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A B S T R A C T

This study focuses on the design, behavior and experimental analysis of a novel metamaterial, consisting
of an asymmetric auxetic three-dimensional structure (AATS) infused with polyester resin. Utilizing FDM
additive printing, samples were created with customizable responses to compressive loads through varied
design parameters. The objective is to surpass traditional material blending by enhancing stiffness and energy
absorption. Striking a delicate balance, the AATS energy absorption properties are preserved while leveraging
the stiffness of the resin. Despite its compact cubic form, not exceeding 27 mm on each side, this metamaterial
showcases amplified characteristics, blending the AATS and polyester resin. The results hint at promising
applications across military defense, automotive, aerospace sectors, and even potential replacements for
articulated human skeletal components.
1. Introduction

Composite metamaterials in mechanics are the result of a combi-
nation of microstructures and different materials for specific property
requirements. The continuous advancement of technology in the in-
dustrial world has led to constant new developments in materials
and manufacturing [1]. Substantial improvements have paved the way
for additive manufacturing (AM), enabling the production of com-
ponents with complex geometries at various scales and in multiple
materials [2]. A particular result of these advances are microstructured
materials, also known as cellular structures [3], formed by struts and
nodes rigidly interconnected through a periodic pattern [4]. Cellular
structures become highly valuable for engineering design because their
geometry can be manipulated to control the mechanical behavior of the
macrostructure [5–7]. The topology of these structures is often designed
and optimized based on the desired mechanical requirement [8,9],
and in some cases even inspired by natural compounds such as wood,
bone, or honeycomb [10–13]. The most frequently studied structures
are sandwich panels [14] for applications in aerospace, marine and
packaging industries [15] to excellent performance of light weight,
sound insulation, high strength and high rigidity [16,17].

The geometrical freedom offered by AM may enable the creation
of cellular structures with superior mechanical properties than tra-
ditional materials [18,19], e.g., high-strength/high-stiffness coupled
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with low weight, and even structures that exhibit a negative Poisson’s
ratio [20–22]. The theoretical design of cell structures for tailored me-
chanical properties can be performed by analytical methods [8,23–25]
together with tensile, compression, and bending experiments to assess
and validate in plane [26–28] and out of plane [29,30] mechanical
behavior. The appropriate geometric configuration to produce poten-
tially high-performing cell structures [17,31], depends on the specific
requirements. Strength and Young’s modulus depend not only on the
manufacturing material but also on a large extent on morphological
parameters [32]. This is the case of honeycomb structures, one of the
most studied structures and widely used in industrial applications, due
to its attractive properties such as high rigidity and great impact resis-
tance [33–35]. In Ref. [34], the mechanical behavior of a honeycomb
structure is studied through FEM simulations and mechanical tests
addressing geometric parameters, and the printing capacity of graded
and hybrid networks with improved load-bearing capacities, useful
for medical care and bioengineering, is demonstrated. In Ref. [36],
a traditional honeycomb with triangular hierarchical substructures is
proposed, where they analyze the compression behaviors in terms of
stress and energy absorption. The results reveal that the hierarchical
honeycomb design provides a high energy absorption capacity. In
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Ref. [37], a CCFR (continuous carbon fiber reinforced) composite hon-
eycomb is proposed, and its performance under in-plane compression is
presented. The analysis of experimental results of honeycombs with dif-
ferent materials demonstrates that carbon fiber not only improves the
mechanical properties, but also changes the deformation characteristics
of the structures. The literature is extensive and shows various studies
on the enormous potential of these honeycomb structures, where re-
searchers seek to improve the mechanical performance and many other
characteristics such as their energy absorption capacity [38–42].

On the other hand, unlike the vast majority of materials that un-
dergo transverse contraction when stretched, there are structures that
expand laterally when subjected to tension, or contract laterally under
uniaxial compression. These types of structures are known as auxetic
because they experience a negative Poisson’s ratio [43]. This auxetic
effect produces attractive properties such as excellent resistance to
indentation [44,45], high shear stiffness [45,46], remarkable fracture
toughness [43] and unique acoustic energy absorption capabilities [47,
48]. A new class of accordion auxetic architecture with sinusoidal
struts is proposed in Ref. [49], and is designed to improve the flat
stretchability of cellular solids. These accordion-like sinusoidal ar-
chitectures exhibit an improvement in the stretchability of cellular
materials, even for those samples made from brittle polymers. Three
types of double arrowhead-based 3D auxetic structures are proposed in
Ref. [50], where the results indicate that 3D structures exhibit auxetic
behavior with higher stiffness and can significantly improve quasistatic
energy absorption performance compared to lattice networks for the
same relative density. This auxetic structure based on the arrowhead
configuration has been extensively studied in an analytical framework
to predict in plane mechanical properties, including effective Young’s
modulus and Poisson’s ratio [26,51]. On the other hand, the literature
shows that the most promising auxetic cell is the auxetic structure
with re-entrant struts due to the extraordinary ability to absorb en-
ergy with quasistatic and low velocity impact loads [43,52,53]. This
structure has been widely studied, since the pioneering studies by
Lakes 1987 [54], Wojciechowski 1987 [55], and Evans 1989 [56],
where the first geometric configurations with re-entrant struts that
exhibit an auxetic behavior are proposed, developing an analytical
approach to microstructure to predict transverse expansion under a
longitudinal load. In recent research, various theoretical design ap-
proaches have been employed to analyze the mechanical behavior
of re-entrant struts. These approaches involve modeling the behav-
ior using geometric parameters and manipulating Poisson’s ratio and
Young’s modulus. The bending of these struts has been examined
using Timoshenko’s classical theory, which has proven to be effective
in predicting the elastic properties of this structure. This model has
provided valuable insights into the mechanical performance of re-
entrant structures [18,57,58]. In addition, in Ref. [59], a new re-entrant
structure is designed by adding wedge-shaped pieces to the conven-
tional re-entrant structure. The additional piece not only regulates the
structural stiffness during compression but also increases the stability
of the structure by preventing lateral buckling of the structure, giving
the metamaterial [60,61] more significant and stable auxetic behavior
in compression. In Ref. [62], an auxetic honeycomb is proposed for a
sandwich structure with a novel stepped design. The graduated auxetic
design is achieved by varying the angle of the honeycomb cell through
the thickness of the core. The results indicate that the reduction of
the cell wall thickness to length ratio increases the bending failure
stress and the specific energy absorbed by 35% and 45.8%, respec-
tively. New reentrant auxetics with various substructures including
equilateral triangles were built in Ref. [35]. The results show that
the specific modulus increased by approximately 180%, the specific
resistance increased by approximately 50%, and the specific energy
absorption improved by approximately 160%. In Ref. [63], the novel
design and performance improvement of the new re-entrant auxetic
structures were presented and a comparative study of the uniaxial com-
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pression load behavior with regular honeycomb cells was performed.
Table 1
The results of the modulus of elasticity in the different printing directions according
to the proposed design of the probe to know the properties of the material.

Position Average Deviation standard Uncertainty
MPa MPa (k=2)

Dy 1018.5 7.2 15.4
Dx 1085.2 15.6 25.3
Dz 2684.0 119.1 117.1

The new re-entrant structure showed better mechanical properties than
the auxetic honeycomb structure, demonstrating higher compressive
strength and higher energy absorption capacity than other structures. In
Ref. [25,64,65] corrugated wall mechanical auxetic metamaterial with
unique deformation mechanism is systematically studied. It has been
found that the mechanical properties of the structure can be largely
adjusted by simply increasing the wall thickness of the structure. The
specific energy absorption of the proposed structure is significantly
improved by employing continuous gradient and symmetric gradient
design methods. In Ref. [66] new reinforced tubular structures with
corrugated interior ribs and a gradient design method are proposed.
The mechanical response, interaction effect and gradient effect of the
proposed tubular structures are systematically studied through exper-
imentation and numerical simulation. It has been found that tubular
structures reinforced with corrugated inner ribs exhibit a progressive
and stable deformation process under axial compression, achieving
satisfactory specific energy absorption capacities of 27 J/g to 56 J/g.

Thus, the literature is extensive on the study of the great energy
absorption capacity provided by this cellular structure [19,53,67–69].
However, most of the auxetic structures with re-entrant struts are
designed symmetrically and with homogeneous mechanical properties
in their three working directions. Therefore, different energy absorption
behavior for each loading direction could be observed. In a previous
study [70,71], a three-dimensional auxetic structure was proposed
based on a known planar configuration that includes a design parame-
ter called, hereafter 𝛼, is responsible for the asymmetrical response. The
experimental results reveal that the proposed structure can adequately
provide different elastic properties in its three orthogonal directions.
Furthermore, this auxetic cell influences the macrostructure to exhibit
different stiffness behavior in three working directions.

This article is organized as follows: Section 2 describes the materi-
als, auxetic design, manufacturing methods and testing of specimens.
Section 3 presents the models applied for computing the mechanical
performance of the auxetic structure and the composites metamate-
rial in the three orthogonal material directions. Section 4 provides
the experimental results and the comparative analysis with modeling.
Conclusions and future work are listed in Section 5.

2. Materials and methods

2.1. Additive manufactured polylactic acid for auxetic cells

Polylactic acid filaments (PLA) were used for printing auxetic struc-
tures and polyester resin was applied as the matrix to produce the
composite metamaterial. Due to the well-known effect of printing ori-
entation on resulting properties, specimens were prepared in the three
main printing directions. Young’s modulus and tensile parameters were
determined in a Zwick/Roell machine with 2.5 kN load cell and using
an extensometer, Fig. 1. The results of the material characterization are
shown in Table 1.

The Young’s modulus obtained from the material used in the fabri-
cation of auxetic structures are subsequently required to determine the
specific theoretical Young’s modulus in each orthogonal direction for

different angles by applying Timoshenko’s model.



Composite Structures 346 (2024) 118410C. Garrido et al.
Fig. 1. (a) Schematic design of the printing directions (b) Characterization of Young’s modulus with a polymer extensometer.
2.2. Polyester resin matrix

The polyester resin utilized in the experimental tests is character-
ized by its remarkable compression resistance properties, rendering
it an excellent material for a wide range of applications. The resin’s
lightweight nature and cost-effectiveness contribute to its versatility in
manufacturing processes, especially in applications where compression
strength is a key factor. The representative values of the polyester
resin used when comparing the contributions of its properties are as
follows: an elastic modulus of 4.3 GPa, a compression strength of 60
MPa, and a maximum deformation of 0.08. These values are obtained
experimentally after subjecting five resin specimens to tests with the
same representative volume as the auxetic structure, with the aim of
equalizing their contributions within the new material (auxetic struc-
ture polyester resin matrix). Furthermore, general data is provided,
such as: orthophthalic resin, manual molding, translucent liquid resin,
Brookfield viscosity 800 to 1400 cp, 2% cobalt octoate accelerator,
reactivity time 6 to 14 min and its density of 1.1 g/cm3.

2.3. Design of auxetic lattice structure

In previous studies [57,72], symmetrical structures with auxetic be-
havior have been characterized. The structure model used is based into
previous studies into the design and characterization of an asymmetric
auxetic structure with an 𝛼 parameter that allows a contribution with
a different behavior in its three directions, which has a differentiated
behavior against a compressive load in its elastic zone [71]. This design
parameter 𝛼 produces internal asymmetry in the structure, without
altering the dimensions of the unit cell, as shown in Figs. 2 and 2(a).
Since this structure has an orthotropic behavior, 𝛼 can take values
0 < 𝛼 < 0.5. Since, for 𝛼 = 0.5, the traditional symmetric structure
is obtained as a result. Otherwise, according to the applied Euler–
Bernoulli approach, care must be taken that 1∕𝑡2 ≪ 𝐿2∕𝑡4 so that the
structure is always dominated by the bending of its re-entrant struts.
Thus, the design parameter should be 𝛼 > 2.5. For further details the
reader is referred to [70,71].

The unit cell design studied, has dimensions of its elements appro-
priate for printing by FDM additive printing with an average size of
27 mm square and a mass of 6.788 g and a volume of 6.777 mm3.
The digital model was worked on in the Autodesk Fusion 360 program
and was later exported to STL format. The dimensions of the unit cell
are indicated in Fig. 3, considering the 𝛼 variant within the values of
0.27, 0.33 and 0.40, which differentiates of structures to be studied
and characterized in the area of elastoplastic behavior. This 𝛼 factor
enables control of the degree of asymmetry of the structure as shown in
Figs. 3 and 2. Auxetic structure designs shown in Fig. 4 is composed of
3

3 × 3 × 2 unit cells (18-unit cells) the justification for the configuration
of the number of cells, according to experiences from previous tests
where the capacity of the machine was not capable of bringing the
structure to the level of failure. Three specimens by each cartesian axis
and 𝛼 condition were tested, with a total of 27 specimens for unfilled
structures and 27 specimens for resin filled structures. The machine
used in the experimentation is stated in a later chapter. The machine
used in the experimentation is stated in a later chapter. The final
dimensions obtained is a cube with 27 mm edge. The auxetic structures
were manufactured by FDM (fused deposition modeling) on an Artillery
Genius Pro printer and using PLA filament. The pre-processing was
carried out with the Cura program, with a layer height of 0.2 mm, print
nozzle diameter 0.4 mm, print infill 100%, printing speed of 55 mm/s,
the nozzle heated to 210 ◦C, and a bed temperature of 60 ◦C. It is
important to highlight that the manufacture of all the elements that
contained resin alone or resin plus structure were manufactured with
the same configuration of accelerator and resin activator. This mean
that their characteristics are not affected by the resin preparation and
at the same time, thereby ensuring the drying condition of the elements,
which would later be characterized by means of a compression test.

The polyester resin was prepared at the same time that the struc-
tures were filled with the resin. Furthermore, the dimensions obtained
from the resin cube are directly related to the volume used for filling the
cellular structure. This allows the strength properties to be evaluated
based on the same amount of material.

Finally, cubic specimens with the same previous geometry were
prepared only with polyester resin, in the same way, resin-filled auxetic
structures

2.4. Experimental testing

The mechanical behavior of resin, auxetic structures and auxetic
composite samples has been investigated through compressive tests.
A Zwick/Roell model Z100 tensile machine with a 100 kN load cell
was used. The strain rate applies was 0.001/s, corresponding to a
displacement speed of the plate of 1.0 mm/min according to the ASTM
D1621 standard. Strain was calculated using crosshead displacement.
First, the auxetic structures were characterized in their three orthogonal
directions and with different factors 𝛼 (0.27; 0.33 and 0.40). Second,
pure polyester resin specimens were studied. Finally, auxetic structure
resin-filled were characterized in their three orthogonal directions with
different factors 𝛼 (see Fig. 5).

The assembly of the individual structures as well as the assembly
of the structures with resin must be carried out according to the
measurement of their properties on their different orthogonal axes as
shown in Fig. 6
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Fig. 2. (a) Representation of asymmetry generated by the design parameter 𝛼 in its different orthogonal directions. (b), (c) and (d) Schematic representation of the effects of the
𝛼 variable on the shape of unit cells. The higher the parameter 𝛼, the lower its degree of asymmetry.
Fig. 3. Dimensions of the unit cells in their most relevant elements.

3. Modeling the elasto-plastic behavior

3.1. Elastic response

The elastic behavior of re-entrant structures can be modeled ac-
curately through Timoshenko’s classic theory [57,73]. The re-entrant
structure is modeled based on its design parameters: the vertical length
of the cell 𝐻 , the length of the re-entrant struts 𝐿, the re-entrant
angle 𝜃 and the thickness of the cross-section 𝑡. Therefore, our previous
work [70,71] showed that this theory also makes it possible to model
this structure with an asymmetry pattern through a new design param-
eter 𝛼. Furthermore, this theoretical model has been shown to predict
very successfully a new re-entrant structure modified with a rotation
angle of its struts to obtain an orthotropic behavior [74]. Eqs. (1)–(3)
are applied to model the Young’s modulus of this orthotropic structure
4

for each orthogonal direction.

𝐸𝑥 = 2𝑡4

𝐿3𝐻𝑐𝑜𝑠2𝜃
𝐸𝑠 (1)

(𝐸𝑧)𝑖 =
𝜎𝑡4𝑠𝑖𝑛𝜃∗

𝐹𝑖(𝐿∗)2𝑐𝑜𝑠2𝜃∗
𝐸𝑠 (2)

(𝐸𝑦)𝑖 =
𝜎𝑡4( 𝐻𝐿∗ − 𝑐𝑜𝑠𝜃∗)

𝐹𝑖(𝐿∗)2𝑠𝑖𝑛2𝜃∗
𝐸𝑠 (3)

where the geometric parameters 𝜃∗ = {𝜃, 𝜃′, 𝜃′′} and 𝐿∗ = {𝐿,𝐿′, 𝐿′′} as
appropriate to the re-entrant strut type 𝑖, which depends on the layout
parameter 𝛼, and 𝐸𝑠 is the Young’s modulus of the manufacturing
material. For further details, the reader is referred to [70,71] where
this model has been studied in depth.

3.2. Stress strain modeling under plasticity

The energy absorption capacity of auxetic structures under plas-
tic deformation should potentially be improved in structures with a
negative Poisson’s ratio as indicated by the literature [75–77]. As a
consequence of utilizing an auxetic structure, it can be stated that the
energy absorption condition was established between the final stage
of elastic behavior and the onset of the zone called densification. This
zone is referred to as the energy absorption plateau region. The plateau
region is found in the force or stress response following the yielding
point of an energy-absorbing structure. This region is characterized by
a relatively constant or near-constant force or stress, and a gradually
increasing deformation. In this region, the energy-absorbing structure
dissipates the maximum amount of energy possible without signifi-
cantly increasing the force or stress. This is why the plateau region is a
critical part of the response curve of an energy-absorbing structure, as
it ensures effective and safe energy dissipation. The expression applied
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Fig. 4. Dimensions of the cellular structure with a conformation of three-unit cells on its vertical axis and horizontal axis.
Fig. 5. (a) Compression test (b) auxetic structure, (c) solid polyester resin, (d) auxetic structure filled with polyester resin.
to estimate the engineering stress is derived from the energy per unit
volume as shown in Eq. (4).

𝜎𝑝 =
𝑊𝑝

𝛥𝑒
= ∫

𝜀𝑑

𝜀𝑦
𝜎 (𝜀) 𝑑𝜀 (4)

where the (𝜎𝑝), represents the area under the stress curve between the
points (𝜀𝑦) and (𝜀𝑑). To determine the starting point (𝜀𝑦) of the energy
absorption zone, the criterion of considering the beginning as the
point where the zone of elastic proportional behavior of the structure
or resin-filled structure ends is used. For the end, it is established
when, after a significant advance on the horizontal response of the
structure or called the energy absorption zone, there is a noticeable
change in the horizontal trend of the stress towards an abrupt vertical
5

trend (accelerated stress increase). Significantly and the deformation
decreases, it is at this point where a vertical reference line is plotted
that establishes the end of the energy absorption zone (𝜀𝑑). Determining
the beginning and end of the energy absorption zone in the tests
conducted on the structure without resin proved to be considerably
intricate. This complexity arose from the fragile nature of the structure
and the manufacturing process used (FDM), which led to the fracture
of its struts subsequent to an increase in compression levels induced
by the bending stress experienced by the main struts. Now, in the case
of the resin-filled structure, this condition was less difficult due to the
uniformity of its behavior when a polyester resin was added to the
structure in all its interior cavities, which considerably improved its
resistance against shear force in the struts.
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Fig. 6. This shows the positioning of the structures in the compression plates, where (a) represents the x-axis direction, (b) the y-axis direction (printing direction in the FDM
process), and (c) the z-axis direction.
In the elastic zone, the Young’s modulus in the orthogonal axes
for different 𝛼-values (0.27;0.33;0.40) of structures without resin is
computed for establishing the level of elastic orthotropy Eq. (5) [78]:

𝐼𝐸 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
√

(𝐸𝑥−𝐸𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)2+(𝐸𝑦−𝐸𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)2+(𝐸𝑧−𝐸𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)2

𝐸𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
(5)

where 𝐸
𝑥
, 𝐸

𝑦
, 𝐸

𝑧
represents the Young’s modulus for each particular

orthogonal direction of the structure and assuming an 𝛼 value also
defined for each analysis.

The orthotropic coefficient (𝐼𝐸 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) for each axis is a function of
𝛼-value. However, to determine a representative value of the structure,
the dimensionless number of orthotropy index (𝐼𝐸) is defined as given
in Eq. (6):

𝐼𝐸 = 𝑀𝑎𝑥𝐸𝑥,𝑦,𝑧 −𝑀𝑖𝑛𝐸𝑥,𝑦,𝑧 (6)

where (𝑀𝑎𝑥𝐸𝑥,𝑦,𝑧) represents the maximum value found for Young’s
modulus with a given 𝛼 for each orthogonal axis and (𝑀𝑖𝑛𝐸𝑥,𝑦,𝑧) the
minimum found for the same 𝛼 condition.

This coefficient represents the orthotropy of the structure, which
is affected mainly by the Young’s modulus in the different orthogonal
axes. The resulted value is determined by the maximum difference
interval between the highest value found and the lowest value found
according to each direction. The functionality of the characterized
structures is based on their combination of auxetic structures and
resin, which has an orthotropic behavior in its different axes (x, y, z).
Consequently, it is necessary to identify their orthotropy levels in each
orthogonal direction [78], which is why the ratio of energy absorption
level in the plateau zone for each working direction is used as an input
variable. The responses of the different structures with 𝛼 value varia-
tions show differentiated behavior when subjected to a combination of
stresses in the orthogonal material directions. An anisotropy coefficient
expression is applied for the condition of different 𝛼, taking as input the
average stress values of the structure in different directions for a given
𝛼 Eqs. (7) and (8).

𝐼𝜎 =
√

(𝜎𝑥−𝜎𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)2+(𝜎𝑦−𝜎𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)2+(𝜎𝑧−𝜎𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)2 (7)
6

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝜎𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝐼𝜎 = 𝑀𝑎𝑥𝜎𝑥,𝑦,𝑧 −𝑀𝑖𝑛𝜎𝑥,𝑦,𝑧 (8)

(𝐼𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) represents the orthotropic coefficient measured in a specific
direction. (𝜎𝑥), (𝜎𝑦) and 𝜎𝑧 represent the stress (area under the curve);
and (𝐼𝜎) is the orthotropic coefficient that specifies the deviation of
work from its transverse directions.

4. Results and discussion

To determine the mechanical behavior of this asymmetric auxetic
structure reinforced with polyester resin, multiple quasistatic com-
pression experiments were carried out until rupture. From previous
studies [70,79], the asymmetric auxetic structure exhibited orthotropic
behavior when the 𝛼 design parameter decreases. Therefore, it is ex-
pected that this mechanical behavior can also be exhibited in the plastic
zone, particularly in the energy absorption capacity. However, the
study of energy absorption on this auxetic structure manufactured with
FDM technology has been difficult because the nature of the layer by
layer process reduces the ductility of the plastic zone. For this reason,
an isotropic matrix was incorporated as reinforcement to increase the
deformation capacity in the plastic zone. Therefore, to demonstrate the
mechanical contribution of each component, preliminary quasistatic
compression experiments were carried out on the auxetic structure
manufactured with PLA, a sample of polyester resin and finally the
combination of both materials, as shown in Fig. 7.

The results show that the auxetic structure by itself has low re-
sistance; however, it can experience plastic deformations of up to
45%. While the polyester resin sample demonstrate higher mechanical
resistance, its ability to experience plastic deformation is less 10%.
On the other hand, the resulting auxetic structure reinforced with
polyester resin provides higher mechanical resistance and also large
deformations. These preliminary results show that the contribution of
the polyester resin enables an increase in the mechanical resistance
of the structure and also increases the capacity of plastic deforma-
tion. Therefore, the new created structure possess an improved energy
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Fig. 7. Compressive experimental stress–strain behavior of the auxetic structure, the resin and the composite auxetic metamaterial. Stresses shown in the graph are computed
applying the energy criteria and Eq. (4).
Table 2
Plateau stress and specific energy absorption (SEA) of the: resin, structure and
metamaterial.

Description 𝛼 Axis Density Stress plateau SEA
(g/cm3) (MPa) (J/g)

0.27
z

1.32
37.99 28.76

y 35.53 26.90
x 41.53 31.44

0.33
z

1.32
35.81 27.11

Metamaterial y 37.27 28.21
x 37.87 28.67

0.40
z

1.32
33.18 25.12

y 35.00 26.50
x 34.69 26.26

0.27
z

1.24
3.74 3.02

y 4.14 3.34
x 6.12 4.94

0.33
z

1.24
1.00 0.81

Structure y 1.80 1.45
x 3.09 2.49

0.40
z

1.24
1.55 1.25

y 0.98 0.79
x 1.81 1.46

Resin – – 1.10 0.48 0.44

absorption capacity. In addition, owing to the asymmetry pattern of
the auxetic structure, it is to be expected that the energy absorption
capacity will be different for each load direction. Thus, the following
section shows the experimental results of the auxetic structures made
with PLA and the structures reinforced with polyester resin, where the
specific energy absorption capacity for each case is analyzed. Table 2
shows the quantitative, applying Eqs. (4) and (9) [25].

𝑆𝐸𝐴 (𝜀) =
∫ 𝜀𝑦
𝜀𝑑

𝜎 (𝜀) 𝑑𝜀

𝜌
(9)

where 𝑆𝐸𝐴(𝜀) is the specific energy absorption, (𝜌) the specific den-
sity of the characterized element, (𝜎) the plateau stress between two
engineering strain points (𝜀𝑦) and (𝜀𝑑).

4.1. Elastic deformation of auxetic structure

The results obtained experimentally under quasistatic compression
up to the elastic zone limit are analyzed. Therefore, considering that
the internal geometry of the structure provides an orthotropic behavior,
7

energy absorption at different levels in its three orthogonal axes are
expected, as shown in Fig. 6. To validate this orthotropic behavior
with this combination of geometric parameters, the Young’s modulus
of this structure is first analyzed similarly to previous studies [70,71,
74]. The results were determined according to experimental tests in
a strain level between 0.00 and 0.03 mm∕mm in a linear zone. Fig. 8
illustrates stress–strain curves for 𝛼 = {0.27; 0.33; 0.40}; the influence
of 𝛼 on the material orthotropy is evident as the 𝛼 value is lower
(more asymmetric). The smaller the design parameter 𝛼, the internal
asymmetry of the structure increases. Therefore, the difference between
the elasticity moduli 𝐸𝑥 and 𝐸𝑧 increases. On the other hand, the
smaller the design parameter 𝛼, the elasticity modulus 𝐸𝑦 increases,
due to the asymmetric distribution of the internal loads. As established
in a previous work [70,71].

Fig. 9 compares theoretical and experimental Young’s modulus
results for the main work directions and factor 𝛼. It corroborates the
greater orthotropy at lower factor 𝛼 and also validates the theoretical
model used in comparison with experimental results.

The experimental results for Young’s modulus agree quite well with
Timoshenko’s theory in every case, with an average error of around
0.5%. In addition, the results obtained for Young’s modulus confirm
that the lower the 𝛼 design parameter, the higher the orthotropic
coefficient. This is evident through Eq. (5) the level of orthotropy for
each structure can be quantified. In this way, the structure 𝛼 = 0.27 has
an orthotropy coefficient 𝐼𝐸 = 0.14, while 𝛼 = 0.33 has 𝐼𝐸 = 0.05 and
finally 𝛼 = 0.40 has 𝐼𝐸 = 0.04. Which indicates the deviation among the
experimentally measured Young’s modulus for each structure. Where
the Young’s modulus 𝑥, 𝑦, and 𝑧 have a greater difference among
them. Therefore, it is expected that this orthotropic behavior within
the elastic zone will change and be reflected in the energy absorption
capacity.

On the other hand, Fig. 12 shows the experimental stress vs. elasto-
plastic strain curves for the auxetic structures. To evaluate the influence
of the asymmetry pattern on the energy absorption capacity, the ex-
perimentation was carried out under different configurations of the
design parameter 𝛼 = {0.27; 0.33; 0.40}. The energy absorption capacity
of the auxetic structures was measured by loads and deformations,
using the testing machine’s load and displacement recording devices.
It is important to note that the energy absorption measured in MPa
is indicated under each experiment curve. In addition, the range of
deformations in which it was measured is indicated.

Undoubtedly, the results obtained confirm our hypothesis. As can be
seen in the graphs, the asymmetrical pattern produces different energy
absorption capacities in the three load directions for each structure.



Composite Structures 346 (2024) 118410

8

C. Garrido et al.

Fig. 8. Experimental engineering stress vs. strain for each auxetic structure reinforced with polyester resin in its three orthogonal directions and for each asymmetry pattern: (a)
𝛼 = 0.27; (b) 𝛼 = 0.33; and (c) 𝛼 = 0.40.

Fig. 9. Comparison of theoretical vs. experimental Young’s modulus for different levels of asymmetry: (a) 𝛼 = 0.27; (b) 𝛼 = 0.33; and (c) 𝛼 = 0.40.
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Fig. 10. Experimental results of engineering stress vs. strain for each auxetic structure in its three orthogonal directions and for each asymmetry pattern (a) 𝛼 = 0.27; (b) 𝛼 =
0.33; and (c) 𝛼 = 0.40.
Fig. 11. Orthotropic behavior of the structure quantified with its stress under the curve
in its three orthogonal directions and for each asymmetry pattern 𝛼 = {0.27; 0.33; 0.40}.

The smaller the design parameter 𝛼 = 0.27, the greater the difference
between the energy absorption capacity under compression in the 𝑥,
𝑦, and 𝑧 directions. This opens up great possibilities in engineering
applications, where a differentiated mechanical behavior is required for
each direction of work. Fig. 11 shows the level of plastic orthotropy
according to the applied Eq. (8), for the behavior of the structure on
its different orthogonal axes for each different 𝛼. In comparison to
an 𝛼 = 0.40, the 𝛼 = 0.27 condition displays percentage terms up to
187%, demonstrating that the 𝛼 design parameter has a higher degree
of orthotropy between its orthogonal axes.

Furthermore, a novel finding from this experiment requiring anal-
ysis is that, in most cases, the energy absorption capacity increases
by around 94% with a smaller 𝛼 design value. Therefore, only by
modifying the asymmetry pattern is it possible to double or triple the
energy absorption capacity in its three orthogonal directions. However,
the plastic zone of the structures also exhibits highly erratic behavior
due to the layer by layer interface provided by the FDM manufacturing
9

process, which causes the struts to break randomly under flexion [80,
81]. This prevents this structure from taking advantage of its great
energy absorption attribute. Hence, it is necessary to have selective
laser sintering technologies, and thus studying this property poses a
challenge [82]. However, to provide greater resistance, the auxetic
structures have been reinforced with polyester resin to improve their
plastic behavior. The next section shows the results.

4.2. Energy absorption of auxetic composite metamaterial

In this section, the experimental results obtained for the auxetic
structure reinforced with polyester resin under quasistatic compression
until rupture are analyzed. Considering our preliminary experiments
indicated in Fig. 10, it is expected that high mechanical resistance and
large plastic deformations will be obtained as a result, as a combination
of the two materials. Fig. 12 shows the experimental curves of engi-
neering stress vs. strain for Auxetic structures reinforced with polyester
resin and for different patterns of asymmetry 𝛼 = {0.27; 0.33; 0.40}. It
is important to mention that the graph indicates the range of defor-
mations in which the energy absorption was measured. However, due
to the great resistant capacity of the structure, the test could not be
completed, since the limit of the capacity of the testing machine was
reached. For this reason, the measurement range is considered from
when the yield stress is exceeded to the end of the curve because a
clear point of inflection is not observed in the curve in which the stress
tends to infinity. In this way, the energy absorption measured in MPa
is indicated under each experiment curve.

The results show that the structures reinforced with polyester resin
increased their yield strength around fourteen times compared to the
auxetic structure without reinforcement indicated in Fig. 12 while
the energy absorption capacity increases more than twenty in some
cases. On the other hand, thanks to the polyester resin reinforcement,
the mechanical behavior in the plastic area is no longer random and
becomes more homogeneous. However, its orthotropic behavior con-
tinues to be dependent on 𝛼. It is evident that the auxetic structure
continues to contribute with the pattern of asymmetry given that the
energy absorption in structures with asymmetry pattern 𝛼 = 0.40
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Fig. 12. Experimental engineering stress vs. strain for each auxetic structure reinforced with polyester resin in its three orthogonal directions and for each asymmetry pattern (a)
𝛼 = 0.27; (b) 𝛼 = 0.33; and (c) 𝛼 = 0.40.
Fig. 13. Orthotropic behavior of the structure filled with polyester resin quantified
with its stress under the curve in its three orthogonal directions and for each asymmetry
pattern 𝛼 = 0.27; 𝛼 = 0.33; and 𝛼 = 0.40.

under compression in 𝑥, 𝑦, and 𝑧 directions are very similar to each
other. As the pattern of asymmetry becomes smaller the difference in
energy absorption between the 𝑥, 𝑦, and 𝑧 directions becomes larger.
Thus, the orthotropy increases as the design parameter 𝛼 decreases.
This behavior can be clearly seen in Fig. 13, where the orthotropic
coefficient calculated with Eq. (8) is represented graphically through
the energy absorbed in each direction.

Through this coefficient, the anisotropic behavior in the plastic
zone of the structure in terms of energy absorption can be quantified.
This confirms that the smaller the value of the design parameter 𝛼,
the greater the anisotropy of the structure. However, the anisotropy
achieved in the plastic zone is lower than that obtained by the auxetic
structure without resin. This is because, in this case, it has been
reinforced with an isotropic matrix. However, it is important to note
10
that the levels of anisotropy in the plastic zone could have been higher,
considering that the structures did not break due to the maximum
capacity of the testing machine. On the other hand, it can be seen that
only by modifying the design parameter 𝛼 can energy absorption be
manipulated. An average 6.0% increase in energy absorption can be
observed with a smaller parameter 𝛼. In the previous case, the auxetic
structure experienced a much greater increase in energy absorption.
However, in this case, the increase in energy is reduced due to the
incorporation of an isotropic reinforcement matrix.

The results of this research provide the development of a new
composite metamaterial of an auxetic structure reinforced with a resin
matrix to increase its mechanical performance. Thanks to the assymet-
ric pattern resulted from auxetic structure, the new material provides
different levels of orthotropy. In addition, the reinforcing resin matrix
highly increase the material levels of energy absorption differentiated
on its three orthogonal axes. In future works, we will study the effect
of different resin matrices as reinforcement to maximize the energy
absorption performance of the structure. This offers great potential in
applications where a differentiated mechanical behavior is required, as
in the case of a prosthetic foot, wearable devices, and impact resistance
aerospace components.

5. Conclusions

This work reports the experimental responses of a modified auxetic
structure with different behaviors on their respective orthogonal axes.
In addition, a new composite metamaterial is investigated using a
reinforced resin matrix for the auxetic structure. A relevant conceptual
idea that emerges from the study is that the reinforcement can be
designed according to the new material. The results indicated that
the orthotropic levels of the auxetic structure were not significantly
affected by the addition of polyester resin. The strength levels, energy
absorption and orthotropy coefficient of the new metamaterial are
shown below.
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1. The orthotropic index levels characterized by the Young’s mod-
uli are proven to differ by 70% with respect to 𝛼 = 0.27 vs. an
𝛼 = 0.40. This confirms that the lower the 𝛼 value, the higher
the level of orthotropy between the orthogonal axes.

2. Regarding the energy absorption capacity of the structure in
terms of stress, a significant difference is found for various
asymmetric cell 𝛼 values. The maximum stress difference is 70%
for the z-axis, 76% for y-axis, and 59% for x-axis.

3. Polyester resin incorporated as a matrix reinforcement to the
auxetic structure effectively increases the resistance behavior.
The maximum strength of 4.3 MPa for the asymmetric struc-
ture with 𝛼 = 0.27, algebraically added to the individual resin
strength of 56 MPa, gives an expected strength value of 60.3
MPa. However, this strength is exceeded by the 93 MPa provided
by the metamaterial structure. Therefore, an attractive 35%
increase in expected strength is achieved by combining the two
components.

4. The specific energy absorption level of the auxetic structure
characterized by 1.45 J/g algebraically added to the polyester
resin of 3.04 J/g gives 4.49 J/g. Therefore, the 31.4 J/g of the
auxetic composite metamaterial surpasses by 83% the expected
value of specific energy absorption.

esign of the investigated auxetic structures can be adapted from the
ariation of the 𝛼 design parameter according to the response levels
n different orthogonal axes. Additionally, the overall dimensions of
he structure remain unaltered in terms of height, width, and length.
his mechanical features are essential for adapting material and struc-
ures in different industrial applications such as building engineering,
utomotive, aeronautical and aerospace. Current work is focused on
ersonal protection elements to aid in the care or protection of the lives
f children and adults against incidents with high energy impacts.
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