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Abstract

Abstract

As feed-in tariffs for wind energy are gradually being replaced by market driven

auction-based systems, the need for cost savings at every stage of a wind energy

project is more apparent than ever. A proven and effective way of reducing

maintenance costs is through a condition-based maintenance (CBM) strategy.

By using supervisory control and data acquisition (SCADA) system data instead

of retrofitting a dedicated condition monitoring (CM) system, CM functionality

can be gained at a fraction of the cost. This thesis investigates using SCADA

system data for various levels of CM: fault detection, diagnosis and prediction.

First, a case study is presented on using classification techniques for CM using

SCADA data. Various methods for dealing with the massive class imbalance seen

in fault data are evaluated. It was found that all three levels of CM are possible

using classification techniques, though with a high number of false positives.

Adding a class-weight to the minority class or undersampling the majority class

were found to be the best ways of dealing with class imbalance.

Sources of accurate failure data can be difficult to obtain for wind turbines. The

second part of this thesis presents a novel way of building a historical failure

database using alarm system and availability data. This was shown to produce

an accurate database of unplanned stoppages related to assembly-level failures,

scheduled maintenance, or grid, noise or shadow-related events.

Next, common issues with some of the classification approaches present in the

literature are addressed, as well as the the lack of demonstration of how these

approaches would perform in the field. A formalised framework with a prescri-

bed list of steps following best practice guidelines is presented for performing

CM using classification techniques on turbine SCADA data. A case study is

performed which uses a sliding window metric to evaluate field performance,

showing that such a system is effective at flagging faults in advance, but more

data is needed to reduce the false positive rate.

It is noted throughout the thesis that turbine alarm systems have some consis-

tent shortcomings, and do not live up to their full potential. Hence, a novel

methodology is presented which uses clustering techniques to identify similar

sequences of alarms as they occurred during unplanned stoppages. A case study

applying the methodology showed that just under half of the 456 stoppages

could be sorted into one of fifteen distinct types of alarm sequence.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 The Need for Renewable Energy

Humanity has harnessed the power of renewable energy for millennia. In its

most basic form, biomass such as wood or charcoal has been used for fire,

while the wind was the primary source of energy for transport across seas and

oceans. Later, both wind and water power were used to mechanically drive

mills to refine grain and saw wood, or power pumps to move water and drain

tracts of land. Furnaces and kilns for refining ore or producing bricks, brewe-

ries, and drying-houses all required heat energy sourced from biomass. In fact,

much of the success of the Netherlands during the "Dutch Golden Age" of the se-

venteenth century can be attributed to the Dutch effectively making use of the

abundance of peat and wind power available to them at the time (de Zeeuw

1978). As world powers raced through the industrial revolution and beyond,

the vast amounts of heat required to power steam and create electricity meant

that the world moved away from renewable sources to more energy dense fossil

fuels. Global energy demand expanded at an exponential rate during the twen-

tieth century, largely being met by coal, and later, oil and natural gas. These

continue to dominate the world’s primary energy supply today, as seen figure

1.1.

The burning of fossil fuels produces carbon dioxide (CO2) and other "green-

house gases" (GHGs). These GHGs occur naturally in small amounts in the

atmosphere, and are vital for sustaining life. Through absorbing and emitting

1
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Figure 1.1: Global Primary Energy Use from 1800 to 2016 (Smil 2016, British
Petroleum 2017)

thermal radiation (a phenomenon known as the "greenhouse effect"), they are

important in sustaining a habitable temperature for the planet; it has been esti-

mated that without them, the average surface temperature on Earth would be

around -18°C (Schmidt et al. 2010). However, it is now known that the burning

of fossil fuels on such an enormous scale has produced an over-abundance of

these gases, and has amplified the greenhouse effect resulting in a rapidly war-

ming global climate. Already, the global mean temperature has risen by about

1.2 °C since 1850 (Morice et al. 2012). This has had a high ecological impact,

with shifts in the geographical ranges, abundance, migratory patterns and sea-

sonal behaviours of many species being observed. More severe weather events

have had a significant impact on the human population, and in many regions,

crop yields have decreased, with those in poverty being particularly vulnerable

to changes. These effects are expected to be greatly amplified over the coming

decades, with extreme flooding, wildfires, food insecurity and civil unrest, and

loss of entire ecosystems and livelihoods being expected should the status quo

be maintained (IPCC 2014).

To mitigate these effects, there has been a concerted global effort to reduce the

impact of CO2 emissions in the atmosphere. Most recently, in December 2015,

the Paris climate accord was signed by the governments of 195 different coun-

tries as part of an agreement within the United Nations Framework Convention

on Climate Change. This agreement aims to respond to the threats imposed

by man-made climate change by keeping a global temperature rise this cen-
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tury well below 2°C above pre-industrial levels, and to pursue further efforts to

keep the rise below 1.5°C (United Nations Framework Convention on Climate

Change 2015). These levels were identified as being realistically attainable

while keeping temperatures below a threshold where the more severe effects

of climate change become more apparent. Although this agreement is a very

important moment in the fight against climate change, individual world and

regional governments have been pursuing their own legislative efforts against

climate change for some time.

1.1.2 Growth of Wind Energy

The EU’s Renewable Energy Directive 2009/28/EC sets a binding target of 20%

gross final consumption (GFC) of energy from renewable sources by 2020. As

part of this, Ireland’s target is 16% share of renewable energy in the national

GFC by 2020. GFC includes the amount of energy consumed in transport and

producing and distributing electricity and heat. The directive mandated that

each Member State adopt a National Renewable Energy Action Plan (NREAP)

to set out targets for the share of energy from renewable sources consumed in

transport, electricity and heating by 2020. These sectoral targets are known as

RES-E, RES-T and RES-H, respectively (European Parliament 2009). In Ireland

in 2010, the share of energy-related CO2 emissions from transport, electricity

and thermal applications were 33%, 32% and 35%, respectively (Sustainable

Energy Authority of Ireland 2017). To address this and meet the EU target, the

NREAP for Ireland mandated targets of 40% RES-E, 10% RES-T and 12% RES-

H (Department of Communications Climate Change and Environment 2010).

To date, much of the RES-E target has come from wind energy, and this trend

is expected to continue; in 2016, Ireland achieved a 27% share of renewable

energy in its electricity generation mix, with 22% of this figure coming from

wind. This reflected the year-on-year growth in installed capacity, with 400

MW installed in 2016 alone (Sustainable Energy Authority of Ireland 2017, Mc

Garrigle et al. 2013). This growth in wind capacity mirrors the broader trends

within the EU, and indeed the world, as seen in figure 1.2.

3 Kevin Leahy



1. INTRODUCTION

2005 2007 2009 2011 2013 2015
Year

0

100

200

300

400
In

st
al

le
d

W
in

d
C

ap
ac

it
y

(G
W

) China
United States
EU Offshore
EU Onshore

Figure 1.2: Installed wind energy capacity for EU, USA and China, 2005-2016 (EU
has been split between on- and offshore) (British Petroleum 2017, WindEurope
2018)

Figure 1.2 also shows the annual growth in offshore wind in Europe. This is a

relatively new industry, and the technologies underpinning it are beginning to

mature. Offshore wind farms offer the advantages of decreased visual and en-

vironmental impact, as well as being able to capture the massive wind resource

that is available out at sea. In fact, there is such a large resource potential offs-

hore that WindEurope estimates it could provide between 80% and 180% of

the EU’s electricity demand at competitive prices by 2030. Ireland is in a very

good position to capture some of this, with its Atlantic waters providing for a

technical potential of 2600 TWh/yr by 2030 (BVG Associates & WindEurope

2017). However, in order to remain competitive, wind energy must remain an

economically viable option for grid operators, investors, and other stakeholders.

1.1.3 Wind Energy Economics

The levelised cost of energy (LCOE) is a standardised measure used to compare

the cost of power production from different generation technologies. It is the

average total cost to build and operate a power-generating asset divided by the

total energy output of that asset over its lifetime. It is usually used as a way

of showing the average price of electricity that the asset must receive over its

operating life in order for it to break even. Figure 1.3 shows the range of LCOE

for solar, offshore wind and onshore wind globally for 2010 and 2016, with
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Figure 1.3: Ranges and averages of LCOE for solar PV, onshore wind and offshore
wind compared to fossil fuels for 2010 and 2016 (International Renewable Energy
Agency 2018)

the range of LCOE for fossil fuels given as a comparison. As can be seen, wind

energy remains an attractive renewable electricity option, remaining cheaper

than solar despite the latter’s costs plummeting.

Although the price of wind energy has fallen in recent years, fossil fuels can

still remain a cheaper option. In particular, the price of offshore wind is still

much higher than onshore. Although offshore wind offers many advantages,

the higher costs associated with constructing and operating a remote asset with

limited access drive up the LCOE. Furthermore, potential future developments

in fossil fuel generation or mining technologies mean that these may be more

attractive to electricity providers in some markets. The cost of wind energy itself

also has wide variations between different countries and markets (International

Renewable Energy Agency 2018). Finally, wind power has traditionally been in-

centivised by a variety of support mechanisms. In Ireland, these have taken the

form of the alternative energy requirement (AER) and renewable energy feed-

in tariff (REFIT) (Foley et al. 2013). In many countries, these types of tariffs

are starting to be replaced by market-driven auctions, driving up competition

within the wind industry. Hence, lowering the LCOE of wind energy as much

as possible, both on- and offshore, is important in order to maintain the growth

of renewables in the energy mix.
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The International Renewable Energy Agency has stated that operations and

maintenance (O&M) costs for wind turbines account for a significant propor-

tion of the overall LCOE, at 20-25%. This can extend up to 35% for tur-

bines nearing the end of their life (Colone et al. 2017). The costs for on-

shore generally fall within the range of 20 to 40 e/kW/year, though this can

fluctuate quite largely depending on the region and year; in Ireland in 2014

costs reached e70/kW/year. For offshore, costs are higher at roughly between

e100/kW/year and e127/kW/year. Up to 80% of this cost, for both on- and

offshore, is attributed directly to maintenance. It should also be noted that,

given the rapid growth in deployment, wind turbine fleets are still relatively

young. The German fleet, one of the oldest in the world, has an average age of

just 10 years, while in China it is 5 years. The global average is just 6 years old.

This can have implications for O&M costs as turbines begin to age - as more

regular maintenance is needed, these costs may rise (International Renewable

Energy Agency 2018, VGB PowerTech 2015).

The costs presented here (particularly for offshore) are in contrast to modern

conventional fossil fuel generators which typically have lower O&M costs (ex-

cluding fuel). For example, closed cycle gas turbines (CCGTs) have mainte-

nance costs of between 18 and 25 e/kW/year (VGB PowerTech 2015, U.S.

Energy Information Administration 2016). While machines such as CCGTs ope-

rate in a constant, narrow range of speeds, wind turbines are designed to ope-

rate under a wide range of wind speeds and weather conditions. This means the

stresses on components are comparatively higher, and leads to unique challen-

ges in both designing and operating the turbines to achieve maximum possible

availability while keeping O&M costs to a minimum. Corrective or unsche-

duled maintenance, whereby repairs are carried out when parts have become

damaged, can be very expensive, particularly in the case of failures of major

components; the cost of replacing a gearbox is in the region of e190,000, while

a blade replacement is the region of e110,000 (Yang et al. 2014, Yürüşen et al.

2017). The fact that they are designed to operate autonomously and often de-

ployed in remote locations means that daily visual inspections to ensure healthy

operation are not normally feasible. For offshore turbines, this is compounded

by the difficulties in getting access. While transport for a maintenance crew to

visually inspect and repair a fault at an onshore turbine is relatively straightfor-

ward, offshore access requires expensive boat or helicopter transport which is

dependent on sea and weather conditions (Peter Tavner 2012). Furthermore, if

an unexpected fault has occurred, it is important that it has been correctly di-
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agnosed in order to ensure the correct tools and parts have been brought along

to avoid further trips.

1.1.4 Wind Turbine Maintenance Strategies

To avoid these unexpected failures and ensure proper component health, wind

turbines have conventionally been serviced according to a preventive mainte-

nance strategy, whereby periodic inspections are carried out at pre-planned in-

tervals in order to assess the condition of various components and address any

issues. This is coupled with a high-level alarm system which shuts down the

turbine and alerts technicians when certain control variables such as tempera-

tures or rotational speeds exceed their normal bounds. Typically, the length of

time between these scheduled maintenance visits is decided by domain know-

ledge based on the historic failure rates of components. While this maintenance

strategy avoids the long down time and replacement costs in the event of ma-

jor component failure, it also means that in a lot of cases, a turbine has been

brought off-line for inspection with minimal servicing work needed (Kothamasu

et al. 2006). In an ideal scenario, there would be some way to continuously as-

sess the condition of the turbine without bringing it off-line. In this scenario,

the health of the turbine would be automatically monitored, and if it starts

to deteriorate, information would be provided on if and when a specific type

of maintenance action is required. This strategy is known as condition-based

maintenance (CBM) (Duffuaa & Ben-Daya 2009).

In the wind industry, CBM has traditionally been carried out by installing ad-

ditional vibration, oil-particulate, or other sensors to the turbine. The sensors

can be expensive to install and record data at very high frequencies, meaning

there are high bandwidth and storage requirements. Although these systems

have seen significant success in the oil and gas industries, the cost justification

for wind turbines is not nearly as strong (Yang et al. 2014). Furthermore, due

to the fact that wind turbines operate at relatively low and variable speeds, the

signals are harder to interpret and have not been as successful at fault prognosis

as in other industries (Yang et al. 2013). However, being highly automated ma-

chines, there are a number of sensors already existing on the turbine used for its

operation and control which can be leveraged to capture some of the functiona-

lity of a traditional CMS at a much lower cost. This data is typically aggregated

and recorded at 10-minute intervals in the supervisory control and data acqui-
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sition (SCADA) system. Although at a comparatively lower resolution, some

early successes have already been achieved (Tautz-Weinert & Watson 2017c).

There are a number of different approaches which can be taken in attempting

to do this.

1.1.5 SCADA-Based Condition Monitoring

A detailed review of all techniques will be discussed in chapter 2, however a

brief overview will be given here. In its simplest form, simply tracking the per-

formance of the turbine or monitoring certain values may show a change in

turbine operation and, hence, be indicative of deteriorating component health

(Wilkinson et al. 2014, Feng et al. 2011). An extension to this is to model the

behaviour of the turbine under normal healthy operation, and build a residual

which aims to show that deviation from this norm may be an indication that the

health of some components are deteriorating (Schlechtingen & Ferreira Santos

2011, Butler et al. 2013). Classification-based techniques, on the other hand,

attempt to train a machine learning classifier on sample data points from peri-

ods leading up to and during specific types of faults. The advantage of this is a

single model may be trained to detect a broad range of incipient faults (Leahy,

Hu, Konstantakopoulos, Spanos, Agogino & O’Sullivan 2018).

These classification-based approaches have seen success in domains such as

credit card fraud detection, early detection of different types of cancers, and

even fault detection in other industries (Hoadley et al. 2014, Abbasion et al.

2007, Ngai et al. 2011). However, much of the published research in the field

of wind energy has yet to emulate these successes. Given the generally high

availability of modern wind turbines, there exists an inherent difficulty in trying

to predict faults against a backdrop of such a huge amount of fault-free data.

Add to this the complexity of turbine operational states, where the turbine may

be curtailed or shut down for any number of reasons, including grid issues,

shadow or noise-related curtailment and low or very high wind speeds, and

getting accurate classification results presents a significant challenge. Given

this, many of the approaches detailed in the literature have limited scope and

may not be reflective of the performance of the described systems in the field.

Accurate classification heavily relies on high quality training data - periods of

faulty operation must be accurately labelled. Because there are so few fault

samples, a small number of incorrectly labelled faults can heavily skew the re-
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sults. Obtaining this accurate historical fault data can be problematic - fault

records are often stored in unstructured formats by wind farm operators. Lack

of conformity across operators, original equipment manufacturers (OEMs), or

even individual maintenance technicians means that labelling training data for

input into classifiers can be a tedious and ad-hoc process (Tautz-Weinert & Wat-

son 2017a, van Kuik et al. 2016).

Turbine alarm systems can help identify different operational states, but even

here there are issues. Alarms are triggered at a very high rate, particularly

during fault events, meaning it can be unclear to operators what the root cause

of the sequence of alarms was (Qiu et al. 2012). This also makes it difficult

to use the alarm system data to retrospectively label historical operational data

with specific reasons for downtime or curtailed operation, be it due to faults or

other modes which fall within the bounds of normal operation (Gonzalez et al.

2016).

1.2 Research Objectives

As the wind energy industry moves towards a more proactive and predictive

style of maintenance, leveraging existing SCADA and alarms data sources will

be a key part of the solution. Classification-based approaches to fault prediction

have yet to truly be utilised to their full potential, while alarm system data

still largely relies on human interpretation by trained technicians armed with

collective domain knowledge.

With this in mind, one of the objectives of this thesis is to investigate the level of

fault prediction which can be achieved using classification techniques applied

to SCADA data, and to see what specific techniques can be used to improve

this performance. In order to achieve this, it will be necessary to evaluate

whether alarm system data can be effectively used to build up training sets of

past failures. With an understanding of the level to which the above can be

achieved, it should be possible to formalise the most effective techniques into a

generally applicable methodology and evaluate its performance when applied

as a field deployed system. Furthermore, it will be investigated whether more

contextual information can be gleaned for maintenance technicians from the

high volume of alarms generated once a fault has actually occurred.

The main research objectives (ROs) of the thesis are then as follows:
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RO1. Determine what level of condition monitoring can be performed using

classification techniques

RO2. Investigate different techniques for dealing with classification based on

imbalanced datasets and evaluate their suitability for fault detection,

diagnosis and prediction

RO3. Determine whether information on historical failures can be accurately

gleaned through analysis of the turbine alarms system, and whether

this information can be used to create a complete and accurate training

set for fault prediction

RO4. Design a comprehensive framework which incorporates all previous fin-

dings as well as best practices from literature and apply this methodo-

logy to evaluate its performance as a field-deployed system

RO5. Investigate whether the burden of analysis on maintenance technicians

during fault events can be effectively reduced by gleaning information

from the high volume of generated alarms

1.3 Thesis Structure

The rest of this thesis is laid out as follows:

• Chapter 1 gives an introduction to the broad area of research and frames

the motivation for undertaking this work

• Chapter 2 provides a comprehensive background to the field of wind tur-

bine maintenance, including maintenance theory, component reliabilities

and current maintenance practices and the data they rely on. A compre-

hensive overview of wind turbine fault detection, diagnostics and prog-

nostics from SCADA and alarm system data is also provided, including

the techniques available to use and the benefits, challenges and theory

involved in applying them.

• Chapter 3 presents a case-study in detecting, diagnosing and predicting

a number of different turbine faults. Within this, an investigation into

various techniques used to address issues associated with the imbalanced

nature of fault data sets is presented.

Data Analytics for Fault Prediction and
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• Chapter 4 outlines many of the issues researchers face in accurately la-

belling historical operational data with periods of faulty or fault-free ope-

ration. A method is presented which applies rules to alarm system data to

address these issues and build an accurately labelled database.

• Chapter 5 presents a formalised and prescriptive framework for wind tur-

bine fault prediction using classification techniques. It uses the system of

labelling training data described in 4, and describes the development of

an alert system which notifies operators of impending faults and realis-

tically simulates the deployment of this in the field using a new set of

data.

• Chapter 6 presents a methodology for grouping together similar patterns

of alarm sequences which appear during fault events through the use of

clustering techniques. This is done with a view to help operators give

context and diagnosis options to future faults.

• Chapter 7 summarises all of the findings and research output in this the-

sis. It presents the main conclusions drawn from the research, and the

natural extensions and future research areas identified from it.

1.4 Research Output

The following journal publications have directly arisen out of work contained

within this thesis:

• K. Leahy, R. L. Hu, I. C. Konstantakopoulos, C. J. Spanos, A. M. Agogino,

and D. T. J. O’Sullivan, “Diagnosing and Predicting Wind Turbine Faults

from SCADA Data Using Support Vector Machines,” International Journal

of Prognostics and Health Management, vol. 9, no. 1, pp. 1–11, 2018.

• K. Leahy, C. Gallagher, P. O’Donovan, and D. T. J. O’Sullivan, “Cluster

analysis of wind turbine alarms for characterising and classifying stoppa-

ges,” IET Renewable Power Generation, vol. 12, no. 10, pp. 1146–1154,

Jul. 2018.

• K. Leahy, C. Gallagher, P. O’Donovan, K. Bruton, and D. T. J. O’Sullivan,

“A Robust Prescriptive Framework and Performance Metric for Diagnosing

and Predicting Wind Turbine Faults based on SCADA and Alarms Data

with Case Study,” Energies, vol. 11, no. 7, pp. 1–21, 2018.
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In addition, the following conference publications have directly arisen from the

thesis:

• K. Leahy, R. L. Hu, I. C. Konstantakopoulos, C. J. Spanos, and A. M. Ago-

gino, “Diagnosing Wind Turbine Faults using Machine Learning Techni-

ques Applied to Operational Data,” 2016 IEEE International Conference

on Prognostics and Health Management, pp. 1–8, 2016.

• K. Leahy, C. Gallagher, K. Bruton, P. O’Donovan, and D. T. J. O’Dullivan,

“Automatically Identifying and Predicting Unplanned Wind Turbine Stop-

pages Using SCADA and Alarms System Data: Case Study and Results,” in

Journal of Physics: Conference Series, 2017, vol. 926, no. 1

Additionally, the following publication represents work which draws on some

of the content of this thesis:

• R. L. Hu, K. Leahy, I. C. Konstantakopoulos, D. M. Auslander, C. J. Spanos,

and A. M. Agogino, “Using Domain Knowledge Features for Wind Turbine

Diagnostics,” in 2016 15th IEEE International Conference on Machine Le-

arning and Applications (ICMLA), 2016, pp. 300–307.

Although not directly related, the author additionally contributed to the follo-

wing publications while undertaking the work for this thesis:

• C. V. Gallagher, K. Leahy, P. O’Donovan, K. Bruton, and D. T. J. O’Sullivan,

“Development and application of a machine learning supported methodo-

logy for measurement and verification (M&V) 2.0,” Energy and Buildings,

vol. 167, pp. 8–22, 2018.

• C. V. Gallagher, K. Bruton, K. Leahy, and D. T. J. O’Sullivan, “The suitabi-

lity of machine learning to minimise uncertainty in the measurement and

verification of energy savings,” Energy and Buildings, vol. 158, 2018.

• P. O’Donovan, C. Gallagher, K. Leahy, S. Blake, K. Bruton, and D. T. J.

O’Sullivan, “A systematic mapping of industrial cyber-physical systems re-

search for Industry 4.0,” International Manufacturing Conference, 2017.

• P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan, “An industrial

big data pipeline for data-driven analytics maintenance applications in

large-scale smart manufacturing facilities,” Journal of Big Data, vol. 2,

no. 1, p. 25, Dec. 2015.
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• P. O. Donovan, K. Leahy, D. Ó. Cusack, K. Bruton, and D. T. J. O’Sullivan,

“A data pipeline for PHM data-driven analytics in large-scale smart manu-

facturing facilities,” in Annual Conference of the Prognostics and Health

Management Society 2015, 2015, vol. 6, pp. 1–10.

• P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan, “Big data in

manufacturing: a systematic mapping study,” Journal of Big Data, vol. 2,

no. 1, p. 20, Dec. 2015.

• K. Leahy, K. Bruton, and D. T. J. O’ Sullivan, “Implementing the Green

Batch: A Case Study: Continuous Statistical Evaluation to Achieve the

Most Energy Efficient and Reliable Process,” in 19th IEEE International

Conference on Emerging Technologies and Factory Automation, 2014.

1.5 Novel Contributions

This section outlines the specific novel contributions of this thesis.

Chapter 3 (Leahy et al. 2016, Leahy, Hu, Konstantakopoulos, Spanos, Agogino

& O’Sullivan 2018):

• It was found that all three levels of CM (fault detection, diagnosis and

prognosis) are possible using classification techniques, though with a high

number of false positives.

• The addition of a class weight to the minority class(es), or simply un-

dersampling the majority class, are the best way of dealing with class

imbalance in the training stage

Chapter 4 (Leahy et al. 2017):

• A novel methodology for building an accurate historical failure database

from alarm system and availability data is presented. The methodology

shows assembly-level failure rates with accurate time stamps, as well as

stoppages related to noise or shadow related curtailment, grid issues and

planned maintenance.

Chapter 5 (Leahy, Gallagher, O’Donovan, Bruton & O’Sullivan 2018):

• A novel framework is presented which describes a list of steps, using best

practice guidelines, for performing condition monitoring using classifica-

tion techniques on wind turbine SCADA data.
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• A further case study is presented which demonstrates the efficacy of such

a system as it would perform in the field, showing the value of using a

sliding window metric

Chapter 6 (Leahy, Gallagher, O’Donovan & O’Sullivan 2018):

• A novel methodology is presented which uses clustering techniques to

identify similar sequences of alarms as they occurred during unplanned

stoppages

• A case study applying the methodology showed that just under half of the

456 stoppages could be sorted into one of fifteen distinct types of alarm

sequence
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Chapter 2

Background

This chapter is intended to give the reader an overview of the research area

and give context to the place this thesis takes within the broader literature. As

part of this, the background and theory to many of the concepts and techniques

used in later chapters of the thesis is given. Section 2.1 will give an overview

of maintenance theory, including different maintenance strategies and the mo-

tivation for each. Section 2.2 will discuss some of the data sources which can

be leveraged on wind turbines for both maintenance, monitoring and reliability

reporting. Sections 2.3 to 2.6 will give an overview of wind turbine reliabi-

lity and failure rates, what kinds of faults occur on wind turbines, and their

impact on generating costs and down time from an onshore and offshore per-

spective. Section 2.7 will give a broad and high-level overview of the prevailing

maintenance strategies in use in industry, drawing on some of the theory from

section 2.1. Finally, section 2.8 will review current research into the techniques

used in implementing some of these strategies; specifically, condition monito-

ring techniques based on wind turbine SCADA data.

2.1 A Background to Maintenance Theory

High reliability is an important aspect in all industrial assets and equipment -

fewer breakdowns mean fewer breaks in operation, mean higher revenue and

less expenses related to repairs and replacements. Reliability is generally defi-

ned as a measure of how seldom an item fails or needs repair; it is the proba-

bility that a system will perform its intended function over a specified period

of time (International Electrotechnical Commission (IEC) 2010). Generally, the
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objective of any well-planned maintenance strategy is to minimise the amount

of down time and lost production due to faults, as well as any repair costs that

these faults may incur. With this in mind, here are some definitions that will be

helpful throughout the rest of this chapter:

• Fault/failure: These terms generally mean that something has happened

to a system so that it can no longer function as intended. In parts of the li-

terature, fault refers to instances where a system has been brought off-line

because of a suspected failure, whereas failure refers to when actual da-

mage has taken place. In other parts, the terms are used interchangeably.

In this work, unless otherwise stated, these terms are used interchange-

ably to mean either or both of these things, where the meaning will be

clear from the context.

• Mean time to failure (MTTF): The mean time from when a system is re-

paired/fully operational to when it next fails. This is a measure of how

much time a system can operate for before failure, independent of the

time it takes to repair that system.

• Mean time to repair (MTTR): The mean time it takes from beginning a

repair operation to when the system is fully operational, excluding any

delays due to logistics (see below)

• Logistic delay time (LDT): The time it takes from when the system faults

until the repair operation begins (due to repair crew travelling to site,

waiting on parts, etc.). This also includes any additional logistical delays

that may arise throughout the repair operation.

• Down Time (DT): The total amount of time the system is off-line due to

failure, i.e. DT = LDT + MTTR

• Mean time between failures (MTBF): The mean expected time from the

beginning of one failure to the beginning of another, i.e. MTBF = DT +
MTTF

• Failure rate (λ): This generally refers to the number of failures per system

or piece of equipment over a certain period of time. In this way, it can be

thought of as λ = 1/MTBF

Note that failures in any system are not usually normally distributed over time

(Hameed et al. 2010), so these are high-level metrics used to give a rough in-

dication of system maintenance requirements. Although systems are generally
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designed to have high reliability, even with clever design and engineering choi-

ces all equipment eventually deteriorates over time from being exposed to the

various loads and stresses of its operating environment (Duffuaa & Ben-Daya

2009). With this in mind, there are a number of avenues to pursue in terms of

a maintenance strategy for an asset. Figure 2.1 shows an overview of various

options available to maintenance managers when deciding on an appropriate

strategy. These will be discussed in the following sub sections.

Maintenance Strategies

Corrective Maintenance Proactive Maintenance

Predictive
Maintenance

Preventative
Maintenance

Reliability-centred maintenance decides appropriate strategy

Figure 2.1: An overview of various maintenance strategies

2.1.1 Corrective Maintenance

The oldest and most basic maintenance strategy is corrective maintenance, or

run-to-failure. This approach essentially boils down to "fix it when it breaks",

and can be attractive as it requires very little planning or analysis. It is appro-

priate in applications where failures are very rare and repair costs are minimal

(Kothamasu et al. 2006, Susto et al. 2015). However, running until failure me-

ans there is no control for the operator in terms of when or how an asset goes

off-line due to component malfunction. The unscheduled nature of the down-

time means that the repairs may need to be done at an inconvenient time, or

at times when production yields would otherwise have been high; in the case

of wind turbines, during rated wind speeds. Because it was not planned, spares

may not be readily available which can lead to increased LDT. Furthermore, be-
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cause component health is not monitored or inspected, a small fault can quickly

develop into a catastrophic failure. For example, a problem with the emergency

batteries in a wind turbine’s pitch system can lead to safety mechanisms fai-

ling during periods of grid failure, leaving the turbine un-controllable in high

wind speeds. This can turn what was originally a small repair into a poten-

tially dangerous catastrophic failure. Hence, although corrective maintenance

represents the least expensive maintenance strategy to implement and operate,

repair costs of running to failure far outweigh the benefits in most cases (Butler

2012). Therefore there is a strong motivation to move from a corrective main-

tenance strategy to a proactive one, whereby maintenance is performed before

a problem arises.

2.1.2 Reliability-Centred Maintenance

This motivation to move to a more efficient maintenance strategy is what led

to a framework known as reliability-centred maintenance (RCM), originally de-

veloped in the latter part of the 20th century to optimise aircraft maintenance

schedules (Nowlan & Heap 1978). The modern standard is contained in SAE

JA-1011 (SAE 2009). RCM can be thought of as a prescribed list of steps that

must be taken to evaluate the best type of maintenance strategy for each compo-

nent or assembly in a system. It breaks an asset down into various subsystems,

assemblies and components from a standardised, OEM-agnostic taxonomy spe-

cific to that type of asset. It then identifies lists of possible failure modes and

mechanisms and possible root causes for each part of this taxonomy. Failure

mode here describes the type of failure and its location within the system, the

mechanism describes the way in which it failed, while the root cause descri-

bes the underlying reason for the failure (Peter Tavner 2012). In other words,

the failure mode describes what failed, the failure mechanism describes how it

occurred, while the root cause describes why it failed. An example of this is

shown in figure 2.2. Here, the failure mode is main shaft failure. Possible me-

chanisms are through fracture or deformation, with the root causes of each of

these failure mechanisms given below, e.g. high cycle fatigue or corrosion for

shaft fracture.

Once this information has been collected, RCM decides on a suitable main-

tenance strategy for each component based on a prescribed list of evaluation

steps. As can be seen in Figure 2.1, RCM makes a distinction between two
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Main Shaft
Failure

Fracture Deformation

High Cycle
FatigueCorrosion

Low cycle
fatigue or
overload

Misalignment

Failure Mode

Failure Mechanism

Root Cause

Figure 2.2: Relationship between a failure mode and its possible mechanisms and
causes for a wind turbine shaft. This example taken from (Peter Tavner 2012)

broad types of maintenance strategy - corrective maintenance, as detailed pre-

viously, and proactive maintenance. Proactive maintenance is so-called as it

aims to proactively service an asset to avoid unscheduled downtime. This furt-

her breaks down into preventive maintenance (PM) and predictive maintenance
(PdM), described below.

2.1.3 Preventive Maintenance

PM represents the most straightforward proactive approach, so-called as it in-

volves servicing an asset in order to prevent unscheduled downtime. Mainte-

nance is performed on a periodic basis at a pre-determined interval, usually

estimated from the historic distribution of λ for various components. The in-

terval is selected so as to maximise the predicted MTBFs while minimising the

likelihood of unplanned downtime.

This can be a very efficient strategy for components that wear out in a very

predictable and repeatable pattern. However, for components that degrade in

a stochastic way based on a number of random uncontrolled variables, mainte-

nance tasks can be performed more frequently than absolutely necessary. While
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this reduces the severity of failures and maintenance tasks compared to cor-

rective maintenance strategies, the component life may not be fully exhausted

when maintenance occurs, meaning that in a majority of cases the asset has

been brought off-line unnecessarily (García Márquez et al. 2012). Figure 2.3

shows this clearly, where PM leads to twice as many servicings as an optimal

condition-based predictive strategy (discussed below).

Time

Eq
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t
C
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di
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Potential
Failure

Functional
Failure

PF
interval

Maintenance Type
Corrective
Preventive
Predictive

Figure 2.3: Comparison of the frequency with which machinery must be brought
off-line for different maintenance types. Also demonstrated is the PF-interval, sho-
wing equipment condition deteriorating through the point where it can be notice-
ably detected (the potential failure) to when the functional failure occurs

2.1.4 Predictive Maintenance and Condition Monitoring Sys-

tems

PdM aims to increase maintenance efficiency by adaptively determining when

maintenance is to be carried out. Maintenance is performed only when ne-

cessary, most commonly through the use of condition monitoring (CM) techni-

ques on various components. The use of CM techniques to implement a PdM

strategy is also known as condition-based maintenance (CBM). CM involves

continuously monitoring the health or condition of a piece of equipment, and

detecting incipient failures within some window before they occur, known as

the PF-interval (Kandukuri et al. 2016). This interval describes equipment con-
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dition continuously deteriorating through a point known as potential failure all

the way to functional failure. Potential failure is defined as an indication that

a functional failure is in the process of occurring or is about to occur, while

functional failure is defined as the point at which the system condition has

deteriorated to where it is not able to carry out its function at a desired le-

vel of performance, i.e. the fault has occurred. The condition indicator used

varies widely depending on the domain, but examples include particle counts

in lubricating oil, or the measured error of some process variable from known

acceptable bounds of normal operation. Figure 2.3 shows this clearly, whereby

a potential failure is detected using CM, and maintenance is carried out. This

figure also shows the benefits of using such a strategy compared to PM and

corrective maintenance.

2.1.4.1 CMS Functionality

Although the ultimate goal of CBM is to detect a potential failure within the

PF-interval with enough time to spare for maintenance to be carried out before

functional failure occurs, CM systems (CMSs) generally have varying levels of

functionality. These levels are broadly and loosely defined depending on con-

text, but generally fall into one of the following categories: fault detection, fault
diagnosis and fault prognosis.

Fault detection is the simplest of these, monitoring whether something has gone

wrong in a system or not. At a whole-system level, this can be as straightforward

as communicating whether or not a piece of equipment is operational. It also

includes instances where a fault has occurred in a component, but the system

continues to operate - in these instances fault detection is important so that

the operator may shut down the asset before further damage occurs in related

components or assemblies.

Fault diagnosis, meanwhile, communicates what has gone wrong in the system

- the location of the fault at a sub-system or component level is established.

Hence, a suitable maintenance task may be chosen and information about the

fault relayed to the maintenance team. Fault diagnosis may also be able to

determine the failure mechanism or root cause of the fault, providing even

more valuable information so that appropriate action can be taken.

Prognostics, or predictive diagnostics, is the ultimate goal of CBM. It deals with

predicting faults before they occur so that maintenance decisions can be taken
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ahead of time. It aims to detect a potential failure, and, if possible, provide ope-

rators with an estimate of the remaining useful life (RUL) for a component, as

well as a confidence estimate for how accurate this prediction is. The prognos-

tic horizon (PH) is a metric used to evaluate a prognostic technique, defined

as the maximum time in advance of failure for which the RUL estimate for a

particular technique has shown to be within acceptable bounds of accuracy. An

example of this is shown in figure 2.4, where two algorithms’ historical RUL

predictions are evaluated against a ground truth. Here, algorithm 1 has a PH

of 40 days, while algorithm 2 has a PH of 30 days.

An accurate RUL estimate can directly help with maintenance planning and

logistics - of particular importance to offshore maintenance. However, it is also

a much more complex procedure and inherently contains uncertainty (Saxena

et al. 2008). Even with prognostics functionality, fault detection and diagnostics

are still important - if prognostics fails for whatever reason, then the posterior

event analysis is still necessary.
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Figure 2.4: PH of two different CM techniques

2.2 Data Sources

Modern wind turbines have a number of sources of data which are used to mo-

nitor the turbine in terms of performance, availability and fault detection. These
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range in function from simple maintenance logs generated by repair technici-

ans, to highly granular CMS signals. This section is intended to give a high-level

overview of their functionality relevant to turbine maintenance strategies.

2.2.1 SCADA Data

The turbine’s control system, usually centred around an industrial programma-

ble logic controller (PLC), ensures that the turbine operates in a safe, stable and

efficient manner. This controller can be interfaced through the turbine’s SCADA

system. SCADA systems originated in the oil and gas industry to provide an

input/output communication system for various sensors and actuators. This

meant that processes could be altered on-the-fly, and live information about sy-

stem status could be communicated. In wind turbines, the majority of SCADA

points provide information about the system rather than acting as manual in-

puts, with the exception of some manual overrides for safety, testing and main-

tenance (Peter Tavner 2012). This data is used to give operators and OEMs a

high-level overview of performance at a turbine-, farm-, or fleet-level. In re-

cent years, however, leveraging this data for more advanced CM has become an

ongoing area of research, and will be discussed extensively in section 2.8.

SCADA data is typically split into three parts: operational data (usually recor-

ded at 10-minute intervals), availability data (commonly recorded at 10-minute

intervals to match the SCADA data), and alarms data (recorded instantaneously

when alarms or information or warning messages are generated). Note that

in much of the literature the term "SCADA data" refers specifically to the 10-

minute operational data, with alarms and availability data used for the other

parts. This will also be the case in this thesis, with the caveat that where it is

not clear from the context, the specific type of SCADA data will be explicitly

stated.

2.2.1.1 Operational Data

SCADA operational data is usually recorded continuously at 10-minute intervals

(Tautz-Weinert & Watson 2017c). This can take the form of the average, mini-

mum, maximum or standard deviation of live values recorded by the controller

in the previous 10-minute period (Leahy, Hu, Konstantakopoulos, Spanos, Ago-

gino & O’Sullivan 2018). Signals such as the turbine power output, wind speed,
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Table 2.1: 10 Minute Operational Data

TimeStamp Wind Wind Wind Power Ambient Bearing
Speed Speed Speed Temp Temp
(avg.) (max.) (min.) (avg.) (avg.) (avg.)
m/s m/s m/s kW °C °C

09/06/2014 14:10:00 5.8 7.4 4.1 367 17.9 25.0
09/06/2014 14:20:00 5.7 7.1 4.1 378 17.5 24.6
09/06/2014 14:30:00 5.6 6.5 4.5 384 17.6 25.1
09/06/2014 14:40:00 5.8 7.5 3.9 426 18.1 23.7

temperatures of various components, electrical signals and environmental con-

ditions such as anemometer-measured wind speed and ambient temperature

can be recorded. Different turbine manufacturers record different signals, and

the systems can vary a lot from OEM to OEM in terms of the number and type

of points recorded, and in some cases the resolution of the data. A sample of

some typical turbine SCADA data is provided in table 2.1.

2.2.1.2 Availability Data

Availability is a measure of the total time a system is operational and available

to perform its function as intended. In the field of wind energy, it has a specific

meaning and, as will be explained in section 2.3, forms an important part of a

turbine’s warranty or service contract. Various OEMs report availability data in

different ways. It can usually be accessed in some capacity by the SCADA system

and communicates the proportion of time the turbine was operating in a par-

ticular availability "category" in a given period, e.g. in 10-minute time stamps

to match the SCADA operational data. These categories cover broad situations

where the turbine is generating, or available but not generating due to weather

or grid-side events, or unavailable due to repairs or scheduled maintenance.

2.2.1.3 Alarm System Data

Turbine control systems include a number of sensors to monitor certain opera-

ting parameters such as temperatures, speeds, fluid levels, voltages, etc., and

ensure the turbine is operating correctly. The controller attempts to keep the

turbine within acceptable bounds of operation for many of these parameters,

and warning or fault alarms and information messages (sometimes collectively
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Table 2.2: Sample alarm system data from a given day

ts te Code Description Category Severity

02:13:38 07:56:14 a41 Normal Operation No Fault Information
07:56:14 08:37:32 a91 Low wind cut out Weather Information
08:37:32 23:44:02 a22 Normal Operation No Fault Information

referred to as "status messages") are generated to provide information to ope-

rators about the current turbine state. Turbine alarm systems vary between

manufacturers but OEMs generally attribute at least three different levels of

severity to these alarms and messages:

• Information messages are generally to communicate changes in certain

operating conditions, e.g. when the wind speed is too low for genera-

tion, a change in grid conditions, or a manual switch has been engaged.

• Warning alarms, on the other hand, are generated when the control sy-

stem detects operating conditions or control variables that veer close to

the limits of certain acceptable bounds

• Fault alarms are generated when these thresholds are exceeded

Information and warning alarms normally do not have much of a direct effect

on turbine operation, although information alarms can be used to communicate

that turbine production has been curtailed. Fault alarms generally cause the

turbine to shut down, and some kind of intervention, as detailed in section 2.5,

is needed before it comes back on-line. Instances of individual alarms when

they are triggered have the following characteristics: start time, ts, end time,

te, code and description. Additionally, most alarm systems have some variation

of an OEM-assigned category and severity. The severity refers to whether the

alarm is an information, warning or fault alarm.

Alarms and messages are generated with instantaneous time-stamps, and cover

many aspects of turbine operation. They usually give a description of where in

the turbine the alarm originated, and the severity of the alarm (e.g. warning

message, fault, information message, etc.). They can be used for limited CM,

as will be discussed in section 2.7. There are also issues with the volume of

alarms generated by turbines, and these will be detailed, along with a proposed

solution, in chapter 6. A sample of turbine alarm system data is provided in

table 2.2.
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2.2.2 Maintenance Logs and Work Orders

Different operators, owners, OEMs and maintenance contractors record main-

tenance call-outs and repair activity in different ways. These can range from

hand-written forms which describe any works carried out in an unstructured

format, to detailed digital work orders input to a maintenance management

system where work completed and materials consumed can be selected from a

prescribed list. Depending on the quality of the data, these maintenance logs

can be used to root-cause faults, and provide reliability information for compo-

nents.

2.2.3 CMS Data

The term CMS when used in the context of the wind industry almost always re-

fers to dedicated third-party CMSs which are independent of the turbine SCADA

and alarms data. These originally appeared on turbines in the 1990s under

pressure from certification bodies and are usually fitted to specific high-value

components, such as the main bearing, gearbox or blades. They consist of vi-

bration, oil particulate, or electrical sensors and strain gauges, and measure

signals at a very high frequency, typically in the kHz range.

The CMS data stream is separate to the SCADA data, and in many cases is opera-

ted by the third party CMS supplier due to the sophisticated analyses required

in interpreting signals. Some SCADA systems interface with the CMS so that

alarms generated by the CMS sensors may also show up in the alarm system,

but apart from this the two systems are largely separate entities providing diffe-

rent levels of CM. Although similar CMSs applied to traditional rotating machi-

nes such as steam turbines or aircraft engines are ubiquitous in their respective

industries, the same successes have not yet been emulated in the wind industry,

as will be discussed in section 2.7.2.

2.3 Reliability vs. Availability

As stated in section 2.1, reliability is the probability that a system or com-

ponent will work as intended over a specified period of time. This is diffe-

rent to availability, which, in the field of wind energy, generally refers to the
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amount of time that a turbine is available to produce power from a technical

standpoint, should the grid and wind conditions be within its design specifica-

tion. This means that times when the turbine was not operating due to low

or high wind speed, or noise-, grid- or shadow-related issues are still counted

as "available", while times when it was down due to faults, repairs or routine

maintenance/upgrades, are counted as "unavailable". Production-based availa-

bility is now gaining traction within the industry, where availability is measu-

red in terms of missed energy production rather than missed generating-time

(Peter Tavner 2012, Conroy et al. 2011). The different operating categories

used to calculate availability can be operator-specific, or conform to standards

such as IEC TS 6400-26-1 for time-based availability, or IEC TS 6400-26-2 for

production-based availability (International Electrotechnical Commission (IEC)

2010).

A certain contractual availability is usually guaranteed by the OEM for a certain

period at the start of a wind farm’s operation, known as the warranty period.

The exact specifics of this contract, including the equation used to calculate

contractual availability and the period that the warranty covers, will vary from

project to project according to owner and operator requirements. This "con-

tractual" availability could also have "carve outs" so that specific allowances of

repair-related or any other type of down-time still count as available (DNV GL

2017). In this thesis, availability refers to "technical" availability, where no such

extra allowances are counted.

While turbine reliability depends on the construction of the turbine’s compo-

nents and is predictable (similar components will have similar failure rates,

as will be seen), availability depends not only on reliability, but also on tur-

bine maintenance strategy and location/access logistics (Spinato et al. 2009).

Hence, there is a strong need to optimise maintenance strategy to maximise

availability.

Onshore wind turbines have in recent years become highly reliable machines,

with availabilities of upwards of 98%. This high availability is in part due to

the PM strategies which have been adopted by OEMs over the years, though

in many cases there is scope to raise this figure even higher by adopting more

advanced maintenance strategies (van Kuik et al. 2016). Furthermore, as will

be discussed in section 2.6, these strategies do not lend themselves as well

to offshore installations (Ribrant & Bertling 2007, Peter Tavner 2012), where

availabilities are much lower, in the region of 84% - 93% (Maples et al. 2013,
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Stehly et al. 2016).

2.4 Wind Turbine Taxonomies

As described in Section 2.1.2, RCM requires that a standardised taxonomy be

built for an asset, though building a taxonomy is good practice for effective

maintenance in general, and not just specific to RCM. Taxonomy in this instance

refers to how parts of the turbine are broken down into their various assemblies

and component parts. Broadly, this means applying a common OEM-agnostic

nomenclature to major parts such as the generator or gearbox, and the indi-

vidual components that make up these systems. One of the most obvious ad-

vantages of employing a system like this is that it allows operators to view and

compare the failure rates and reliabilities of the assemblies of different turbine

models within their fleet. The major assemblies of a wind turbine are shown in

figure 2.5.

Figure 2.5: Structure of a modern wind turbine, showing major assemblies: (1)
Blades; (2) hub and pitch mechanism; (3) main bearing; (4) gearbox; (5) gene-
rator; (6) yaw drive; (7) tower. Image courtesy of Nordex SE

In comparison to conventional fossil fuel generation technologies, standardi-

sed taxonomies for wind energy were developed relatively recently. Examples

include a taxonomy developed by Sandia Laboratories for collecting reliability
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information on the US fleet (Hill et al. 2009), and another developed by VTT

for similar purposes in Finland (Stenberg 2011). Two of the most widely used

taxonomies are the Reference Designation System for Power Plants (RDS-PP)

standard and the ReliaWind taxonomy. The RDS-PP taxonomy, developed by

VGB PowerTech e.V. (VGB PowerTech 2014), was directly adapted from similar

power industry taxonomies and designed to be consistent with designations of

other power system types. The EU FP7-funded ReliaWind project developed its

own recommended taxonomy (Wilkinson et al. 2011). This taxonomy adopts

the following nomenclature:

• System, i.e. the wind turbine

• Sub-system, e.g. rotor & blades

• Assembly, e.g. pitch system within the rotor & blades module

• Sub-Assembly, e.g. pitch drive within the pitch system

• Component, e.g. a motor or bearing within the pitch drive

This taxonomy is openly available. However, it was based on turbines which

were manufactured before 2008. Turbine designs have changed dramatically

since then, with larger, higher capacity turbines now the norm (U.S. Department

of Energy Office of Energy Efficiency and Renewable Energy 2017, WindEurope

2018). Reder et. al address this in their reliability study by proposing a slig-

htly updated version of the ReliaWind taxonomy which is better suited to more

modern turbines (Reder et al. 2016). The Reder et. al taxonomy will be used

in this thesis for referencing turbine parts and faults, and is found in full in

Appendix A.

2.5 Definition of Failure

As will be seen, serious failures in wind turbines are relatively rare and usually

concern a major component such as the blades, generator or gearbox. As Tavner

states, more often than not, unplanned stoppages are initiated by the controller

after detecting an operating condition that is outside of normal/safe bounds,

rather than due to serious component malfunction (Peter Tavner 2012). This

can be due to an over-temperature, over-speed, current surge, or similar, and

causes the controller to disconnect the turbine from the grid, put the blades

into emergency feather condition and bring the turbine to a full stop. Once the
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turbine has been shut down in this way, one of the following must happen for

it to be brought back on-line (in order of severity):

1. an automatic restart initiated by the controller;

2. a manual restart initiated manually from a remote control centre;

3. a manual restart initiated by an on-site technician after a field visit; or,

4. a repair operation initiated after a field visit followed by an on-site manual

restart

These stoppages make up the vast majority of wind turbine faults, so that the

"failure rates" discussed in the literature can be better thought of as "unplanned

stoppage rates". However, in order to distinguish between simple controller-

initiated automatic resets and more serious faults where there was some physi-

cal repair needed in order to get the turbine running again, various reliability

studies apply different further criteria within this definition. The specific cri-

teria used largely depend on the type and quality of data available. This data

largely comes from SCADA alarm and operational data, work orders, and sum-

mary data from O&M reports. These data sources are largely discrete and in

many cases are not designed to be mapped to a standardised taxonomy for reli-

ability analysis, which leads to issues with the treatment of non-uniform sources

of data (Wilkinson et al. 2011, van Kuik et al. 2016, Reder et al. 2016, Tautz-

Weinert & Watson 2017a). This is an issue that will be discussed at length in

chapter 4. Significant data processing is required, and, depending on the data

available, different studies tackle this in different ways. Because of this, dif-

ferent studies have different definitions of what constitutes a "failure" in the

data.

2.6 Wind Turbine Reliability and Failure Rates

Wind turbines are highly autonomous robotic devices, so they are designed

to be highly reliable. However, unlike the oil and gas industry, which has stan-

dard ISO 14224:2016, there is no universal maintenance or reliability reporting

standard for the wind industry (ISO 2016). This, along with the commercial

sensitivity of such data, meant that for a long time there were few publicly

available sources of reliability data for wind turbines, so the actual failure rates

of various assemblies and components were difficult to obtain. As a result, the
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knowledge of component reliability was fragmentary and sometimes anecdo-

tal, even among operators and professionals in the industry (Spinato 2008).

However, there are now a number of different studies spanning different time

periods, turbine designs, and turbine ages.

Although different reliability studies use different definitions of failure, and con-

cern different types of turbines, it is still possible to get a general understanding

of the assemblies or components with the highest failure rates and down time.

This is important in order to understand the motivation for improving main-

tenance strategies, and see where these strategies can be targeted. It should

be noted here that failure rate in most cases refers to failures/turbine/year.

With that in mind, a number of different reliability studies are discussed in this

section.

2.6.1 Early Reliability Studies

One of the earliest data sources for reliability studies was the WMEP database

in Germany. This covered a period of 15 years from 1989-2006, with a database

of just under 1,500 turbines (Faulstich et al. 2008). Analysis of this database is

found in (Hahn et al. 2007, Faulstich et al. 2011). Meanwhile, the WindStats

databases, comprising of German (WSDK) and Danish (WSD) turbines, and the

LWK database, also containing German turbines, are analysed in (Spinato et al.

2009). This combined set of data had over 5200 turbines covering a period

of 13 years from 1993-2006. A similar analysis performed on 750 Swedish

turbines from 1997-2005 is found in (Ribrant & Bertling 2007).

These studies largely relied on manually entered information from standardi-

sed reports which were recorded after each routine maintenance or repair vi-

sit. In the studies of WMEP, LWK and WindStats databases, the data came

from paper and digital forms which were manually filled out by maintenance

technicians. This information was voluntarily supplied by turbine operators

and maintenance contractors, and failures were defined as instances where an

unscheduled maintenance call-out to the site was required, i.e. after an on-site

manual restart, or repair followed by a restart (Spinato et al. 2009, Faulstich

et al. 2011). The Swedish database also used a manual reporting format col-

lected in a similar manner, and in the analysis a failure is defined as when a

repair or replacement has been carried out on a turbine (Ribrant & Bertling

2007). In this way, the Swedish study used a narrower definition of failure.
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The number of turbines in these studies and the long period of time over which

they occurred make them very valuable - the trends which can be drawn on

turbines which have been operating for more than 10 years is important as data

on turbines which are nearing the end of their supposed 20-year lifespan is not

widely available. However, the turbines represented are all older models which

are generally much smaller than their modern counterparts, with some being

as small as 30 kW in the case of the WMEP study, and generally being less than

1 MW. As well as this, many of the turbines in the databases are older stall-

regulated, fixed-speed designs. Because their configuration is quite different

to modern turbines, the specific failure rates of individual assemblies is not

too relevant, but the relative failure rate trends over age, size and geographic

location are valuable.

All surveys showed that larger turbines were slightly less reliable than smaller
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ones. The WMEP survey showed that the availability of turbines smaller than

500 kW was 98.5%, whereas the availability of turbines ≥ 1 MW was lower, at

98.4%. The study by Spinato et. al also showed that failure rates of turbines

≥ 1 MW of 2.4 to 3.4 failures per year, while smaller sub 500 kW turbines had

failure rates of between 1.1 and 1.8 failures per year. This is to be expected, as

larger turbines are inherently more complex machines.

All surveys also showed that turbines generally followed the "bathtub curve" as

they aged. This is a theoretical function which shows a high failure rate early

on in the operating life of a system, before it decreases and levels off for a

period, and finally increases again as the system nears the end of its operating

life-cycle. The WMEP survey tracked turbines in various years of operation and

showed that although most assemblies loosely followed this trend, the electrical

system clearly had more frequent failures as the turbines aged.

Interestingly, all of these populations showed overall increasing reliability with

time. Figure 2.6 shows the failure rates by year of the turbines in each of

the surveys. Despite larger turbines failing more frequently than smaller ones,

turbines in general are becoming more reliable. This is likely down to more

mature designs, and as Tavner notes, possibly due to newer wind farms being

larger, and hence having a higher concentration of parts, personnel and tools

close to the wind farm site.

2.6.2 ReliaWind

The EU-funded ReliaWind project aimed to further progress information on

wind turbine reliabilities, resulting in a comprehensive study for more modern

wind turbines (manufactured between 2006-2008 and at least 850 kW). Data

was collected at a more granular level in terms of the reliabilities of specific

sub-assemblies and components (Wilkinson et al. 2011). The project made a

number of recommendations in terms of failure data collection, including map-

ping failures to a standardised taxonomy.

Due to being more modern wind turbines, there were more data sources avai-

lable to the authors. A combination of SCADA operational and alarm data and

some maintenance reports were used to build the database. Here, a failure is

defined as an unplanned stoppage which lasts one hour or more and needed at

least a manual restart to return to operation (Wilkinson et al. 2011). Different
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failure severities measuring 1-4 were attributed to each incident with 1 being a

manual restart, and 4 being a major replacement.

The results of this study can be seen in figure 2.7. This shows the normali-

sed failure rate for each assembly, broken down by the ReliaWind taxonomy.

As can be seen, the most commonly failing assemblies were the pitch system,

frequency converter, yaw system, generator and gearbox. The share of down-

times was broadly similar to this. The overall failure rate was roughly 2.67

failures/turbine/year. This is higher than more recent studies, but it should be

noted that the definition of failure here included maintenance call-outs which

resulted in a simple a manual restart.
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Figure 2.7: Failure rates of assemblies of turbines in the ReliaWind database, re-
produced by permission of the Institute of Engineering and Technology from (Peter
Tavner 2012). Data from (Wilkinson et al. 2011)

2.6.3 Reder et. al

Reder et. al (Reder et al. 2016) did a similar analysis to the ReliaWind study, but

had a larger database and used a more modern taxonomy applicable to more

modern turbines. Three years of data from turbines from a range of OEMs

were analysed. The data here was taken from detailed work order databases by

OEMs, so granular information was available. A failure was defined as any stop

due to component failure that needed replacement and repair, i.e. automatic

and manual restarts where no further action were taken are not included. The

study comprised of over 4300 turbines, split according to their size and drive

train configuration. There were roughly 2270 doubly-fed induction generator
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2.6 Wind Turbine Reliability and Failure Rates

(DFIG) turbines over ≥ 1 MW, and 215 direct drive (DD) turbines comprising

between 300 kW and 3 MW.

Figure 2.8 shows the share of overall failure rate and downtime of each as-

sembly across the DFIG turbines ≥ 1 MW. As can be seen, the most commonly

failing components are the gearbox, controller and communications system,

pitch system, cooling system, and power protection unit. The spread of down-

times here was quite different, with the gearbox, generator, blades and pitch

system being by far the biggest contributors. This shows that the share of do-

wntime for the gearbox, generator and blades is very high relative to the ab-

solute number of failures, implying that when these systems fail, they tend to

be more serious failures. In total, the failure rate for these turbines was .52

failures/turbine/year, with 112.67 hours of downtime/failure, or 44.51 hours

of downtime/turbine/year. This is much lower than the ReliaWind study, but it

should be noted that this may be because of the less stringent definition of fai-

lure that that study used. In general, findings were consistent with ReliaWind,

with some small differences, for example the ReliaWind population had a much

higher share of frequency converter and yaw system faults.

The spread of failures in the DD turbines was similar, but a higher share of

the failures were attributable to the generator and electronic systems, with no

failures in the gearbox due to the absence of this assembly. This is consistent

with findings in (Carroll et al. 2015), as will be seen in section 2.6.4. Overall,

there were .19 failures/turbine/year, with 34.98 hours of downtime/failure.

This lower rate of failure may be because the direct drive turbines were as small

as 300 kW, and, as was seen previously, smaller turbines have lower failure rates

in general.

2.6.4 Carroll et. al - Drivetrains

Carroll et. al performed an extensive study of failure rates of the generator

and converter for two turbine configurations. These are DFIG-configured turbi-

nes, with a partially rated converter (PRC), and permanent magnet generator

(PMG)-configured DD turbines with a fully rated converter (FRC). The turbines

represent 2,222 modern onshore turbines, built in the past five years. They are

between 1.5 and 2.5 MW, with rotor diameters between 80 and 100 m.

The data comes from very detailed work order and inventory databases. A fai-

lure is defined as any unscheduled visit to a turbine where any consumables
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Figure 2.8: Failure rates of assemblies of geared onshore turbines ≥ 1 MW, reprin-
ted from (Reder et al. 2016)

are used or parts replaced. Failures are also broken down into severity cate-

gories depending on the material cost of the repair or replacement (<e1000

for minor repair, e1000 – e10,000 for major repair and ≥ e10,000 for major

replacement). Downtime for each of these failures was not available.

It was found that the DFIG failed slightly more than a PMG, but the massive

failure rate of the FRC compared to the PRC meant that, overall, the failure

rates of the PMG turbines’ generator and converter (.669) was almost three

times higher than for the DFIG turbines (.229). It is not known what the failure

rates for other components were. Failure rates generally decreased over the

first few years of operation of the turbines in the study, which is consistent with

other studies.

Of particular note in this study is the cost breakdown, seen in figure 2.9. Ma-

jor replacements of both configurations were very low - with just .014 and

Figure 2.9: Combined generator and converter failure rate for DFIG and PMG-
configured turbines, sorted according to cost, reprinted from (Carroll et al. 2015)
© 2015 IEEE
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2.6 Wind Turbine Reliability and Failure Rates

.003 major replacements/turbine/year for the PMG and DFIG configurations,

respectively. This represented 2% and 1% of all faults for the respective confi-

gurations. Major repairs, meanwhile, accounted for 21% and 29% of failures,

with the remaining 77% and 70% of failures being attributed to minor repairs.

2.6.5 Carroll et. al - Offshore

Carroll et. al also analysed the failure data of 350 modern offshore turbines

from a number of wind farms throughout Europe in (Carroll et al. 2016). All

turbines were between 3 and 10 years old and between 2 and 4 MW. Rotor di-

ameters were between 80 and 120 m and 68% of the population was ≤ 5 years

old. Similar to the analysis by Carroll et. al covered in section 2.6.4, the data

came from a very detailed work order and maintenance inventory and costs da-

tabase, so that highly granular information was available. The same definition

of failure and different severity categories were also used, which depend on

the material cost of the repair or replacement (i.e. do not count personnel or

logistic costs, which can be very high for offshore turbines). Once again, down

time was not available.

The results of this can be seen in figure 2.10, which shows the failure rate by

assembly and also by severity category. As can be seen, the biggest contributor

overall is the pitch and hydraulics system. This system also showed a marked

increase in failure rate per year of operation for the turbines in the population.

The next biggest contributor is "other components", which include ladders, ha-

tches, lifts and door and nacelle seals. After this is the generator, gearbox and

blades. Apart from the "other components", this is broadly consistent with other

studies.

Where this study deviates from others however, is in the absolute failure rate.

The failure rates of the turbines in the population ranged from 4 to 16 fai-

lures/turbine/year. This is much higher than the previously discussed studies

which use a similar definition of a failure. The authors of this study conclude

that some of this is down to the higher wind speeds seen offshore (consistent

with findings in (Peter Tavner 2012)), but this cannot account for all of the

increase. They posit that it may also be to do with access - onshore turbines

can be accessed for routine PM much more easily and frequently. However, the

authors also note that even accounting for these issues, there is still a marked

difference in reliabilities. They conclude it may be to do with the fact that offs-
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hore turbines are a newer technology operating in harsher environments, and

that there are factors unaccounted for which are driving higher failure rates

offshore. This is also consistent with other studies, and is an issue which clearly

needs to be addressed (Peter Tavner 2012, Maples et al. 2013).
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Figure 2.10: Failure rates of assemblies of offshore turbines, reprinted from (Car-
roll et al. 2016)

Once again, this study shows that, overall, the share of major repairs and re-

placements is quite low compared to minor repairs. However, as is consistent

with the ReliaWind and Reder et. al studies, it seems that even though systems

such as the gearbox and generator had less of a share of overall faults, their

relative share of more serious faults was much higher. This is further reinforced

in figures 2.11 and 2.12, which show the average repair cost and repair time

for each category of failure in each of the assemblies. As can be seen, major

replacements of the generator cost on average e230,000. This only includes

the material cost; costs for offshore access and logistics are much higher than

onshore, as will be seen in section 2.7. The MTTR (excluding LDT) for each

category of failure was also investigated, and again major replacements in the

hub, blades and gearbox showed that these were very significant maintenance

operations taking a long time to complete.

2.6.6 Reliability Studies Conclusions

All of the above studies show similar trends in the most commonly failing com-

ponents (for both on- and offshore), and absolute average failure rates (for
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Figure 2.12: The average time to repair different categories of failure in each of
the assemblies, reprinted from (Carroll et al. 2016)

onshore). What should be highlighted is that the downtime/repair costs as-

sociated with failures in major components such as the generator, gearbox or

blades constitute a larger share of the downtime/repair costs relative to their

respective failure rates. This implies that when these components fail, the fai-

lures are severe. This not only has implications for lost revenue, but also the

materials cost for replacing these systems, as highlighted in (Carroll et al. 2015,

2016). This is further highlighted in the WMEP study, where it was found that

5% of fault events contributed to 75% of the downtime (Faulstich et al. 2011).

Also of note is that the turbine pitch system contributes significantly to both

down time and number of failures across all studies. This is a system which has

not been a target of traditional CMSs, unlike the blades or drive-train.
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Generally speaking, larger, more modern turbines see higher failure rates than

older < 1 MW turbines due to their inherently more complex nature. However,

the downtime per failure on newer turbines is much lower (Faulstich et al.

2008). As well as this, turbine failure rates seem to loosely follow the "bath tub

curve", whereby failures are more frequent in early years of operation just after

commissioning, before decreasing and levelling out for a number of years and

then increasing again as components begin to age.

It is also important to distinguish between onshore and offshore failures. The

reliability of modern offshore turbines was shown to be much lower than that

of their onshore counterparts. Possible explanations for this are that offshore

sites have higher wind speeds and harsher conditions and that these difficulties

with access mean PM may not happen as frequently. However, being a relatively

new technology, there may also be other, unaccounted for, factors which affect

offshore components more than their onshore counterparts. As will be seen

in section 2.7, the reduced reliability of components is compounded by access

issues when performing corrective maintenance, which considerably reduces

availability.

2.7 Wind Turbine Maintenance in Practice

During the warranty period, O&M is shared by the owner/operator and the

OEM, with the OEM usually overseeing the main share of maintenance. After

this period, the operator may choose to continue a service contract with the

OEM, or may wish to impose their own asset management strategy, and use

in-house or sub-contracted maintenance teams (Peter Tavner 2012). The spe-

cific maintenance strategy used will have a big impact on the long-term life

and availability of the turbines; as stated previously, while reliability is depen-

dent on component design, engineering and construction, turbine availability

is dependent on the base reliability of the components coupled with a good

maintenance strategy in order to minimise down time (Spinato et al. 2009).

This section will demonstrate current maintenance practices in the wind indu-

stry as they fit into some of the broad strategies outlined in section 2.1. It will be

divided into two parts - the elements of the basic strategy employed by nearly

all operators, and some more advanced CBM methods using dedicated sensors.

These cover the most common types of maintenance carried out by operators
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and OEMs and are the prevailing methods found in industry and the literature.

Although other more advanced methods may be in use commercially, due to

their proprietary and necessarily confidential nature they cannot be effectively

evaluated and will only be discussed in a limited fashion in this section. While

this section discusses maintenance from a high level, strategic point of view, a

robust review of the state-of-the-art techniques used in implementing some of

these strategies (specifically, CBM as it relates to fault detection, diagnosis and

prognosis based on SCADA data) will be given in section 2.8.

2.7.1 Basic Strategy

Almost universally, a preventive scheduled strategy is used to minimise unex-

pected failures, while corrective maintenance is performed when unexpected

faults do occur. CM is widely practised in a rudimentary form throughout the

wind industry; the turbine alarm system gives basic fault detection and diagno-

sis functionality, while most operators will also perform some high-level SCADA-

based performance monitoring to detect any obviously under-performing turbi-

nes in a farm or fleet.

2.7.1.1 Time-based Preventive Maintenance

All turbines undergo scheduled PM carried out on a periodic basis in order to

minimise unexpected failures, regardless of actual component condition (Link

et al. 2011). The maintenance intervals are based on the historical reliability of

various components as collected by OEMs, operators or industry groups. The

turbine is usually brought off-line while diagnostics take place, and any ne-

cessary repairs are performed. This includes minor routine activities such as

tightening and torquing of bolts or changing oil and filters. This intends to

avoid any more serious failure modes which could cause catastrophic damage

to the components. However, if major repairs or replacements are required, the

turbine may be down for a number of days while the logistics of access and

spare parts are organised, and the repairs performed (Walford 2006).

This preventive strategy is much cheaper than a run-to-failure model of cor-

rective maintenance - Igba et. al found that using this type of preventive stra-

tegy over a 10 year period can be more than 3 times cheaper than a purely

corrective strategy. They found PM carried out based on the historic reliability
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of the gearbox cost on average e110,000, while a corrective strategy over the

same period cost in the region of e420,000 (Igba et al. 2014).

2.7.1.2 Corrective Maintenance

Assuming 100% site accessibility and efficient logistics (i.e. parts and crew

availability), most onshore wind turbines achieve availabilities upwards of 98%

using the preventive strategy outlined above. However, unexpected failures still

do happen, and in these cases, corrective maintenance is employed. The most

common type of unexpected shut down is a brief stop initiated by the control

system after detecting some kind of potential fault. In these situations one of the

actions outlined in section 2.5 must be carried out, and in the majority of cases

result in a short shut-down followed by a remote reset without the need for an

actual site visit or repair. As was seen in section 2.6, however, major failures,

for example in the gearbox or generator, still do occur, and can be incredibly

costly. Meanwhile, commonly occurring but less serious faults, e.g. problems

with the pitch system, can contribute to extended periods of downtime.

The high availability of modern onshore plants is in part due to the very high

reliability of onshore components - these components are showing reliabilities

similar to components in other applications. Although this 98% may be further

increased through increasing component reliability, the increased component

cost may actually overall increase the LCOE (van Kuik et al. 2016). Meanwhile,

as will be seen, the availability of offshore plants is significantly lower due

to issues with access and logistics for faults which are comparatively simple

to repair when they occur onshore. Hence, in order to increase availability

both onshore and offshore, the focus should be put on improving the current

maintenance strategies employed and eliminating unexpected failures, moving

from a corrective to a purely proactive strategy.

2.7.1.3 CM by the Alarm System

The turbine alarm system can be thought of as a basic form of CMS, albeit one

with only limited fault detection and diagnosis, and no prognosis, functionality.

Since maintenance personnel do not normally have access to the turbine nacelle

during operation, the alarm system gives a high-level indication of whether the

turbine is operating normally or not. Some basic fault diagnosis functionality
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can also be given. For example, after the control system detects a potential

fault and generates alarms for which an automatic or manual remote reset will

not clear, the alarms can give an indication of the physical location or type of

the potential fault before an on-site visit. In these cases, it can be useful to

see if related alarms have been triggered over the previous weeks or months to

determine the type of fault which may have occurred.

In a similar vein, a turbine may experience a number of shut-down/remote

reset cycles over a period of days, weeks or months associated with a particular

alarm or group of alarms. In these situations, although an on-site visit is not

required to start up the turbine, the frequency of certain alarms may still be an

indication there is an underlying issue. In these cases a maintenance crew may

decide an on-site visit is necessary (Ribrant & Bertling 2007).

In both of these cases, particular types of alarms or sequences of alarms may

have been previously identified by experienced technicians or maintenance te-

ams through domain knowledge as being indicative of a particular type of fault.

But because they are not always indicative of a fault having taken place, alarm

systems do not provide full diagnostic capabilities, and the sheer volume of

alarms generated can make them hard to fully utilise (Qiu et al. 2012).

Certain operators or manufacturers may also have their own in-house solu-

tions for gaining more CM functionality from alarms and various informa-

tion/warning messages to give indications of future faults. Some techniques

present in the literature will be discussed in section 2.8. Some of the short

comings of turbine alarm systems and proposed ways to improve these will be

discussed in chapter 6.

2.7.1.4 SCADA-based Performance Monitoring

The final element that forms a part of the prevailing maintenance strategies is

performance monitoring through the SCADA operational data, which can also

be thought of as a limited form of CM. SCADA data is used by farm operators

to get a high-level overview of plant performance at a site level. If specific

turbines are noticeably under-performing in comparison to nearby turbines in a

given period, action can be taken to investigate and root-cause any issues. This

can include flagging with the OEM or maintenance contractor to investigate

further, or drilling down into the data to see if there are any other anomalies.

This performance monitoring usually includes looking at individual turbines’
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power curves on a monthly or weekly basis. In this way, if turbine performance

starts to deteriorate, it can be indicative of deteriorating health, and hence

shares some similarities to fault prognosis. However, performance deviation

can be due to any number of issues, perhaps not directly related to turbine

component health (e.g. incorrect noise or shadow settings), and hence in this

manner does not approach the functionality of a dedicated CMS. Some of the

techniques used will be discussed in section 2.8.

2.7.2 Dedicated CBM Strategy

Various investigations into turbine maintenance strategies, including RCM stu-

dies, have concluded that CBM is the optimal strategy for certain components

and assemblies (Nilsson & Bertling 2007, Kandukuri et al. 2016, Andrawus et al.

2006). A secondary benefit to fault prognosis through CBM is that it helps ope-

rators give more accurate production forecasts, which is useful information to

grid operators (Mc Garrigle & Leahy 2015). In many jurisdictions, electricity

markets have moved or are planning to move to a model which requires non-

dispatchable generators to give a forecast for their daily energy generation. For

example, in Ireland, the new Integrated Single Electricity Market will have this

requirement from 2018 (Eirgrid 2017).

There are a number of options open to operators which can enable a CBM stra-

tegy. These fit into two broad categories; "traditional" CMSs, which have seen

wide success in other industries and are typically based on vibration sensors,

and SCADA-based solutions, which have been developed in more recent times.

2.7.2.1 Traditional CMSs

As mentioned in section 2.2.3, more sophisticated on-line monitoring of turbi-

nes can be achieved through dedicated CMSs. These CMSs are usually supplied

by third parties, outside of turbine OEMs, who specialise in these systems, and

analysis and interpretation of the signals requires extensive domain expertise

(Yang et al. 2014). Due to this, the CMSs are often operated by the third par-

ties themselves. They can either be pre-fitted to turbines in partnership with

turbine OEMs, or retrofitted afterwards at extra cost. While these systems have

seen success in other industries such as marine propulsion and conventional ge-

neration, they are not yet ubiquitous in the wind industry (Walford 2006, Link
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et al. 2011).

There are a number of reasons for this. Wind turbine components in general are

quite reliable, and with costs upwards of e14,000 per turbine, installing a CMS

can take up a significant portion of a turbine’s annual maintenance budget; the

revenue stream from an individual turbine may be an order of magnitude lower

than where a CMS is applied in other industries (Yang et al. 2014, Sheng & Veers

2011). Because specialist knowledge is needed to interpret the data generated,

operators may need to rely on a service contract with the OEM or third party

to provide this analysis, which can incur further costs (Peter Tavner 2012).

Furthermore, due to the stochastic nature of the wind, and the fact that turbines

operate at much lower and variable speeds under a variety of conditions, the

signals are harder to interpret and have not seen the same successes as in other

industries (Yang et al. 2013). A previous NREL round-robin study provided

sixteen industry CMS providers with measured CM data from a gearbox which

had experienced a number of faults. Each of the industry partners performed

their own analysis, with results across the board indicating a number of missed

faults and false alarms, as seen in figure 2.13 (Sheng 2012). Nonetheless, CMSs

are still effective in many cases, and the techniques are continuously being

refined and have significant presence in the literature (Tchakoua et al. 2014,

García Márquez et al. 2012, Lu et al. 2009). However, this thesis will focus on

the application of SCADA-based CM due to some inherent advantages of such

an approach, detailed next.

Figure 2.13: Results of the NREL round robin gearbox CM study, reprinted from
(Sheng 2012)
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2.7.2.2 SCADA-based CMS

Advanced monitoring of SCADA or alarms data has seen some success in indu-

stry. These techniques largely rely on using artificial intelligence methods to

detect, diagnose or predict faults. Even without a full RUL estimate, the ability

to detect that a specific type of fault may be imminent has significant utility for

maintenance teams. The fact that these techniques leverage existing SCADA

data for CM, rather than installing a number of dedicated extra sensors, has a

number of advantages. First, SCADA data already covers all major components

in the turbine - the control system monitors sensors from all major assemblies,

including assemblies which are not usually targeted by traditional CMSs, such

as the pitch system. Hence a SCADA-based CMS potentially has wider coverage

than traditional CMSs. Related to this, the fact that SCADA-based CM does not

require the installation of additional sensors significantly reduces the up-front

capital cost of such a system. Finally, SCADA data is usually stored at a 5-

or 10-minute resolution, compared to the kHz+ frequency of traditional CMS

data. Hence, a SCADA-based CMS can significantly reduce data bandwidth and

transmission costs. While some of these more advanced methods are now be-

coming available to operators (Greenbyte AB 2017), the state-of-the-art as seen

in literature will be discussed in section 2.8.

2.7.3 A Note on Offshore Maintenance

While an onshore corrective maintenance operation, from the fault being flag-

ged to the repair being finished and the turbine operating again may be measu-

red in hours, for an equivalent fault offshore this can stretch to days (Richard-

son 2010). This is mainly due to issues with access; offshore repair operations

are highly sensitive to weather and sea conditions which greatly increases the

LDT (Feng et al. 2010). This also means that the downtime associated with

less severe faults is much higher than onshore; a simple on-site inspection and

manual reset can involve significant logistical planning compared to onshore,

increasing the share of the 5% of downtime being caused by 75% of faults in

the WMEP reliability study (Faulstich et al. 2008).

Transport costs for access to offshore turbines are also much higher than their

onshore counterparts. For example, transport for a maintenance crew can range

from e85/hr on relatively small vessels which are highly dependent on calm
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seas, to over e400/hr for larger vessels and e1200/hr for some types of he-

licopters (Peter Tavner 2012). This is anywhere from 1.5 to 25 times the cost

of an onshore maintenance activity (Richardson 2010). Furthermore, excluding

material costs, the complexity of major replacements of components such as the

gearbox offshore involves specialised vessels and cranes which further drive up

the cost (van Kuik et al. 2016).

In all, these issues have significant implications for availability of offshore tur-

bines. These availabilities, in the region of 84%-93%, are significantly lower

than the 98% seen onshore (Maples et al. 2013, Stehly et al. 2016). As seen

in section 2.6, the reliability of offshore components is much lower than on-

shore, but it is unclear how much of this is due to reduced accessibility for PM,

and how much is due to engineering design. What is clear, however, is that

offshore availability needs to be raised to have a competitive LCOE. Hence, cor-

rective maintenance must be minimised, and a clear CBM strategy will be key

in achieving this (Nilsson & Bertling 2007). An NREL study concluded that, as-

suming 50% of failures are detected within a sufficient PF-interval, the use of a

vibration-based CMS could increase offshore availability by 1.2% (Maples et al.

2013). This echoes conclusions drawn by the EU FP7-funded LEANWIND pro-

ject, which stated that the use of vibration-based CMS shows a clear cost benefit

for offshore wind (LEANWIND 2017). Both of these studies noted the limitati-

ons and costs of current vibration-based CMSs and that increased benefits could

be seen as technology matures.

2.8 SCADA-based CM and Fault Prediction Techni-

ques and Methods

As discussed in section 2.7, traditional CMSs have not seen as much success

in the wind industry compared to other industries, due to significant up front

costs and difficulties with the stochastic nature of wind generation. Turbine

SCADA systems, on the other hand, record a wide range of operational data

which has conventionally been used for high-level performance monitoring.

This has generated much research interest in recent years, as leveraging this

data can provide a very cheap alternative to a traditional CMS. Because the

data is typically at a low resolution, the infrastructure needed for transmitting

and processing is also much lower. Hence, if any level of CM can be provided
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by SCADA data, whether it fully captures the full functionality of a traditional

CMS or not, there is a clear cost benefit to its use. This section will provide an

overview of the current research landscape in using wind turbine SCADA data

to achieve the varying levels of CM functionality as described in section 2.1.4.1.

In most of the techniques discussed, 10-minute SCADA data is used, though

some techniques based on alarm system data are also presented.

2.8.1 Trending

A straightforward way of determining wind turbine health is to track the trends

of various parameters over time to see if any obvious change can be visually

observed. The thinking behind this is that any obvious change in a trend can be

indicative of an obvious change in the internal physical state of some turbine

component(s), and hence warrants further investigation to diagnose the source

of the change. In this way, basic trending is comparable to fault detection, but

not diagnosis or prognosis.

In its most basic form, trends can be visually observed by turbine operators,

who use domain knowledge and experience to detect performance deviations,

or diagnose faults. For example, diagnosing obvious changes in the shape of the

power curve over different periods of time can be indicative of control system

issues (Lindahl & Harman 2012). As mentioned previously, this is widely practi-

sed in industry. However, subtle changes in the shape can be hard to detect, so

a more analytical approach can yield better results.

One way of doing this is visually comparing values across turbines at the same

site. In (Wilkinson et al. 2014), the authors showed that comparing the on-line

temperature values of specific components across turbines can show deviations

from the norm. A time series of normalised temperature of a drivetrain compo-

nent of a test turbine was compared to the average of four control turbines. It

was shown that the temperature of the test turbine began to noticeably deviate

from the control turbines component temperature in the weeks leading up to

a fault in the drivetrain. However, it was noted that this method did not per-

form as well as methods which used physical or data-driven normal behaviour

models of the temperature.

Another approach is to use first principles equations to determine a physical re-

presentation of the system under normal conditions. Feng et al. derive equation

2.1 for representing the temperature rise across the gearbox compared to the
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Figure 2.14: Trend of gearbox oil temperature against normalised power output
for different months in advance of gearbox failure, reprinted from (Feng et al.
2011)

base nacelle temperature for different power outputs of the turbine (Feng et al.

2011).

∆T = Pout
1

kgear

( 1
ηgear

− 1) (2.1)

Where ∆T is the temperature rise, Pout is the power output of the turbine, ηgear

is the efficiency of the gear transmission, and kgear is a constant. Hence, because

the gear transmission efficiency should be constant, the temperature difference

should not change for a given power output under normal operating conditions.

Should the gear condition deteriorate, the efficiency should decrease, leading to

a proportional decrease in the gearbox oil temperature rise. The results of this

for measurements of 3, 6 and 9 months in advance of a known gearbox failure

are shown in figure 2.14. The temperatures are binned in 40 kW increments,

and the power output normalised. As can be seen, the results clearly show a

trend leading up to failure.

Being able to quantify how different a trend behaves from the norm allows ope-

rators to view the significance of performance deviation. In (Yang et al. 2013),

a metric, c, is developed for various trends to show the correlation of histo-
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ric to present data, which is then used to quantify performance deviation from

this historic norm. Curves of various trends, e.g. power output vs. generator

speed or torque vs. rotational speed were plotted for normal behaviour and

different stages of a fault, as measured by a test rig. An example of this can be

seen in figure 2.15, which also shows the c metric increasing as a winding fault

develops.

Figure 2.15: Power output vs. generator speed for various modes of operation,
showing a correlation metric, c, of the curves to nominal values (lower values
indicate higher correlation), reprinted from (Yang et al. 2013)

As shown, observing general trends in turbine data can show indications of

faults before they occur. These trends can be easy to implement, however the

disadvantage of such approaches is that they rely on human visual interpreta-

tion and domain knowledge. Further, specific trends related to different types

of faults must be tracked. This leads to a high workload for the operator, with

little scope for automatic alarm generation or automation.

2.8.2 Normal Behaviour Modelling

Normal behaviour modelling (NBM) relies on building a model of the system

under consideration during normal operation. The output being modelled can

be the turbine power output, component temperatures, or some linear or non-

linear combination of a number of parameters representing the system. Inputs
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to these models can be any number of SCADA parameters, including autoregres-

sive (AR) components, in which past values of the output are used as current

inputs. Models can be data-driven or physical models. Data-driven models use

historical values of inputs and outputs to model the system, whereas physical

models use governing equations or simulations derived from first principles.

One of the challenges when using data-driven NBMs is filtering historical data

so that only "fault-free" data is used. Different works use different approaches

to address this.

f̂(xi)

f(xi)

xi ŷi

yi

+

−

ei

Figure 2.16: NBM overview, showing the on-line inputs, xi, the actual system
and output, f(xi) and yi, the modelled system and output, f̂(xi) and ŷi, and the
residual or error signal, ei

Fault detection is performed by comparing real on-line values of the system

to expected modelled values, and quantifying the difference between the two.

A common way of doing this can be seen in figure 2.16, showing the on-line

inputs for sample i, xi, the actual system and output, f(xi) and yi, the modelled

system and output, f̂(xi) and ŷi, and the residual or error signal, ei.

Note that, for data-driven models, the historical data is split into a "training"

and "testing" set. The training set is used to build the model, while the test

set is used to evaluate its performance, and get an approximate measure of

real-world performance. If the same data is used to both train and test the

model, the model’s performance will be exaggerated in a problem known as

"over-fitting" (James et al. 2013).

Any significant residual between the model and actual output can be indicative

of a developing or materialised fault. A simplified example of this is shown in

figure 2.17. This shows a control chart, whereby the residual for each sample

is plotted, and a certain threshold is used to highlight anomalous values. A

"sliding window" is used to aggregate samples, whereby if 3 samples in a win-

dow of length 10 exceed the specified alarm limit for the residual, an alarm is

generated. The first window, w1, shows such an alarm. In the case of w2, only

a single sample exceeds the limit so an alarm is not generated. The generated
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residual can either be a simple difference between yi and ŷi, or, if the output is

multi-dimensional, some distance metric between the two points in space can

be used.

Sample #

R
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ua
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|e|

)

w1 w2

Alarm
Threshold

Figure 2.17: Control chart showing the alarm limits of the residual |ei| being
exceeded. If three or more samples in a sliding window exceed the limit, an alarm
is triggered, as in w1. An alarm is not triggered in w2 does not trigger the alarm
due to only a single sample exceeding the threshold.

2.8.2.1 Data-Driven Performance Monitoring

A widely practised NBM strategy is to model a turbine performance metric such

as the power curve. The rationale behind this is that some physical degradation

leading up to a major component fault is expected, and this degradation will

lead to a deviation in performance. In (Butler et al. 2013), the authors first filter

out any non-normal values by only looking at the linear portion of the power

curve. They then filter out other values by only including SCADA samples within

certain blade pitch angle limits, and finally filter out outlier wind speeds and

frozen anemometer values. The remaining values represented 60-70% of all

historical data used to build the model. Data-driven Gaussian process models

were then used to statistically model the power output based on historical air

density and wind speeds. A separate set of data for each turbine was used to

simulate on-line values and build the residual, and the cumulative sum of the
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error was plotted over a period of 14 months. It was found that in a fault-free

turbine, the cumulative sum oscillated between roughly -10 and 5 scaled units,

while in a turbine with a main bearing fault, the residual built to -25, before

increasing again after the turbine returned to full service. No alarm limits were

derived.

In (Skrimpas et al. 2015), the authors use kernel methods to build similarity

indices to compare the power curves of different operating turbines. The simi-

larity index was summed using a sliding window metric to build a cumulative

residual. It was found that the residual showed anomalies corresponding to

periods of ice build-up on turbine blades, control system issues, and periods of

de-rating.

In (Park et al. 2014), a novel algorithm is developed for modelling the po-

wer curve. The average power output at various different wind speed "bins" is

found. A provisional power curve is then built by interpolating between these

points. Next, optimal bounds are developed by shifting this curve up and down

by varying degrees. All points outside these bounds are filtered out, and the

process repeats itself until a satisfactory model representing nominal operation

is found. Control charts are created by giving the upper and lower bounds spe-

cified "alarm" limits. When a number of consecutive on-line samples lie outside

the limits, an alarm is generated. This method showed an indication of faulty

operation, but did not diagnose a specific fault.

In (Cambron et al. 2016), the authors use only data where the turbine was

available and producing power, and further filter out outliers using methods

inspired by the work in (Park et al. 2014). The IEC 61400-12-1 (International

Electrotechnical Commission (IEC) 2013) method of binning is used to build a

reference power curve, though the authors note that there are better methods

to model power curves, such as those mentioned in a comprehensive review

in (Lydia et al. 2014)). Exponentially weighted moving average (EWMA) and

generally weighted moving average (GWMA) control charts were then used to

detect any under-performance. It was found that both EWMA and GWMA cont-

rol charts were able to detect a 1% per year under-performance. A case study on

a test turbine showed that a historical 5-year 3.4% under-performance caused

by blade erosion could have been detected in advance in time for maintenance

to be carried out.

Kusiak et. al compare a number of different machine-learning methods of mo-

delling the power curve based on wind speed in (Kusiak et al. 2009). Outliers
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Figure 2.18: Power curve showing actual values, and control chart limits based on
modelled values, reprinted from (Kusiak et al. 2009)

are removed from the training data, before training data is used to model the

power output using a least squares method, maximum likelihood estimation,

and a number of non-parametric approaches, including multi-layer perceptron

and random forests. Upper and lower limits of acceptable power output for

each wind speed were used to build control charts, as shown in figure 2.18. In

this way, any values which resided outside the control charts were highlighted

as anomalous. This study did not contain any information on possible reasons

for the anomalous values.

In (Schlechtingen et al. 2013), the authors compared a number of machine lear-

ning techniques, including adaptive neuro-fuzzy interference system (ANFIS),

cluster centre fuzzy logic (CCFL), k-nearest neighbour (k-nn), ANNs and the

M5P decision tree algorithm. The power output was modelled based on am-

bient temperature and wind direction as well as wind speed in all cases. It was

found that the error signal increased in advance of faults, but the authors noted

that identifying small deviations in the 10-minute averaged SCADA values still

proved a challenge.

Work by Lapira et. al built baseline models of power output using wind speed

as well as various component temperatures, rotor speed and pitch angles as

inputs. When compared to live values, it was found that an ANN based model

showed a spike in the residual weeks before a major downtime event (Lapira

et al. 2012).

In (Uluyol et al. 2011), the authors fitted the power curve using polynomi-

als, and found that looking at deviations in the mean, baseline and kurtosis of

baseline compared to on-line values of the power curve shows that there are no-

ticeable performance improvements after corrective maintenance actions have

Data Analytics for Fault Prediction and
Diagnosis in Wind Turbines

54



2.8 SCADA-based CM and Fault Prediction Techniques and Methods

taken place.

In (Kusiak & Verma 2013), the authors expanded the idea of using NBMs ba-

sed on the power curve to include other performance curves such as the rotor

curve (wind speed vs. rotor speed) and blade pitch curve (wind speed vs. blade

pitch angle). They use k-means clustering to split each curve into a number of

different "zones, and use the Mahalanobis distance (MD) to filter out outliers

from each zone. The MD can be thought of as a measure of the distance bet-

ween two points in space which happen to be correlated. This leaves filtered

reference curves which indicate normal behaviour. The skewness and kurtosis

of the reference curves are then transformed to a single metric using Hotelling’s

T 2 chart, and this is where the residual is built. Results showed that devia-

tions in performance were detectable and corresponded to periods of power

curtailment or forced shut-downs due to cable untwisting, etc.

2.8.2.2 Data-Driven NBM of Component Temperatures

By expanding the space of input parameters to the model, and modelling para-

meters specific to particular components, such as temperatures, more granular

fault detection is possible. In (Garlick et al. 2009), the authors used a linear AR

model based on the generator winding temperature, power output and wind

speed to predict the generator bearing temperature. Normal periods of opera-

tion were found through the use of fault logs. Differences between modelled

and on-line values of bearing temperature were found in some cases to corre-

spond to entries in the fault logs.

The authors in (Cross & Ma 2014) used both a dynamic AR exogenous (DARX)

and ANN model to build a non-linear representation of turbine operation. They

used a simulated turbine to show that a grid fault could be predicted from a

residual of predicted vs. simulated current. Real SCADA data was also used

to model gearbox bearing temperature, using both power and wind speed as

inputs. The residual between the on-line vs. modelled temperatures was found

to increase during fault events.

In (Butler et al. 2012), the authors used a set of radial basis functions trained

using sparse Bayesian learning to model the main bearing temperature of a set

of wind turbines operating under fault-free conditions. They improved the per-

formance of the residual by applying a low-pass filter, and use this to give an

RUL estimate by applying particle filters. The fact that Gaussian models were
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used enables a probability density function (PDF) to be built, giving a confi-

dence score for the RUL estimate. They found that the RUL estimate becomes

accurate as the actual main bearing failures approach, as seen in figure 2.19.

The authors note, however, that the limited amount of failure examples in the

study means the technique must be evaluated further in order to be robust.

Figure 2.19: Evolution of the RUL PDF at different days in advance of the end of
life of the main bearing, reprinted from (Butler 2012) © 2012 IEEE

Many approaches use ANNs to build the NBMs. Kusiak and Verma in (Kusiak

& Verma 2012) attempt to find over-temperature faults in the main bearing.

They use a number of data-mining algorithms to find optimal model parame-

ters, before training a number of different ANNs to model the temperature. The

models were successfully able to detect anomalous temperatures up to 90 mi-

nutes before certain over-temperature events which occurred over a week of

data. However, because the models were tested on a single week of data with

a high number of fault instances, it is not known how well it would perform

over a longer period of time (i.e. whether there would be more false-alarms in

periods where there were zero fault instances).

Tautz-Weinert and Watson in (Tautz-Weinert & Watson 2017b) complement an

ANN NBM with a physics-of-failure-based approach. The ANN is trained using

3 months of data from an operating wind farm, and a sliding window metric is

used to generate alarms in the residual. The specific labels of the temperature

signals being modelled were not available to the authors, so they use a correla-

tion analysis to see which ones are most likely to correspond to fault instances.
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Alarms are generated if 3 out of 10 samples in the window exceed certain li-

mits. A number of wind turbine performance parameters, including counts of

high wind speed, generator rotational speed and wind turbulence intensity are

analysed to see if there are any discernible patterns in these parameters leading

up to faults. Results show that the NBM throws alarms leading up to gearbox

and bearing failures, but also shows a number of false alarms. The physics-

of-failure approach did not show any distinct patterns in the distribution of

performance parameters leading up to fault events, leading the authors to con-

clude that there were a wide range of failure modes in each of the recorded

faults.

In (Bangalore & Tjernberg 2015), the authors built various ANN models of

the temperatures for five gearbox bearings. The training data was selected by

selecting a subset of samples from the historical data which match the distri-

bution of the full set, as per previous work by the authors in (Bangalore &

Tjernberg 2013). Inputs included the output power of the turbine, gearbox oil

temperature, nacelle temperature, generator speed, an AR component, as well

as temperatures of other gearbox bearings. The average MD over three days

between the on-line and modelled temperature was used as a residual, with

the threshold defined by training results. A gearbox failure was identified one

week before a traditional CMS detected the fault, highlighting the effectiveness

of such an approach.

In (Schlechtingen & Ferreira Santos 2011), the authors showed that using an

ANN to model various component temperatures showed evidence of an incre-

asing residual leading up to the failures of five major components. No alarm

limits were set, so this increasing residual was visually observed.

2.8.2.3 Other Data-Driven NBM Techniques

Other data-driven techniques build a representation of the system that does not

model a specific output. One approach is to use deep autoencoders (DAs) to

model normal behaviour. These are an unsupervised ANN whose objective is to

learn a representation of the input parameters xi, and reconstruct them as x̂i.

The residual is then the difference between a sample xi and the reconstructed

sample x̂i. In (Wang et al. 2016), the authors built a DA model with 25 dif-

ferent SCADA parameters, including wind speed, power output, generator and

rotor speed, various drive-train temperatures, voltages and currents, in order
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to detect blade breakages. Once built, residual was generated based on the

square of the Euclidean distance between modelled and test values. EWMA

control charts were then used to highlight anomalies, and results showed that

blade breakages were detected between 2 to 8 hours in advance. Interestingly,

in this study a separate blind validation was performed where the models were

trained with a full set of data (i.e. fault data was not filtered out). Even so,

the charts managed to pick up the two cases of blade breakages present in the

data, with no false alarms (though in this case the advance notice was a maxi-

mum of 2 hours). It should be noted that it was not clear in this study whether

the data used to train the models was separate from the data used to evalu-

ate them, which can lead to models which have been over-fit, and an inflated

performance compared to real-world deployment.

Other approaches use a technique known as self-organising maps (SOMs). This

is an ANN method used to cluster together similar points in space. Clusters

are built with normal operating data, with neurons acting as cluster centres.

A distance metric is used to calculate similarity between a new sample and its

closest neuron. When a sample is dissimilar to all of the existing clusters, it

can be indicative of a fault. Du et. al used SOMs to build a baseline model of

turbine performance, and showed that some deviations were visible in advance

of faults occurring, while other deviations were due to faulty sensor values (Du

et al. 2016). Wilkinson et. al used a similar approach in (Wilkinson et al.

2014) to find abnormal modes of operation, but here again, no diagnosis of

the location or type of fault was possible. The authors of both of these papers

note that SOMs are limited to detecting abnormal turbine behaviour, but not

diagnosing the source of this abnormality. This is similar to power curve-based

methods.

2.8.2.4 NBM Based on Physical Modelling

Because data-driven NBMs rely on accurate input data in order to build the

models, a physics-based representation of the system can be a better approach

when this data is hard to get or incomplete. In this case, the model f̂(xi) is built

from a physics-based understanding of the system.

In (Godwin & Matthews 2014), the authors use the temperature model in equa-

tion 2.1, developed in (Feng et al. 2011), to build NBMs of gearbox oil tempe-

rature rise. Robust MD (RMD), a slight modification to MD, was then used to
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build a residual, and control charts used to highlight anomalies at a warning

and alarm level. It was found that although there were a number of individual

instances of false alarms, the RMD value consistently stayed above the alarm

level prior to a serious gearbox fault. Because this metric was quite accurate,

data was labelled as fault-free, inspection suggested, and potential damage (ac-

cording to no warning, warning, or alarm status), and the RIPPER propositional

rule-learning algorithm was trained on the data to classify future points with

human-readable rules. The results showed a high precision and recall across all

three classes.

In (Borchersen & Kinnaert 2016), the authors developed mathematical models

of the generator heating and cooling system. Although the specifics of the sy-

stem were not known, the model was parameterised using a Kalman Filter.

Anomaly detection was performed by building residuals across 3 cooling coils,

using a cumulated sum of differences. Results showed that 16 out of 18 cooling

coil faults over 3 years of SCADA data were detected, with a single false alarm.

In (Wilkinson et al. 2014), the authors built a hybrid physical and data-driven

model of drive train component temperatures. A multiple linear and polyno-

mial regression equation was built from a generic energy balance representing

a non-specific component. The polynomial degree in the equation was selected

by knowledge of the physical system, and the coefficients were solved using

training data from periods of normal operation. The model highlighted an in-

creasing residual in various gearbox bearing temperatures up to 9 months be-

fore gearbox failures. The physical NBM was compared to an SOM-based NBM,

as well as simple trending of temperatures, and was found to have the best

performance overall.

2.8.2.5 NBM Conclusions

NBM can be an effective way of achieving CM in turbines. Unlike trending,

it allows a quantifiable way of evaluating the change in behaviour or perfor-

mance of a turbine over time. Some of the power curve-based approaches can

be straightforward ways of building turbine performance metrics without the

need for extensive data filtering and analysis. This means they can be easier to

implement than more specific or complex NBMs. The major disadvantages of

using such an approach is that deviations in the power curve can be fairly small,

and so issues may only be detectable after a cumulative residual has built up
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over a period of weeks or months. Furthermore, fault diagnosis is not possible

when using a simple performance metric such as the power curve; although the

fact that a turbine may be under-performing can be detected, the underlying

reason for it is hidden.

Other approaches use a wider selection of parameters to model specific attribu-

tes such as component temperatures. Some of these approaches have success-

fully demonstrated anomalous behaviour, for example higher than expected

component temperatures, weeks or months in advance of a failure, solely based

on 10-minute SCADA data. However, in a number of cases no specific alarm

limits were set, and so rely on visual diagnosis. In other cases, only a small

subset of the data was used to test the algorithms, so that the true distribution

of faulty to fault-free data was not preserved in the testing phase.

The components analysed using temperature-based NBM typically fail infre-

quently, and so "normal" training data used to build the models is relatively easy

to obtain. This is in contrast to power curve data, where the power output can

fluctuate due to a number of causes, e.g. periods of grid-mandated de-rating.

The temperatures of major components can still be modelled as a function of

generator RPM, power output, etc. during these events, so that this behaviour

is safely captured in temperature models. As will be seen, getting access to

"clean" fault-free data is challenging, so this provides a major benefit. Howe-

ver, temperature-based models can only be applied to specific components, and

separate models must be trained for each one.

Techniques which build a representation of the system without modelling a spe-

cific output, such as DAs or SOMs, showed some success, though these techni-

ques only show that the turbine is performing abnormally, as opposed to diag-

nosing the source of the fault. Physics-based models, meanwhile, avoid needing

to get access to a large volume of historical data, but are only applicable to spe-

cific components which can be effectively modelled in this way.

Overall, NBM is an effective way of providing CM functionality to wind turbi-

nes, and is analogous in many ways to the techniques that traditional vibration-

based CMSs use. However, in order to achieve prognostic functionality relating

to specific components, models must be developed for each individual compo-

nent being monitored. Furthermore, NBM of some frequently failing assem-

blies, such as the pitch system, is not present in the literature. This may be

because there are no obvious SCADA parameters which can be modelled in this

way.
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2.8.3 Alarm System

As described in section 2.7.1.3, the turbine alarm system already provides some

CM capabilities in the form of limited fault diagnostics. As will be discussed in

chapter 6, however, turbine alarm systems generally generate alarms at a much

higher rate than in other industries. The techniques described here attempt to

address some of these issues to enhance the diagnostic capabilities of turbine

alarm systems.

In (Qiu et al. 2012), the authors acknowledge the issue of high alarm volume

and found that the quantity of alarms raised is generally too high for operators

to effectively manage. This is even higher during fault periods, when alarms

occur in large and complex "showers", making failure detection, location and

diagnosis difficult. By performing probability and time-based analyses, alarms

which regularly appear together or trigger one another can be identified, and

from this it is possible to identify particular failure modes related to alarm se-

quences. Hence, more advanced fault diagnosis is possible.

In (Chen et al. 2011), the authors acknowledge the problems associated with

the volume of alarms being generated by wind farms. They aimed to reduce

this by using pattern recognition techniques based on artificial neural networks

(ANNs) to identify alarm patterns which occurred during or leading up to parti-

cular fault events. The authors found that by processing any alarm occurrences

through the ANN model, faults could be flagged without the need for an ope-

rator to try and analyse the alarms themselves, thereby reducing the number of

alarms that operators must work with. However, they noted that further work

is needed to improve the accuracy of this method.

As discussed in section 2.4, mapping turbine alarms to a standardised taxonomy

can help build a better picture of how faults propagate through various systems

and understand the root cause of turbine stoppages (Reder et al. 2016, Peter

Tavner 2012). In (Gonzalez et al. 2016), the authors show that by mapping

turbine alarms to this taxonomy and performing a similar probability analysis

to that of (Qiu et al. 2012), alarms which are directly related to faults can be

identified and the propagation of a fault from root cause to failure mode can be

manually established.
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2.8.4 Classification-based approaches

2.8.4.1 Background to Classification

Classification is a machine learning technique that maps an input sample, xi, to

an estimated qualitative output class ŷi. Similar to NBM, this mapping is done

through a function approximation, f̂(xi). f̂ is learned from a historical set of

n pairs of training observations, {xi, yi}n
i=1, where the vector xi ∈ Rp contains

the p features associated with the sample, i.e. xi = (xi1, ..., xip)T . In the field

of wind energy, these features could represent SCADA parameters such as wind

speed, power output, etc. Meanwhile, yi is the actual class associated with xi,

e.g. "no fault" or "potential generator fault". The notation Xj refers to the j-th

feature of all samples, i.e. Xj = (x1j, ..., xnj) (James et al. 2013). The matrices

X and Y are used to represent the full set of samples and features and their

associated classes. Note that, similar to data-driven NBM techniques, data is

split into a train and test set.
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Figure 2.20: Plot of samples in the Iris dataset, showing the decision boundary
between the two classes

A well-known classification problem, first proposed by Sir R. A. Fisher in 1936,

is demonstrated here to give a high-level overview of classification. An attempt

is made to try and classify different types of Iris flowers, based on the length

and width of their sepals, (FISHER 1936). Here, the p = 2 features, X1 and X2,
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represent sepal length and sepal width. The possible values of y are I. Setosa
and I. Vericolor. A linear classification technique known as logistic regression
is applied to the training data to build a decision boundary between the two

classes, shown in figure 2.20. A test point, x42 = (4.5, 2.3)T , is shown to be

above the decision boundary, and so f̂(x42) = ŷ42 = I. Setosa. Note that, as will

be seen, this can be generalised to any number of dimensions, so for p > 3, such

a decision boundary can not be effectively visualised.

2.8.4.2 Success in Other Domains

Classification techniques have seen success in many other domains, which form

similar problems to fault detection in wind turbines. Work done in (Esteva et al.

2017) attempted to identify different types of skin cancer based on photos of

skin lesions. The resulting models were able to effectively distinguish between

two different types of skin cancer in one case, and distinguish a particularly

deadly form of melanoma from a benign nevi in another. Performance was on

par with that of clinical dermatologists, potentially providing for low-cost access

to diagnostic care.

In (Phua et al. 2004), the authors showed that applying a classification-based

approach to insurance claims can be an effective way of detecting fraudulent

claims. The model used inputs such as the month or day of week the claim was

made, the make or model of car, or whether a police report was filed, among

others. Results showed that insurance companies could save up to 30% per year

by using such a model.

Fault diagnosis in other industries is also common. In (Abbasion et al. 2007),

the authors use a classification technique known as a support vector machine

(SVM) to identify faults in rolling element bearings. The features were based on

vibration signatures, and results showed the model could distinguish between

normal state and 7 different types of faults with 100% accuracy.

In (Susto et al. 2015), the authors attempt to build a PdM system for wafer

manufacture. They label m samples in advance of a fault sample as being part

of the fault class, for many different values of m. A cost, J is assigned to the

percentage of missed failures and number of process cycles that could have been

run had maintenance not been carried out, and train a number of classifiers (in

this case also SVMs) to minimise J for different values of M . They devise a way

of simulating the cost of PM, and perform a number of Monte Carlo simulations
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to compare the two approaches. They found that the classification-based PdM

approach performs better than a number of PM approaches.

In all of these cases, the samples in the positive class(es) (i.e. those representing

faults or unhealthy samples) were massively outnumbered by the negative class

(i.e. fault-free or healthy). Hence, these applications, particularly in the cases

of fault detection and prediction where time-series data is used, draw many

parallels to the wind energy domain.

2.8.4.3 Classification Metrics

There are a number of different scoring metrics important to classification.

Some of these which are especially relevant to CM of WTs are given below,

where tp is the number of true positives, i.e., correctly predicted fault samples i

test set, fp is false positives, fn is false negatives, i.e., fault samples incorrectly

labelled as no-fault, or as a different fault-class, and tn is true negatives.

A high number of false positives, i.e. fault-free data incorrectly classed as faulty

or fault-imminent, can lead to unnecessary checks or corrections carried out on

the turbine. The avoidance of this is captured with the precision score (where

a higher score represents a lower false positive rate):

Precision = tp/(tp+ fp) (2.2)

A high number of false negatives, on the other hand, can lead to failure of the

component with no detection having taken place (Saxena et al. 2008). This is

captured by the recall score (also known as sensitivity), where a higher number

indicates a low ratio of false negatives:

Recall = tp/(tp+ fn) (2.3)

The F1-Score, which is the harmonic mean of precision and recall, is a good

way of capturing both of these measures in a single metric:

F1 = 2tp/(2tp+ fp+ fn) (2.4)

Specificity measures the proportion of true negatives that are correctly identi-
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fied as such:

Specificity = tn/fp+ tn (2.5)

Confusion matrices can also be used to give a visual overview of performance

and show absolute numbers. An example confusion matrix is shown in figure

2.21. It is immediately obvious from this image that the classifier has performed

well, showing the power of this type of visual tool.
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Figure 2.21: A sample confusion matrix, showing the absolute numbers and ratio
of correctly classified samples in each class

Overall accuracy (i.e. tp+ tn/total) is not a useful metric in the domain of CM,

as there is a massive imbalance in the classes; any fault-related classes will be

massively outnumbered by the fault-free class in the test set. For example, if

4990 samples were correctly labelled as fault-free, and the only 20 fault samples

were all also incorrectly labelled as such, the overall accuracy of the classifier

would still stand at 99.6%.

2.8.4.4 Classification-Based Approaches in the Literature

The concept described in figure 2.20 can be expanded so that y can represent

a particular type of fault or pre-fault state in a turbine, while x can represent a
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number of SCADA parameters. The advantage to such an approach over using

NBMs or other methods is that a number of different turbine states can be

learned at once, i.e. separate models do not need to be trained and tuned for

individual components, with the caveat that the quality of data must be high.

In (Kusiak & Li 2011), the authors use wind turbine alarm system data to label

periods of faulty operation on the turbine. A number of models, comprising

of ANNs, boosting trees, support vector machines and standard classification

regression trees, were built to evaluate their performance in predicting and di-

agnosing faults. Overall, it was found that the most successful algorithm for

specific fault prediction was the boosting tree algorithm. It was found that pre-

diction of a specific fault, a diverter malfunction, was possible at 68% accuracy,

73% recall and 66% specificity 30 minutes in advance of the fault occurring.

Unfortunately, when this was extended out to one hour in advance, accuracy

and recall fell to 49% and 24%, respectively. The full results can be seen in

table 2.3. Unfortunately, precision was not provided as a metric, so insight into

the number of false alarms was not given. It should also be noted that the test

set used for fault prediction in this paper did not represent the distribution of

the underlying labelled SCADA data. Instead, the fault-free class was unders-

ampled so that there were just over twice as many "fault-free" instances as there

were of a specific fault. This is in contrast to the true distribution where there

could be up to 100 times more fault-free than fault instances.

Table 2.3: Results for prediction of a specific fault at various 10-minute time steps
in advance of a fault from (Kusiak & Li 2011)

Time Stamp Accuracy (%) Recall (%) Specificity (%)

t 69.81 86.67 63.16
t - 1 64.15 66.67 63.16
t - 3 67.92 73.33 65.79
t - 6 67.92 73.33 65.79
t - 9 66.04 33.33 78.95
t - 12 49.06 24.53 34.21

A similar approach was used in (Kusiak & Verma 2011). Here, turbine alarms

related to blade pitch faults were identified through data mining algorithms.

Times when these alarms were present were then used to label the data as

"faulty" or "normal". Genetic programming was used to classify the data, and

performance on a test set showed that blade pitch faults could be predicted up

to 10 minutes in advance with 68% accuracy, 71% recall and 67% specificity.
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This work did indeed use a full set of data for the test set, though the data here

was at a resolution of 1s rather than the more common 10 minutes. Once again

the precision score was not provided, so the number of false positives could not

be effectively evaluated.

Chen, Matthews and Tavner showed that pitch faults could be predicted with

high precision and accuracy with a prognostic horizon of up to 21 days using

an Adaptive Neuro-Fuzzy Inference System trained on SCADA data (Chen et al.

2013). However, the data in this study only included timestamps within a win-

dow of 7, 14, or 21 days before corrective maintenance actions occurred. This

meant that although there were definite prognostic indicators of pitch faults in

the data, the system was not tested on a full set of data, where time between

corrective maintenance actions could be much larger than 21 days. This mean

that the ratio of fault-free to faulty data is much higher in a real world scenario,

so the study did not reflect real-world performance.

Godwin et. al used the RIPPER decision tree algorithm (Cohen 1995) to derive

human readable rules for classification of pitch faults (Godwin & Matthews

2013). The authors found that pitch faults were detectable in a window up to

48 hours in advance of a fault occurring, with precision and recall scores of 0.8

and 0.75, respectively. However, these scores were obtained on a dataset which

once again undersampled the fault-free class. When tested on a full set of data,

precision scores dropped to .17, but there was still an overall reduction in the

number of false alarms compared to the turbine alarm system by 52%.

2.8.4.5 Conclusions and Comparisons to Other Approaches

It is clear from the literature that for classification-based approaches, although

there is clear evidence that faults can be predicted in some capacity, evaluation

on a full test set representing the true distribution of live data has not been per-

formed in all cases. Furthermore, it is important that the false positive rate be

represented somewhere in performance metrics, which was also not included in

all cases. Hence, the performance of such approaches compared to techniques

such as NBM has not been as robustly demonstrated in the literature.

As mentioned previously, a classification-based approach to CM has some inhe-

rent advantages over NBM and trending. In some NBMs, the condition of the

system as a whole is measured, for example in performance monitoring, using

DAs, or using SOMs. Hence, fault diagnosis is not possible. Some leading signa-
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tures of faults are detectable, but in these cases, the only information available

to operators are indications that the condition of a component is deteriora-

ting or has deteriorated, but which component, or which fault mode is likely

to occur, is not. At this level, simple performance-based NBMs may be more

suitable than a classification-based approach, depending on the data available.

By building NBMs of specific parameters like component temperatures, diag-

nosis, and even some prognosis, is possible. However, classification has the

inherent advantage of being able to monitor or detect a number of different

faults at once, as performed in (Abbasion et al. 2007) and (Kusiak & Li 2011).

This means that a number of different types of faults can be trained in a single

model; classification based on thousands or more classes in domains such as

image recognition has been demonstrated in the literature (Gupta et al. 2014).

Related to this point, classification can also perform more granular fault diagno-

sis than NBM on a single component. For example, in (Kusiak & Verma 2011),

where a number of different faults are diagnosed in the turbine pitch system.

Finally, classification can be applied to components for which NBM is not ap-

propriate, as in (Godwin & Matthews 2013) where faults in the pitch system

were predicted.

2.9 Conclusion

This chapter has served as a background and problem formulation, detailing the

need for more advanced maintenance strategies than those currently employed

on wind turbines, as well as discussing the relative merits and shortcomings

of some solutions. A background to maintenance theory was given, describing

some common strategies and the reasons they are employed. An overview of

the data available to farm operators was also given, followed by a detailed re-

view of wind turbine component reliabilities and overall availability from both

an onshore and offshore perspective. This review showed the most commonly

failing wind turbine components across a number of different reliability studies,

as well as the downtimes associated with these failures. This demonstrated the

need to avoid major failures, and outlined the compounding issues that affect

offshore turbines, underlining the significantly reduced availability resulting

from access issues offshore. The review also demonstrated some of the chal-

lenges that researchers face when attempting to leverage disparate sources of

turbine data to identify fault periods on turbines, which will be further expan-
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ded upon in chapter 4.

Current turbine maintenance strategies were also discussed, demonstrating that

there is scope for improving availabilities through improving these strategies,

particularly in the offshore context. Using the turbine SCADA system data was

highlighted as a cost-effective way of achieving some CM functionality, wit-

hout the need to retrofit expensive dedicated CMSs. A number of approaches

showing varying levels of functionality were reviewed. Classification was high-

lighted as a technique that has seen broad success in other industries, with

more limited success in wind energy despite some of its advantages over other

methods. Also highlighted were some approaches which seek to enhance the

diagnostic capabilities of the turbine alarm system. Chapters 3, 4 and 5 will

attempt to expand on some of the classification methods described, as well as

proposing a methodology for effective labelling of fault data, while chapter 6

proposes a system to glean more useful diagnostic information from turbine

alarms.

69 Kevin Leahy



2. BACKGROUND

Data Analytics for Fault Prediction and
Diagnosis in Wind Turbines

70



Chapter 3

A Case Study on Classification
Techniques

3.1 Introduction

It is clear from the literature review in section 2.8 that the SCADA system can

be successfully used for all three levels of CM: fault detection, diagnostics and

prognostics. Some indication of complete failure of main components were, in

some cases, detected weeks in advance through the use of NBMs, for example in

(Butler et al. 2012) and (Schlechtingen & Ferreira Santos 2011). However, also

mentioned were comparative benefits of using classification-based approaches

over NBMs, namely; being able to train a single model to perform CM on a

number of different components at once; to give a more granular level of fault

diagnosis; and, being able to detect faults in systems for which NBM may not

be appropriate. This last point covers components where less serious, but more

frequent faults occur. These types of faults, such as electrical or pitch system

faults, were shown to have a significant share of turbine down time, and hence,

availability, in section 2.6. This was shown to be particularly true in the offshore

context.

A number of classification-based approaches present in the literature were dis-

cussed. However, in many cases, the studies did not use an appropriate me-

tric for quantifying the number of false-positives in the data, and/or did not

evaluate the performance on a held-out test set (i.e. a test set which did not

under-sample the fault-free class, and represented the true distribution of data

as seen in the real world).
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In this chapter, a case study is presented in which classification techniques are

applied to wind turbine SCADA data in order to perform CM at the detection,

diagnosis and prognosis levels. Also investigated are a number of techniques

which attempt to address issues with the massive imbalance seen in the distri-

bution of samples in each class, due to the fault-free data being considerably

dominant.

The fault detection level aims to differentiate between fault/non-fault state,

while diagnosis aims to determine which type of fault has occurred. Although

the turbine alarm system already provides this aspect of CM functionality, ha-

ving an additional system which corroborates alarm information can give addi-

tional confidence to operators that the diagnosis is correct. This is particularly

important in the offshore context, as noted in section 2.7.3. The fault progno-

sis level attempts to give an alert that a specific type of fault is likely to occur

within a certain time window. Although not a conventional RUL estimate, it

can be thought of as a window of possible RUL. This is advanced functionality

that is not currently available through the alarm system.

3.2 Support Vector Machines

Although a comparison of a number of classification methods in (Kusiak & Li

2011) found a boosting tree algorithm to be more successful than other met-

hods, including Support Vector Machines (SVMs), for CM applications in wind

turbines, the authors did not go into detail on the specifics of the models used.

However, SVMs are a widely used and successful tool for classification. They

are very well suited to this specific problem, where the relationship between a

high number of parameters (e.g., the many different parameters collected by a

SCADA system) can be complex and non-linear (Cortes & Vapnik 1995, Boser

et al. 1992). They have been used in other industries for condition monitoring

and fault diagnosis with great success. A review by (Widodo & Yang 2007) sho-

wed that SVMs have been successfully used to diagnose and predict mechanical

faults in HVAC machines, pumps, bearings, induction motors and other machi-

nery. CM using SVMs has also found success in the refrigeration, semiconductor

production and chemical and process industries (Laouti et al. 2011).

The basic premise behind the SVM is that an optimal decision boundary is made

between two opposing classes, based on labelled training data. If a training set
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S is given by S = {xi, yi}n
i=1, where xi ∈ Rp represents the n input samples and

p features, and yi ∈ {−1, 1} represents the two opposing classes, then the goal

of an SVM is to find an optimal hyperplane separating the two classes, subject

to:

wTxi + b ≥ 1 for yi = 1 (3.1)

wTxi + b ≤ 1 for yi = −1

where w ∈ Rn is a weight vector and b is a scalar representing the bias. If eq.

3.1 is true for all training data, then the training set will be a linearly separable

case (Hastie et al. 2009). An example of such a case can be found in figure

2.20. However, should there be a case where no perfect hyperplane can be

found to separate the data, or to avoid the problem of over-fitting, a number of

points can be allowed to be misclassified by introducing slack variables, εi, and

a scalar cost penalty, C. In this case, the optimal hyperplane can then be found

by solving the following optimisation problem:

Minimize
1
2w

Tw + C
n∑

i=1
εi, (3.2)

Subject to yi(wTxi + b) ≥ 1− εi, i = 1, ..., n (3.3)

εi ≥ 0, i = 1, ..., n (3.4)

The Lagrange dual of this problem becomes:

Minimise L(w, b, α) = 1
2w

Tw + C
n∑

i=1
εi −

n∑
i=1

αiyi(wTxi + b) +
n∑

i=1
αi, (3.5)

where the (α1, ..., αn) arise from constraint 3.3. The task now becomes one of

finding the saddle point of this function with the equations:

∂L

∂w
= 0, ∂L

∂b
= 0 (3.6)

which then become

73 Kevin Leahy



3. A CASE STUDY ON CLASSIFICATION TECHNIQUES

w =
n∑

i=1
αiyixi,

n∑
i=1

αiyi = 0 (3.7)

By substituting 3.7 into 3.5, the following optimisation problem is formed:

Maximise
n∑

i=1
αi −

1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj, (3.8)

Subject to
n∑

i=1
αiyi = 0, i = 1, ..., n (3.9)

0 ≤ αi ≤ C, i = 1, ..., n (3.10)

Once the optimisation problem has been solved, the coefficients αi can be

found, which then leads to the linear decision function for a new sample xm,

xm ∈ Rp:

f(xm) = sign(
n∑

i=1
αiyi(xT

mxi) + b), (3.11)

A powerful aspect of the SVM algorithm is that it can solve non-linear cases by

mapping the input vector xm to very high dimensional space where it can then

be solved linearly. Such a function takes the form Φ(xm) = (φ1(xm), ..., φl(xm))
for l-dimensional space. While working in high-dimensional space allows com-

plex decision boundaries to be formed, it can also lead to expensive computati-

onal overhead. An approach known as the kernel trick allows this overhead to

be avoided through the use of kernel functions. These functions, of the form

K(xi, xj) = (ΦT (xi)Φ(xj)), compute the inner products of samples in the feature

space, instead of explicitly computing Φ to get the coordinates of samples in

that space. This means learning in the high dimensional feature space can be

achieved more efficiently, allowing SVMs to build complex non-linear decision

boundaries in a practical way. The decision function eq. 3.11 then becomes:

g(xm) = sign(
n∑

i=1
αiyiK(xm, xi) + b) (3.12)

The kernel function K(xm, xi) can take on a number of forms for creating non-

linear decision functions. These are any functions which satisfy Mercer’s the-

orem (Cortes & Vapnik 1995). Some of the most common kernels include the
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polynomial kernel:

K(xm, xi) = (1 + xT
mxi)P , (3.13)

where P represents the polynomial degree; and the Gaussian kernel (also

known as the radial basis function):

K(xm, xi) = exp(−||xm − xi||2

2σ2 ), (3.14)

where σ represents the variance of the data.

The SVMs in this work used a "one-against-one" approach for multi-class clas-

sification, i.e. classification of more than two classes. For K different classes,

K(K − 1)/2 different classifiers are trained, with each training data from two

different classes in the original training set, so that every class is pitted against

each other class at least once. At prediction time, each binary classifier is app-

lied to the sample xm, and the class that had the highest number of predictions

is voted to be the predicted class for that sample. In the case of a draw, the class

is randomly assigned (Knerr et al. 1990).

3.3 Description of Data and Faults

The data in this study comes from a 3 MW direct-drive turbine which supplies

power to a large manufacturing facility located near the coast in the South of

Ireland. Data comes from the turbine SCADA system in the form of 10-minute

operational and instantaneous alarm system data. The data covers an 11 month

period from May 2014 - April 2015.

3.3.1 Operational Data

The turbine SCADA data contains 10-minute values for 61 different features.

These include the average, max. and min. of wind speed, power and rotational

speed, as well as the nacelle orientation and number of operating hours since

commissioning. Also included in these features are over 30 temperatures, in-

cluding inverter cabinet, blade and bearing temperatures. This data was used

to train the classifiers and was labelled according to three different processes
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explained in Section 3.4.1. The operational data contains roughly 45,000 sam-

ples, representing the 12 months May 2014 - April 2015 analysed in this study.

3.3.2 Alarms Data

For this particular SCADA system, a new timestamped information, warning

or alarm message is generated every time the operating state of the turbine

changes, known as a "status" message. Thus, the turbine is assumed to be

operating in that state until the next status is generated. Each turbine status

has a “main status” and “sub-status” code associated with it. See Table 3.1 for a

sample of the this alarm system data. Any main status code zero indicates that

the turbine is generating or spinning up to generate, while anything above zero

represents either faulty or curtailed operation, or that the system is operating

close to the bounds of acceptable states (in these cases, the status counts as

a "warning" status). Also included are times where the turbine is available to

operate, but not producing power due to weather, grid or other events, e.g.

status code 2 - “lack of wind”.

Table 3.1: WEC Status Data

Timestamp Main Sub Description

13/07/2014 13:06:23 0 0 Turbine in Operation

14/07/2014 18:12:02 62 3 Feeding Fault: Zero
Crossing Several
Inverters

14/07/2014 18:12:19 80 21 Excitation Error:
Overvoltage DC-link

14/07/2014 18:22:07 0 1 Turbine Starting

14/07/2014 18:23:38 0 0 Turbine in Operation

16/07/2014 04:06:47 2 1 Lack of Wind: Wind
Speed too Low

3.3.3 Faults Classified

As mentioned in Section 3.3.2, any “main status” above zero indicates abnormal

or potentially abnormal behaviour, but not necessarily a fault. Although over

forty different types of faults occurred in the eleven months of data, only a small
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number occurred frequently enough to be able to train a classifier to recognise

them. These faults are summarised in Table 3.2. Note that the fault frequency

refers to specific instances of each fault, rather than the number of data points

of operational data associated with it, e.g., a generator heating fault which las-

ted one hour would contain 6 operational data points, but would still count

as one fault instance. In this table, feeding faults refer to faults in the power

feeder cables of the turbine. These are found under the "power feeder cables"

assembly of the "power module" sub-system in the Reder taxonomy in Appen-

dix A. Excitation errors refer to problems with the generator excitation system,

while generator heating faults refer to the generator overheating. These are both

found in the "generator" assembly of the "power module" sub-system. Finally,

malfunction air cooling refers to problems in the air circulation and internal

temperature circulation in the turbine, found in the "cooling system" assembly

of the "auxiliary system" sub-system.

Table 3.2: Frequently occurring faults, listed by status code, fault incidence fre-
quency and number of corresponding 10-minute SCADA data points

Fault Main Status f No. Pts.

Feeding Fault 62 92 251
Excitation Error 80 84 168
Malfunction Air Cooling 228 20 62
Generator Heating Fault 9 6 43

3.4 Methodology

In this case study, three levels of classification are attempted: fault detection,

fault diagnosis and fault prediction. The general methodology for all three

types of classification is shown in Figure 3.1. As can be seen, there are four

main steps following a general machine learning process, described in detail in

this section.

3.4.1 Data Labelling

The processes for labelling the data for each classification level are given below.
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Figure 3.1: Methodology, following a typical machine learning approach. The
abbreviations in step 3 are a selection of the approaches described in section 3.4.3

3.4.1.1 Fault Detection

The first level of classification is distinguishing between two classes: “fault”

and “no-fault”. The fault data corresponds to times of operation under a set

of specific faults mentioned in Section 3.3.3. For these faults, status messages

with codes corresponding to the faults were selected. They were then labelled

as follows:

yt =

F, if ts − 600s < t ≤ te + 600s

O, otherwise,
(3.15)

where yt is the label at time t, ts is the start of the faulty state and te is the

end of the faulty state (i.e. the start of the next non-fault status in the data).

A time band of 600s before the start, and after the end, of these turbine states

was used to match up the associated 10-minute operational data. This was se-

lected so as to definitely capture any 10-minute period where a fault occurred,

e.g., if a power feeding fault occurred from 11:49-13:52, this would ensure the

11:40-11:50 and 13:50-14:00 operational data points were labelled as faults.

No matter the type of fault, all faults were simply labelled as the “F” class. All

the remaining data in the operational dataset was then given the label “O”, re-
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presenting all other data. This is because the remaining data did not necessarily

represent fault-free data; it just meant it did not contain the faults mentioned

in Section 3.3.3, but could have included other, less frequent faults or times

when the turbine power output was being curtailed for any one of a number of

reasons mentioned previously.

3.4.1.2 Fault Diagnosis

Fault diagnosis represents a more advanced level of classification than simply

fault detection. The aim of fault diagnosis is to identify specific faults from the

rest of the data. Faults were labelled in the same way as in the previous section,

but this time, each fault was given its own specific label. Again a time band of

600s before the start and after the end of each fault status was used to match up

corresponding 10-minute operational data. Any data that remained, i.e., was

not labelled as one of the faults mentioned in Section 3.3.3, was again given

the “O” label, for a total of five different classes (the four fault classes as well

as the “O” class). If two faults occurred concurrently, then the data point was

duplicated, with each point having a different label.

3.4.1.3 Fault Prognosis

Fault prognosis represents an even more advanced level of classification than

fault diagnosis. The aim of this level of classification was to see if it was possible

to identify that a specific fault was imminent from the full set of operational

data. After initial tests, it was decided to focus prediction only on generator

heating and excitation faults as these showed the greatest promise for early

detection. Details of this can be found in Section 3.5. The other faults were

included in the “O” label along with the rest of the data, for a total of three

classes.

For fault prediction, the times during which the turbine was in faulty operation

were not labelled as such. Instead, operational data points leading up to each

fault were labelled as “PF”, meaning pre-fault, for each specific fault, as follows:

yt =

PF, if ts − 600s− w1 < t ≤ ts − 600s− w2

O, otherwise,
(3.16)
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Table 3.3: Values of w1 and w2, in hours, used for fault prediction

Case w1 (hours) w2 (hours)

Case 1 1 0
Case 2 2 1
Case 3 3 2
Case 4 5 2
Case 5 12 2
Case 6 24 12

where {w1, w2;w1 > w2} ∈ N+ are windows of time in advance of the fault. In

this way, a window of time w1 preceding the fault is labelled as pre-fault data,

while leaving a window w2 as a "minimum prediction time" where a useful

warning can be given before the fault occurs. The time between ts − 600s− w1

and ts − 600s− w2 is known as the "pre-fault window".

A number of separate cases representing different values of w1 and w2 were

tried to see how far in advance an accurate prediction could be made. These

can be seen in Table 3.3. For example, for case 6, all data points with times-

tamps between 24 and 12 hours before a generator heating fault occurred were

labelled as "PF - generator heating". The same was applied to excitation faults.

All remaining unlabelled data points were labelled "O". Once again, if diffe-

rent faults occurred concurrently, the data points were duplicated and given

different labels.

The time spanned by w1 and w2 can be thought of as a wide RUL estimate for a

particular fault. For example, under case 6, if a live sample is classified as "PF -

generator heating fault", the RUL for that assembly is between 12 and 24 hours.

In this case, the minimum PH is 12 hours. The technician or maintenance

operator would then have between 12 and 24 hours between this point being

detected and the fault actually occurring to remotely or manually inspect the

generator and organise any necessary maintenance actions ahead of time. If

maintenance is needed, this can reduce the logistics lead time or allow it to

be scheduled in conjunction with other maintenance activities for maximum

economic benefit.
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3.4.2 Feature Selection

The full operational dataset had more than sixty features, many of which were

redundant, incorrect or irrelevant. Because of this, only a subset of specific

features were chosen to be included for training purposes. It was found that a

number of the original features corresponded to sensors on the turbine which

were broken, e.g., they had frozen or blatantly incorrect values, while others

contained duplicate or redundant values. These were removed. A number of

the remaining features which were deemed as obviously irrelevant based on

domain knowledge were also excluded, e.g. features relating to the cumulative

uptime of the anemometer or the open/closed state of the tower base door.

This resulted in 39 remaining features. A subset of these, corresponding to

12 temperature sensors on the inverter cabinets in the turbine, all had very

similar readings. Because of this, it was decided to instead consolidate these

and use the average and standard deviation of the 12 inverter temperatures.

This resulted in 29 features being used to train the SVMs. It was decided to

scale all features individually to unit norm because some, e.g., power output,

had massive ranges from zero to thousands, whereas others, e.g., temperature,

ranged from zero to only a few tens.

3.4.3 Model Selection

Each of the labelled datasets mentioned in section 3.4.1 were randomly shuffled

and split into training and testing sets, with 80% being used for training and

the remaining 20% reserved for testing. Fault data inherently has a massive

imbalance in the distribution of samples in each class, in that the number of

fault-free data massively outnumbers the other classes. This case study was no

exception - the number of fault-free samples was on the order of 102 times that

of fault samples for all three levels of classification. This can sometimes be a

problem for SVMs, so a number of different approaches were taken to address

the issue. These included adding an extra "class weight" hyper-parameter, or

under/oversampling the training data being fed into the SVM. In addition to

this, because fault diagnosis and prediction represented a greater classification

challenge, approaches using ensemble meta-learners were used to reduce bias

and variance in the results. In any case, the test data was not altered in any

way so as to preserve the imbalanced distribution seen in the real world.

The various approaches used can be broken into four general categories: "ge-
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Table 3.4: Summary of different training approaches taken, showing their general
category and which classification levels used these approaches

Approach Category Classification Levels

Base General Det/Diag/Pred
CW General Det/Diag/Pred
RUS Undersample Det/Diag/Pred
CC Undersample Det/Diag/Pred
TL Undersample Diag/Pred
ENN Undersample Diag/Pred
SM Oversample Diag/Pred
EE Ensemble Diag/Pred
Bag-CW Ensemble Pred
Bag-RUS Ensemble Pred

neral", "undersampling", "oversampling" and "ensemble methods". Because of

the simpler problem it posed, fault detection was only carried out using a small

subset of these methods, whereas both diagnosis and prediction were carried

out using additional approaches, summarised in table 3.4. Additionally, fault

prediction used two bagging-based approaches. These are described in detail

in the following section.

Note that each level of classification above fault detection used multi-class clas-

sification based on the “one-against-one” approach (Knerr et al. 1990). For all

three levels of classification, the models were trained using scikit-Learn’s im-

plementation of LibSVM (Chang & Lin 2011, Pedregosa et al. 2012). For the

fault prediction case, all approaches were initially trained based on the label-

led dataset representing fault prediction Case 1 from Table 3.3, as described in

Section 3.4.1.3. The best performing approach was then used to train classifiers

on cases 2-6.

3.4.3.1 General Approaches

Base Case (Base) In the base case, i.e. "vanilla" SVM, a randomised grid

search was performed over a number of hyperparameters to find the ones which

yielded the best results on the full set of training data. These were then verified

using 10-fold cross validation. The scoring metric used for cross validation was

the F1 score (see eq. 2.4). The hyperparameters searched over were C, which

controls the number of samples allowed to be misclassified, εwhich defines how

much influence an individual training sample has, and the kernel used. The

Data Analytics for Fault Prediction and
Diagnosis in Wind Turbines

82



3.4 Methodology

three kernels which were tried were the simple linear kernel (i.e. K(xm, xi) =
xT

mxi), the polynomial kernel (eq. 3.13) and the radial-basis (Gaussian) kernel

(eq. 3.14).

The training data from all undersampling and oversampling methods were fed

into an SVM following this approach. Additionally, the meta-learners using the

ensemble methods also followed this approach.

Addition of Class Weight (CW) In this approach, an additional hyperparame-

ter, the class weight, c.w., is added during training. This is a weighted scaling

factor used when calculating C for the minority class. The new value for C for

the fault class, Cw, is calculated as in Eq. 3.17.

Cw = C ∗ c.w. (3.17)

Training is then performed as in the base case. A number of different class

weights ranging from 1 (Cw = C) to 1,000 (Cw = 1000 ∗ C) were added to the

set of hyperparameters being searched over for this approach. There is no over-

or undersampling used in this method.

3.4.3.2 Undersampling Methods

Random Undersampling (RUS) This approach randomly under-samples the

majority fault-free class (without replacement), so that the number of fault-free

samples in the training data was equal to the number of fault samples.

Cluster Centroids (CC) This undersampling method splits all the samples of

the majority class into k clusters using the k-means algorithm. The centroids of

these clusters are then used as the new samples for this class. In this case, the

value of k used was equal to the number of samples in the minority class.

TomekLinks (TL) TomekLinks is a modification of the condensed nearest neig-

hbour algorithm which undersamples from the majority class by eliminating

samples which are close to the decision boundary between the two classes (To-

mek 1976). For this application, the fault free class was undersampled to bring

the number of samples down to near the number of samples in the largest fault

class.

Edited Nearest Neighbours (ENN) The Edited Nearest Neighbours method is

a slight modification of the k-nearest neighbours method used to under-sample

83 Kevin Leahy



3. A CASE STUDY ON CLASSIFICATION TECHNIQUES

from the majority class (Wilson 1972). This is shown in alg. 1 (Wilson 1972).

In this way, the fault-free class was significantly reduced in size.

Algorithm 1: ENN Under-sampling
Data: Samples X = (x1, ..., xn), labels Y = (y1, ..., yn)
Result: Reduced set of samples X ′ and labels Y ′

1 Set X ′ = X
2 Set Y ′ = Y for each sample xi in X do
3 Find the K-nearest neighbours to xi among {x1, x2, ..., xi−1, xi+1, ..., xn}
4 Find the class y′ associated with the largest number of points among the

K-nearest neighbours, with ties being settled at random
5 If yi 6= y′, remove xi and yi from X ′ and Y ′, respectively (i.e.

Y ′ = Y \ {yi}; X ′ = X \ {xi}

3.4.3.3 Oversampling

SMOTE (SM) SMOTE (Synthetic Minority Over-Sampling Technique) is an al-

gorithm that generates synthetic samples for the minority class. New samples

are generated along the line connecting each sample in the minority class to

its k-nearest neighbours (Chawla et al. 2002). SMOTE uses five nearest neig-

hbours. In this case, a number of new synthetic samples were generated for

each fault class to bring the number of samples in line with the number of

fault-free samples.

3.4.3.4 Ensemble Learners

Bagging (Bag-CW, Bag-RUS)

Bagging, or BootstrapAggregating, is an ensemble technique designed to re-

duce overall variance and avoid over-fitting (Breiman 1996). It creates multi-

ple smaller training sets by sampling from the full training set. It then builds a

classifier for each of these subsets (in this case an SVM). Each classifier in the

resulting ensemble then votes with equal weight to give the predicted class of

each new sample. Two different bagging classifiers were trained; one using the

additional "class weight" hyperparameter, as described in section 3.4.3.1; and

another using a randomly undersampled training set, as described in section

3.4.3.2.
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EasyEnsemble (EE)

EasyEnsemble builds upon the AdaBoost algorithm to address the problems of

class imbalance (Liu et al. 2006). AdaBoost takes the output of a number of

“weak learners” trained on subsets of the full dataset and assigns weights to

each (Freund & Schapire 1995). The weighted sum of these learners is the

output of the AdaBoosted classifier. With EasyEnsemble, the subsets of the

training data are selected by undersampling the majority class, in a similar way

to that described in section 3.4.3.2, so that in each subset the number of samples

in the minority and majority classes are equal.

3.4.4 Model Evaluation

A number of scoring metrics were used to evaluate final performance on the

test sets for fault detection and fault diagnosis, as well as the six test sets repre-

senting cases 1-6 for fault prediction. A high number of false positives can lead

to unnecessary checks or corrections carried out on the turbine, and this was

captured with the precision score, where a higher score represents a lower false

positive rate (eq. 2.2). A high number of false negatives, on the other hand, can

lead to failure of the component with no detection having taken place (Saxena

et al. 2008). This is captured by the recall score, where a higher number indica-

tes a low ratio of false negatives (eq. 2.3). The F1-Score was also used, which is

the harmonic mean of precision and recall (eq. 2.4). Confusion matrices were

used where appropriate to give a visual overview of performance and show ab-

solute numbers (figure 2.21). The overall accuracy of the classifier on each test

set was not used as a metric for the reasons outlined in section 2.8.4.3.

Specificity was deemed to not provide any additional useful information com-

pared to the recall, but was used in one specific case for benchmarking against

specificity scores in a previous study.

3.5 Results & Discussion

3.5.1 Fault Detection

For fault detection, the recall score was generally high, ranging from .78 to

.95, as seen in Table 3.5. However, the F1 score was brought down by poor
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precision scores all-round, representing a degree of false positives. Specificity

was highest using the CW method with a score of .82, followed by RUS with .67,

but suffered on the Base and CC methods, with .49 and .5, respectively. The

best balanced performance was seen on CW, with good recall and specificity

scores of .83 and .82, respectively. The precision of .04 was very low, but was

among the highest of all results seen. The scores were an improvement on those

obtained in (Kusiak & Li 2011), where the best recall and specificity for fault

detection were 0.84 and 0.66, respectively (compared with .95 and .82 here).

Table 3.5: Results for Fault Detection

Method Used Pre. Rec. F1 Spec.

Base .02 .78 .04 .49
CW .04 .83 .07 .82
RUS .02 .9 .04 .67
CC .02 .95 .03 .5

3.5.2 Fault Diagnosis

The scores on each fault for every fault diagnosis method are summarised in

Figure 3.2. As can be seen, scores for the SVM trained using the CW method

were generally slightly worse than RUS, apart from in the case of aircooling

faults with a recall score of 0.7 (up from the randomly undersampled training

set score of 0.33). This increase, however, may be because there were only

7 instances of air cooling fault in the test set, leaving it open to different test

scores in each case. The CC and EE methods both performed slightly worse

again, with CC slightly beating EasyEnsemble. The SVM trained on data un-

dersampled using the ENN approach performed worse than both the EE and CC

methods overall, but achieved a better F1 score on generator heating faults than

the “vanilla” RUS method (0.82 vs. 0.8). However, this was down to improved

precision (0.88 vs. 0.73) at the expense of recall (0.78 vs. 0.89). Both TL and

SM performed by far the worst overall. SM uses synthetic data to populate the

minority class, so its poor performance suggests that using synthetic data is not

suitable for this application.
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Figure 3.2: Precision, Recall and F1 scores for fault diagnosis across various trai-
ning methods

The RUS method performed the best overall. Results for this can be seen in the

confusion matrix in Figure 3.3. Generator heating faults showed a low propor-

tion of false positives, as well as correctly catching 89% of faults. Excitation

faults similarly showed a high proportion of caught faults at 97%, but was let

down by a high number of false positives leading to a low precision score of .04.

67% of feeding faults were caught, but here also the number of false positives

led to a precision score of .22.
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Figure 3.3: Confusion Matrix for fault diagnosis using the RUS training method.
This shows the absolute number of correctly or incorrectly labelled samples, as well
as the proportion of "Predicted Label" samples in each "True Label" row.

3.5.3 Fault Prediction

Early results on fault prediction showed that generator heating and excitation

faults showed the best promise for effective prediction. Feeding and air cooling

faults showed very poor performance, possibly due to a separating hyperplane

being hard to find in the limited data available for these particular faults. For

this reason, it was decided to focus on generator heating and excitation faults.

As described in Section 3.4.3, the various training methods were first tried on

the labelled dataset representing Case 1 from Table 3.3. The best performing of

these was then used on the other fault prediction windows.

The scores for each training method across the different faults using prediction

Case 1 are shown in Figure 3.4. Surprisingly, the best test scores were not

seen on any of the ensemble classifiers, but on the SVM trained with the CW

method, using a linear kernel. The full results for CW can be seen in Table

3.6. As can be seen, the recall score is very good, but again the F1 is brought

down by poor precision. RUS came in close behind, but with lower precision on
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both faults. EE and CC both performed worse, with lower scores on precision

for generator heating faults. ENN and SM both performed better than CW on

generator heating faults, but were let down by a zero F1 score on excitation

faults. TL performed very badly, with F1 scores of zero for both faults. Both

bagging methods also performed very poorly.

Figure 3.4: Precision, Recall and F1 scores on fault prediction for various training
methods

Table 3.6: Results for Fault Prediction Using CW Method on Fault Prediction Case 1

Faults Pre. Rec. F1

Generator Heating Fault 0.24 .98 0.38
Excitation Fault 0.04 0.96 0.07

The test results from CW for various cases of time in advance of a fault, as

described in Section 3.4.1.3, can be seen in Figure 3.5. The recall score for

both generator heating and excitation faults stays relatively high for all cases.

Both have a recall score of .97-.99 for cases 1 & 2. This falls to around 0.8

for cases 3 & 4 for generator heating faults, but rises again to above 0.9 for

cases 5 & 6. Excitation faults start to drop just below 0.8 for cases 5 and 6, but

this is still quite high. These results show that good indicators of a developing

fault are seen up to 12-24 hours in advance of a fault solely looking at 10-

minute SCADA data. Previous work done in (Kusiak & Li 2011) showed a recall
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score of just .24 one hour in advance of a specific fault, and this was the furthest

window tested. It should also be noted that the results in that work represented

a test set which did not fully sample the fault-free class. In (Kusiak & Verma

2011), the maximum prediction time was 10 minutes, with a recall score of .71

when detecting blade pitch faults, using SCADA data at a 1s resolution (rather

than the 10 minute data used in this study). Hence, these results are extremely

promising.

Confusion matrices for cases 1 and 4 are shown in Figure 3.6. For excitation

faults, although nearly all faults were successfully predicted in advance, there

were a high number of false positives, leading to a low precision score of below

10% in both cases. Generator heating faults saw more success. There was a

40% precision score for case 1, and a 22% score for case 4. Although these

scores are quite low, the inherent value of a SCADA-based system is that it

does not require the installation of any additional sensors or other hardware,

so can sit alongside existing systems providing additional CM functionality with

little additional cost. Any alarms generated by the system showing impending

faults can be remotely investigated to determine if action needs to be taken. An

extension to this work can be found in (Hu et al. 2016), which shows promising

early results in improving precision scores for fault detection by using time-

lagged and statistical features.

3.6 Conclusion

Various classification techniques based on the use of SVMs based on SCADA

data to provide additional CM functionality to wind turbines were investigated.

All three levels of CM, as described in section 2.1.4.1, were attempted: fault

detection, i.e. distinguishing between faulty and fault-free operation; fault di-

agnosis, whereby faulty operation was identified and subsequently the nature

of the fault diagnosed; and, fault prediction, where a rough RUL estimate was

given for a particular type of fault. The classification techniques employed va-

rious different ways of training SVMs to deal with the problems of imbalanced

data, including re-sampling the data as well as using ensembles of SVMs.

The results were promising and show that fault detection is possible with very

good recall and specificity, but the F1 score is brought down by poor precision.

In general, this was also the case for diagnosing a specific fault. More impor-
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Figure 3.5: Precision, Recall and F1 scores for using CW training method to predict
generator heating and excitation faults for the cases shown in Table 3.3

tantly, predicting certain types of faults was possible up to 24 hours in advance

of the fault with very high recall scores. Although the F1 score was here again

brought down by poor precision, this still represents a significant increase over

what was previously possible using 10 minute SCADA data, and improving the

precision scores would represent a very important step forward in being able

to rely on SCADA data for accurate fault prediction. In all cases, using the CW

or RUS methods to deal with imbalanced data provided the best overall perfor-

mance. These methods are much simpler to implement that comparable under-

or over-sampling methods.

The results also demonstrated one of the advantages of a classification-based

approach over other approaches for CM based on SCADA data: a single SVM

model can be trained to diagnose or predict a number of different faults. In this

case, some success was demonstrated in diagnosing and predicting faults across

a range of assemblies from the generator to the power feeder cables. This is in

contrast to, for example, NBMs, which rely on a model being built to represent

parameters such as temperatures associated with specific components.

The data used in this study related to a single turbine over an eleven month

period. This represents a limitation in what can be achieved; with additio-
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Figure 3.6: Confusion matrices showing the ratio of correctly classified samples for
fault prediction using the CW training method on prediction cases 1 and 4

nal data, i.e., from more turbines over a longer period, better fault prediction

should be possible due to more positive examples being available for training.

As well as this, advanced feature extraction and selection would enable even

higher scores. An extension to this work in (Hu et al. 2016) showed improved

precision scores on fault/no-fault classification by using domain knowledge,

temporal and statistical features, followed by using feature selection methods

to find only the relevant features and speed up training time.

While this work used the alarm system directly for labelling and describing

faults, it did not take into account multiple concurrent alarms appearing during

fault events. The available data also provided no way to assess whether the

alarms were an accurate representation of the faults being experienced. While

this approach is consistent with other work in the literature, it poses some po-

tential issues which will be discussed in the following chapter, chapter 4. A

solution to these labelling issues based on sequences of alarms will be propo-

sed, before a formalised framework for using classification as a CM tool will be

described in chapter 5.

The work presented here also relied solely on classification metrics for evalua-

ting the system. This is also consistent with what is seen in literature, but fails
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to take into account how alarms based on such a system would be implemented

and how they would perform. This will also be addressed in chapter 5.

3.6.1 Research Objectives

ROs 1 & 2 of this thesis were:

RO1. Determine what level of condition monitoring can be performed using

classification techniques

RO2. Investigate different techniques for dealing with classification based on

imbalanced datasets and evaluate their suitability for fault detection,

diagnosis and prediction

It was shown that all three levels of CM are possible, though the number of false

positives was quite high. Hence, all three levels of CM are possible, but further

work is needed to bring up the precision score. Although this meets RO1, this

will be further investigated in subsequent chapters.

Different techniques for dealing with imbalanced data were also presented,

compared and evaluated across all three levels of CM. This showed that the

addition of a class weight, or simply undersampling the majority class, were

the best ways of dealing with class imbalance in the training stage, satisfying

RO2.
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Chapter 4

A More Granular Picture of
Historical Failures

4.1 Introduction

A number of techniques for CM based on SCADA data discussed in section 2.8

depend on accurately determining the historical state of a turbine. For NBM,

this means determining the times when the turbine was operating nominally

and fault free, as opposed to needing to explicitly label when specific faults

took place. In works such as (Kusiak & Verma 2013, Bangalore et al. 2017,

Zhao et al. 2017), the authors use clustering to identify these periods of normal

operation by assuming abnormal data will lie in distinct outlying clusters. In

others such as (Butler et al. 2013, Park et al. 2014), outliers are filtered out

with the assumption that for the majority of normal operation, parameters such

as power, wind speed, or certain temperatures, should lie within certain statis-

tical bounds. For classification, because classifiers also learn what the actual

faults themselves look like, more granularity is needed. Specific types of faults

must be labelled as such, and the small number of fault samples mean any mis-

labelled sample can disproportionately affect overall performance. If quality

historical data on operational states and failures can be obtained, this can also

be useful for assessing the reliabilities of assemblies and turbine models in an

operator’s fleet.
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4.1.1 Ideal Case

Ideally, this data would come from a structured stoppage and failure database

for the wind farm, containing information such as the root cause or failure

mode (if available), accurate timestamps for when the turbine stopped, the du-

ration of the down time, and when (if any) maintenance occurred (Peter Tav-

ner 2012). Here, "structured" refers to maintenance entries being selected from

a prescribed list and mapped to a standardised turbine taxonomy showing the

component or sub-system affected, such as those mentioned in section 2.4. This

is opposed to "unstructured" data such as comments explaining what work was

done, which cannot be easily automatically searched and categorised. It would

also be useful to have some way of identifying periods of downtime in the data

related to events such as grid faults or noise or shadow-related curtailment, so

that these can potentially be taken into account. For classification purposes,

this means the 10-minute operational data can be automatically and accurately

labelled with each of these periods, and a classifier could be trained on histo-

rical data to distinguish between normal operation and when a particular type

of fault is developing. In addition, this would allow a comprehensive picture

of turbine reliability to be built down to the component level, giving operators

detailed information for all makes and models of turbines in their fleet (Reder

et al. 2016). However, as was seen with the reliability studies in section 2.6,

obtaining accurate fault data can be challenging. This is particularly true for

researchers, as noted in (Tautz-Weinert & Watson 2017a, Kusiak 2016, Wenner-

hag & Tjernberg 2012). The two main ways of obtaining failure data seen in

the literature for both reliability studies and SCADA-based CM have been from

fault logs and the SCADA alarm system.

4.1.2 Labelling by Fault Logs

Maintenance records can be an effective way of determining the historical ope-

rational history of a turbine, as was done for the classification in (Godwin &

Matthews 2013). However, fault and maintenance logs are not always stored

in structured, or even digital, databases, and can vary across different OEMs,

operators and, in some cases, even individual maintenance technicians. Field

records can be incomplete, inaccurate or lacking in sufficient detail (Guo et al.

2009). Furthermore, maintenance logs do not necessarily capture instances

when the turbine was not operating for non-fault reasons (such as previously
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mentioned grid, noise or shadow-related stoppages or curtailment). A recent

report by the European Academy of Wind Energy (EAWE) identified the lack

of standardised maintenance reporting as a long-term research challenge in the

wind industry (van Kuik et al. 2016). This is echoed by IEA Wind Task 33,

which aims to provide recommendations for standardised failure and reliability

reporting (Hahn 2017).

This is an issue which has not seen a lot of dedicated coverage in the literature,

as noted by the authors in (Tautz-Weinert & Watson 2017a). Here, a review of

maintenance logs for four different wind farms, containing 210 turbine-years

worth of data, was performed. The best-case of all of these recorded a list of all

stoppages in the period the records covered. However, even in this case, com-

ments giving context to the stoppages were only added for major component

replacements, or occasionally giving other reasons for the stoppage. Further-

more, for major replacements, no mention was given as to whether the work

was preventive or corrective (i.e. whether the result of a full failure). The given

timestamps were also only for when the repair team arrived on site as opposed

to when the turbine failed (assuming this was corrective rather than preventive

maintenance). For two other farms in the study, only a list of major component

replacements were recorded, again not noting the times of actual failure. For

the final farm, no service record at all was available.

These issues are echoed in parts of other publications. For example, the authors

of (Kaidis et al. 2015) note that maintenance logs can be difficult to read or

incomplete, or only available in hard copies. This sentiment is also reflected

in a Sandia National Laboratories report in (Hill et al. 2009), where it is noted

that work orders may list the amount of time for a repair operation, but not the

actual times the turbine was down. These issues make it difficult to accurately

label when faults occurred at the granularity needed. Furthermore, even if

fault logs are accurate, if the data is not stored in a structured way, or relies

on comments to contextualise the stoppage or fault event, labelling the data for

classification can be a tedious and involved process. All of these findings are

consistent with this author’s own experience - data available from two different

data sets contained information on major repairs, but this was stored in PDF

documents or as comments on spreadsheets.
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4.1.3 Labelling by the Alarm System

Another way of gleaning accurate fault information is from the turbine’s alarm

system, as done by the classification in (Hu et al. 2016, Kusiak & Li 2011, Chen

et al. 2013). This has the advantage of being consistent and automatically

recorded with accurate timestamps, regardless of operator maintenance policies

or technician error. Therefore, if specific types and times of faults, scheduled

maintenance, or other types of stoppages can be interpreted from this data, the

logic can be applied to all turbines which use a similar SCADA alarm system.

As explained in section 2.5, fault alarms are usually triggered when the turbine

controller detects an operating condition that falls outside of defined acceptable

bounds, such as the rotor exceeding a certain speed, or the bearing exceeding

a certain temperature. Hence, the presence of a turbine alarm does not always

indicate that a fault has taken place - they can be triggered as a precautionary

measure to avoid damage. This can make it difficult to perform classification

as the leading fault signatures for these less severe situations may not be as

obvious in the data. By giving criteria for what constitutes a fault in a similar

way to some of the reliability studies discussed in section 2.6, e.g. related to

the duration of a stoppage or whether repairs took place, this problem may be

avoided.

Some turbine alarm systems have functionality whereby a number of alarms,

warnings or information messages can be active at any one time, or in very

quick succession. Turbine alarms also often occur in quantities too large for

effective analysis, as will be discussed in chapter 6 (Yang et al. 2014, Qiu et al.

2012). This is particularly true during fault events, where alarms occur in

"alarm showers". These qualities can make it difficult to discern the precise

reason for or times of a particular stoppage. Some approaches have been taken

in the past to try and address this; for example, in (Kusiak & Li 2011), the

authors assign severity categories to the fault alarms. If there are a number of

concurrent fault alarms, the authors assign the fault to the most severe alarm

which occurred, but no linking of subsequent alarms is made, or an attempt

to quantify faults in terms of duration of the associated stoppage. In (Kusiak

& Verma 2011), meanwhile, the authors linked particular types of faults to

particular sequences of alarms. Once again, however, the duration or severity

of faults were not taken into consideration, and the sequences of alarms were

not taken into account when labelling the data. In the previous chapter, a case

study on CM using a classification-based approach was performed using alarm
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system data to label the faults. The alarm system communicated what "status"

the turbine was operating in, and it could only operate in a single status at

a time. Hence, the issue of concurrent alarms was avoided. However, the

duration or severity of faults, or whether particular sequences of alarms had

any significance, was not taken into consideration.

4.1.4 Solution

If some way of automatically mapping alarm sequences as they occur during

stoppages to specific types of system downtime or faults can be found, much

of the functionality of the "ideal" maintenance database described previously

can be captured, without the need for manual interpretation. Because the in-

formation would be recorded in a standardised and structured way, this would

allow for automatic labelling of SCADA data, avoiding a tedious manual step.

In this chapter, a method for building a database of historical turbine stoppa-

ges from SCADA alarms and availability data is proposed. Each stoppage will

contain information on the affected assembly (or whether it was due to grid or

weather-related issues), the duration the turbine was down for, and whether it

resulted in any on-site intervention by technicians (i.e. fault levels 3 and 4 from

section 2.5). This will allow more sophisticated labelling of data than the pro-

cess used in chapter 3, and will form part of a proposed framework described in

chapter 5. Section 4.2 will describe the data used to demonstrate the developed

methodology. Section 4.3 will then describe the methodology. Section 4.4 will

describe the results, and finally section 4.5 will draw conclusions.

4.2 Description of Data

The data used to demonstrate the methodology in this chapter comes from a site

in the East of Ireland with complex terrain consisting of eleven 2.5 MW DFIG

turbines. The data covers November 2015 - April 2016 and is composed of

three parts: SCADA operational data, availability data and alarms data. There

were over 260,000 10-minute SCADA data samples spread across all turbines,

with each sample having over 90 different parameters, and an equal number of

availability samples. The availability data tracked the availability states of the

turbine over every 10-minute period by counting how many seconds in each

period the turbine was in one of the following states:
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Table 4.1: Ten Minute Availability Data

TimeStamp OK Down Grid Weath Maint Rep

09/06/2015 14:10:00 600 0 0 0 0 0
09/06/2015 14:20:00 400 200 0 0 0 0
09/06/2015 14:30:00 0 600 0 0 0 0
09/06/2015 14:40:00 100 500 0 0 0 0
09/06/2015 14:50:00 600 0 0 0 0 0

• OK - the turbine was operating normally

• Down - the turbine was not operating due to a fault detected in one of its

subsystems

• Grid - the turbine was not operating due to a grid fault

• Weath - the turbine was not operating, or was curtailed, because of severe

weather

• Maint - the turbine was down for routine/scheduled maintenance

• Rep - the turbine was down for unplanned repairs. This also references

any time a technician accessed the turbine for a simple manual restart.

A sample of this data can be seen in table 4.1.

The alarm system was similar to the general system described in section 2.2. A

sample of this can be seen in table 4.2. Note the codes have been randomised

and descriptions heavily edited for anonymity purposes. Note also that the fault

alarms for the turbine models used in this study are further split into "fault" and

"critical fault" categories, with "critical fault" alarms requiring at least a manual

on-site reset to restart the turbine (level 3 from section 2.5), while "fault" alarms

cause the turbine to shut down, but in some cases can be remotely reset (level 2

from section 2.5). The OEM-assigned categories included references to various

assemblies within the turbine, e.g. "pitch" or "generator", as well as assorted

other categories such as "no fault", "weather" and "grid". Altogether, there were

over 100,000 alarm instances in the dataset, with 232 unique alarm codes.

Finally, maintenance logs in the form of spreadsheet and PDF documents were

available to evaluate the accuracy of the stoppage database created.
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Table 4.2: Sample alarm system data from a certain day

ts te Code Description Category Severity

02:13:38 07:56:14 a41 Normal Operation No Fault Information
07:56:14 08:37:32 a91 Low wind cut out Weather Information
08:37:32 08:39:21 a21 Start Up No Fault Information
08:39:21 23:44:02 a22 Normal Operation No Fault Information
23:44:02 17:22:18 a122 Pitch Thyristor Fault Pitch Fault

4.3 Methodology

As mentioned previously, every time the turbine shuts down or production is

curtailed for any reason, a number of alarms are generated by the turbine’s

control system. Note that, "alarms" here refers to both warning/fault alarms

as well as information messages. The gap between the first alarm(s) appearing

which signify the turbine stopping/being curtailed, and the turbine coming back

on-line, can be anything from minutes to weeks, depending on the reason for

the stoppage. Because many alarms are generated both instantaneously when

the turbine stops, as well as over the duration of the stoppage as reactions to

these other alarms, it can be difficult to assign a reason for the stoppage from

any one alarm. This can lead to errors in labelling SCADA data for classification.

To avoid this problem, it is instead possible to (i) identify batches of alarm

sequences as they occur during each stoppage, and (ii) use a specific set of rules

to attribute each batch to a stop category. These two steps will be described over

the following sections.

At this point it is useful to explain some notation and terminology that will

be used going forward. The word "alarm" in this work refers to a single type of

warning/fault alarm or information message, and its associated code, which can

be triggered by the control system. The alarms will be labelled with ac, where

c is the code for that alarm (note again that these codes have been randomised

for confidentiality reasons). For example a23 refers to alarm code 23, with

the associated OEM-assigned description, category and severity, as described in

section 4.2. The full set of all k alarms is called A:

A = [a1, . . . , ak] (4.1)

Alarm instances, on the other hand, refer to individual instances of specific
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alarms/information messages with a start time, ts, and end time, te. The full

set of alarm instances will be labelled L, and specific individual instances l.

In this way, all alarm instances l with code 23 are instances of a23, and this

set of instances would be called L23. Superscript notation is used to denote the

turbine the alarm occurred on, so that the set of instances of a23 which occurred

on turbine 2, is L2
23. Each turbine is also assigned a sequential number, and this

set of numbers is called T .

4.3.1 Create Batches of Alarm Sequences

The process for creating batches of alarm sequences as they occur during stop-

pages or periods of curtailment is outlined in algorithm 2.

Algorithm 2: Create batches of alarm sequences
Data: Alarms A; Alarm instances L; Set of turbine numbers T
Result: Set of alarm batches B

1 Identify all alarm codes which cause the turbine to stop or curtail
production, Ar, and their associated stop categories

2 Identify the alarm code which signifies the turbine returning to normal
operation, an

3 for j in T do
4 Find all alarm instances from Lj which have a code in Ar. Store set of

resultant instances as Lj
r

5 Find all alarm instances from Lj which have code an. Store set of
resultant instances as Lj

n

6 Find earliest occurring instance in Lj
r. Store its ts as tb_start

7 Find earliest occurring instance in Lj
n with ts > tb_start. Store its ts as

tb_end

8 Create a batch of alarms, Bi, from Lj with ts that satisfy:

tb_start ≥ ts < tb_end (4.2)

9 Find earliest occurring instance in Lj
r with ts > tb_end. Store its ts as

tb_start

10 Repeat steps 7 - 9 until no more instances of Lj
r

11 Final step: If two or more batches on the same turbine occur within 1 hour
of each other, join these "sub-batches" together as one continuous batch

The first step is to identify the set of alarms which cause the turbine to stop, or

indicate curtailed production, when they appear. This set of alarms is called Ar.

From here, each alarm in Ar is assigned a particular "stop category" as follows:
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• Fault categories - These are alarms which cause the turbine to shut down

due to a fault and are labelled according to the assembly where they ori-

ginate, corresponding to the Reder taxonomy described in Appendix A.

Note that depending on the alarm system, these may differ to the assem-

blies given in the OEM-assigned categories mentioned in table 4.2. They

usually count toward the "Down" availability category seen in table 4.1

or equivalent. Note that the assemblies listed here are non-exhaustive,

and only correspond to the assemblies for which there were alarms in the

dataset described in section 4.2

– yw - Yaw system faults

– ba - Backup battery system faults

– bk - Blade braking system faults

– fc - Frequency Converter faults

– gb - Gearbox faults

– gn - Generator faults

– mi - Miscellaneous. These are fault alarms from various safety sys-

tems that can occur alongside alarms from other systems, e.g. the

safety chain

– pt - Pitch system faults

– to - Tower faults. These alarms signify tower structural vibration

outside of acceptable bounds.

• gd - grid. Alarms that signify the turbine has shut down as the result of a

grid issue or fault. Correspond to "Grid" in table 4.1 or equivalent.

• ma - manual/maintenance. Alarms that signify the turbine has been ma-

nually shut down, e.g. for maintenance or a remote manual shut down.

Correspond to "Maint" or "Rep" in table 4.1 or equivalent.

• no - normal operation. Alarms that represent times the turbine was shut

down or curtailed as part of normal, healthy operation, e.g. curtailed

due to grid or noise restrictions, or shut down to perform periodic system

tests or shadow-related shut down. Corresponds to "OK" in table 4.1 or

equivalent.

• sn - sensor. Alarms that signify the turbine has gone down due to a sus-
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pected error in one of the turbine’s sensors, e.g. wind vane misalignment.

Counts as "Down" from table 4.1 or equivalent.

• wa - weather. Alarms that signify the turbine control system has shut

down or curtailed operation due to severe wind conditions. Note that

alarms signifying wind speed below cut-in are not included as in these

cases the control system has not intervened to shut down the turbine.

Correspond to "Weath" in table 4.1 or equivalent.

Additionally, the alarm which signifies the turbine returning to normal opera-

tion is identified. This is usually a single alarm which indicates the turbine is

spinning up to generate again, and usually coincides with the turbine returning

to the "OK" availability category from table 4.1. This alarm is referred to as an.

Then, batches of alarms which occur during stoppages on each turbine are cre-

ated. These include all alarms which occur between the turbine stopping/being

curtailed, and coming back on-line (as opposed to just Ar alarms). Finally, bat-

ches on the same turbine which occur within one hour of each other are joined

together as one, continuous batch. This time duration was found heuristically

and is done so that if a fault in one sub-system damages another sub-system,

with the turbine coming back on-line in between, the two are not treated as

separate issues when it comes to labelling the data leading up to the original

fault.

A sample of a batch can be seen in table 4.3. Each alarm instance is listed

according to its start time, code (note these are randomly assigned), the stop

category of the alarm (note that some alarms are not Ar alarms, and so have

no stop category), and the associated description.

As can be seen, the batch starts with two frequency converter fault related

alarms at around 03:00 am. A number of other alarms are then generated

in response to this, including pitch and yaw motor alarms. These "triggered"

alarms are not related to the initial fault, but are instead reactions to this initial

fault. The maintenance switch is then activated the next day as technicians

arrive on site to inspect the turbine. This also causes some additional alarms

to trigger. A pitch system test is then performed (often, these periodic tests

will automatically be performed when the turbine has been shut down to avoid

needing to shut down especially for the test), before the turbine is given the

command to start idling and come back on-line. The total duration for this

batch was just over 10 hours.
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Table 4.3: Example of a batch of alarm sequences

ts Code Stop Description
Cat.

03:02:01 a1 fc Freq. Conv. voltage fault
a2 fc Invalid Response

03:02:40 a3 pt Blade angle asymmetry
a4 pt Pitch Motor Protection

03:03:02 a5 pt Blade braking time high
13:06:22 a6 ma Repair Switch

a7 yw Yaw motor over temp.
a8 pt Pitch Comms Error

13:06:57 a9 pt Pitch malfunction
13:26:58 a10 pt Pitch System Test
13:33:23 a11 N/A Idling
13:46:16 a12 N/A Start-up
13:48:34 a13 N/A Spinning Up
13:49:57 an N/A System OK

4.3.2 Assign Stop Categories to Batches

Each batch is then assigned a stop category, similar to how the individual alarms

were. This is done primarily by looking at the "root" alarms, i.e. the first alarms

that occur simultaneously in the batch (a1 and a2 in table 4.3). The rules for

assigning stop categories to batches are as follows (items further down the

following list supersede those higher up):

• In general, batches are assigned the most common stop category of alarms

in the root alarms

• sn is assigned if at least one sensor error is present in the root alarms. This

is because a sensor error causes the turbine to go down, which in turn can

instantaneously trigger other alarms.

• no is assigned only if all alarms in the root of the batch are no alarms; ot-

herwise these alarms are ignored. This is because turbine control systems

usually automatically try to schedule system tests during periods of down-

time, and these tests do not cause faults themselves. Alarms relating to

normal curtailed operation, on the other hand, do not appear with other

types of Ar alarms, as the presence of Ar alarms indicates that the turbine

has been shut down, as opposed to being curtailed.

• gd is assigned if a gd alarm appears anywhere in the root. This is because
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grid faults can typically cause a cascade of faults to be detected in other

systems (even instantaneously from the control system’s point of view).

This is also assigned if the grid availability counter was active during the

stop.

• If the "maintenance" availability counter is active from the time of the root

alarms, then the batch is assigned ma.

• If the "repair" availability counter is active for any significant duration

over the course of the batch, it indicates that some corrective repairs took

place. "Significant duration" here can be specified by the user. In this case,

the batch is given an additional label, rep, as well as the stop category

previously assigned.

• Additional rules may be added or edited based on the particular alarms

system.

In this way, once the stop categories and rule set have been developed for a

particular turbine model, they can be applied to a dataset from a different site

or to future generated data from the same site, with no additional manual steps

required.

4.4 Results

Batches of alarm sequences were created and labelled using the methodology

outlined in sections 4.3.1 and 4.3.2. This resulted in the creation of 1,045 bat-

ches, each representing a particular stoppage with an associated turbine num-

ber, category, start time, end time, root alarm sequence and list of associated

alarm instances. No additional rules for assigning stop categories were needed

beyond those in section 4.3.2. Some sample batches can be seen in table 4.4,

which shows the start and end time of the stoppage, the turbine number it was

associated with and the batch category for that particular batch. The first batch

here represents a fault in the yaw system which caused the turbine to go off-line

for just under two hours, and no on-site visit was necessary to get the turbine

started again. The second batch represents a stoppage that lasted approxima-

tely 43 hours, and was due to a fault in the pitch system which needed some

on-site intervention to clear.

Maintenance logs were available for all turbine stoppages corresponding to le-
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Table 4.4: Sample stoppage batches

Start time End time Turbine Category
2015-11-17 14:59:28 2015-11-17 16:55:57 3 yw
2016-04-13 19:51:24 2016-04-15 14:53:11 10 pt - rep

vels 3 and 4 of the fault severity categories in section 2.5, and in cases of plan-

ned scheduled maintenance activities. The dates and approximate times of site

visits were available for each entry, along with a short, unstructured descrip-

tion of the work carried out (e.g. "pitch repairs", "grid works", etc.). In some

cases, the actual time of the stoppage was available in the comment, while in

others only the time that the maintenance team arrived on site was logged. All

entries were assigned a stop category from the description, and where possible

matched up with batches. It was found that all maintenance log entries had an

associated batch and that the batch categories were correct in every case. For

example, for the second batch in table 4.4, the maintenance logs revealed that

on the 14th of April a maintenance team arrived on site and found there was a

problem with a pitch thyristor, but could not find the source of the fault so left

the turbine off overnight until they returned on the 15th of April to fix it. They

were off-site by 15:00, corresponding to the time when the batch entry stated

the turbine came back on-line.

A single exception was one instance on turbine 8, where the turbine went down

due to a pitch fault on 11th January 2016, which was repaired during a routine

inspection visit the next day. The maintenance logs simply stated that the tur-

bine was down for a brief routine inspection on 12th January, but the batch

creation algorithm correctly identified the stoppage as a pitch fault which re-

sulted in a repair action. This was confirmed as correct by the maintenance

team, and is an example of why an automated system can be more reliable and

less prone to human error than manually recorded entries.

Further verification of the accuracy of the batches was found through cross-

checking with the availability data. All times the "Grid" availability counter was

active corresponded to batches labelled gd. The same was true of the "Maint"

counter and batches labelled ma. Importantly, these results mean that because

all unplanned maintenance activities (i.e. "severe" faults) and stoppages due

to less severe faults were correctly captured by the batch labelling process, the

tedious manual step of labelling the data for fault classification can be replaced

with this automated process.

107 Kevin Leahy



4. A MORE GRANULAR PICTURE OF HISTORICAL FAILURES

bk gn gb to ba no sn yw fc ma pt gd
Stop Category

0

200

400

600

800
To

ta
lD

ow
nt

im
e

(h
rs

)

Figure 4.1: Total duration of stoppages for each category of stop
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Figure 4.2: Distribution of pitch stoppage durations (note log scale on x axis)

The contribution of each type of stoppage to the total downtime on the turbines

is shown in figure 4.1. As can be seen, grid faults were the leading cause of

downtime at the wind farm, with pitch faults being the most common cause

of turbine-related fault. A histogram showing the distribution of pitch fault

durations can be seen in figure 4.2. It is clear that although the vast majority of

stoppages are short term in nature, the longer stoppages make up the bulk of

the downtime, consistent with findings in reliability studies reviewed in section

2.6. Thus, the utility of such a system in reporting reliability information is

demonstrated.
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4.5 Conclusions

The work in this chapter presented a methodology for building an accurate da-

tabase of historical turbine stoppages from SCADA data. Sequences of historical

alarms were identified, and rules applied to these sequences to determine the

times of and reasons for downtime. In the case of downtime caused by faults,

the faults were mapped to the relevant assembly, per the Reder taxonomy des-

cribed in Appendix A. The methodology was applied to a dataset comprising

6 months’ worth of data for 11 turbines, resulting in 1,045 recorded stoppa-

ges. The majority of these were very short in nature. Maintenance logs were

provided which recorded stoppages which required an on-site intervention to

restart the turbine (either a straight manual restart or a repair operation). It

was found that the database correctly identified every stoppage that was pre-

sent in the maintenance logs.

This result means that the resulting stoppage database can be used to accurately

label SCADA data for CM purposes. For NBM, stoppages to do with faults,

system tests, grid issues, etc. can be removed from the data to build the model.

For classification, it means the granularity required for accurate fault labelling

can be achieved. The following chapter will incorporate this labelling system

as part of a prescribed, modular and robust framework for classification-based

CM.

4.5.1 Research Objectives

RO3 of this thesis was:

RO3. Determine whether information on historical failures can be accurately

gleaned through analysis of the turbine alarms system, and whether

this information can be used to create a complete and accurate training

set for fault prediction

This chapter showed that an accurate database of historical failures could in-

deed be built from historical fault data. The times of failures and the assembly

to which they are attributed was found to be accurate by cross-referencing with

the fault logs and availability data, making this ideal for labelling the operati-

onal data for classification-based fault prediction. Hence, RO3 has been achie-

ved.
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Chapter 5

Robust Framework and Evaluation
Criteria for Classification-Based CM

5.1 Introduction

In chapter 3, a case study was performed on classification using single instances

of specific alarms as references for when faults occurred. However, this gives a

less accurate picture of the type and severity of the faults compared to the more

robust methodology developed in chapter 4. This provided more clarity and

granularity as to what assembly the faults occurred in, how long they lasted and

whether a site-visit was required. Furthermore, although classification scores

were given in chapter 3, these scores do not provide a holistic picture of how

well the solution would perform as a field-deployed system; if a single live point

is classified as looking like a fault may be imminent, but the next subsequent

points are not, should a maintenance investigation take place? Using a sliding

window metric, whereby the portion of samples predicted as unhealthy in a

certain time window is measured, can help smooth out any noise and provide

operators with more robust decision support (Zhao et al. 2017).

In this chapter, a formal framework for CM using classification approaches ba-

sed on SCADA data will be presented, leveraging some of the techniques and

findings developed in chapters 3 and 4. The framework will incorporate the

labelling process outlined in chapter 4, and introduce a window-based alarm

system in order to assess the performance of any models produced by the fra-

mework in a real-world setting. The developed framework will be prescriptive

and robust (i.e. incorporating machine learning best practices), while still being
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modular enough to fit the needs of future researchers in the space. It aims to

avoid some of the common pitfalls seen in classification-based approaches in

the literature (as described in section 2.8.4), as well as provide a way to assess

real-world performance for fault prognosis. Unlike the work in chapter 3, this

framework will focus exclusively on the fault prognosis aspect of CM, as op-

posed to fault detection or diagnosis (chapter 6 will investigate ways of more

accurately diagnosing faults using alarm system data). The framework will be

applied and demonstrated on the same set of data used in chapter 4.

As mentioned previously in this thesis, what constitutes a fault has different

definitions in different parts of the literature. In the review of reliability studies

in section 2.6, faults were variously defined as stoppages that lasted more than

an hour, stoppages where a maintenance call-out was required to restart the

turbine, or stoppages where material was consumed in order to get the turbine

running again (i.e. repairs or replacements took place). The methodology in

chapter 4 provided information related to the duration of stoppages and also in-

formation on whether or not repairs took place. Because of this, the work in this

chapter will evaluate the fault prognostics framework using different criteria for

what constitutes a failure. This will be based on the length of the stoppage or

whether or not a site-visit was required to restart the turbine. Included in these

site-visits are straightforward manual restarts which fixed the issue - however,

as mentioned in section 2.7.3, in the offshore context such manual restarts can

be a lot less straightforward due to access issues. Hence, no differentiation will

be made between faults where actual repairs took place, and where a manual

restart was required.

5.2 Framework

The framework developed in this work can be split into three main parts, seen

in figure 5.1: (i) alarm sequence batch creation; (ii) data labelling & classifi-

cation; and (iii) fault prediction system deployment. Part (i) deals with iden-

tifying "batches" of alarm sequences as they appear during turbine stoppages,

and assigning a particular "stop category" to give a reason for each stoppage.

This represents the work done in chapter 4. Part (ii) deals with using these bat-

ches to label SCADA data and perform classification on this data. Part (iii) deals

with deploying the trained classifier in the field and using a "sliding window"

metric for notifying operators of possible impending faults.
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Figure 5.1: Overview of Overall Framework

5.2.1 Alarm Sequence Batch Creation

The alarm sequence batch creation involves building a database of historical

stoppage data. This includes the start and end time of every planned or un-

planned stoppage that each turbine experienced, as well as giving a reason for

the stoppage. This step represents the methodology covered in chapter 4.

5.2.2 Data Labelling & Classification

The general methodology for this part of the framework is shown in figure 5.2.

As can be seen, this stage can be separated into two broad steps; labelling, and

the classification itself.

5.2.2.1 Data Labelling

In this framework, the classification being attempted is to differentiate between

pre-fault and healthy data. That is, trying to distinguish between data leading

up to a fault (when it can be assumed that this fault was developing), and

otherwise healthy data.

Data Cleaning: Note that prior to any work being done, the SCADA data itself
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Figure 5.2: Overview of step "Data Labelling and Classification"

must be cleaned. Any variables that have very little variance, e.g. as a result

of frozen sensors, are removed. As well as this, any variables that look to have

a significant proportion of erroneous or missing values are also removed, e.g.

if 10% of the nacelle ambient temperature values are missing or implausible,

this should be removed. Finally, individual samples with missing or erroneous

values should be removed. For example, if there are a small number of samples

with implausible power output values, these should be removed. The specific

criteria for removing values will vary from dataset to dataset.

Label Historical Stoppages: Next, the batch stoppage data (obtained in step

5.2.1) is overlaid onto the SCADA data to label each 10-minute data point as

being "normal/healthy" or as being associated with a particular batch stop ca-

tegory (such as those mentioned in section 4.3.2), e.g. gd, pt, no, etc.

Batch Filtering: A filtering step is then applied whereby SCADA data relating

to certain types of batches are filtered out so that only healthy data and the par-

ticular type(s) of faults to be detected are left. wa stoppages and curtailments

should be left included, as the resulting classifier should be able to take into

account adverse weather conditions to avoid throwing false positives. Of the

remaining fault data, stoppages above or below a certain duration may also be

excluded for the purposes of trying to predict more or less severe faults. In a

similar vein, only stoppages where corrective repairs took place may be inclu-
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ded. For example, if trying to predict pitch faults which resulted in corrective

repairs, all stoppages except those labelled both pt and rep are removed from

the data. This differs from the classification in chapter 3, where certain types

of faults were detected against a backdrop of a wide array of operational data,

including other faults. This addition to the framework was made due to better

performance seen in early results when filtering out other types of stoppages.

This would not be possible without the more granular stoppage data obtained

in step 5.2.1.

Pre-Fault Labelling: Finally, SCADA samples preceding each remaining fault-

stoppage at time t are given label y:

yt =


F, if ts − w2 − 600s < t ≤ te + 600s

PF, if ts − 600s− w1 < t ≤ ts − 600s− w2

NF, otherwise

(5.1)

where {w1, w2;w1 > w2} ∈ N+ are windows of time in advance of the stoppage,

ts is the start time of the batch, te is the end time of the batch, F is the label of

the stoppage itself, PF is the pre-fault data, and NF represents healthy, fault free

data. In this way, a window of time w1 preceding the fault is labelled as pre-

fault data, while leaving a window w2 as a "minimum prediction time" before

the fault occurs. The time between ts − w1 and ts − w2 is known as the "pre-

fault window". Note that a 600s time band is once again added to ensure faults

which only lasted part of a sample are labelled as such. Finally, all data labelled

F is removed, to only be left with NF and PF data to train the classifier.

5.2.2.2 Classification

The classification step follows a typical machine learning process. This process

can be quite heuristic and be dataset-dependent, so only a high-level overview

will be presented. In any case, current machine learning best practices should

be employed (James et al. 2013).

A number of classification algorithms can be used, such as Support Vector Ma-

chines (SVMs), Random Forests (RFs), Logistic Regression (LR), Artificial Neu-

ral Networks (ANNs), etc. Depending on the classification algorithm selected,

the data may need to be normalised. As well as this, over or undersampling

methods may be used to reduce the imbalance in the dataset. Typical fea-
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ture selection/extraction or dimensionality reduction methods, such as polyno-

mial feature generation or principal component analysis (PCA), can be used to

identify important features. Domain knowledge can also be applied to create

relevant features (e.g. differences between certain parameters, averages, time-

lagged features, etc.). A case-study of feature engineering for this domain can

be found in (Hu et al. 2016).

Next, cross-validation is employed to search over model hyperparameters and

compare scores across different algorithms. Finally, the best performing model

is tested on a held-out test set or another appropriate cross-validation scheme,

using appropriate scoring metrics. As will be seen in section 5.3, the classifica-

tion process can be repeated any number of times with different batch filtering

techniques in order to evaluate effective prediction windows and which types

of faults can be predicted.

As mentioned earlier, there are many approaches that can be taken in this itera-

tive process to achieve the best results, so no prescribed set of steps is presented

at this stage of the overall framework. However, as discussed in section 2.8.4,

there are some pitfalls seen in some parts of the literature that should be avoi-

ded. Some of these are presented here.

Cross Validation Scheme: The experimental layout used for obtaining cross-

validation scores across models, as well as the final score, must be appropriate.

Cawley and Talbot present some of the best practices and common mistakes

to take note of when employing cross validation (Cawley & Talbot 2010). For

example, nested cross-validation or a separate test set should be used to avoid

using the same data to tune hyperparameters and evaluate the model, which

can lead to inflated scores.

An appropriate scheme to deal with the fact that turbine time-series data are not

independently and identically distributed should be selected. Using a typical

shuffled K-Fold cross validation scheme will lead to greatly inflated scores due to

the strong auto-correlation of samples that are close in time to each other. One

way of addressing this is by using a modified version of k-fold which returns the

first k folds as a training set, and the (k+1)th fold as the test set. The difference

here is that successive training sets are supersets of those that came before.

Another way of doing this, as described by Arlot and Celisse in (Arlot & Celisse

2010) is to modify k-fold to choose training and validation folds I(t) and I(v)

such that:
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mini∈I(t),j∈I(v)|i− j| > h > 0 (5.2)

where h is some minimum distance between samples such that samples xi and

xj are independent.

Something to keep in mind if using either of these modifications of k-fold is to

make sure that no split occurs across PF data relating to a specific fault instance,

i.e. that some samples of PF data from the same fault end up in both the training

and validation set.

An alternative scheme not based on k-fold, and one which is seen more widely

in literature, would be to use some set of turbines for training, and another set

for validation. If this is the case, the final model should be tested and averaged

across a number of different turbines to get a better picture of how the model

generalises to unseen data.

Undersampling & Transformations: The validation or test set should never

be under/over sampled in any way, or any information about it used in the

sampling process. The true distribution of the data must remain in the final

scoring stage. Similarly, if the data is being normalised, this should be done on

the training set, with the transformation parameters stored and applied to the

validation set, so that absolutely no information about the test set can leak into

the training set.

Scoring Metrics: The scoring metrics on the final model should incorporate

a way of measuring both the false positive and false negative rate; i.e. false

alarms and missed faults. Precision and recall are the recommended ways of

achieving this.

5.2.3 Fault Prediction System Deployment

Once the classification model has been built and deployed, new live data points

are fed to it every 10 minutes. The classifier then decides whether these points

are PF or NF. The final part of this framework centres on using this information

to create a metric for alerting maintenance technicians of impending faults, and

simulating the real world accuracy of this system as it would be deployed in the

field.
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The proposed metric for generating actionable fault prediction alerts is as fol-

lows:

M(t) =
t∑

i=t−wm

yi (5.3)

where yi =

1, if label is PF.

0, if label is NF.

where M(t) is the value of the alert metric at time t, yi is the label given by

the classifier for samples at time stamps i, and wm is a window of time of pre-

determined length. An "impending fault" alert is triggered whenever M(t) is

greater than some threshold b. In this way, the system is made more robust

to false positives due to needing a number of positive results being triggered

within a certain window of time.

This system can be accurately tested by performing classification on a held-out

test set (or using nested cross validation), feeding the resulting labels one-by-

one to the alarm function, and checking how many times false alarms were

raised or faults were correctly identified in advance. This will then give a con-

fidence score for how well the system is expected to perform while deployed.

5.3 Application: Case Study & Results

This section will be separated into three parts, mirroring each step of the pro-

cess outlined in figure 5.1. The results of applying the methodology to the

dataset outlined in section 4.2 will be presented, and the implications of these

results will be discussed.

5.3.1 Create Batches of Alarm Sequences

The first step of the methodology represents the work presented in chapter 4.

The results of this are detailed in section 4.4. In summary, there were 1,045

batches in the data, each representing a particular type of stoppage with an

associated duration and, if the stoppage was fault-related, whether or not ma-
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Figure 5.3: Total duration of stoppages for each category of stop

nual intervention was needed in order to restart the turbine. This database was

found to be accurate by cross-referencing with availability data and fault logs.

Figure 5.3 shows the duration of stoppages for each stoppage category. As

can be seen, grid-related faults had the biggest contribution to downtime. For

component-related faults, the pitch system was the biggest contributor, follo-

wed by the frequency converter and yaw system. It was found that the fre-

quency converter and yaw system faults were related to a small number of high

duration faults, with too few samples for effective classification to be perfor-

med. For this reason, only pitch system faults were focused on.

5.3.2 Data Labelling & Classification

Next, the alarm batches representing stoppages were overlaid on the SCADA

data in order to predict when pitch faults are to occur with some advance notice.

The SCADA data was first cleaned by removing columns (i.e. features) with

missing, frozen or implausible values (e.g. temperature sensors consistently

reading below absolute zero). Next, rows (i.e. samples) with missing values

were removed.

As mentioned in section 5.2.2.1, all stoppages except those corresponding to

the faults being predicted (in this case pt batches) were removed from the data.

The fault data contained faults with a wide range of durations, and included

faults which resulted in both manual intervention and remote restarts. For this

119 Kevin Leahy



5. ROBUST FRAMEWORK AND EVALUATION CRITERIA FOR CLASSIFICATION-BASED CM

reason, a number of separate cases were investigated, which further filtered out

the remaining pt depending on certain criteria. In total, there were 7 different

cases, where stoppages which did not meet the following criteria were filtered

out:

• > 0 hours duration

• > 1 hours duration

• > 2 hours duration

• > 6 hours duration

• > 12 hours duration

• > 24 hours duration

• stoppages where repairs were needed

Each of these cases were tried with 6 different pre-fault windows (i.e. w1 and

w2 from equation 5.1), for a total of 42 different classifiers. These windows are

listed below (all durations in hours):

• w1 = 2, w2 = 0

• w1 = 4, w2 = 0

• w1 = 8, w2 = 0

• w1 = 24, w2 = 0

• w1 = 24, w2 = 6

• w1 = 48, w2 = 6

The set of features from the SCADA data for the classification stage was based

on the features selected in (Kusiak & Verma 2011, Chen et al. 2011, Godwin &

Matthews 2013), with some additions. This amounted to the following featu-

res:

• Wind speed (average, max. & standard deviation)

• Average blade angle for each blade

• Set torque

• Real Power Output

Additionally, the following computed features were used:
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• The absolute difference between each pair of actual blade angles (e.g.

blade 1 and blade 2)

The absolute differences were computed by converting angles to their sine and

cosine components. One turbine was randomly selected as the test set, with

the other ten being used as the training/validation set. Importantly, the test set

was held out completely until simulating alarm system deployment. A num-

ber of different classification algorithms were initially compared as a first pass

evaluation on a subset of the training data, including support vector machines

(with linear, polynomial and Gaussian kernels), decision trees and logistic re-

gression. It was found that the support vector machines with Gaussian kernel

and decision tree classifiers performed best. Both had similar scores, but the

decision trees were much quicker to train and also gave human-readable rules.

Ensembles of decision trees were found to improve performance, so a random

forest classifier was the final type of classifier used to train all models. Details

of this algorithm can be found in (Breiman 2001).

After this, a hyperparameter search was performed for the case of w1 = 48 hours

and w2 = 6 hours, with no minimum stoppage duration (i.e. all batches were in-

cluded). This minimum batch duration and pre-fault window were chosen so as

to get the maximum amount of fault samples in the training data, while getting

a good advance warning of imminent faults. The search was performed over

the ten turbines in the training set by splitting the data into train/validation

folds according to turbine number, with a single turbine in the validation fold

each time.

It was found that randomly undersampling the training data and using 2D

principal component analysis performed best, with the number of trees in the

random forest nodes set to 5 and the maximum number of features at each

split set to 11. With the optimal hyperparameters found, the same cross vali-

dation technique was used to compare scores across all other cases of window

length/minimum batch duration. The results of this are shown in figure 5.4,

with the scores representing the average precision and recall across all folds.

As can be seen, the precision and recall scores are generally quite poor. The

general trend shows that best scores are seen when all batches regardless of

stoppage duration are included, and with a longer pre-fault window. A possible

reason for this may be that there are simply more training examples of the PF

class for these labelling scenarios. The best scores were a precision of 0.155 and

recall of 0.49, and this was seen in the case where there was no minimum batch
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Figure 5.4: Cross-validation results for various minimum durations of downtime
and pre-fault windows w1 and w2

duration, and pre-fault windows of w1 = 48 hours and w2 = 6 hours. Intuitively,

it would be expected that faults where repairs are needed would have a strong

leading fault signature due to physical degradation being presumably present

leading up to the fault. However, this was not the case almost surely because of

the very few training examples of pitch faults which resulted in repairs (only 7

such instances) in the data.

As discussed in section 2.8.4, recall scores in the literature of up to 87% were

seen 48 hours in advance of a fault, with precision scores of 17% (Godwin &

Matthews 2013). The reasons for the comparatively poorer scores seen here

are likely due to a smaller amount of data being available, or due to the faults

on the models of turbine used in this dataset being inherently harder to detect.

5.3.3 System Deployment

In order to simulate the fault alert system being used in real world deployment,

two of the above cases were selected to re-train the optimal model using the

full set of training data and evaluating on the held-out test set. The alarm

system’s effectiveness with the following pre-fault windows and minimum batch

durations was investigated:

• w1 = 48 hours, w2 = 6 hours with no minimum batch duration, and

• w1 = 48 hours, w2 = 6 hours and minimum batch durations of 30 minutes

• w1 = 48 hours, w2 = 6 hours and minimum batch durations of 1 hour
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Table 5.1: Results of alarm system evaluation (lighter colours represent better
scores on that column)

min. dur. stops prec. rec.
avg. 

notice pred. # false false dur.
(hrs) (hrs) (%) (hrs)

0 66 .46 .51 12 12 28 9 114 19
0 66 .46 .51 12 10 38 64 745 124

0 66 .46 .51 144 108 46 3 187 31
0 66 .46 .51 144 96 34 5 452 75

.50 13 .12 .50 12 12 34 8 16 3

.50 13 .12 .50 12 10 31 62 714 119

.50 13 .12 .50 144 108 0 0 0 0

.50 13 .12 .50 144 96 21 8 10 2

1 7 .06 .47 12 12 0 0 11 2
1 7 .06 .47 12 10 35 71 729 122

The first case was selected as this is what achieved the best classification results,

and the second and third cases were selected in order to try and see if stoppages

which cause lengthy downtime can be avoided. Values of wm of 12 and 144 time

steps were used, corresponding to 2 and 24 hours (due to each time step lasting

10 minutes). The threshold b was varied also. This time, the full set of training

data was used and the held out test set (randomly selected as turbine 2), was

used for evaluation.

The results are shown in table 5.1. Here, stops refers to the number of stoppa-

ges which were present in the test set for that particular case. prec. and rec.
refer to the precision and recall scores of individual samples achieved in the

classification stage, and lighter cells in these columns represent better scores.

avg. notice refers to the average amount of warning, in hours, that was given

from when an alert was raised to when the stoppage occurred. pred. (%) re-

fers to the % of the stoppages in the test set which were successfully predicted.

false (#) refers to the number of false alerts which were raised, while false dur.
(hours) refers to the total duration that the alarm was active over the full year

of data where no stoppage was imminent. For the last four columns, lighter

colours once again indicate better scores on that column.

As can be seen, wm = 12 produced far better results than wm = 144 in all
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cases, with a higher % of predicted stoppages and a lower rate of false alerts.

The precision score for a minimum duration of 0 hours was drastically higher

in the test set than in the cross-validation stage, at .46 - an improvement on

scores seen in literature. Surprisingly, with wm = 12 and b = 10, the % of

predicted faults and false alarm rates were similar for the cases of no minimum

batch duration, a minimum duration of 30 minutes, and a minimum of 60

minutes, despite the significantly worse classification scores in the latter cases.

The % of predicted batches ranged from 62% to 71% with an average notice of

between 31 and 38 hours given, and the duration of false alarms was between

119 and 124 hours. In both the case of no minimum duration and a 30 minute

minimum, setting b = 12 lowered the duration false alarms to as little as 2 ours,

but expectedly reduced the number of predicted faults to 8%.

5.4 Conclusions

This work presents a framework for building and deploying a fault prediction

system using wind turbine SCADA data in three parts, and evaluates the fra-

mework with a case study. The first part describes a novel method to build

an accurate database of training data by automatically identifying sequences

of historical turbine alarms, and using a rule set to infer times of and reasons

for downtime on the turbine. The details of this step were covered in chapter

4. Next, an overview of how to label and filter data and apply classification

techniques relevant to this domain was given, and common pitfalls that are

seen in literature which can lead to inflated test set or cross-validation scores

were discussed. Finally, a novel sliding window metric for alerting maintenance

technicians of impending faults was proposed, with tunable parameters which

allow tweaking of caught faults vs. false alarms.

The framework was applied to a dataset comprising 6 months’ of data for 11

turbines. When the classification methods were applied, cross validation scores

were generally quite poor - in the range of .15 precision and .49 recall. Howe-

ver, these increased to .46 and .51, respectively, when trained on the full set

of data and tested on the held-out test set. The sliding window metric perfor-

med very well and was able to detect up to 71% of faults on the test turbine

35 hours’ in advance. The alarm was active for 122 hours of the year when no

fault was imminent. Adjusting the threshold for creating a fault alert reduced

the time the alert was erroneously triggered to 2 hours but only predicted 8%
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of faults. These results show that faults can be predicted in advance, though a

trade-off has to be made between the number of successfully predicted faults

and false alarms.

The value of a system such as this becomes clear when severe faults (i.e. faults

that needed a repair action or caused significant down time) can be predicted.

Unfortunately, the low volume of data used in this study meant that there were

few samples of severe fault events for the classifiers to be effectively trained,

and so the alarm system did not perform well on trying to exclusively predict

these types of faults. However, the results show that this system works in prin-

ciple by predicting less severe faults, even when raw classification scores are

not very high. Furthermore, more training data will improve both precision

and recall scores in the classification stage, and hence allow the alarm system

to perform more effectively.

As discussed in the text, although the classification scores do not approach some

of the scores found in some of the literature, some of these scores are inflated

due to flaws in the machine learning experimental set-up. This framework has

been designed to be modular and scores are very much dataset-dependent, so

it is hoped other researchers can apply or modify it in their own work to see if

classification scores can be improved with bigger datasets, while avoiding some

of the commonly seen pitfalls in the literature.

Having more fault examples should drastically increase fault prediction scores,

so future work will focus on applying the framework to a bigger dataset. This

would allow the incorporation of RUL estimates and a confidence score for the

alarms generated in the sliding window metric. Finally, since such a system

requires little to no capital expenditure, the value of reducing the number of

predicted faults vs. the expenses incurred in false maintenance call-outs should

be explored to find an economic optimum.

5.4.1 Research Objectives

ROs 1 and 4 of this thesis were as follows:

RO1. Determine what level of condition monitoring can be performed using

classification techniques

RO4. Design a comprehensive framework which incorporates all previous fin-

dings as well as best practices from literature and apply this methodo-
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logy to evaluate its performance as a field-deployed system

This chapter showed that condition monitoring at a prognostic level was pos-

sible using classification techniques - advance notice of impending pitch faults

was given. The system could be tuned to reduce the number of false alerts so

that any alarms generated were done with high confidence (at the expense of

missing some faults). Hence, RO1 was achieved.

The CM was achieved by developing a prescribed framework, complete with

guidelines to best practices, and applying it to an existing dataset. A held-out

test set was used to simulate real-world performance using a sliding window

metric to generate impending fault alerts, and this performance was evaluated.

Hence, RO4 was also achieved.
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Chapter 6

Additional Diagnostic Functionality
from the Alarm System

6.1 Introduction

In previous chapters, methodologies were presented which focused on fault

prognostics to prevent unplanned stoppages. However, even with perfect CM,

some amount of unplanned stoppages are inevitable. In this chapter, the focus

will be on providing tools to operators to be able to glean more information

from the turbine SCADA alarms system about faults which have occurred, in or-

der to help with diagnosis of those faults and plan an appropriate maintenance

action.

In (Qiu et al. 2012), the authors performed a detailed study on turbine alarm

systems, applying standards used in the oil and gas industry (Noyes 1999).

They identified 3 KPIs for alarm generation:

• The average number of alarms occurring per 10-minute SCADA period

• The maximum number of alarms which occurred in any 10-minute SCADA

period

• A histogram of alarm frequency per 10-minute period, split into a number

of different bins (0, 1-10, 11-50, >51)

They applied these KPIs to four different wind farms, and found that in all four

the KPIs exceed acceptable bounds. In three of the wind farms, the alarms were

found to be unmanageable during a fault event, when high volumes of alarms
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known as "alarm showers" are generated. For the fourth wind farm, it was

found that the alarms were not only not useful, but also can present an unhelp-

ful distraction over a longer period. High alarm rates such as these not only

prevent any useful information from being presented to the user, but can also

reduce operator sensitivity to malfunctions, leading to potentially catastrophic

consequences (Noyes 1999). The authors in (Chen et al. 2011, Gonzalez et al.

2016) corroborate these findings and present some solutions to the alarm sho-

wers generated during fault events, discussed in section 2.8.3.

One of the issues with high volumes of generated alarms means that it can

be difficult to to know which alarms are related to the initial fault, and which

alarms are reactions to other alarms generated as the fault propagates through

the turbine (Gonzalez et al. 2016). In the case of faults in the pitch system,

for example, if a pitch motor fault is detected, there are several contingency

measures in place that kick in to avoid emergency situations. These include

emergency brakes to stop the blades turning in case of a storm, and backup

batteries in case power supply to the turbine is interrupted. Hence, if a pitch

motor fault occurs, a number of alarms are generated to give information about

the status of the auxiliary systems, or even faults in these auxiliary systems

themselves, along with alarms related to the original fault. Without access

to quality documentation and an intimate knowledge of the particular alarm

system, it can, in some cases, be hard to decide which alarms are attributable

to the original pitch motor fault, and which are to do with the auxiliary systems.

Hence, an expert system which can decode some of this knowledge would be

useful for operators.

As discussed in section 2.6, less severe faults which result in short stoppages can

occur quite frequently on turbines. However, if certain types of alarms or alarm

sequences are occurring frequently they can be indicative of a more severe issue

with the turbine than the individual stoppages may imply. Because these are of-

ten often cleared with an automatic reset, they can be overlooked by operators

who may feel the effort required to analyse the density of alarms generated in

such events is outweighed by the actual impact on turbine availability that any

single short stoppage incurs.

In this work, a similar approach to that of chapter 4 is taken to identify batches

of alarm sequences related to a particular turbine assembly as they occur du-

ring stoppages. Clustering techniques are then applied to group certain batches

together which contain similar alarm sequences. In this way, each stoppage can
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be attributed to a specific type of sequence with its associated characteristics,

rather than a large number of individual alarms which must be analysed. This

reduces the burden of analysis for technicians as stoppages related to specific

alarm sequences can be investigated for shared characteristics. This would al-

low information such as the probable root cause of the stoppage to be instantly

known whenever such an alarm sequence reappears in future.

6.2 Description of Data

The data used in this study comes from an Irish wind farm with eleven 2.5 MW

Doubly Fed Induction Generator (DFIG) turbines. The study covers a period

of eleven months from June 2015 to April 2016. There were 118 days across

all turbines where a maintenance team was on-site during this period. 56 of

these days were due to 35 individual fault instances on the turbines which

could not be fixed or diagnosed remotely. The remaining 62 days were due

to scheduled periodic maintenance or upgrade work. Stoppages which did not

require a maintenance call-out, e.g. when the turbine went down due to a fault

which could be corrected remotely, were not recorded by the operator. The data

used was alarm data from the turbines’ OEM alarm system. The turbines were

the same model as those described in section 4.2, and so used the same alarm

system as described there.

6.3 Methodology

The methodology developed in this research is split into two broad parts and

summarised in figure 6.1. The first part focuses on identifying alarms relevant

to potential faults which could occur in a particular assembly (e.g. the pitch

system or frequency converter). A single assembly is focused on at a time in

order to reduce the complexity of the analysis.

The second part of the methodology then focuses on identifying sequences, or

"batches", of these alarms as they appeared during stoppages related to faults

in the assembly, and using cluster analysis to group similar batches together. In

this way, stoppages which share a similar sequence of relevant alarms can be

grouped together. Further investigation can then be performed in order to iden-

tify a root cause for these stoppages. When a particular alarm sequence appears
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in future, the root cause will be known with minimal further analysis needed.

The rest of this section is split into detailed sub-sections which correspond to

each of the steps outlined in figure 6.1.

The terminology and notation used in this chapter is similar to that described in

chapter 4. Hence, "alarm instance" refers to an individual alarm in the dataset,

not to be confused with "alarm", which refers to that type of alarm (as opposed

to a specific instance of it), or "alarm code", which refers to the code for that

alarm. The full set of alarms is labelled A, with individual alarms labelled ac,

where c represents the code for that alarm. Alarm codes, and in some cases

descriptions, have been changed for purposes of anonymity, and are referred to

as a1, a2, a3, etc. Similarly, L refers to the full set of alarm instances, l refers to

individual instances. ts refers to the start time of an alarm, and te the end time.

Figure 6.1: Methodology overview

6.3.1 Identification of Relevant Alarms

6.3.1.1 Choose assembly to focus on

In order to reduce the complexity for analysis, a single turbine assembly at a

time is analysed in this methodology, e.g. frequency converter, generator, pitch

system, etc. Figure 6.2 shows the frequency of fault alarms according to their

OEM-assigned category in the alarm system. These alarms are from all eleven

turbines over the eleven-month period of the study, as detailed in section 6.2.

As can be seen, the pitch system has the most frequent fault alarms. For this

reason, this assembly is focused on in this study.
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Figure 6.2: Number of alarm instances with type "Fault" or "Critical Fault" by
OEM-assigned category

6.3.1.2 Identify all alarms related to this assembly

As stated in the introduction, identifying alarms related to a specific assem-

bly can be complicated by the volume of alarms and, in some cases, lack of

clarity on their function or the relevant part of the taxonomy to which they be-

long. Hence, a probability-based analysis as described in (Qiu et al. 2012) and

(Gonzalez et al. 2016) is performed which gives insights into groups of related

alarms and which alarms trigger each other. This gives an easy to interpret

visual aid for what alarms could be important in determining periods of faulty

operation related to a particular assembly.

Before doing the probability analysis, all possible alarms related to the assembly

in question are identified. These include information, warning and fault (inclu-

ding critical fault) alarms related to the assembly itself as well as the auxiliary

and support systems. If there are certain alarms where it is not clear to which

system they belong to, they should be included anyway.

In this case, all alarms relating to the pitch system and its auxiliary support

systems were included, for a total of 58 alarms, referred to here as A.
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6.3.1.3 Perform probability-based analysis to narrow down alarms to

only those relevant to faults in this assembly

The probability based analysis is performed as follows:

1. From the set of alarms A, all combinations of pairs of alarm codes are

found,
(

A
2

)
.

2. For each pair of alarm codes a1 and a2, count the number of instances of

alarm a1 which have triggered one or more instances of a2 and vice-versa.

An instance of a1 is said to trigger an instance of a2 if the following con-

ditions are met:

tsa1 <= tsa2 ∧ tea1 >= tsa2 (6.1)

where tsa1, tsa2 and tea1 are the start time of alarm instances a1 and a2, and

the end time of instance a1, respectively.

3. Calculate the probability that an instance of a1 will trigger one or more

a2s, and vice-versa, where the probability of an instance of a1 triggering

one or more instances of a2 is given as:

Pr(a1triga2) = |a1triga2|/|a1| (6.2)

4. From here, the relationship between the two alarms will be determined

as follows:

(a) If Pr(a1triga2) >= 0.7 and Pr(a2triga1) >= 0.7, then alarms a1 & a2

usually appear together

(b) If Pr(a1triga2) <= 0.2 and Pr(a2triga1) <= 0.2, a1 & a2 never or rarely

appear together

(c) If Pr(a1triga2) >= 0.7 and Pr(a2triga1) <= 0.2, a2 will usually be

triggered whenever alarm a1 appears; a2 is a more general alarm

(d) If Pr(a1triga2) <= 0.2 and Pr(a2triga1) >= 0.7, a1 will usually be

triggered whenever alarm a2 appears; a1 is a more general alarm

(e) If none of the above, the two alarms are randomly or somewhat re-

lated

The results of this allow alarms related to different aspects of the chosen as-

sembly to be identified, which will be analysed in the next step. Alarms related
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Figure 6.3: Network diagram of pitch system alarm triggers, grouped according to
the sub-assembly which they belong to. The arrows are labelled with the probabi-
lity one alarm will trigger another, and the absolute number of times this happened
shown in brackets

to specific auxiliary systems or manual intervention which are usually reactions
to faults which have occurred in the assembly being focused on, or are simply

not relevant, can be excluded. This step can be made easier by graphically ana-

lysing the results of the probability analysis in a network diagram. The final set

of k alarm codes obtained is referred to as Ar:

Ar = [a1, . . . , ak] (6.3)

In this case, the probability-based analysis was performed on the 58 alarms

identified in the previous step. A network diagram showing the relationships

between these alarms was then constructed, as seen in figure 6.3. An alarm

with an arrow leading from it to another alarm indicates that it usually triggers

the other alarm. The numbers labelled along the arrows show the probability of

one alarm triggering another, with the absolute number of times the alarm was

triggered shown in brackets. Alarms which were not shown to generally trigger

other alarms were left out of this diagram. This allows alarms to be attributed to

various sub-assemblies or functions within the relevant assembly, where it is not

clear from the documentation. As can be seen, there are a number of different

"groups" of alarms, related to different sub-assemblies within the pitch system.

The alarms to be analysed in the next step were selected according to the follo-

wing criteria:
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• The alarm causes the wind turbine to stop generating

• The alarm is not related to a reaction to another alarm, e.g. safety-chain

or maintenance-related alarms

• There were enough instances (> 25) of the alarm for it to be analysed

effectively

Alarms related to the battery backup and emergency braking systems, and

alarms related to manual control or maintenance were excluded, as well as

alarms which do not cause the turbine to stop generating (e.g. information

messages related to system tests). Of the remaining alarms, only those with

enough instances for useful analysis were included, i.e. >25 instances. This

number was found heuristically by iterating through this methodology to find a

good balance of including relevant alarms without introducing too much noise

caused by very rarely occurring alarms. This resulted in a set of 30 alarms

relevant to faults in the pitch system.

Alarms which represent the same fault, but, for example, on a separate turbine

blade axis, were given the same shared alarm code. This was to ensure that

alarm sequences along different axes would be grouped together as the same

type of fault. For example, alarm codes a18, a19 and a20 represent "Pitch Control

Deviation on Axis x fault", where x is 1, 2 or 3, respectively. All these alarm

codes have been renamed a18, to group them together as one. There were 12

of these "duplicate" alarms, to give a final set of 18 relevant alarms for further

analysis:

Ar = [a1, a2, . . . , a18] (6.4)

6.3.2 Group similar sequences of alarms

6.3.2.1 Create "batches" of relevant alarm sequences

Before clustering, "batches" of fault alarm sequences which occur during stoppa-

ges must be identified. The first step is to identify the alarm code that signifies

the turbine returning to normal operation. This is usually an information alarm

to communicate that the turbine has been brought back on-line after a fault

alarm-related stoppage. In this case this code is referred to as an. Its associated

description was "returning to normal operation". Once this has been found, the

next step is to create "batches" of alarm sequences associated with each turbine,
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Table 6.1: Example of a batch of alarm sequences (all alarms belong to same
turbine)

ts Code Description

24/12/2015 09:05:40 a1 Blade angle asymmetry
a2 Pitch thyristor fault

24/12/2015 09:05:52 a4 Blade braking time too high
24/12/2015 09:06:22 a1 Blade angle asymmetry

a3 Pitch control deviation
a5 Pitch malfunction 2 or 3 blade

24/12/2015 09:06:57 a5 Pitch malfunction 2 or 3 blade

i.e. the alarm instances in each batch must all belong to the same turbine.

Each batch is created as in algorithm 3. This process is similar to the one

outlined in section 4.3, with two key differences. First, the resulting batches

here only contain alarms from Ar, as opposed to any alarms which occurred

between the turbine stopping/being curtailed, and coming back on-line. This

is because the sequences in question must be directly related to faults in the

assembly under consideration, and not reactions to it. Secondly, previously,

batches on the same turbine which occurred within one hour of each other

were joined together as one continuous batch. That is not the case here, as the

faults are being analysed with more granularity and individual sequences will

hold more importance.

The results of this were a total of 456 batches of alarm sequences representing

456 individual stoppages across all 11 turbines in the 12 months of data. A

typical example of a batch can be seen in table 6.1. It should be noted here

that the final an alarm itself is not included in the batch at the analysis stage,

but is provided when displaying batches so as to see how long the stoppage

lasted. As can be seen, there are a mixture of alarms which occur individually

and simultaneously (sharing common tss) to give a total number of 7 alarm

instances with with four different tss.

6.3.2.2 Extract features from these batches

In order for the clustering to be effective, useful features from the alarm se-

quences must be extracted. Three separate ways of extracting feature vectors
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Algorithm 3: Create batches of alarm sequences of relevant alarms
Data: Return to normal operation alarm, an; Relevant alarms Ar; All alarm

instances L; Set of turbine numbers T
1 for j in T do
2 Find all instances of L from turbine j. Store set of resultant instances as

Lj

3 Find all alarm instances from Lj which have a code in Ar. Store set of
resultant instances as Lj

r

4 Find all instances from Lj which have code an. Store set of resultant
instances as Lj

n

5 Find earliest occurring instance in Lj
r. Store its ts as tb_start

6 Find earliest occurring instance in Lj
n with ts > tb_start. Store its ts as

tb_end

7 Create a batch of alarms, Bi, from Lj
r with ts that satisfy:

tb_start ≥ ts < tb_end (6.5)

8 Find earliest occurring instance in Lj
r with ts > tb_end. Store its ts as

tb_start

9 Repeat steps 7 - 9 until no more instances of Lj
r

for each sample, F1, F2 and F3, are explored.

F1 - Base Case

The first feature extraction method was based solely on the order the alarms

appeared in each batch. Batches can have a varying number of alarms, but in

order to stop outlier batches with a disproportionately large number of alarms

influencing the clustering algorithm, only batches with up to a certain maxi-

mum number of alarm instances, ma, are included. This is because these out-

liers would likely not be included in any cluster, or placed in single clusters

where each would be the sole member.

The feature vector for a batch, F1, consists of a vector of 0s of length k∗ma, with

a 1 being placed in the relevant location indicating the presence of an alarm:

F1 = [f 1
1 , f

1
2 , . . . , f

1
k , . . . , f

ma
1 , fma

2 , . . . , fma
k ]T (6.6)

A simplified example can be seen in figure 6.4, where there are four possible

alarm codes, and a maximum of three alarm instances, i.e. k = 4, ma = 3 and

Ar = [a1, a2, a3, a4]. In batch 1, the first alarm is a3, so a 1 is placed at f 1
3 . The
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Batch 1

ts Code

13:07:13 a3
a1

13:10:48 a4

→ F =



0
0
1
0
1
0
0
0
0
0
0
1



;

Batch 2

ts Code

15:02:00 a2
→ F =



0
1
0
0
0
0
0
0
0
0
0
0


Figure 6.4: Simplified examples of F1 construction
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Figure 6.5: Histogram showing the distribution of number of alarm instances and
unique tss in each batch. On the x-axis is a rug plot showing the location of the
individual samples which make up each histogram

second alarm is a1, so a 1 is placed at f 2
1 . The third and final alarm is a4, so a

1 is placed at f 3
4 . In batch 2, there is only one alarm, a2, so a 1 is placed at f 1

2 .

Note that the horizontal lines in the vector here are just to make the example

easier to interpret.

Figure 6.5 shows the distribution of number of alarm instances and unique tss

per batch in the dataset used in this study. As can be seen, over 90% of batches

had between 1 and 20 alarm instances, so in this case ma = 20 was selected

as the maximum number of alarm instances. This led to 425 batches with an

average of 6.75 alarms per batch. With k = 18 possible alarms, the length of
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Batch 1

ts Code

13:08:02 a1
a2
a4

13:08:50 a3
13:12:10 a1

a3

→ F =



1
1
0
1
0
0
1
0
1
0
1
0



;

Batch 2

ts Code

15:02:30 a1
a2 → F =



1
1
0
0
0
0
0
0
0
0
0
0


Figure 6.6: Simplified examples of F2 construction

each feature vector F was 18 ∗ 20 = 360.

F2 - Incorporating simultaneous start times

The batch in table 6.1 has a number of alarms occurring simultaneously. This is

a similar case for many batches, so it was decided to extract a feature set that

takes this into account by grouping alarms according to their ts. Only batches

with up to a certain maximum number of ts, mt, were included. Similarly to

F1, where only batches with up to a certain number of unique alarms were

included, this was done to avoid issues with outliers.

The feature vector for a sample, F2, once again consisted of a vector of 0s, this

time of length k ∗mt:

F2 = [f 1
1 , f

1
2 , . . . , f

1
k , . . . , f

mt
1 , fmt

2 , . . . , fmt
k ]T (6.7)

A simplified example is shown in figure 6.6, using k = 4, mt = 3 and Ar =
[a1, a2, a3, a4]. In the first batch, there are three alarms occurring at the first ts
(13:08:02), a1, a2 and a4, so 1s are placed at f 1

1 , f 1
2 and f 1

4 . There is only one

alarm, a3 at the next ts, so an alarm is placed at f 2
3 . Two alarms, a1 and a3 occur

at the final ts, so 1s are placed at f 3
1 and f 3

3

As seen in figure 6.5, over 90% of batches have between 1 and 10 unique tss,

so mt was set to 10. This translated to 417 batches, with a mean of 6.57 alarms
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spread across 3.84 tss in each batch. Each feature vector was 18∗10 = 180 long.

F3 - Incorporating the time between each ts

The final feature extraction method expands on the previous method by incor-

porating the time between each ts, representing how long the alarms at that ts
persisted before other alarms were triggered. It does this by making two slight

changes to F2. First, the time in seconds between each tsis added as an extra

feature at the end of each group of k alarms seen in F2. In the case of the last

alarm, the time between its ts and the ts of the "returning to normal operation"

alarm for that batch, an, is used. This means the final length of the vector is

(k + 1) ∗mt.

Because the new features can be � 1, there is a chance the clusters could

be heavily biased towards grouping batches with similar numbers of ts, and

the time between these tss, without taking into account the actual alarm codes

themselves. Hence, the second change is that different values can be substituted

for 1, such as 100, 1000, etc.

An example is provided in figure 6.7. This is identical to the example in the last

section, but with the extra features added. Note that in this example X = 100,

so 1s are replaced with 100s. In the first batch, the first "extra" feature is 48,

signifying the time difference in seconds between the first ts (13:08:02) and the

second ts (13:08:50), so this is placed at position f 1
5 . The fourth and final ts is

13:12:10, and the ts of an is 13:15:10. This is 180s after the final ts, so 180 is

placed at position F 4
5 . Note that the an alarms are included here only to show

where the final "extra" feature comes from; they are not included in batches

during cluster analysis.

As before, batches with between 1 and 10 unique tss are used, for a total of 417

batches. Each feature vector this time was (18 + 1) ∗ 10 = 190 long.

6.3.2.3 Perform cluster analysis

Identifying patterns in high-dimensional data with no "ground truth" to learn

from is an unsupervised learning problem (James et al. 2013). Cluster analysis

is a powerful unsupervised learning technique that is used to identify patterns

in samples of data and group samples with similar patterns together, so is ide-

ally suited to this problem (Hastie et al. 2009). The main goal of clustering
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Batch 1

ts Code

13:08:02 a1
a2
a4

13:08:50 a3
13:12:10 a1

a3
13:15:10 an

→ F =



100
100
0

100
48
0
0

100
0

200
100
0

100
0

180



;

Batch 2

ts Code

15:02:30 a1
a2

15:04:35 an
→ F =



100
100
0
0

125
0
0
0
0
0
0
0
0
0
0


Figure 6.7: Simplified examples of F3 construction

is to group a collection of objects into separate subsets or "clusters", so that

the objects in each cluster are more similar to each other than those in other

clusters.

Agglomerative clustering is a type of hierarchical, or tree-based, clustering

which is well suited to data that has a large number of clusters. In this case,

there may be many different alarm sequences so this is an appropriate techni-

que to use. It starts by assigning every individual sample into its own unique

cluster. It then looks at the pairwise similarity between all the clusters, and

merges the two which are most similar to each other. It repeats this process

until some specified number of clusters remain. The result of this is a binary

tree linking each sample into one of a number of clusters (Hastie et al. 2009).

In this work, the Euclidean distance between the centre of each cluster is used

as a similarity metric.

Density-based spatial clustering of applications with noise (DBSCAN), is anot-

her powerful clustering technique that does not need many parameters and

automatically decides on an optimal number of clusters. DBSCAN views clus-

ters as areas of high density (i.e. many samples in close proximity to each

other) separated by areas of low density. It does this by first assigning some

samples as "core" samples. These are defined as samples which have a certain

minimum number of "neighbours", with neighbours being defined as samples

within some minimum amount of distance to them. Clusters are built by re-
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cursively selecting a core sample, finding all of its neighbours which are core

samples, finding all of their neighbour core samples, and repeating until there

are no further neighbour core samples within that cluster. All other samples

which are not core samples (i.e. do not meet the minimum number of neig-

hbours), but which are themselves neighbours of a core sample, are assigned to

that core sample’s cluster. Any samples which are not in the neighbourhood of

any core sample are classed as outliers, and not assigned a cluster. In this way,

DBSCAN decides on its own optimal number of clusters (Ester et al. 1996). Be-

cause DBSCAN automatically decides on an optimal number of clusters, it was

decided to compare this with agglomerative clustering in this work.

Clustering performance was evaluated in two ways. First, the silhouette coeffi-

cient was used as a measure of how well defined the clusters are. The silhouette

coefficient is defined as follows:

s = b− a
max(a, b) (6.8)

where a is the mean distance between a sample and all other samples in the

same cluster, and b is the mean distance between a sample and all other points

in the next nearest cluster. The silhouette coefficient takes a value between

-1 and 1, with 1 meaning the point is far away from its neighbouring cluster,

0 meaning it’s on the boundary, and -1 meaning the point has possibly been

misclassified. The silhouette coefficient is hence a score given to every sample

in a cluster and is evaluated graphically, as will be seen in section 6.4.

The silhouette coefficient is a good indication of how well the clustering is per-

forming, but only if the features that have been extracted accurately represent

the underlying data. For this reason, in some cases, a manual inspection of the

clusters was performed to ensure that good/bad silhouette scores translated to

effective clustering for this specific use case. The manual inspection involved

selecting 2-3 samples from each cluster and checking if the alarm sequences in

each sample were similar to each other if there was a high silhouette score, or

dissimilar for a low silhouette score.

The agglomerative clustering and DBSCAN algorithms were applied to the three

different feature sets extracted in the previous step, F1, F2 and F3, with F3

being trained with various different values of X;X ∈ {1, 10, 100, 1000}. Since

agglomerative clustering takes a specific number of clusters as an input, it is

normally trained several times with a number of different clusters to find the
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optimal number. Here, the analysis was carried out for between 2 and 20 clus-

ters, with the optimal number of clusters being selected according to the one

with the highest silhouette coefficient.

Once the optimum number of clusters has been found for agglomerative clus-

tering, it is evaluated against DBSCAN. The final evaluation is performed again

using the silhouette score, with the effectiveness of the score being checked

via manual inspection. The most effective method is decided heuristically, e.g.

if agglomerative clustering manages to group 40% of clusters with reasonable

accuracy, but DBSCAN classifies 30% of clusters with perfect accuracy, then

DBSCAN in that case would be a better choice. The results of this can be found

in the following section.

6.4 Clustering Results

As described in section 6.3.2.1 (step 2.1 from figure 6.1), 456 batches were

created from the full set of data. Three sets of features, F1, F2 and F3 were

extracted from these batches, as described in section 6.3.2.2 (step 2.2 of figure

6.1). With ma set to 20 and mt set to 10, this meant there were 425 samples of

F1 and 417 samples of F2 and F3. The results of applying the clustering method

described in section 6.3.2.3 (step 2.3 of figure 6.1) are discussed in this section.

In all cases, both silhouette and manual analyses were performed. A summary

of the results can be seen in table 6.2. This table shows the name, no. of

clusters, silhouette score, and % of samples which achieved a silhouette score

of >0.9. The table also shows whether or not the silhouette score gave a good

indication of accurate clustering, as determined from manual inspection. Note

X = 1 is the only one included for feature set 3 as this was the best scoring

value of X.

Table 6.2: Results Summary

Feature Set - Algo. No. Clusters Avg. Sil. % > .9 Accurate Sil.?

1 - Agg 20 .2 16 Y
1 - DBSCAN 13 1 27.3 Y
2 - Agg 20 .39 3.8 Y
2 - DBSCAN 15 1 45.1 Y
3 - Agg (X = 1) 8 .82 91.4 N
3 - DBSCAN (X = 1) 7 .93 41.2 N
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Figure 6.8: Silhouette analysis for agglomerative clustering using feature set 1.
Thickness of the bars indicates number of samples in that cluster

6.4.1 F1 – Base Case

6.4.1.1 Agglomerative Clustering

Silhouette analysis was carried out for the agglomerative clustering with bet-

ween 2 and 20 clusters. The silhouette analysis for the case of 3, 8 and 20

clusters can be seen in figure 6.8.

In this figure, each cluster label represents the silhouette scores of every batch

sample in that cluster, sorted in increasing order. This means that the thicker

the silhouette plot for each cluster, the more samples there are in that cluster.

As can be seen, a higher number of clusters in agglomerative clustering per-

formed better. The best average silhouette score was found on the maximum

20 clusters, with an average silhouette score of .2. However, there were big

fluctuations in the silhouette scores of members within each cluster. Manual
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Table 6.3: Samples within a high scoring cluster for DBSCAN using feature set 1

ts Code Description

Sample 1
2016-05-05 13:08:42 a6 Pitch controller comms fault
2016-05-05 13:08:55 a5 Pitch malfunction 2 or 3 blade

Sample 2
2015-06-26 12:25:11 a6 Pitch controller comms fault

a5 Pitch malfunction 2 or 3 blade

inspection confirmed that the clusters that scored well contained batches that

had very similar alarm sequences, however the clusters that scored above 0.9

represented only 16% of samples fed into the algorithm.

6.4.1.2 DBSCAN

DBSCAN in this case classified 27.3% of samples into 13 different clusters. The

average silhouette score across all clusters was 1. A manual inspection confir-

med that the sequences of alarms in samples within each cluster were identical

in nearly all cases.

An important point to note is that because the F1 features did not take into

account whether some alarm instances appeared simultaneously, in a small

number of cases there were different numbers of tss in each sample within a

cluster. An example of this can be seen in table 6.3, showing two samples from

the same cluster. In Sample 1 the 2 alarm instances happen in sequence, whe-

reas in Sample 2, they happen simultaneously. This can be relevant as the root

cause related to the alarm sequence in both cases could possibly be different;

in Sample 1 there was a pitch malfunction in the blades (i.e. the pitch angles in

all three blades were not equal), which was caused by a communication fault

in the pitch controller. In Sample 2 the two occurred simultaneously, which in

cases with more complex alarm sequences could point to different root causes.
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Figure 6.9: Silhouette scores for DBSCAN using F2 features. Thickness of the bars
indicates number of samples in that cluster

6.4.2 F2 – Incorporating Simultaneous Start Times

6.4.2.1 Agglomerative Clustering

Here, the optimum number of clusters for agglomerative clustering was again

found to be 20, with a silhouette score of 0.39. Only 3.8% of samples were

clustered with a score above 0.9.

6.4.2.2 DBSCAN

DBSCAN once again performed much better than agglomerative clustering,

with an average silhouette score of 1 across 15 clusters, as seen in figure 6.9.

This represented 45.1% of samples fed into the algorithm. A manual investi-

gation of the clusters revealed that not only were the alarm sequences in each

sample within clusters identical, but each sample also had the same number

of tss, i.e. the information about alarm instances that occurred simultaneously

was preserved.

6.4.3 F3 – Incorporating the Time Between Each ts

The above analysis was repeated using the new time-based features for various

values of X.
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For this analysis, the feature array was normalised before clustering, to avoid

large times between tss having a disproportionate impact.

6.4.3.1 Agglomerative Clustering

The optimal number of clusters across all values of X was found to be 8. With

8 clusters, the highest average silhouette score was 0.85, for X = 1. Howe-

ver, a manual inspection of the clusters showed that the samples in each varied

wildly. This was probably down to the fact that setting X = 1 means the clus-

tering barely takes into account the actual alarms that were generated, and

focuses almost solely on the times between each ts in a batch, which could be

much greater than 1. Even after normalisation, the average value of features

representing these times between each ts was 0.331, whereas the value of the

features representing the presence of a particular alarm code (i.e. the features

which are marked as "1" for X = 1) was 0.001.

For X = 10, X = 100 and X = 1000, silhouette scores were 0.82, 0.52, and

0.26, respectively. However, once again the batches in each cluster were quite

different. With manual inspection, it was found that in batches with identical

alarm sequences, there was a wide range of possible values for the time between

each ts, i.e. even though the sequences of alarm instances in two different

batches could be identical, the time between these alarms could considerably

vary. This could mean that effective clustering using these extra features was

not possible.

6.4.3.2 DBSCAN

DBSCAN produced 7 clusters for all values of X, with silhouette scores of 0.93,

0.91, 0.8 and 0.43 for X = 1, X = 10, X = 100 and X = 1000, respectively.

Once again manual inspection showed that there was wide variation in the

samples within each cluster. This added further evidence to the fact that the

extra features created for feature set 3 were not suitable for effective clustering.

6.4.4 Analysis of Results

Based on the above results, DBSCAN performed on the F2 features yielded the

best results. This resulted in 15 clusters of batches, with each batch containing
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Table 6.4: Example of alarm sequences found in cluster 2

ts Code Description

2015/06/29 14:44:29 a1 Blade angle asymmetry
a2 Pitch thyristor fault

2015/06/29 14:44:34 a4 Blade braking time too high

2015/06/29 14:44:37 a1 Blade angle asymmetry
a3 Pitch control deviation
a5 Pitch malfunction 2 or 3 blades

2015/06/29 14:44:38 a3 Pitch control Deviation
a5 Pitch malfunction 2 or 3 blades

2015/06/29 14:52:10 an Returning to normal operation

an identical sequence of alarms. 45.1% of batches fed into the clustering algo-

rithm were successfully assigned a group, which represented 41% of the 456

total batches analysed in the study. These correctly clustered batches together

represented over 134 hours of downtime on the turbine, with each stoppage

lasting an average of just over 43 minutes.

A sample of a batch from cluster 2 can be seen in table 6.4, showing the pro-

gression of a fault in the pitch system. Once again, the alarm an here is just

provided to show how long the stoppage lasted in total. First, a fault in the

thyristor of one of the pitch motor circuits is detected, which simultaneously

causes asymmetry in the pitch angles across the three blades. Because of this,

the turbine is not braking quickly enough, which sets off the a4 alarm, as well

as blade angle asymmetry alarms for the other blades, a pitch control deviation

alarm and a more "general" alarm showing a pitch malfunction across more

than one blade. The other batches in this cluster showed the exact same alarm

sequence, including which alarms occurred simultaneously.

Overall, these results show that a large proportion of the alarm sequences which

occur during individual stoppages associated with the pitch system can be accu-

rately sorted into a number of distinct groups. The implications of this will be

discussed in the following section.
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6.5 Conclusions

This work focused on attempting to sort similar sequences of alarms as they

occurred during wind turbine stoppages into several distinct groups, with the

aim of reducing the burden of analysis on turbine operators when high vo-

lume alarm showers are generated. The alarms generated during 456 different

stoppages were analysed. Sequences of alarms as they occurred during each

stoppage were identified, with each "batch" of alarm sequences being associa-

ted with a particular stoppage. Three different sets of features representing the

alarms in each batch were extracted, and clustering techniques applied with

the aim of grouping similar batches together. The first feature set looked solely

at the order the alarms appeared in. The next set took into account whether

or not some alarms occurred simultaneously. The third feature set took into

account the time between the alarms in each batch. Two different clustering

techniques, agglomerative clustering and DBSCAN, were applied to these three

feature sets, and the results of each compared.

The results for the first feature set showed promise, with DBSCAN managing

to accurately cluster 27.4% of samples, representing over 110 hours of down-

time. A drawback was that the samples within each cluster did not take into

account whether some alarm instances occurred simultaneously or not. Agglo-

merative clustering in this case showed poor results. The best results occurred

on the second feature set using DBSCAN; 45.1% of batches were accurately sor-

ted into fifteen distinct clusters, which together represented over 134 hours of

downtime on the turbine. In this case, whether or not some alarms occurred

simultaneously was consistent within batches. Agglomerative clustering once

again did not perform as well as hoped. The third feature set showed poor re-

sults all round, possibly due to there being too much variance of possible values

for the time between alarm instances.

Based on these results, it is indeed possible to usefully group together similar

sequences of alarm instances into distinct clusters. This means that the burden

of analysis for turbine operators during stoppages can be reduced. If a stop-

page occurs during live operation, and the resulting sequence of alarms can

be attributed to a previously identified group of similar alarm sequences which

occurred during past stoppages, the operator can be given information about

the shared characteristics of these stoppages rather than seeing a cascade of

individual alarms which need to be analysed. This information can be related
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to what corrective action, if any, was generally taken in the past, the severity of

the fault and duration of associated down time, the root cause or other infor-

mation to help diagnose the fault, whether the stoppage was controller-related,

or others. As well as this, the frequency of particular alarm sequences can be

tracked, which can give more information and context than simply tracking the

frequency of individual alarms.
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Chapter 7

Conclusions and Future Research

7.1 Summary of Research

This thesis has investigated various aspects of CM on wind turbines using

SCADA data, i.e. alarm system and 10-minute operational and availability data.

In chapter 2, the motivations for CM were given, highlighting in particular its

usefulness in the offshore context. Also described were the advantages of le-

veraging already existing SCADA data on the turbine over retrofitting dedicated

CM sensors, and the added functionality such a strategy could entail over the

prevailing strategies used in the wind industry today. A review of CM methods

found in the literature was presented, and classification was highlighted as an

area with potential for prognostics that has not seen much focus, despite ha-

ving a number of advantages over methods such as NBM and trending. Also

reviewed were methods which attempt to curtail the information overload to

operators associated with the high volume of SCADA alarms generated during

fault events. This highlighted that additional fault diagnostic functionality can

be gleaned through the analysis of turbine alarm sequences.

To this end, the research in this thesis can be split into two broad areas: that

which focused on fault prognostics through classification techniques based on

SCADA data, and research which focused on fault diagnostics through analysis

of the turbine alarm system.

The first part, fault prognosis, was covered by chapters 3, 4 and 5. In chap-

ter 3, a case study was performed where various levels of CM were attempted,

leading up to limited fault prognosis. This chapter addressed some of the com-
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mon pitfalls which have been seen in similar works in literature, and showed

that fault prognosis is indeed possible using classification techniques, but that

further investigation was warranted to improve performance. In chapter 4, a

more granular method of generating a historical database of fault data from

alarm system data was presented, with the aim of using this data for future

use by classification-based CM techniques. A secondary benefit of this method

was that the resulting database could be used for reliability analysis of various

turbine assemblies. The work from these chapters was used to build up to a

comprehensive prescriptive framework which was developed in 6. This robust

methodology for classification-based fault prognostics additionally included a

way to evaluate such a system as it would perform deployed in the field.

The second broad area of research, fault diagnostics based on the alarm system,

was presented in chapter 6. Here, a methodology was developed for reducing

the amount of raw data presented to operators during fault events. This pro-

vided a framework for reducing the burden of analysis on technicians when

dealing with turbine alarms, which, as mentioned at the start of the chapter,

can often be ineffective in their current form.

7.2 Research Objectives

This thesis outlined a number of objectives in chapter 1. They are presented

here again along with the associated results which showed how these objectives

were met.

RO1. Determine what level of condition monitoring can be performed

using classification techniques

In chapter 3, the case study showed that fault detection was possible with high

recall, but low precision using classification techniques. For fault diagnosis, the

score was increased for some types of fault. In particular, generator heating

faults could be diagnosed with an overall F1 score of .8. For fault prognosis,

those same generator heating faults could be predicted with a maximum PH of

0-2 hours with an F1 score of .6. However, when this was extended out to a

maximum PH of 24-48 hours, F1 score dropped below .15. These results sho-

wed that CM up to the level of fault diagnosis could be effectively performed,

but more work needed to be done for effective fault prognosis.
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A more robust methodology was developed in chapter 5 with some notable

improvements to the labelling process, and which took into account findings

from chapter 3 with regards to the sampling methods used for the training data.

Here, a precision score of .155 and recall of .49 was achieved (equating to an

F1 score of .24), at a PH of 6-48 hours. Although these represented quite low

classification scores, a sliding window metric was developed which took into

account the number of fault-classified samples in a certain period. This metric

showed that effective prognosis was possible, with the ratio of caught faults to

false alarms being configurable through tweaking of certain parameters.

The findings from these chapters showed that CM at the level of fault prognosis

is possible using classification techniques, though more work is needed to be

done to further improve scores.

RO2. Investigate different techniques for dealing with classification ba-

sed on imbalanced datasets and evaluate their suitability for fault

detection, diagnosis and prediction

Chapter 3 investigated a number of techniques for dealing with the inherently

massive imbalance seen in training data for CM. A variety of techniques were

investigated at all three levels of CM, i.e. fault detection, diagnosis and prog-

nosis. These were: undersampling, adding a class weight parameter to the

minority class(es), easy ensemble, cluster centroids, edited nearest neighbours,

SMOTE and Tomek Links. It was found that randomly undersampling produced

the most consistent results across all levels of CM.

RO3. Determine whether information on historical failures can be accu-

rately gleaned through analysis of the turbine alarms system, and

whether this information can be used to create a complete and

accurate training set for fault prediction

Chapter 4 showed a methodology for building a database of historical stoppages

solely from turbine alarm and availability data. The stoppages were classified

as being from one of a number of different categories, including grid or weather

related faults, planned or unplanned maintenance and faults. For fault-related

stoppages, the assembly the fault occurred in and whether the fault resulted

in a site visit (either repair action or manual on-site reset) were also given.
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The duration of all stoppages were also recorded. By cross-referencing with

maintenance logs and availability data, it was shown that the resulting database

was accurate in all respects. This data was overlaid on an associated set of 10-

minute SCADA data in chapter 5 to build an accurate set of training data for

classification.

RO4. Design a comprehensive framework which incorporates all previ-

ous findings as well as best practices from literature and apply this

methodology to evaluate its performance as a field-deployed sy-

stem

Chapter 5 incorporated findings from the case study in chapter 3 and the data

labelling process in chapter 4 to build a formalised methodology for fault pre-

diction. It included machine-learning best practices, and made recommen-

dations to avoid some of the pitfalls seen in previous works which used a

classification-based approach for CM on wind turbines. Part of this methodo-

logy included a sliding window metric for generating alerts when deployed in

the field, and this was evaluated on a held-out test set. Samples were fed to

the resulting system one-by-one, simulating field deployment. As mentioned in

RO1, the results showed that such a system could be successfully used for CM,

with parameters for configuring the ratio of missed faults to false alarms.

RO5. Investigate whether the burden of analysis on maintenance techni-

cians during fault events can be effectively reduced by gleaning

information from the high volume of generated alarms

In chapter 6, a system for identifying relevant sequences of alarms as they ap-

pear during fault events was developed. Similar sequences were then grouped

together using clustering techniques, so that any shared characteristics between

these clusters could be evaluated by maintenance technicians. Applying this to

12 months’ of data across 11 turbines showed there were 456 different stoppa-

ges related to the pitch assembly. The clustering techniques managed to sort

45% of these stoppages into just 15 different clusters. This massively redu-

ces the burden of analysis on maintenance technicians; if a sequence of alarms

matching one of these clusters appears during a stoppage in live operation,

the operator can be given information about the shared characteristics of these

stoppages rather than seeing a cascade of individual alarms which need to be
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analysed.

7.3 Critical Analysis of Work and Future Recom-

mendations

Here, a critical analysis of some of the work undertaken in this thesis is presen-

ted.

7.3.1 Chapters 3 - 5

At the outset of the PhD work which this thesis represents, a review of the ex-

isting literature was performed to identify gaps and opportunities for impactful

research. Classification was highlighted as a technique for CM which has not

seen much coverage in this domain in the literature, but which has high poten-

tial for very good results, given its success in applications in other domains in

recent years (particularly through the use of deep learning). However, it quickly

became clear that the limiting factor in this domain is availability and quality

of data. These issues with data availability in the wind industry are discussed

at various stages in the thesis, including sections 2.6.

This difficulty was first directly encountered in the work represented in chapter

3, where no granular maintenance logs were available, so faults were labelled

with single instances of individual alarms. Furthermore, the data was related

only to a single turbine over an 11-month period. Chapter 4 remedied the first

of these issues by associating "batches" of alarms with particular types of stop-

pages, and this methodology was incorporated into the prescriptive framework

developed in chapter 5. This led to increased classification scores, but these

scores were still below the researcher’s initial targets of > .8 for precision and

recall. Incorporating a sliding window metric significantly remedied this, but

catching a majority of faults still raised a number of false alarms (64% of all

faults could be caught, but with > 100 hours of active false alarms per year).

A reason for these relatively low classification scores is posited to be because the

faults being predicted were, although frequent, relatively minor (most resulting

in stoppages which resulted in a remote reset after less than 30 minutes of

down time). More severe faults, which lasted longer or required some kind of
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manual intervention, would be expected to be easier to detect due to leading

fault signatures being more obvious for faults related to physical degradation of

components. Although performance on these faults was slightly better, it was

still not close to the goal of > .8 precision/recall scores. The reason for this

was, once again, a lack of available data; 6 months of data across 11 turbines

meant that there were simply not enough examples of faults for the classifiers

to effectively learn what they looked like.

In domains such as image recognition, databases of millions of samples are used

to train deep neural networks (He et al. 2016). In the classification performed

in chapters 3 and 5, the maximum number of instances numbered in the hund-

reds. Hence, deep learning, which is computationally expensive and needs a

large amount of data in order to realise its benefits, was not used. It is envisa-

ged that by gaining access to a large amount of SCADA data, such as that owned

by a utility-scale operator or OEM, the added benefits of classification-based CM

over other SCADA-based methods such as NBM can be realised.

The framework developed in chapter 5 was designed to be as robust and com-

prehensive as possible, so that future researchers may apply it should they have

access to such a large dataset. As mentioned elsewhere in this thesis, mainte-

nance logs are not always stored in a structured, digital format, so any faults

would have to be manually labelled in many cases. However, manually label-

ling a dataset comprising of hundreds of thousands of fault instances could be

prohibitively tedious. Hence, the part of the framework developed in chapter 4,

which deals with automatically building a historical failure database, was de-

signed to specifically address this. Furthermore, as mentioned in section 2.8.4,

many of the classification-based approaches seen in the literature saw some

shortcomings which skewed the final results. Hence, this research should act as

a guide to best practices to avoid some of these pitfalls going forward.

7.3.2 Chapter 6

As part of the work for dealing with alarm system data, maintenance techni-

cians from two different operators were contacted. From liaising with these

people, it was found that their experience with turbine alarm systems was con-

sistent with past research discussed in other parts of this thesis; namely, while

alarms can give a clue as to the reason a turbine has stopped generating, a

lot of expert knowledge of the particular system is needed, and many alarms
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are simply ignored due to the volume generated. Hence, it was decided to try

and reduce the burden of analysis for these technicians, and increase the utility

of turbine alarm systems. The resulting methodology managed to successfully

cluster 45% of all sequences of alarms into one of fifteen distinct clusters, where

the sequences of alarms in each cluster were broadly similar.

The natural extension to this work involves investigating the different types

of stoppages to identify their shared characteristics. Once these characteristics

have been identified, not only can they be used for diagnosing future faults

and deciding on the appropriate course of action post-occurrence, but can also

be used for predictive purposes. If certain clusters are associated with specific

faults in particular sub-assemblies or components, these can be used to train

classifiers for an even more granular level of CM than that seen in chapter 5.

With advance warning of theses specific types of faults, an appropriate course of

action can be taken, with added knowledge of the shared set of characteristics

that each cluster is likely to have.

7.4 Final Conclusions

This thesis presents a number of works which are intended to further advance

the use of SCADA data for CM in wind turbines; through the use of classification

for fault prognostics, and through cluster analysis of alarms for diagnostics. In

this respect, the thesis has achieved these broad goals. However, it represents a

first step towards implementing any of the solutions discussed, and not a final,

field-ready solution. In this respect, it is hoped that future researchers in the

space can use the work in this thesis, and indeed the publications which form

part of it, as a platform to build upon with the ultimate goal of expanding the

scope of CM possibilities using existing SCADA data.

Building a comprehensive and field-deployable fault prognostic or diagnostic

system will, in the opinion of the author of this thesis, require a coordinated

effort from stakeholders including operators and OEMs. As discussed by Kusiak

in a recent Nature article in (Kusiak 2016), OEMs will need to be more open

about sharing data and coordinating with researchers to further advance these

goals. In the author’s experience, signs of this are beginning to appear as the

benefits are being communicated to OEMs, but the potential has yet to be fully

realised.
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A. REDER TAXONOMY

Subsystem Assembly

Power Module
Frequency Converter
Generator
Switch Gear
Soft Starter
MV/LV Transformer
Power Feeder Cables
Power Cabinet
Power Module Other
Power Protection Unit

Rotor & Blades
Pitch System
Other Blade Brake
Rotor
Blades
Hub
Blade Bearing

Control & Communications
Sensors
Controller
Communication System
Emergency Control & Communication Series
Data Aquisition System

Nacelle
Yaw System
Nacelle Cover
Nacelle Bed plate

Drive Train
Gearbox
Main Bearing
Bearings
Mechanical Brake
High Speed Shaft
Silent Blocks
Low Speed (Main) Shaft
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Subsystem Assembly

Auxililiary System
Cooling system
Electrical Protection & Safety
Human Safety
Hydraulic Group
WTG Meteorological Station
Lightning Protection
Firefighting System
Cabinets
Service Crane
Lift
Grounding
Beacon/Lights
Power Supply Auxiliary Systems
Electrical Auxiliary Cabling

Structure
Tower
Foundations
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