
Contents lists available at ScienceDirect

Optics & Laser Technology

journal homepage: www.elsevier.com/locate/optlastec

An iterative denoising system based on Wiener filtering with application to
biomedical images

Salim Lahmiri

Department of electrical engineering, École de Technologie Supérieure, Montreal, Canada

A R T I C L E I N F O

Keywords:
Biomedical images
Denoising
Wiener filter
Iterative system
Peak-signal-to-noise-ratio

A B S T R A C T

Biomedical image denoising systems are important for accurate clinical diagnosis. The purpose of this study is
to present a simple and effective iterative multistep image denoising system based on Wiener filtering (WF)
where the denoised image from one stage is the input to the next stage. The denoising process stops when a
particular condition measured by image energy is adaptively achieved. The proposed iterative system is tested
on real clinical images and performance is measured by the well-known peak-signal-to-noise-ratio (PSNR)
statistic. Experimental results showed that the proposed iterative system outperforms conventional image
denoising algorithms; including wavelet packet (WP), fourth order partial differential equation (FOPDE),
nonlocal Euclidean means (NLEM), first order local statistics (FOLS), and single Wiener filter used as baseline
model. The experimental results demonstrate that the proposed approach can remove noise automatically and
effectively while edges and texture characteristics are preserved.

1. Introduction

Image enhancement and denoising are usually used to better
visualize and interpret the content [1–6]. In this regard, several
effective denoising systems for enhancement of biomedical images
corrupted with noise during acquisition process have been proposed in
the literature. The main goal of biomedical image denoising is to
suppress noise from acquired image while preserving as much as
possible its meaningful edges or texture details. Indeed, the accuracy of
clinical diagnosis depends mainly on visual quality of acquired images.
For instance, wavelet-based approach was adopted in [7], partial
differential equation was employed in [8,9], adjusted empirical mode
decomposition in [10], nonlocal means in [11], and Wiener filter was
used in [12]. As a suitable filter to reduce the effects of non-stationary
noise, Wiener filter was successful in denoising one and two dimen-
sional biomedical signals [13,14], and also in image processing in
general [15].

Recently, several iterative approaches were proposed in the litera-
ture to denoise images. For instance, an iterative method based on
fuzzy sub-pixel fractional partial difference was proposed in [16]. The
proposed iterative method was successful in enhancing contrast of
noisy image. However, it is a computationally complex method [16]. An
iterative generalized cross-validation and fast translation invariant
approach for image denoising was proposed in [17]. The approach is
based on wavelet thresholding algorithm and found to be fast and
effective as it reduces the computation cost of the standard generalized

cross-validation method and efficiently suppresses the Pseudo-Gibbs
phenomena. However, it yields to slight blurring due to simplicity of
the soft-threshold function which is necessary to accelerate computa-
tion. The authors in [18] proposed a noise adjusted iterative low-rank
matrix approximation method. For instance, a patchwise randomized
singular value decomposition is first applied to denoise the image.
Then, an iterative regularization technique based on low-rank matrix
approximation is employed to further separate the signal and noise.
The proposed algorithm requires an appropriate stopping parameter to
be pre-determined along with number of iterations. More recently, the
authors in [19] proposed an automatic filtering convergence method
using PSNR checking and filtered pixel detection for iterative impulse
noise filters by defining an adaptive stop criterion to filter a corrupted
image within finite steps. However, the improved iterative impulse
noise filters fail to discriminate both impulse noise and high-frequency
signal contained in high-frequency image.

In this paper, a simple and effective multistep system for image
denoising based on Wiener filtering is presented. The Wiener filter is
chosen as the basis of our proposed multistep denoising system for
three reasons. First, it is effective in reducing the effects of non-
stationary noise [14]. Second, it incorporates both the degradation
function and statistical characteristics of noise into the restoration
process [15]. Third, it can remove the additive noise and invert the
blurring simultaneously [15].

The proposed multistep system for image denoising based on
Wiener filtering is described as follows. In the first step, the Wiener
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filter is applied to the noisy image. In the second step, the obtained
denoised image in previous step is processed by Wiener filter for
improving image quality by removing the remaining noise. The
resulting denoised image in second step is further processed by
Wiener filter in third step. In other words, the proposed denoising
system is composed of several stages/steps where each obtained
denoised image is further processed with Wiener filter. The process
continues until obtaining a better quality of the image. For instance,
the multistep processing stops when a given condition is automatically
satisfied.

In order to evaluate the proposed multistep denoising system, a set
of three biomedical images is considered. In particular, the real clinical
test images are degraded by various levels of Gaussian noise. In
addition, the effectiveness of the proposed multistage denoising system
is compared with that of conventional existing methods; including
wavelet packet (WP) [20], fourth order partial differential equation
(PDE) [21], nonlocal Euclidean mean (NLEM) [22], and first order
local statistics (FOLS) [23]. Finally, the performances of all algorithms
will be evaluated in terms of the well-known peak-signal-to-noise ratio
(PSNR).

The remainder of this paper is organized as follows: Section 2
presents our proposed multistep denoising system along with compar-
ison techniques. Section 3 presents the experimental results. Finally,
Section 4 concludes our study.

2. Methods

In this section, our multistep denoising system and comparison
methods are presented. In addition, the peak-signal-to-noise ratio used
as main performance measure is presented.

2.1. Proposed multistep system based on Wiener filtering

In order to provide a good quality of denoised biomedical image, we
build a multistage denoising system based on several iterations of
Wiener filter. Indeed, the goal is to iteratively apply Wiener filter to
obtained denoised images until expected denoising performance stops
improving. For instance, the Wiener filter is applied to the initial noisy

image in the first iteration. The obtained denoised image in previous
iteration is filtered by Wiener filter in the second iteration. The
resulting denoised image in second iteration step is further processed
by Wiener filter in third iteration; and so on. The number of iterations
is not fixed, but is adaptive as the overall denoising process auto-
matically stops when energy of the denoised image in iteration n is
smaller than that in iteration n−1. In this regard, there is no further
improvement in the denoising outome.

The algorithm of the proposed Wiener-based system for image
denoising is described as follows:

(a) Apply Wiener filter to noisy image.
(b) Compute energy (E1) of the denoised image.
(c) Apply Wiener filter to denoised image obtained in (b).
(d) Compute E2 of the denoised image in (c).
(e) If E2 >E1 then apply Wiener filter to denoised image obtained in (c)

and continue to next stage n; else stop. This is the update stage.
(f) Repeat (b) to (e) n times until En <En−1

For illustration purpose, the proposed multistep (iterative) denois-
ing system based on Wiener filtering is summarized in Fig. 1:

The Wiener filter [24] is an adaptive technique based on local mean
(μ) and variance (σ2) around each pixel of a noisy image a(n1,n2). In
particular, Wiener filter creates a pixel wise filtering using estimated
mean and variance to obtain an estimated or denoised image b(n1,n2)
given by:

∫E u f u dx dy( ) = ( ∇ ) .
Ω

2
(1)

where ν2 is the noise variance that could be estimated as average of all
local estimated variances.

The methods used for comparison purpose; namely the wavelet
packet (WP) [20], fourth order partial differential equation (PDE) [21],
nonlocal Euclidean means (NLEM) [22], and first order local statistics
(FOLS) [23]; are described next.

2.2. Comparison methods and performance measure

Following the classical approach for image denoising based on
wavelet transform, the noisy image is decomposed by using discrete
wavelet transform (DWT) [25] to decompose it into low-low, low-high,
high-low, and high-high sub-band coefficients. The denoised signal is
obtained by thresholding the obtained wavelet coefficients. Then, an
inverse DWT is performed to recover the denoised signal. In this paper,
wavelet packet transform (WPT) [20,26] that performs a complete
analysis of the image at all subbands including both approximation and
detail coefficients; is employed for denoising purpose. For the WPT
thresholding technique, we employ the Daubechies-4 as mother wave-
let at third level of decomposition. The optimal threshold value is
determined by minimizing Stein's unbiased risk estimator (SURE)
[25]. Indeed, denoising by wavelet transform is usually performed by
thresholding where coefficients smaller than a specific threshold are

Input: noisy image 

Wiener filtering 

Output: denoised image 

Compute energy 

Update n times 

Fig. 1. Block diagram of the proposed multistage denoising system. The procedure is
repeated until there is a decrease in energy of the denoised image.

Brain MRI Chest X-ray Pancreas CT
Fig. 2. Original images used for experiments.
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canceled [25]. Two types of thresholding are in general applied: Hard
and soft thresholding. The former replaces wavelet coefficients less
than the threshold with zero. The latter, replaces wavelet coefficients
less than the threshold with zero and the remaining coefficients are

modified by subtracting the threshold value. Both types of thresholding
are adopted in this study.

The PDE denoising approach [21] is based on the principle of cost
function minimization. For (x,y)∈Ω, let u(x,y) and u0(x,y) be respec-
tively a digital image and its observation with random noise ε(x,y). The
purpose is to find a new image by minimizing the cost functional E(u)
given by [21]:

∫E u f u dx dy( ) = ( ∇ )
Ω

2
(2)

where ∇2 is the Laplacian operator and f (·)≥0 and also f′ (·) >0. With
the observed image as the initial condition, the solution is given by the
following PDE as the time script tends to infinity:

⎡
⎣⎢

⎤
⎦⎥

u
t

f u u
u

∂
∂

= −∇ ′(∇ |) ∇
∇

2 2
2

2 (3)

In the nonlocal Euclidean means (NLEM) framework [22], the
Euclidean mean is the minimizer of.

w P P∑ −j j j
2 over all image patches P of size k×k centered at pixel j.

The nonlocal Euclidean medians (NLEM) method [22] seeks to
minimize.

w P P∑ −j j j over all P; as the median is more robust to outliers than
the mean, by using the iteratively reweighted least squares (IRLS)
algorithm [22].

First order local statistics (FOLS) [23] filter estimates pixel
characteristics by calculating sub-region statistics estimated over a
neighborhood W. The filter is expressed as follows [23]:

f g k g g= + ( − )i j i j i j i j i j, , , , , (4)

Fig. 3. PSNR given number of iterations under S3.
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Fig. 4. Resulting denoised images under S1 for pancreas CT.
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where fi,j is the estimated pixel at location (i,j) on the image with an
original value of gi,j, gi j, is gray value local mean of an m×n
neighborhood around and including gi,j; ki,j is the weighing factor
with k∈[0,1]. The factor ki,j is expressed as [23]:

k
g σ

σ σ
=

1 −

(1 + )i j
i j i j

i j
,

,
2

,
2

,
2 2 (5)

∑σ
σ
g

=
i j

i j

i j

2

,

,
2

, (6)

where σi j,
2 and σ2 are respectively local noise variance in the moving

window W and noise variance in the whole image. In this study, a local
neighborhood window W of size 5×5 is considered.

Finally, the denoising performance is measured by the peak-signal-
to-noise ratio (PSNR) given by:

⎛
⎝⎜

⎞
⎠⎟PSNR

MAX
MSE

= 20 log f
10

(7)

where, MAX is the maximum signal value in the original image f of size
m×n, and MSE is the mean squared error.

3. Results

In this section, the performance of the proposed multistep denois-
ing system in terms of PSNR is compared to wavelet packet (WP),
fourth order partial differential equation (PDE), nonlocal Euclidean
mean (NLEM), first order local statistics (FOLS), and also to single
(one iteration) Wiener filter. They were applied to three biomedical
images: brain MRI (256×256), pancreas computed tomography (CT)
(275×183), and chest X-ray image (180×176). Fig. 2 displays the
original biomedical images used in our experiments. A Gaussian noise
was added to each biomedical image at varying levels. For instance, the
noise had a normal distribution with zero mean and standard deviation
S1=0.01, S2=0.02, and S3=0.03. Fig. 3 plots the evolution of PSNR
depending on number of iterations in our proposed multistep denois-
ing system when biomedical images shown in Fig. 2 are corrupted with
noise of level S1. It is shown that the PSNR increases with number of
iterations. We found similar results when original biomedical images
were corrupted with noise of levels S2 and S3. These findings suggest
that applying Wiener filter iteratively to obtained images improves the
denoising result. Thus, the proposed multistep denoising system based
on iterative Wiener filtering is capable to improve its performance
automatically and adaptively. Recall, that our system automatically
stops when energy of the denoised image decreases.

For visual quality comparison, the resulting images through all
denoising models adopted in our study for pancreas CT affected with
Gaussian noise level S1 are shown in Fig. 4. It is observed that the
proposed multistep denoising system based on Wiener filtering per-
forms better than the existing methods by providing better visual
quality of the denoised image.

In addition to that, the obtained PSNR by the proposed multistep
denoising system and existing comparison methods are provided in

Table 1 for brain MRI, chest X-ray, and pancreas CT respectively.
Recall that hard and soft threshold achieved similar performances.
From Table 1, it is observed that our proposed multistep denoising
system performs better than the other methods in terms of PSNR. In
summary, compared to other denoising models used for comparison
purpose, our proposed multistep denoising system based on iterative
Wiener filtering allows enhancing the contrast of the image with better
preservation of edge and important details as clearly shown in Fig. 3.
Therefore, our filtering system tends to produce good denoised image
not only in terms of visual perception but also in terms of the PSNR
metric. Fig. 4

Overall, the PDE based approach is able to preserve object
boundaries while removing noise in homogeneous regions. But, it
requires numerical methods to be solved and yields to blurred regions.
FOLS and NLEM are capable to remove noise from smooth regions;
however, they fail to provide good results close to edge regions. As a
wavelet-based image denoising method, the WPT can preserve texture
and details but it produces artifacts. Besides, the proposed iterative
denoising approach based on Wiener filter has several advantages. In
particular, the proposed system is simple to implement and fast as no
prior processing step is required. In addition, the proposed iterative
denoising system is capable to remove noise from an image adaptively
in finite iterations while important image characteristics are preserved
such as edges and texture. Indeed, since Wiener filter acts locally to
remove additive noise and invert the blurring simultaneously [15],
image local characteristics are prevailed. Thus, it is suitable for
restoring original textural features. Furthermore, our proposed itera-
tive denoising system was found to be effective in comparison with
existing denoising techniques used for comparison purpose. Finally, it
is interesting to notice that although Wiener filter is suitable for smooth
images, it also worked well for non-smooth images under study when
used in an iterative framework. Such advantages are attractive in real
world applications; particularly, in clinical applications for better
diagnosis.

4. Conclusion

Biomedical image denoising systems are important in clinical
diagnosis as images acquired through electronic sensors may be
contaminated by noise. In this regard, biomedical image denoising
systems are employed for biomedical image enhancement at a pre-
processing step.

In this study, we constructed a simple an effective automated
biomedical denoising system based on multistage usage of Wiener
filter. We compared the performance of our proposed multistage
denoising system to wavelet packet, fourth order partial differential
equation, nonlocal Euclidean means, first order local statistics, and
single Wiener filtering. Experimental results showed that our multistep
system based on Wiener filtering achieved best performances in terms
of both subjective and objective evaluations than comparison models.

Table 1
PSNR values of different denoising methods.

Brain MRI Chest x-ray Pancreas CT

S1 S2 S3 S1 S2 S3 S1 S2 S3

PDE 16.61 16.55 16.30 28.68 28.60 28.37 19.27 19.23 19.19
FOLS 28.32 25.42 24.94 32.39 29.03 26.98 30.79 27.80 26.18
NLEM 28.47 25.53 25.04 30.13 27.17 25.46 30.56 27.50 25.83
WPT 28.69 25.65 25.04 30.49 27.44 25.71 30.76 27.70 26.03
Single Wiener 31.53 28.44 28.69 34.60 32.11 30.55 31.24 29.56 27.20
Proposed 32.31 29.66 29.63 35.66 33.56 32.33 31.82 29.60 27.94

S. Lahmiri Optics & Laser Technology 90 (2017) 128–132

131



References

[1] M.K. Sharma, J. Joseph, P. Senthilkumaran, Directional edge enhancement using
superposed vortex filter, Opt. Laser Technol. 57 (2014) 230–235.

[2] X. Bai, F. Zhou, B. Xue, Image enhancement using multiscale image features
extracted by top-hat transform, Opt. Laser Technol. 44 (2012) 328–336.

[3] Y. Li, Y. Zhang, A. Geng, L. Cao, J. Chen, Infrared image enhancement based on
atmospheric scattering model and histogram equalization, Opt. Laser Technol. 83
(2016) 99–107.

[4] H. Om, M. Biswas, MMSE based map estimation for image denoising, Opt. Laser
Technol. 57 (2014) 252–264.

[5] P. Shanmugavadivu, K. Balasubramanian, Particle swarm optimized multi-objec-
tive histogram equalization for image enhancement, Opt. Laser Technol. 57 (2014)
243–251.

[6] M. Liao, Y.-q. Zhao, X.-h. Wang, P.-s. Dai, Retinal vessel enhancement based on
multi-scale top-hat transformation and histogram fitting stretching, Opt. Laser
Technol. 58 (2014) 56–62.

[7] T. Bernas, R. Starosolski, R. Wójcicki, Application of detector precision charac-
teristics for the denoising of biological micrographs in the wavelet domain, Biomed.
Signal Process. Control 19 (2015) 1–15.

[8] J.M. Bioucas-Dias, M.A.T. Figuiredo, Multiplicative noise removal using variable
splitting and constrained optimization, IEEE Trans. Image Process. 19 (2010)
1720–1730.

[9] S. Lahmiri, Image denoising in bidimensional empirical mode decomposition
domain: the role of Student's probability distribution function, Healthc. Technol.
Lett. 3 (2016) 67–71.

[10] S.Lahmiri, M.Boukadoum, Combined partial differential equation filtering and
particle swarm optimization for noisy biomedical image segmentation, in:
Proceedings of the IEEE Latin American Symposium on Circuits and Systems, pp.
363–366, 2016.

[11] S. Duli, A. Kuurstra, I.C.S. Patarroyo, O.V. Michailovich, A new similarity measure
for non-local means filtering of MRI images, J. Vis. Commun. Image Represent. 24
(2013) 1040–1054.

[12] X.-W. Fu, M.-Y. Ding, C. Cai, Despeckling of medical ultrasound images based on
quantum-inspired adaptive threshold, Electron. Lett. 46 (2010) 889–891.

[13] L. Smital, M. Vítek, J. Kozumplík, I. Provazník, Adaptive wavelet Wiener filtering of
ECG signals, Trans. Biomed. Eng. 60 (2013) 437–445.

[14] Q. Xu, D. Ye, Evaluation of a posteriori Wiener filtering applied to frequency-
following response extraction in the auditory brainstem. Biomedical, Signal
Process. Control 14 (2014) 206–216.

[15] J.-C. Yoo, C.W. Ahn, Image restoration by blind-Wiener filter, IET Image Process. 8
(2014) 815–823.

[16] Y. Zhang, H.D. Cheng, J. Tian, J. Huang, X. Tang, Fractional subpixel diffusion and
fuzzy logic approach for ultrasound speckle reduction, Pattern Recognit. 43 (2010)
2962–2970.

[17] Libao Zhang, Jie Chen, Tong Zhu, Image denoising based on iterative generalized
cross-validation and fast translation invariant, J. Vis. Commun. Image Represent.
28 (2015) 1–14.

[18] W. He, H. Zhang, L. Zhang, H. Shen, Hyperspectral image denoising via noise-
adjusted iterative low-rank matrix approximation, IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 8 (2015) 3050–3061.

[19] C.-Y. Chen, C.-H. Chen, C.-H. Chen, K.-P. Lin, An automatic filtering convergence
method for iterative impulse noise filters based on PSNR checking and filtered
pixels detection, Expert Syst. Appl. 63 (2016) 198–207.

[20] P.L. Shui, Z.F. Zhou, J.X. Li, Image denoising algorithm via best wavelet packet
base using Wiener cost function, IET Image Process. 1 (2007) 311–318.

[21] Y.-L. You, M. Kaveh, Fourth order partial differential equations for noise removal,
IEEE Trans. Image Process. 9 (2000) 1723–1730.

[22] D. Sheet, S. Pal, A. Chakraborty, J. Chatterjee, A.K. Ray, Image quality assessment
for performance evaluation of despeckle filters in optical coherence tomography of
human skin, Proc. IEEE EMBS (2010) 499–504.

[23] J.S. Lee, Digital image smoothing and sigma filter, Comput. Vis. Graph. Image
Process. 24 (1983) 255–269.

[24] M. Kazubek, Wavelet domain image denoising by thresholding and Wiener
filtering, IEEE Signal Process. Lett. 10 (2003) 324–326.

[25] D.L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory 41 (1995)
613–627.

[26] M.V. Wickerhauser, R.R. Coifman, Entropy-based algorithms for best basis
selection, IEEE Trans. Inf. Theory 38 (1992) 713–718.

S. Lahmiri Optics & Laser Technology 90 (2017) 128–132

132

http://refhub.elsevier.com/S0030-16)30448-sbref1
http://refhub.elsevier.com/S0030-16)30448-sbref1
http://refhub.elsevier.com/S0030-16)30448-sbref2
http://refhub.elsevier.com/S0030-16)30448-sbref2
http://refhub.elsevier.com/S0030-16)30448-sbref3
http://refhub.elsevier.com/S0030-16)30448-sbref3
http://refhub.elsevier.com/S0030-16)30448-sbref3
http://refhub.elsevier.com/S0030-16)30448-sbref4
http://refhub.elsevier.com/S0030-16)30448-sbref4
http://refhub.elsevier.com/S0030-16)30448-sbref5
http://refhub.elsevier.com/S0030-16)30448-sbref5
http://refhub.elsevier.com/S0030-16)30448-sbref5
http://refhub.elsevier.com/S0030-16)30448-sbref6
http://refhub.elsevier.com/S0030-16)30448-sbref6
http://refhub.elsevier.com/S0030-16)30448-sbref6
http://refhub.elsevier.com/S0030-16)30448-sbref7
http://refhub.elsevier.com/S0030-16)30448-sbref7
http://refhub.elsevier.com/S0030-16)30448-sbref7
http://refhub.elsevier.com/S0030-16)30448-sbref8
http://refhub.elsevier.com/S0030-16)30448-sbref8
http://refhub.elsevier.com/S0030-16)30448-sbref8
http://refhub.elsevier.com/S0030-16)30448-sbref9
http://refhub.elsevier.com/S0030-16)30448-sbref9
http://refhub.elsevier.com/S0030-16)30448-sbref9
http://refhub.elsevier.com/S0030-16)30448-sbref10
http://refhub.elsevier.com/S0030-16)30448-sbref10
http://refhub.elsevier.com/S0030-16)30448-sbref10
http://refhub.elsevier.com/S0030-16)30448-sbref11
http://refhub.elsevier.com/S0030-16)30448-sbref11
http://refhub.elsevier.com/S0030-16)30448-sbref12
http://refhub.elsevier.com/S0030-16)30448-sbref12
http://refhub.elsevier.com/S0030-16)30448-sbref13
http://refhub.elsevier.com/S0030-16)30448-sbref13
http://refhub.elsevier.com/S0030-16)30448-sbref13
http://refhub.elsevier.com/S0030-16)30448-sbref14
http://refhub.elsevier.com/S0030-16)30448-sbref14
http://refhub.elsevier.com/S0030-16)30448-sbref15
http://refhub.elsevier.com/S0030-16)30448-sbref15
http://refhub.elsevier.com/S0030-16)30448-sbref15
http://refhub.elsevier.com/S0030-16)30448-sbref16
http://refhub.elsevier.com/S0030-16)30448-sbref16
http://refhub.elsevier.com/S0030-16)30448-sbref16
http://refhub.elsevier.com/S0030-16)30448-sbref17
http://refhub.elsevier.com/S0030-16)30448-sbref17
http://refhub.elsevier.com/S0030-16)30448-sbref17
http://refhub.elsevier.com/S0030-16)30448-sbref18
http://refhub.elsevier.com/S0030-16)30448-sbref18
http://refhub.elsevier.com/S0030-16)30448-sbref18
http://refhub.elsevier.com/S0030-16)30448-sbref19
http://refhub.elsevier.com/S0030-16)30448-sbref19
http://refhub.elsevier.com/S0030-16)30448-sbref20
http://refhub.elsevier.com/S0030-16)30448-sbref20
http://refhub.elsevier.com/S0030-16)30448-sbref21
http://refhub.elsevier.com/S0030-16)30448-sbref21
http://refhub.elsevier.com/S0030-16)30448-sbref21
http://refhub.elsevier.com/S0030-16)30448-sbref22
http://refhub.elsevier.com/S0030-16)30448-sbref22
http://refhub.elsevier.com/S0030-16)30448-sbref23
http://refhub.elsevier.com/S0030-16)30448-sbref23
http://refhub.elsevier.com/S0030-16)30448-sbref24
http://refhub.elsevier.com/S0030-16)30448-sbref24
http://refhub.elsevier.com/S0030-16)30448-sbref25
http://refhub.elsevier.com/S0030-16)30448-sbref25

	An iterative denoising system based on Wiener filtering with application to biomedical images
	Introduction
	Methods
	Proposed multistep system based on Wiener filtering
	Comparison methods and performance measure

	Results
	Conclusion
	References




