk Generate a random solution based on the
encoding structure defined in Fig. 7.
4:
 OFðPkÞ Calculate the fitness value of Pk based on
the Eq. (17).
5:
 Update the fog node resources based on the
solution generated.
6:
 Save the average resources occupied by each fog
node in memory.
7:
 Allocate IoT services in order of sort to fog nodes
with the freest resources.
8:
 Pk Save the solution generated based on the
distribution of resource consumption on the fog
nodes.
9:
 OFðPkÞ Calculate the fitness value of Pk based on
the Eq. (17).
10:
 end

11:
 Return initial population and values of fitness.
Line 1 sorts IoT services based on occupied resources. Line 2 speci-
fies the number of solutions generated with NP=2, because two solu-
tions (one random and one greedy) are created in each iteration.
Line 3 generates the solution at random and Line 4 calculates its fit-
ness value. In line 5, the resources of fog nodes are updated based
on the placement provided by the solution generated. Line 6 stores
the resources of fog nodes in memory. Lines 7 and 8 refer to greedy
method generating the solution and storing it in memory, and lines
9 calculate the fitness value of the solution generated. Eventually,
line 11 returns the initial population and fitness values as output.
5.3. Fitness function

Each solution from the population represents a placement plan
that can have a fitness value given the limitations of the fog envi-
ronment and QoS requirements. SPP-AOA calculates the fitness
value of solutions by considering multiple objectives. The purpose
of the SPP-AOA is to compromise the costs (i.e., resource utiliza-
tion, service cost and energy consumption) and QoS (i.e., delay cost
and throughput) through an efficient placement plan. The param-
eters needed to calculate these objectives are available through
the fog colony information and details of the IoT services. There-
fore, the proposed objective function consists of five different fac-
tors that are calculated according to Eq. (17), which should be
minimized.
168
OF ¼ nsc � SC þ ndc � DC þ nec � EC
nru � RU þ ntp � TP

ð17Þ

where, RU, SC, EC, DC and TP are resource utilization, service cost,
energy consumption, delay cost and throughput, respectively, as
described in subsection 3.2. Also, nru, nsc , nec , ndc and ntp are the
weights of these objectives, respectively. Due to the lack of priority
between the defined objectives, all weights are considered the
same.

5.4. Population evolution

The population evolution process in AOA includes updating vol-
ume, density and acceleration and finally updating the position of
each solution based on these parameters. The update of volume
and density for iteration t þ 1 is done by Eq. (18) and Eq. (19),
respectively.

volik t þ 1ð Þ ¼ volik tð Þ þ rand: volbest � volik tð Þ
� �

ð18Þ

deni
k t þ 1ð Þ ¼ deni

k tð Þ þ rand: denbest � deni
k tð Þ

� �
ð19Þ

where, volbest and denbest refer to the volume and density of the best
solution found so far, respectively.

After updating the volume and density, AOA updates the
acceleration parameter for each object/solution. The acceleration
update is simulated based on the collision between objects in
the fluid. AOA uses Transfer Factor (TF) operator for this. The
TF operator states that first collisions occur between objects
and after some time the objects in the fluid reach equilibrium.
AOA uses this idea to change the search mode from exploration
to exploitation. Eq. (20) models the TF operator. This operator
shows how the transmission increases gradually with time. In
addition to TF, Density Reduction Factor (DRF) is also effective
in updating acceleration, as shown in Eq. (21). DRF decreases
with time, which provides a balance between exploration and
exploitation.

TF ¼ exp
t � tmax

tmax

� 	
ð20Þ

DRF t þ 1ð Þ ¼ exp
tmax � t
tmax

� 	
� t

tmax

� 	
ð21Þ

where, t and tmax refer to the current iteration and the maximum
iteration in AOA, respectively.

According to TF and DRF, acceleration can be updated in two
modes including exploration and exploitation. Basically, the explo-
ration phase occurs when TF � 0:5. In this case, it is assumed that
the current object collided with a neighboring object. Letmr be the
index of a randomly selected neighbor object. Based on this, the
acceleration update for iteration t þ 1 is done by Eq. (22).

accik t þ 1ð Þ ¼ denmr þ volmr :accmr

volik t þ 1ð Þ:deni
k t þ 1ð Þ

ð22Þ

Meanwhile, the exploitation phase occurs when TF > 0:5. In this
case, it is assumed that the object is reaching equilibrium in the
fluid after the collision. Based on this, the acceleration update for
iteration t þ 1 is done by Eq. (23).

accik t þ 1ð Þ ¼ denbest þ volbest:accbest
volik t þ 1ð Þ:deni

k t þ 1ð Þ
ð23Þ

where, accbest acceleration is the best solution discovered so far.
After updating the volume, density and acceleration, the posi-

tion of each solution is updated in the search space. The position
is updated based on TF and DRF value in two modes of exploration

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
and exploitation. Eq. (24) updates the position of Pk for iteration
t þ 1.

Pi
k t þ 1ð Þ ¼

Pi
k tð Þ þ C1:rand:accik t þ 1ð Þ:DRF: Prand � Pi

k tð Þ
� �

TF � 0:5

Pbest
k tð Þ þ F:C2:rand:accik t þ 1ð Þ:DRF: T:Pbest � Pi

k tð Þ
� �

TF > 0:5

8><
>:

ð24Þ

where, C1 and C2 are number constants, which are set to 2 and 6,
respectively (Hashim et al., 2021). T controls the balance between
exploration and exploitation and increases with time Hashim
et al. (2021) increase T with time in the range of 0:3TF to 1. In addi-
tion, F is a flag to control the direction of motion, which is initialized
by Eq. (25).

F ¼ þ1 rand � 0:5
�1 Otherwise

ð25Þ
5.5. Stop conditions

Each iteration of the AOA leads to population evolution, where
the process of optimization eventually converges when it reaches
only one empire. The convergence points in evolutionary algo-
rithms are determined by stopping criteria because execution
may continue indefinitely. We provide the stopping conditions in
SPP-AOA by 1) reaching the convergence point and 2) conventional
iterative maximum. The first method is satisfied when there is only
one empire and the second method defines the stop condition with
a maximum iteration (e.g., tmax). After satisfying the stop condi-
tions, the best solution based on the objective function is consid-
ered as the output of the algorithm and then the placement of
IoT services is performed based on it.
6. Performance evaluation

This section examines the performance of the proposed scheme
compared to state-of-the-art methods on a synthetic fog environ-
ment. The proposed SPP-AOA scheme for placement of IoT applica-
tions uses AOA as a metaheuristic algorithm. Hence, we compare
SPP-AOA with equivalence algorithms such as SPP-PSO (Salimian
et al., 2022), CSA-FSPP (Liu et al., 2022) and FSP-ODMA (Zhao
et al., 2022). All of these algorithms are simulated on the same
fog environment using MATLAB R2019a. We analyze experiments
and comparisons based on various performance metrics such as
convergence speed, runtime, location of deployed services, number
of services executed, average waiting time, number of services
failed, number of remaining services. All experiments were per-
formed on the ASUS VivoBook S533 Laptop, Intel Core i7-1165G7
Processor at 4.70 GHz, 16 GB DDR4 RAM and Windows 10 Home.
In addition, all simulations are performed based on 15 independent
run due to the existence of some stochastic parameters to ensure
reliable results. Details on simulation setup, performance metrics,
comparison results, and performance analysis of algorithms are
provided later in this section. Besides, the source code of the sim-
ulation sections is available at https://github.com/
ServicePlacement/SPP-AOA.
Table 4
Number of requested IoT services in 10 time periods.

Time period s 1 2 3 4

Time t 8 16 24 32
Number of services 71 48 48 46

169
6.1. Simulation setup

We randomly generated the network topology as the Albert–
Barabasi topology, which has also been used in other fog resource
management studies (Salimian et al., 2021; Salimian et al., 2022;
Ghobaei-Arani and Shahidinejad, 2022). In this topology, network
traffic is considered as an IoT application for each request received,
which includes details of application services and the resources
they require. Although we model the Barabási-Albert network
topology, we consider intermediate devices as fog nodes that are
installed in a hierarchical style. In fact, we consider a combination
of realistic network topology and synthetic network topology for
the simulation environment. In each time period s, a certain num-
ber of requests are randomly generated and received by the fog
colony. The total number of available fog colonies is considered
to be 5 and the distance between them is available. Each request
is randomly assigned to a fog colony, and each fog colony plans
the placement of the request on the subordinate fog nodes. FOCN
in each colony can deploy services on subordinate fog nodes or
transfer it to NNFC (to deploy on fog nodes of other fog colonies)
or CFCM (to executing by cloud servers). Also, FOCN can host some
services depending on the resources available. Here, the cost of
cloud processing for each Billing Time Unit (BTU) is $0.3
(Ghobaei-Arani and Shahidinejad, 2022).

Each node contains a certain number of computing and storage
resources, which are considered as blocks. On the other hand,
every IoT service requires a certain number of resource blocks.
When each service is deployed on a fog node, part of its resource
block is occupied. In general, occupied resource blocks are not
released until the end of the simulation (Salimian et al., 2021). In
addition, the number of types of services provided by the nodes
is limited and is set to 5. In fact, the types of services can vary
depending on the type of IoT device. For example, smartwatches,
smartphones, smart TVs, smart refrigerators, and smart bicycles
are considered as types of IoT devices (i.e., IoT applications). In
addition, each IoT device can have different types of services for
processing. For example, Samsung smartphone and Apple smart-
phone are two different types of services from the IoT device of
smartphone. Here, the number of types of services associated with
different types of IoT devices is 20.

In this study, experiments are performed based on 10 consecu-
tive time periods (i.e., s ¼ 1;2; � � � ;10). Table 4 shows how many
IoT services and at what time are received by the fog perspective
(Salimian et al., 2022). Here, 615 IoT services are processed in all
10 time periods.

Fog nodes and IoT services have different parameters. Table 5
shows the settings of these parameters in the simulation
(Salimian et al., 2022; Liu et al., 2022; Zhang et al., 2et al.,
2022c). Let the values of the parameters with a certain range be
randomly selected with a uniform distribution.

Each node contains resources of storage, RAM and CPU. Simi-
larly, every IoT service has a demand for resources including stor-
age, RAM, and CPU. Table 6 shows the details of the available
resources of the nodes and the resources required by the services
(Liu et al., 2022; Mohaidat et al., 2022; Zhang et al., 2022c). Here,
the resource details are the same for every 5 nodes in the fog col-
ony. Also, the number of types of IoT applications is 5, so each node
5 6 7 8 9 10

40 48 56 64 72 90
96 77 37 52 85 55

https://github.com/

Table 5
Parameter settings for fog nodes and IoT services in the simulation.

Parameters Values

Number of service types for each IoT application 20
Number of resource blocks for each fog node 5500–6000
Number of resource blocks for each IoT service 25–35
Cost of each IoT service ($) 10–20
Number of fog nodes in each colony 15

Table 6
Resource details for nodes and services.

Items Type Storage (MB) RAM (MB) CPU (MIPS)

Fog node 1 256 256 100–200
2 512 512 200–300
3 1024 1024 300–1400
4 2048 2048 1400–1600
5 4096 4096 1600–3000

IoT service 1 128 128 100–200
2 256 256 200–300
3 512 512 300–1400
4 2048 1024 1400–1600
5 4096 4096 1600–3000

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
can support up to 5 different types of services. In addition, each IoT
application has a deadline that is randomly set between 120 s and
240 s.

The proposed scheme has several parameters that must be
adjusted before simulating the appropriate values. We adjust the
parameter values to search for the most appropriate scenarios
based on the Taguchi approach. In addition, some parameters are
adjusted based on similar tasks (Skarlat et al., 2017; Liu et al.,
2022; Ghobaei-Arani and Shahidinejad, 2022). Finally, the values
of the parameters in the simulation are set as follows: eC ¼ 1W ,
NC ¼ 1bit, Nsl ¼ 1, # ¼ 2:0GHz, k ¼ 0:5, NP ¼ 35, tmax ¼ 100.
6.2. Performance metrics

We evaluate comparable algorithms for solving SPP with differ-
ent performance metrics. These metrics include convergence
speed, runtime, location of deployed services, number of services
executed, average waiting time, number of services failed, number
of remaining services.

Convergence speed: This metric is related to the optimization
process in evolutionary algorithms that occurs with decreasing
population variability.

Runtime: This metric can indicate the complexity of placement
algorithms for solving SPP, which is reported based on the total
runtime (s) of the simulation.

Location of deployed services: Each IoT service can be deployed
on a subordinate fog node or transferred to NNFC or CFCM depend-
ing on the FOCN decision. In addition, the service can be executed
on FOCN. Therefore, this metric shows the location of a service for
execute.

Service cost: This metric for each service represents the mone-
tary cost of that IoT service, which is calculated based on Eq. (4).

Number of services executed: This metric shows the number of
services whose resources have been allocated before the deadline.

Average waiting time: This metric shows the average waiting
time for services executed before the deadline is violated.

Number of services failed: This metric refers to the number of
services that could not be placed and executed before the deadline
was violated.
170
Number of remaining services: Each service may be executed
on a node over a time period depending on the plan performed.
However, due to the maximum number of time periods pro-
vided, some services may not be successful placement. Among
these services, services with non-violation of the deadline are
considered as the remaining services for placement in the next
time period.

6.3. Results and discussion

This section includes simulation results, comparisons, and dis-
cussion. The proposed SPP-AOA scheme is based on a metaheuris-
tic algorithm that uses AOA to decide on the placement of services.
For this reason, SPP-AOA is compared to other similar metaheuris-
tic algorithms. Here, PSO, CSA and ODMA are among the meta-
heuristic algorithms that are evaluated in comparison with AOA.
We report the results of these algorithms based on SPP-PSO
(Salimian et al., 2022), CSA-FSPP (Liu et al., 2022) and FSP-ODMA
(Zhao et al., 2022), respectively.

In the first experiment, the convergence of different algorithms
to increase the fitness value and reach the convergence point is
compared. At the point of convergence, the evolutionary process
can be stopped due to the reduction of population diversity. How-
ever, we report the comparison in each algorithm for 100 iterations
after the end of the time period s ¼ 1, as shown in Fig. 9. As illus-
trated, the convergence speed of SPP-PSO and CSA-FSPP is appro-
priate and they reach the convergence point in 35 iterations. The
worst results are for FSP-ODMA, because the algorithm is devel-
oped for continuous environments and does not perform well for
discrete problems. In general, SPP-PSO, CSA-FSPP and FSP-ODMA
achieved fitness values of 684, 685 and 696 after 100 iterations,
respectively. Nevertheless, SPP-AOA performed better with a fit-
ness value of 682, although this was achieved at a slower conver-
gence speed than other algorithms. The reason for the slow
convergence speed of the AOA is the absorption policy, because it
must be applied to all solutions.

Although SPP-AOA achieves lower fitness value and SPP-PSO
converges better, runtime must also be analyzed due to the deci-
sion on the dynamic environment. This metric can indicate the
complexity of placement algorithms for solving SPP, which is
reported based on the total runtime of the simulation. Execution
time is very important in reducing the service waiting time,
because the placement process is done in each time period and
the recently received services have to wait until the next time per-
iod. Hence, in the second experiment, the runtime of different algo-
rithms is analyzed after the end of the time period s ¼ 1. Fig. 10
shows the results of this comparison for different algorithms at
100 iterations. As illustrated, the CSA-FSPP results are clearly the
worst with 97 s runtime. In general, the evolutionary process in
CSA involves several steps such as laying eggs and community for-
mation, which complicates the algorithm. Other algorithms have
almost the same runtime, although the SPP-PSO results are slightly
better with 23 s.

Each IoT service can be deployed on subordinate fog nodes,
NNFC, CFCM or FOCN itself depending on the FOCN decision. An
efficient placement algorithm is applied to deploy services on
FOCN or fog nodes in the current fog colony. Because transferring
services to NNFC or CFCM will lead to more delays and costs.
Therefore, the location of deployed services is important in the per-
formance of placement algorithms. Hence, in the third experiment,
we compare the placement rates of services for different algo-
rithms. The results of this comparison are presented in Table 7
after the end of time period s ¼ 1 and s ¼ 10. Here, the placement
rate of the services on the fog nodes, FOCN, NNFC, and CFCM for
each algorithm are reported. Also, the last column of this table
refers to the service placement rate on the current fog colony

Fig. 9. Results for the convergence speed at the end of the time period. s ¼ 1.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
(i.e., fog nodes and FOCN). The results show that after the end of
the time period s ¼ 1, most of the services are places on the cur-
rent fog colony (fog nodes or FOCN). Because at the beginning of
placement, the available resources of the nodes are abundant and
fewer services are forced to move to NNFC or CFCM. However,
comparative results after the end of the time period s ¼ 10 indicate
that more requests have been transferred to the NNFC or CFCM due
to the occupation of current colony resources. Overall, SPP-AOA
performs best with 98 % of services deployed on the current fog
colony based on s ¼ 1. This advantage also exists for s ¼ 10, and
SPP-AOA is the best with 80 % compared to other algorithms.

The fourth experiment compares the service cost in different
algorithms. Service cost is one of the most important metrics in
Fig. 10. Results for runtime at the

171
QoS improvement, where it refers to the monetary cost paid by
the user to executing services. Service cost can be reduced by
deploying user requests to fog nodes. Therefore, more efficient
placement algorithms can provide lower service costs for the user.
Fig. 11 shows the service cost results for s ¼ 1 and s ¼ 10. As illus-
trated, SPP-AOA has provided better results with lower service
costs in both scenarios. On average, SPP-AOA reduced service costs
by 2.05 %, 1.52 % and 1.51 % compared to SPP-PSO, CSA-FSPP and
FSP-ODMA algorithms, respectively. The reason for this superiority
is the number of services placed more on the current fog colony by
SPP-AOA.

The number of successfully performed services is analyzed in
the fifth experiment for different algorithms. Fig. 12 shows the
end of the time period. s ¼ 1.

Table 7
Results of location of deployed services in different algorithms.

Time period Algorithms Fog nodes FOCN NNFC CFCM Current colony

s ¼ 1 SPP-PSO 0.77 0.16 0.03 0.04 0.93
CSA-FSPP 0.82 0.15 0 0.03 0.97
FSP-ODMA 0.84 0.12 0.01 0.03 0.96
SPP-AOA 0.84 0.14 0 0.02 0.98

s ¼ 10 SPP-PSO 0.41 0.23 0.23 0.13 0.64
CSA-FSPP 0.46 0.25 0.21 0.08 0.71
FSP-ODMA 0.42 0.24 0.20 0.14 0.66
SPP-AOA 0.49 0.31 0.16 0.04 0.80

Fig. 11. Comparison of different algorithms based on service cost.

Fig. 12. Results for the number of services performed in each time period.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
results of this experiment for each time period. In each time period,
the number of services received by the fog landscape is predefined.
Each algorithm for placement should assign the most suitable fog
nodes to IoT services, taking into account resource constraints
and deadlines. If these constraints are satisfied for a service, this
service is considered as executed service. As shown, SPP-AOA suc-
ceeds in performing a greater number of services compared to
other algorithms in most periods. In all 10 time periods, out of
615 available services, SPP-AOA has succeeded in placing 561 ser-
vices. These results for SPP-PSO, CSA-FSPP and FSP-ODMA are 549,
536 and 507, respectively.
172
Each received service must wait until the next time period for
placement. In addition, there are times related to placement plan-
ning as well as various delays. In the sixth experiment, we deal
with the average waiting time in each time period. Because SPP-
AOA has achieved promising results in the placement process, it
is expected to provide a lower average waiting time for services.
Fig. 13 shows the results of this comparison for different algo-
rithms at the end of each time period. Here, for each service the
total waiting time is calculated and then for each algorithm the
average for all executed services is reported. As illustrated, SPP-
AOA has been able to reduce service waiting times over all time

Fig. 13. Results for the average waiting time for services executed in each time period.

Table 8
Results of the number of remaining services and the number of failed services in different algorithms.

Time period Algorithms Number of services received Number of services executed Number of services failed Number of remaining services

s ¼ 1 SPP-PSO 71 66 0 5
CSA-FSPP 71 63 0 8
FSP-ODMA 71 64 0 7
SPP-AOA 71 68 0 3

s ¼ 10 SPP-PSO 615 549 57 9
CSA-FSPP 615 536 62 17
FSP-ODMA 615 507 89 19
SPP-AOA 615 561 47 7

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
periods. The average waiting time based on 561 services executed
by SPP-AOA after the end of 10 time periods was 43.1 s. These
results are 46.1 s, 105.9 s and 52.6 s for SPP-PSO, CSA-FSPP and
FSP-ODMA algorithms, respectively. The poor performance of
CSA-FSPP is clearly evident in the average waiting time metric.
The reason for this is the temporal complexity of CSA in the evolu-
tion process. Overall, the superiority of SPP-AOA compared to SPP-
PSO, CSA-FSPP and FSP-ODMA was reported to be 7.01 %, 145.8 %
and 22.06 %, respectively.

In the last experiment, the number of remaining services and the
number of services failedwere compared to the total number of ser-
vices received for each algorithm. The proposed SPP-AOA scheme
has managed to execute 561 services out of 615 services received.
Also, the SPP-PSO, CSA-FSPP and FSP-ODMA algorithms report 549,
536 and 507 services executed, respectively. Of the 54 services not
executed in SPP-AOA, 7 services were not placed due to lack of
resources, while still having deadlines. Therefore, these services
can be executed in the next time period. However, the deployment
of 47 services in SPP-AOA has failed. In fact, the resources required
for these serviceswere not provided before the deadline. The results
related to the number of remaining services and the number of ser-
vices failed for other algorithms are shown in Table 8. Here, the
results are reported after the end of time periods s ¼ 1 and also
s ¼ 10. The results show the superiority of the proposed scheme,
173
because it has succeeded in reducing the number of remaining ser-
vices and the number of services failed. The results of the algorithms
for s ¼ 1 show that there is no service failed. In fact, the resources
required by the services are abundant at the beginning of the simu-
lation, and there is nodeadlineviolation.However, in later timeperi-
odsdue to lack of resources some servicesmaynot be able to execute
before their deadline.

Considering all performance metrics, SPP-AOA is superior to
other compared algorithms. After that, SPP-PSO, CSA-FSPP and
FSP-ODMA are in the next ranks of the best, respectively. The
SPP-AOA and SPP-PSO algorithms have the least deadline viola-
tions, but SPP-PSO consumes more cloud resources than SPP-
AOA. The utilization of cloud resources leads to increased delay
and service waiting time, which is due to the long distance from
the cloud to the data source. In addition, SPP-PSO reports higher
service costs compared to SPP-AOA, which is due to the higher cost
of consuming cloud resources. On average, SPP-AOA has the best
results and reports 9.7 %, 21.6 % and 17.4 % superiority over SPP-
PSO, CSA-FSPP and FSP-ODMA, respectively. Meanwhile, we model
the fog landscape as multiple non-overlapping domains and per-
form the deployment process on each domain independently.
However, we consider communication between domains for better
deployment management. Therefore, this architecture has the abil-
ity to support large-scale networks.

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
7. Conclusion

Most IoT-based applications have distributed components
called service, and how they are deployed on fog nodes is one of
the most important resources management challenges in fog com-
puting. In general, SPP in fog computing is defined as the efficient
deployment of IoT services on fog nodes with considering some
QoS requirements such as cost, delay, and throughput. This paper
proposes an efficient solution for SPP using metaheuristic-based
approaches and considering the concept of autonomous planning
model. The proposed autonomous planning model is developed
through a MADE-k-based conceptual framework, where decision-
making on service placement is done using AOA as a metaheuristic
approach. The proposed AOA models the SPP as a multi-objective
problem by reconciling different objectives (i.e., resource utiliza-
tion, service cost, energy consumption, delay cost and throughput),
where configured with a shared parallel architecture. Due to the
various factors used in the objective function, the proposed scheme
improves the overall performance of the system through cloud-fog
cooperation and increases QoS satisfaction. In addition, the pro-
posed scheme has been able to save resources and accept more
requests by deploying distributed resources. Extensive simulations
on a synthetic fog environment based on various criteria have pro-
ven the superiority of the proposed scheme compared to other
metaheuristic approaches. On average, the superiority of the pro-
posed scheme compared to SPP-PSO, CSA-FSPP and FSP-ODMA
algorithms is reported to be 9.7 %, 21.6 % and 17.4 %, respectively.
Because SPP solving through metaheuristic approaches leads to
postponing requests to the next time gap, the problem-solving
ability can be flexed with Deep Reinforcement Learning (DRL)
approaches. As a future work, we intend to consider DRL with a
long-term cumulative reward policy to improve the solution of
SPP.

Funding

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

Author Contribution

All authors contributed to the design and implementation of the
research, to the analysis of the results and to the writing of the
manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Natural Science Foundation of Jiangsu Province under Grant
BK20180209. Natural Science Foundation of the Jiangsu Higher
Education Institutions of China under Grant 18KJD520004.
Research Funds of Suzhou Vocational Institute of Industrial Tech-
nology 2019kyqd018.

References

Ali, S., Pandey, M., Tyagi, N., 2020. Wireless-Fog Mesh: A framework for in-network
computing of microservices in semipermanent smart environments. Int. J.
Netw. Manag. 30 (6), e2125.
174
Ali, S., Pandey, M., Tyagi, N., 2022. SDFog-Mesh: A software-defined fog computing
architecture over wireless mesh networks for semi-permanent smart
environments. Comput. Netw. 211, 108985.

Ayoubi, M., Ramezanpour, M., Khorsand, R., 2021. An autonomous IoT service
placement methodology in fog computing. Software: Practice Exp. 51 (5), 1097–
1120.

Azad, F.A., Rad, S.A., Arashpour, M., 2022. Back-stepping control of delta parallel
robots with smart dynamic model selection for construction applications.
Autom. Constr. 137, 104211.

Azimirad, V., Ramezanlou, M.T., Sotubadi, S.V., Janabi-Sharifi, F., 2022. A consecutive
hybrid spiking-convolutional (CHSC) neural controller for sequential decision
making in robots. Neurocomputing 490, 319–336.

Azimzadeh, M., Rezaee, A., Jassbi, S.J., Esnaashari, M., 2022. Placement of IoT
services in fog environment based on complex network features: a genetic-
based approach. Clust. Comput. 25 (5), 1–23.

Baranwal, G., Vidyarthi, D.P., 2021. FONS: a fog orchestrator node selection model to
improve application placement in fog computing. J. Supercomput. 77 (9),
10562–10589.

Berahmand, K., Nasiri, E., Li, Y., 2021. Spectral clustering on protein-protein
interaction networks via constructing affinity matrix using attributed graph
embedding. Comput. Biol. Med. 138, 104933.

Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Zou, Q., 2022. webTWAS: a
resource for disease candidate susceptibility genes identified by transcriptome-
wide association study. Nucleic Acids Res. 50 (D1), D1123–D1130.

Cao, Z., Niu, B., Zong, G., Xu, N., 2023. Small-gain technique-based adaptive output
constrained control design of switched networked nonlinear systems via event-
triggered communications. Nonlinear Anal. Hybrid Syst 47, 101299.

Chen, Y., Li, Z., Yang, B., Nai, K., Li, K., 2020. A Stackelberg game approach to multiple
resources allocation and pricing in mobile edge computing. Futur. Gener.
Comput. Syst. 108, 273–287.

Cheng, F., Wang, H., Zhang, L., Ahmad, A.M., Xu, N., 2022. Decentralized adaptive
neural two-bit-triggered control for nonstrict-feedback nonlinear systems with
actuator failures. Neurocomputing 500, 856–867.

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A., 2019. A survey on new
generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040.

Farahbakhsh, F., Shahidinejad, A., Ghobaei-Arani, M., 2021. Multiuser context-aware
computation offloading in mobile edge computing based on Bayesian learning
automata. Trans. Emerg. Telecommun. Technol. 32 (1), e4127.

Ghobaei-Arani, M., Shahidinejad, A., 2022. A cost-efficient IoT service placement
approach using whale optimization algorithm in fog computing environment.
Expert Syst. Appl. 200, 117012.

Hashim, F.A., Hussain, K., Houssein, E.H., Mabrouk, M.S., Al-Atabany, W., 2021.
Archimedes optimization algorithm: a new metaheuristic algorithm for solving
optimization problems. Appl. Intell. 51 (3), 1531–1551.

Hassan, H.O., Azizi, S., Shojafar, M., 2020. Priority, network and energy-aware
placement of IoT-based application services in fog-cloud environments. IET
Commun. 14 (13), 2117–2129.

Ibrahim, A., Noshy, M., Ali, H.A., Badawy, M., 2020. PAPSO: A power-aware VM
placement technique based on particle swarm optimization. IEEE Access 8,
81747–81764.

Jia, B., Hu, H., Zeng, Y., Xu, T., Yang, Y., 2018. Double-matching resource allocation
strategy in fog computing networks based on cost efficiency. J. Commun.
Networks 20 (3), 237–246.

Joyce, T., Herrmann, J.M., 2018. A review of no free lunch theorems, and their
implications for metaheuristic optimisation. Nature-inspired Algorithms Appl.
Optim. 744, 27–51.

Khosroabadi, F., Fotouhi-Ghazvini, F., Fotouhi, H., 2021. SCATTER: Service Placement
in Real-Time Fog-Assisted IoT Networks. J. Sens. Actuator Netw. 10 (2), 26.

Li, P., Yang, M., Wu, Q., 2020. Confidence interval based distributionally robust real-
time economic dispatch approach considering wind power accommodation
risk. IEEE Trans. Sustainable Energy 12 (1), 58–69.

Li, Y., Wang, H., Zhao, X., Xu, N., 2022. Event-triggered adaptive tracking control for
uncertain fractional-order nonstrict-feedback nonlinear systems via command
filtering. Int. J. Robust Nonlinear Control 32 (14), 7987–8011.

Liu, C., Wang, J., Zhou, L., Rezaeipanah, A., 2022. Solving the multi-objective problem
of IoT service placement in fog computing using cuckoo search algorithm.
Neural Process. Lett. 54 (3), 1823–1854.

Liu, Z., Zheng, Z., Sudhoff, S.D., Gu, C., Li, Y., 2015. Reduction of common-mode
voltage in multiphase two-level inverters using SPWM with phase-shifted
carriers. IEEE Trans. Power Electron. 31 (9), 6631–6645.

Mohaidat, M., Grantner, J.L., Shebrain, S.A., Abdel-Qader, I., 2022. In: May).
Instrument detection for the intracorporeal suturing task in the laparoscopic
box trainer using single-stage object detectors. IEEE, pp. 455–460.

Mojarad, M., Sarhangnia, F., Rezaeipanah, A., Parvin, H., Nejatian, S., 2021. Modeling
hereditary disease behavior using an innovative similarity criterion and
ensemble clustering. Curr. Bioinform. 16 (5), 749–764.

Murtaza, F., Akhunzada, A., ul Islam, S., Boudjadar, J., Buyya, R., 2020. QoS-aware
service provisioning in fog computing. J. Netw. Comput. Appl. 165, 102674.

Nasiri, E., Berahmand, K., Samei, Z., Li, Y., 2022. Impact of centrality measures on the
common neighbors in link prediction for multiplex networks. Big Data 10 (2),
138–150.

Natesha, B.V., Guddeti, R.M.R., 2021. Adopting elitism-based Genetic Algorithm for
minimizing multi-objective problems of IoT service placement in fog
computing environment. J. Netw. Comput. Appl. 178, 102972.

http://refhub.elsevier.com/S1319-1578(23)00052-6/h0005
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0005
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0005
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0010
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0010
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0010
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0015
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0015
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0015
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0020
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0020
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0020
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0025
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0025
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0025
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0030
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0030
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0030
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0035
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0035
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0035
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0040
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0040
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0040
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0045
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0045
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0045
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0050
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0050
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0050
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0055
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0055
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0055
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0060
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0060
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0060
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0065
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0065
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0070
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0070
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0070
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0075
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0075
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0075
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0080
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0080
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0080
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0085
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0085
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0085
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0090
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0090
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0090
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0095
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0095
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0095
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0100
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0100
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0100
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0105
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0105
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0110
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0110
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0110
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0115
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0115
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0115
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0120
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0120
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0120
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0125
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0125
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0125
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0130
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0130
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0130
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0135
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0135
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0135
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0140
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0140
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0145
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0145
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0145
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0150
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0150
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0150

Z. Zhang, H. Sun and H. Abutuqayqah Journal of King Saud University – Computer and Information Sciences 35 (2023) 157–175
Rezaeipanah, A., Matoori, S.S., Ahmadi, G., 2021. A hybrid algorithm for the
university course timetabling problem using the improved parallel genetic
algorithm and local search. Appl. Intell. 51 (1), 467–492.

Salimian, M., Ghobaei-Arani, M., Shahidinejad, A., 2021. Toward an autonomic
approach for Internet of Things service placement using gray wolf optimization
in the fog computing environment. Software: Practice and Experience 51 (8),
1745–1772.

Salimian, M., Ghobaei-Arani, M., Shahidinejad, A., 2022. An Evolutionary Multi-
objective Optimization Technique to Deploy the IoT Services in Fog-enabled
Networks: An Autonomous Approach. Appl. Artif. Intell. 36 (1), e2008149.

Sami, H., Mourad, A., 2020. Dynamic on-demand fog formation offering on-the-fly
IoT service deployment. IEEE Trans. Netw. Serv. Manag. 17 (2), 1026–1039.

Shahidinejad, A., Ghobaei-Arani, M., Souri, A., Shojafar, M., Kumari, S., 2021. Light-
edge: a lightweight authentication protocol for IoT devices in an edge-cloud
environment. IEEE Consum. Electron. Mag. 11 (2), 57–63.

Shakarami, A., Shakarami, H., Ghobaei-Arani, M., Nikougoftar, E., Faraji-Mehmandar,
M., 2022. Resource provisioning in edge/fog computing: A Comprehensive and
Systematic Review. J. Syst. Archit. 122, 102362.

Si, Z., Yang, M., Yu, Y., Ding, T., 2021. Photovoltaic power forecast based on satellite
images considering effects of solar position. Appl. Energy 302, 117514.

Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P., 2017. Optimized IoT
service placement in the fog. SOCA 11 (4), 427–443.

Slabicki, M., Grochla, K., 2016. Performance evaluation of CoAP, SNMP and NETCONF
protocols in fog computing architecture. In: NOMS 2016–2016 IEEE/IFIP
Network Operations and Management Symposium. IEEE, pp. 1315–1319.

Tan, J., Liu, L., Li, F., Chen, Z., Chen, G.Y., Fang, F., Zhou, X., 2022. Screening of
endocrine disrupting potential of surface waters via an affinity-based biosensor
in a rural community in the Yellow River Basin, China. Environ. Sci. Technol. 56
(20), 14350–14360.
175
Tang, F., Niu, B., Zong, G., Zhao, X., Xu, N., 2022. Periodic event-triggered adaptive
tracking control design for nonlinear discrete-time systems via reinforcement
learning. Neural Netw. 154, 43–55.

Trik, M., Akhavan, H., Bidgoli, A.M., Molk, A.M.N.G., Vashani, H., Mozaffari, S.P., 2023.
A new adaptive selection strategy for reducing latency in networks on chip.
Integration 89, 9–24.

Vashani, H., Sullivan, J., El Asmar, M., 2016. DB 2020: Analyzing and forecasting
design-build market trends. J. Constr. Eng. Manag. 142 (6), 04016008.

Xavier, T.C., Santos, I.L., Delicato, F.C., Pires, P.F., Alves, M.P., Calmon, T.S., Amorim, C.
L., 2020. Collaborative resource allocation for Cloud of Things systems. J. Netw.
Comput. Appl. 159, 102592.

Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H.C., Jue, J.P., 2019.
FOGPLAN: A lightweight QoS-aware dynamic fog service provisioning
framework. IEEE Internet Things J. 6 (3), 5080–5096.

Zhang, D., Haider, F., St-Hilaire, M., Makaya, C., 2019. Model and algorithms for the
planning of fog computing networks. IEEE Internet Things J. 6 (2), 3873–3884.

Zhang, H., Zhao, X., Zhang, L., Niu, B., Zong, G., Xu, N., 2022a. Observer-based
adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated
switched nonlinear systems with input quantization. Int. J. Robust Nonlinear
Control 32 (14), 8163–8185.

Zhang, H., Zou, Q., Ju, Y., Song, C., Chen, D., 2022b. Distance-based support vector
machine to predict DNA N6-methyladenine modification. Curr. Bioinform. 17
(5), 473–482.

Zhang, Y., Zhang, F., Tong, S., Rezaeipanah, A., 2022c. A dynamic planning model for
deploying service functions chain in fog-cloud computing. J. King Saud Univ.-
Computer Information Sci. 34 (10), 7948–7960.

Zhao, D., Zou, Q., Boshkani Zadeh, M., 2022. A QoS-Aware IoT Service Placement
Mechanism in Fog Computing Based on Open-Source Development Model. J.
Grid Comput. 20 (2), 1–29.

http://refhub.elsevier.com/S1319-1578(23)00052-6/h0155
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0155
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0155
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0160
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0160
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0160
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0160
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0165
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0165
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0165
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0170
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0170
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0175
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0175
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0175
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0180
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0180
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0180
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0185
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0185
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0190
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0190
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0195
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0195
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0195
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0200
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0200
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0200
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0200
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0205
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0205
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0205
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0210
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0210
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0210
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0215
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0215
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0220
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0220
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0220
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0225
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0225
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0225
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0230
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0230
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0235
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0235
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0235
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0235
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0240
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0240
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0240
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0245
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0245
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0245
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0250
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0250
http://refhub.elsevier.com/S1319-1578(23)00052-6/h0250

