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Beyond conventional nonlinear fracture mechanics
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Owing to a finite and single-atom-thick two-dimensional structure, graphene nanostructures such as

nanoribbons possess outstanding physical properties and unique size-dependent characteristics due to

nanoscale defects, especially for mechanical properties. Graphene nanostructures characteristically

exhibit strong nonlinearity in deformation and the defect brings about an extremely localized singular

stress field of only a few nanometers, which might lead to unique fracture properties. Fundamental under-

standing of their fracture properties and criteria is, however, seriously underdeveloped and limited to the

level of continuum mechanics and linear elasticity. Here, we demonstrate the breakdown of continuum-

based fracture criteria for graphene nanoribbons due to the strong nonlinearity and discreteness of atoms

emerging with decreasing size and identify the critical sizes for these conventional criteria. We further

propose an energy-based criterion considering atomic discrete nature, and show that it can successfully

describe the fracture beyond the critical sizes. The complete clarification of fracture criterion for nonlinear

graphene with nanoscale singularity contributes not only to the reliable design of graphene-based nano-

devices but also to the elucidation of the extreme dimensional limit in fracture mechanics.

Introduction

Since the discovery of graphene,1 a one-atom-thick layer of sp2

hybridized carbon atoms, it has been attracting considerable
attention and scientific/technological interest as a representa-
tive of two-dimensional (2D) materials owing to its exceptional
electrical,1,2 thermal,3 optical,4 and mechanical5,6 properties
and its promising applications such as flexible electronic7,8 or
biological9 devices, nano-electromechanical systems,10 gra-
phene-reinforced nanocomposites,11–13 and nitrogen-doped
graphene in energy fields.14 In particular, graphene nano-
structures such as graphene nanoribbons (GNRs),15 tailored
from the ideal graphene sheet within a finite dimension,
exhibit unique electronic band structures arising from the
interplay of the edge and nano-size effects,16 which enable
tuning of the electronic and transport properties of graphene-
based nanodevices.17 Because of fragility due to their

thin structure, characterization and understanding of the
fracture properties of graphene nanostructures are, therefore,
of central importance for both the reliability of these appli-
cations and scientific interest in the deformation physics of
nanostructures.

Numerous experimental and theoretical studies have
already been carried out to understand the fracture toughness
and other properties of large (or infinite) graphene, and they
demonstrated that Griffith (or conventional fracture mech-
anics) theory on the basis of linear elasticity can describe frac-
ture of graphene to some extent in spite of its one-atom-thick
layer structure.18–23 In contrast, the fracture properties of and
the fracture criterion for graphene nanostructures are,
however, seriously underdeveloped due to atomic-level nonli-
nearity and continuum-media assumption at the nanoscale.
Generally, linear elasticity seems to dominate the fracture of a
crack in graphene as nonlinear deformation mainly stems
from the atomic bonds in the vicinity of the crack tip.
However, such atomic-level nonlinearity plays a crucial role in
the fracture of GNRs, and should be fully considered especially
as the size extremely shrinks down at the nanoscale. A funda-
mental question is about the critical size in the transition
between linear and nonlinear mechanics at fracture.

Conventional fracture mechanics, established on the basis
of continuum assumption, provides criteria to describe the
critical conditions under which a crack becomes mechanically
unstable and starts to propagate.24–26 At the nanoscale,
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however, the size of the singular stress field, which intrinsi-
cally dominates the fracture of a crack, shrinks down to a few
nanometers or less, where only an extremely smaller number
of atoms exist than that in the macroscale materials. This situ-
ation immediately contradicts with the above-mentioned
concept of conventional fracture mechanics that postulates the
existence of a large enough number of atoms near the crack
tip to regard the area as continuum media. This suggests a
lower size limit for conventional fracture criteria. Recently,
there have been some investigations on the breakdown of frac-
ture criteria for brittle fracture at the nanoscale under simple
linear elasticity,18,19,27–31 whereas GNRs show strong nonli-
nearity in their deformation. Consideration of nonlinearity is
essential to understand the intrinsic breakdown of conti-
nuum-based fracture criteria, and in addition a universal cri-
terion beyond the size limit is still critically missing.

Here, we demonstrate the breakdown of continuum-based
criteria in GNRs by experiments in silico, which originates
from the strong nonlinearity and discreteness of atoms emer-
ging dominant with decreasing size. In addition, the critical
sizes are identified for these conventional criteria.
Furthermore, we propose a new energy-based criterion within
the framework of Atomic Fracture Mechanics (AFM) consider-
ing discrete atomic nature, and it can successfully describe the
fracture beyond the critical sizes in a nonlinear elastic
material.

Results and discussion

Graphene shows nonlinear elastic behavior in the stress–strain
relationship under large deformation. Under the uniaxial ten-
sions along the zigzag and armchair directions of pristine gra-
phene, shown in Fig. 1a, stress–strain curves are obtained
from ab initio calculations based on density functional theory
(DFT) and molecular static (MS) simulations. The results in
Fig. 1b demonstrate that pristine graphene possesses eminent
nonlinear elasticity at the tensile strain larger than 0.1, in both
zigzag and armchair directions. Careful evaluation of the
stress–strain curve in the zigzag direction clarifies that nonli-
nearity begins at a stress of σ0 = 48.7 GPa (strain of 0.06). In
fracture mechanics of graphene with nanoscale dimensions,
the nonlinearity in large deformation is a critical issue
because of the existence of few atoms near cracks and defects.

The fracture test of graphene is performed by MS simu-
lation for single-crystalline GNRs with a pre-crack, which
shows strong nonlinearity. Fig. 2a shows an atomic model of
the specimen with a single edge crack. W, H (= 2W) and a (= W/

Fig. 1 (a) Atomic configuration of pristine graphene and (b) stress–
strain curves of pristine graphene with tensile load along the armchair
and zigzag directions.

Fig. 2 (a) Geometry and loading conditions of a pre-cracked GNR specimen for tensile test. The crack faces are along the armchair direction. (b)
Tensile stress–strain curves of GNR specimens with a crack length of a = 0.56–42.0 nm. (c) and (d) GNR specimen at the onset of crack propagation
and after crack propagation, respectively. The insets in (c) show the atomic structures before and immediately after the first carbon bond breaks at
the onset of crack propagation. The crack propagates along the armchair direction.
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3) represent the width, the length and the crack length of the
specimen, respectively. The crack with armchair edges is
modeled by removing an array of atoms from the specimen as
shown in the inset of Fig. 2a. Fig. 2b shows the stress–strain
curves for graphene specimens with different initial crack
lengths (with crack faces all along the armchair direction)
under uniaxial tensile tests. During these tests, the global
stress increases monotonically with the global strain.
Subsequently, the global stress suddenly drops to zero when
the global strain reaches a critical value, at which the crack
becomes mechanically unstable and begins to propagate.
Fig. 2c shows the first sign of failure, in which the first bond
to break is at the crack tip. Once this bond has been broken, a
complete failure of the specimen proceeds rapidly along the
armchair direction, resulting in two fractured pieces (as shown
in Fig. 2d), and thus the fracture occurs at mode-I and is
purely brittle. Such brittle nature of fracture is observed in all
GNR specimens under tension, regardless of the crack length.
However, as the crack length increases, both the critical global
stress and strain decrease. The characteristics of the brittle
fracture obtained here are consistent with those of simulated
predictions18,19 and recent experimental observations,19,20

which confirms the reliability of the present tests.
In investigations of crack propagation in GNRs, it has been

widely believed that nonlinear deformation is highly localized
near the crack tip since graphene begins to rupture at a small
global strain where the linear behavior seemingly dominates,
and therefore linear elasticity is often adopted to analyze crack
problems in graphene for the sake of simplicity. The tensile
results in the present study are thus firstly analyzed based on
linear elastic fracture mechanics (LEFM) approach by consider-
ing the material as a linear elastic continuum. In the GNR
specimen with a crack length of a = 42.0 nm, the stress inten-
sively concentrates near the crack tip and forms a singular
field inversely proportional to the square root of the distance r,
i.e., σyy ¼ KI=

ffiffiffiffiffiffiffi
2πr

p
. Here, KI denotes the stress intensity factor

that characterizes the local stress field near the crack tip
(Fig. 3a). In addition to the stress intensity approach, an
alternative fracture parameter that is based on the energy
approach, i.e., the energy release rate (ERR) G, has been fre-
quently used in the LEFM approach as a global fracture charac-
terizing parameter. The ERR is defined as the released
mechanical (strain) energy with an infinitesimal increment of
the crack cross-section ΔA, and LEFM gives

G ¼ �dΠLE Að Þ
dA

¼ � lim
ΔA!0

ΠLE Aþ ΔAð Þ � ΠLE Að Þ
ΔA

ð1Þ

where ΠLE(A) denotes the strain energy under the assumption
of linear-elastic continuum media and A the crack cross-
section. For linear elastic materials fractured under mode-I, G
uniquely correlates with the stress intensity factor KI as G =
KI

2/E, where E is Young’s modulus. Fig. 3b plots the ERR at
fracture Gf as a function of crack length for all of the GNRs
tested. It should be noted that the critical ERR or fracture
toughness of (infinite) graphene is evaluated from preliminary
simulations to be GC = 11.8 J m−2 (KC = 3.15 MPa m1/2) as indi-

cated by the dashed line in Fig. 3b, which is in good agree-
ment with the fracture toughness from previous simulated
predictions21–23 and experimentally measured values.19 Fig. 3b
shows that Gf is consistent with the fracture toughness GC at
large crack lengths (a > 21.1 nm). This consistency evidently
indicates that the LEFM criterion, i.e., the crack begins to pro-
pagate just when the ERR (or the stress intensity factor)
reaches the fracture toughness, is applicable. However, below
the crack length as a < 21.1 nm, Gf begins to deviate from the
fracture toughness GC, which implies that LEFM fails to

Fig. 3 (a) Normal stress at the onset of fracture as a function of dis-
tance from the crack tip r. ΛK indicates the region of the singular stress
field near the crack tip. (b) Critical energy release rate at fracture based
on the linear elastic fracture mechanics (LEFM) as a function of crack
length a. (c) Comparison between the region of the singular stress field
(K-dominant region), ΛK and the region of nonlinear deformation, ΛNL.
Note that the schematic diagrams here mainly illustrate the sizes (but
not the exact shapes) of the K-dominant region and the NL region.
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describe the critical condition at which the crack starts to pro-
pagate. Therefore, fracture in such GNRs is no longer governed
by the ERR, i.e., the breakdown of LEFM. The critical size of
LEFM can be evaluated at a crack length of about 20 nm from
Fig. 3b.

To shed light on the lower limit of LEFM, we reconsider the
long-held yet vague belief that the nonlinear region near the
crack tip can be neglected due to its high localization. Fig. 3c
shows the region of nonlinear deformation, ΛNL, as compared
with the region governed by the singular stress field, ΛK, for
specimens with crack lengths of a = 42.0, 21.1, and 8.5 nm,
respectively. The region of nonlinear deformation is deter-
mined where the concentrated stress near the crack tip
becomes higher than the stress of σ0 = 48.7 GPa. As shown in
Fig. 3c, LEFM is valid in the specimen with a large crack
length of a = 42.0 nm, where ΛK is about twenty times larger
than ΛNL, and thus large enough to satisfy the hypothesis ΛK

≫ ΛNL. On the other hand, Gf starts to deviate for the speci-
men with a small crack length of a = 21.1 nm, where ΛK

becomes closer to ΛNL, and the hypothesis of LEFM thus
breaks down. In fact, the deviation of Gf is more dramatically
pronounced around ΛK ≈ ΛNL. Therefore, ΛK determines the
lower limit of LEFM, which is roughly estimated to be ΛC

K =
5ΛNL = 5.4 nm.

Evidently, the nonlinear elastic regime plays an important
role in the description of fracture in GNRs, and the nonlinear
effect should be taken into account, especially for specimens
with a short crack. This, however, shatters the long-held belief
of the negligible nonlinear region near the crack tip in GNRs.
We thus progress to analyze the tensile results in the present
study based on the nonlinear fracture mechanics (NLFM) by
considering the material as a nonlinear elastic continuum.
According to NLFM, J-integral is considered to be a fracture
characterizing parameter for nonlinear materials, which is
defined in a similar manner to G in elastic materials, given
by32

J ¼ � dΠNL Að Þ
dA

¼ � lim
ΔA!0

ΠNL Aþ ΔAð Þ � ΠNL Að Þ
ΔA

¼
þ
Γ

wdy� T � @u
@x

dΓ
� � ð2Þ

where ΠNL(A) denotes the nonlinear strain energy of conti-
nuum media, Γ arbitrary contour around the tip of a crack, T
traction vector, and w strain energy density. J-Integral is path-
independent as demonstrated in Fig. S1 (provided in the
ESI†). Fig. 4a plots J-integral at fracture Jf as a function of crack
length for all of the GNRs tested. Jf is consistent with the frac-
ture toughness JC (= GC) and thus the NLFM concept is appli-
cable for GNRs with large crack lengths (a > 21.1 nm).
Interestingly, the NLFM concept is still valid for a very short
crack of a = 7.3 nm. Below this crack length, however, Jf begins
to deviate from the fracture toughness JC, which indicates that
the NLFM fails to describe the fracture in GNRs. Therefore,
fracture in such GNRs is no longer governed by J-integral, i.e.,
the breakdown of NLFM. The critical size of NLFM can be eval-

uated at a crack length of a = 7.3 nm from Fig. 4a, which is
approximately one third of that of LEFM.

To provide physical insight into the lower limit of NLFM,
we consider the stress field near the crack tip. Although the
stress also intensively concentrates near the crack tip (Fig. 4b)
as in LEFM, the stress forms a singular field that is pro-
portional to r−1/(n+1), i.e., the HRR (Hutchinson–Rice–

Fig. 4 (a) Critical J-integral at fracture based on nonlinear elastic frac-
ture mechanics (NLFM) as a function of crack length a. (b) Normal stress
at the onset of fracture as a function of distance from the crack tip r for
a specimen with a = 5.2 nm. ΛJ indicates the region of the HRR singular
stress field near the crack tip. (c) Critical J-integral at fracture based on
nonlinear elastic fracture mechanics (NLFM) as a function of ΛJ.
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Rosengren) singular stress field, rather than that of r−1/2 in
LEFM. The HRR singular stress field is expressed as33,34

σij rð Þ ¼ J
r

� �1= nþ1ð Þ
σ̃ij θ; nð Þ i; j ¼ x; yð Þ ð3Þ

where n is the work hardening coefficient and σ̃ij(θ,n) the
dimensionless function of n and θ. Similar to the key dimen-
sion of ΛK in LEFM to determine the lower limit of LEFM, here
the area where the stress varies as r−1/(n+1) is called the
J-dominated region ΛJ. Fig. 4b shows that the HRR singular
stress field still dominates the stress field in the vicinity of the
crack tip, even though the crack length is lower than its critical
size of 7.3 nm. Thus, the J-integral is sound for the description
of the stress field for a short crack even below the critical
length. Fig. 4c plots J-integral at fracture Jf as a function of
J-dominated region ΛJ for all of the specimens. Surprisingly, Jf

is still consistent with the fracture toughness JC (= GC), and the
NLFM concept is applicable despite the quite small
J-dominated region, as ΛJ = 0.14 nm that is almost equal to the
distance between the two carbon atoms in graphene. However,
below this size Jf deviates from the intrinsic fracture tough-
ness. Therefore, the critical size of NLFM can be characterized
by ΛC

J , which is evaluated to be ΛC
J = 0.14 nm.

Because of the breakdown of both LEFM and NLFM (or
fracture mechanics in general) in description of fracture in
GNRs below the critical sizes, an alternative parameter beyond
the continuum-based fracture mechanics that can characterize
fracture in GNRs at a scale below the limitation or if possible
can even characterize fracture at any scale is urgently required.
Here, we propose the following atomic ERR, denoted as GAFM,
as an effective parameter to describe fracture below the lower
size limit, which fully takes into account the discreteness of
atoms at the crack tip by a straightforward extension of the
fracture mechanics concept to the atomic scale, as

GAFM ¼ �ΔΠAtom Að Þ
ΔA

¼ �ΠAtom Aþ ΔAð Þ � ΠAtom Að Þ
ΔA

ð4Þ

where ΠAtom(A) is the potential energy of the simulated atomic
specimen with a crack cross-section of A. ΔA is the finite
change of the crack cross-section at the onset of fracture, and
in the present case, it corresponds to a single bond break at
the crack tip as shown in Fig. 2c. In contrast to the original
ERR (or J-integral) that is a measure of the continuum strain
energy available for an infinitesimal crack extension, the pro-
posed atomic ERR GAFM accounts for the strain energy of the
discretized atomic body and the discrete nature of atoms at
the crack-tip, and moreover the effect of shear mode around
the crack tip (if any) will also be included. Here we call this
analytic theory Atomic Fracture Mechanics (AFM). In addition,
GAFM no longer postulates the presence of a singular field,
suggesting its applicability to even non-crack systems.

The atomic ERR at fracture Gf
AFM as a function of crack

length a is shown in Fig. 5a, and it clearly indicates that the
fracture event always occurs when Gf

AFM reaches a critical con-
stant value of 11.8 J m−2 for all GNRs regardless of their sizes.

The good consistency between Gf
AFM and continuum-based Gf

(or Jf ) for large crack lengths (a > 21.1 nm) where continuum
criteria still work implies that the effect of shear mode on the
first bond breaking at the crack tip is negligible. The AFM
therefore successfully describes the onset of fracture in GNRs
where both the LEFM and NLFM are no longer valid. More

Fig. 5 (a) Critical energy release rate at fracture based on atomic frac-
ture mechanics (AFM), linear elastic fracture mechanics (LEFM), and non-
linear elastic fracture mechanics (NLFM) as a function of crack length a.
(b) Comparison of strain energy density distributions near the crack tip
between the continuum assumption and the actual atomic specimen
under critical loading conditions.
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interestingly, Gf
AFM effectively works as a universal fracture

characterizing parameter that is not only at the nanoscale but
also at the macroscale. As shown in Fig. 5(b), the strain energy
distribution by continuum assumption deviates from the
actual atomic one at the shortest distance from the crack tip,
because continuum theories assume singularity near the crack
tip and cannot take into account the crack-tip atomic features,
such as surfaces with an opening angle and structural
rearrangement. These effects could not be neglected for extre-
mely small specimens, e.g., a = 7.3 nm and a = 3.5 nm.
However, as the specimen size approaches the macroscale, the
strain energy distribution near the crack-tip is relatively well
approximated by continuum assumption (ΔΠAtom(A) ≈
ΔΠCont(A); a = 42.0 nm), and the finite ΔA can be approxi-
mately regarded as an infinitesimal value concerning the
entire size of the specimen (ΔA → 0). Thus, GAFM is identical
to G from LEFM or J-integral from NLFM at the macroscale
from eqn (1), (2), and (4). This is apparently rational since the
critical Gf

AFM of 11.8 J m−2 at fracture is identical to the fracture
toughness GC = 11.8 J m−2 obtained by the continuum fracture
mechanics. Therefore, the proposed concept of GAFM consist-
ently and seamlessly bridges the nanoscale (atomic) and the
macroscale (continuum), and completely describes fracture in
graphene nanostructures for all scales.

Conclusions

In summary, we have demonstrated the breakdown of the con-
tinuum-based fracture theories and showed the lower dimen-
sional limits with regard to fracture in GNRs. The results show
that Griffith (or LEFM) and J-integral (or NLFM) criteria fail to
describe fracture in GNRs below the critical singular-field sizes
of 5.4 nm and 0.14 nm, respectively, which quantitatively eluci-
dates the effect of nonlinearity in deformation on the applica-
bility of continuum-based theory at the nanoscale. To address
ultimately these issues, we have proposed a new energy-based
theory that accounts for the discrete nature of atoms, and
demonstrated that it universally describes fracture even below
the critical size for NLFM. The complete clarification of frac-
ture criterion for nonlinear graphene with nanoscale singular-
ity contributes not only to the reliable design of graphene-
based nanodevices but also to the elucidation of the extreme
dimensional limit in fracture mechanics.

Experimental section
Tensile tests for pristine graphene using ab initio calculations

Fig. S2 (provided in the ESI†) expresses a single-layer pristine
graphene model for ab initio calculations based on DFT35

using the Vienna ab initio simulation package (VASP).36 The
projector-augmented wave (PAW) potential is employed for
electron–ion interaction.37 The exchange–correlation term is
evaluated using the generalized gradient approximation (GGA)
of the Perdew–Bruke–Ernzerhof (PBE) formulation. A cubic cell

shown in ESI Fig. S2a† constructs a single-layer graphene
tensile specimen by applying a periodic boundary condition
for the unit cell in the directions of x and y axes. A zigzag
direction and an armchair direction are defined as the x and y
axes in ESI Fig. S2b,† respectively. After applying an infinitesi-
mal strain in the zigzag or armchair direction, the atomic
structure is fully relaxed by controlling the cell size until the
stress components except in the tensile direction are less than
10 MPa. During the simulation, the cell size in the z direction
is maintained as 1 nm.

Mode I tensile tests for graphene using MS simulations

For the calculation of the stress–strain relationship of gra-
phene in the zigzag and armchair directions, a periodic hexag-
onal honeycomb structure with a lattice constant of a0 =
0.14 nm is constructed as shown in Fig. 1a. The thickness of
monolayer graphene is regarded as 0.335 nm, which is the
average interlayer distance of graphite. The zigzag direction
and armchair direction are defined as x axis and y axis,
respectively. The interactions between the carbon atoms are
described by the AIREBO (Adaptive Intermolecular Reactive
Empirical Bond-Order) potential.38 The results show good
agreement with those of the ab initio calculations (as shown in
Fig. 1b), which demonstrates that the AIREBO potential can
precisely describe the mechanical behavior of graphene,
especially its nonlinear elastic behavior.

For the fracture test of GNRs, a single-edge crack with arm-
chair edges is introduced by removing an array of atoms from
the specimen as shown in Fig. 2a. W, H (= 2W) and a (= W/3)
represent the width, length and crack length of the specimen,
respectively. The crack length a varies from 0.56 nm to
42.0 nm. By calculating the stress for each atom, we investigate
the fracture characteristics of nanoscale graphene.

Quasi-static tensile tests for single crystalline graphene and
pre-cracked GNRs are performed in silico by means of MS
simulation using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) code.39 A stepwise increment of
infinitesimal strain applied to the specimen is used, and the
atomic structure is fully relaxed until the atomic force of inter-
action between all atoms becomes less than 1.0 × 10−3 eV Å−1

for each increment. The atomistic simulation will be termi-
nated at the critical deformation dC when the pre-cracked
specimen fractures. The displacement-controlled tensile test
realizes mode-I cracking in the pre-cracked GNR specimen.

Finite element analysis

The continuum stress distribution at the onset of fracture is
obtained by finite element analysis. We perform the linear
elastic analysis with the elastic constants of graphene, E = 844
GPa and ν = 0.34, which are obtained from the MS simulation
using the AIREBO potential. Fig. S3 (provided in the ESI†)
shows the finite element model of graphene with a single-edge
crack. In the model, the bottom part of the specimen is fixed,
and the top part is applied to uniform displacement dC. The
dimensions of the specimen are the same as those for the MS
simulation as shown in Fig. 2a. In addition, the minimum
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mesh size is determined to be less than 10−6 of the crack
length a to calculate the stress precisely. For a critical displace-
ment dC, we obtained the stress distributions of the specimen
at the failure. Finite element analysis is performed for single-
layer graphene using both linear and nonlinear elastic consti-
tutive relationships.

In the nonlinear elastic analysis, it is assumed that the
stress–strain relationship obeys Ramberg–Osgood equation40

Eε ¼ σ þ α
σ

σ0

� �n�1

σ ð5Þ

Here, Young’s modulus (E = 844 GPa) and the yield stress
(σ0 = 48.7 GPa) are calculated from the AIREBO potential for
nonlinear elastic graphene. The nonlinear stress–strain curves
in the zigzag direction shown in Fig. 1b are fitted to eqn (5).
The fitted parameters are the work hardening coefficient, n =
4.26, and the yield offset, α = 3.31 × 10−2.
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