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Summary
In this paper, we propose the improved feature least-mean-square (IF-LMS)
algorithm to exploit hidden sparsity in unknown systems. Recently, the feature
least-mean-square (F-LMS) algorithm has been introduced, but its application is
limited to particular systems since it uses predetermined feature matrices. How-
ever, the proposed IF-LMS algorithm utilizes the stochastic gradient descent
(SGD) method to learn feature matrices; thus, it can be used in any system that
the classical LMS algorithm is applicable. Hence, by employing a learnable fea-
ture matrix, the IF-LMS algorithm has a vast application area as compared to
the F-LMS algorithm. Moreover, mathematically, we discuss some parameters
of the IF-LMS algorithm. Simulation results, in synthetic and real-life scenarios,
demonstrate that the IF-LMS algorithm has superior filtering accuracy to the
well-known LMS algorithm.
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1 INTRODUCTION

Stochastic gradient descent (SGD) is one of the most famous approaches in adaptive learning algorithms. Since 1960, the
least-mean-square (LMS) algorithm is a prominent member of the family of SGD algorithms due to its simplicity, com-
putational efficiency, and modest hardware requirements.1,2 The LMS algorithm and its variants have many applications
in real-life problems, such as active noise control,3 adaptive beamforming,4,5 system identification,6 signal prediction,7
etc. The traditional LMS algorithm is unable to take advantage of the structure of adaptive coefficients, whereas, in many
cases, we can improve the performance of the algorithm by exploiting the adaptive filter structure.

Recently, the feature LMS (F-LMS) algorithm is proposed to outperform the classical LMS algorithm by exploiting
hidden sparsity in some systems, such as lowpass, highpass, and bandpass systems.8-10 However, the proposed F-LMS
algorithm has two drawbacks: (i) its application is restricted to some particular systems, such as lowpass, highpass, and
bandpass systems; (ii) we do require some a priori knowledge about the spectral characteristics of unknown system,
otherwise its performance can be inferior to the conventional LMS algorithm. Therefore, we should avoid using the F-LMS
algorithm for an arbitrary system or when we do not have a priori information about the spectral characteristics of the
system.

To remove the restrictions of the F-LMS algorithm, in this work, the improved F-LMS (IF-LMS) algorithm is intro-
duced. Indeed, the IF-LMS algorithm can be applied to any unknown system that the classical LMS algorithm is
applicable, and we need no a priori information about the spectral characteristics of the systems. To this end, we pro-
pose a time-varying feature matrix so that all nonzero entries of the feature matrix are adapted at each iteration. In
other words, instead of adopting a predetermined feature matrix as in the conventional F-LMS algorithm, we utilize
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2 YAZDANPANAH

the SGD approach to learn feature matrices. In simulation results, we will observe that the learned feature matrices
can expose hidden sparsity in any system without requiring a priori knowledge about the spectral characteristics of
the system.

Finally, it is worthwhile to mention that although the IF-LMS algorithm uses some sparsity-promoting tools, this
algorithm is fundamentally different from conventional sparsity-aware adaptive filtering algorithms, such as those in
References 11-13. The conventional sparsity-aware adaptive filtering algorithms are designed to exploit sys-
tems/coefficients which are sparse, whereas the IF-LMS algorithm is designed to exploit a different feature. That is, the
IF-LMS algorithm applies a transformation that maps any system (which does not need to be sparse in its original domain)
to a different domain where the transformed coefficients are sparse. Then, the IF-LMS algorithm exploits the sparsity
in the transformed domain in order to improve the learning process. However, in future works, the proposed idea in
this paper can be applied to other sparsity-aware adaptive filtering algorithms, such as proportionate filters, to obtain
additional gains.

This paper is organized as follows. Section 2 introduces the IF-LMS algorithm. In Section 3, we discuss some prop-
erties of the IF-LMS algorithm, such as the stability and the computational complexity. Experimental results, including
numerical and real-life examples, are presented in Section 4. Finally, conclusions are drawn in Section 5.

1.1 Notation

Scalars are denoted by lowercase letters. Vectors (matrices) are represented by lowercase (uppercase) boldface letters. For
a given iteration k, the weight vector, the optimum solution, and the input vector are presented by w(k), w∗, x(k) ∈ RN+1,
respectively, where N is the adaptive filter order. Also, the desired signal is denoted by d(k) ∈ R, and the error signal is
described by e(k) = d(k) −wT(k)x(k). The l1-norm and the Euclidean norm of a vector w ∈ RN+1 are defined by ||w||1 =
∑N

i=0|wi| and ||w||2 = wTw =
∑N

i=0w2
i , respectively. Furthermore, (⋅)T, ⊙, ∇w(⋅) stand for the vector transpose operator,

the Hadamard product of two vectors, and the gradient with respect to w, respectively. Also, E[⋅] and  (−1, 1) denote
the expected value operator and the continuous uniform distribution with the distribution’s support (−1, 1), respectively.
Moreover, sgn(⋅) shows the sign function, and it is defined by

sgn(z) =
⎧
⎪
⎨
⎪
⎩

1, if z > 0
0, if z = 0
−1, if z < 0

(1)

2 THE IF-LMS ALGORITHM

In this section, we propose the IF-LMS algorithm. To this end, first, we introduce the objective criterion of the algorithm in
its general form. Then, by adopting the l1-norm as the sparsity-promoting penalty function, we use the stochastic gradient
descent approach to learn the feature matrix and the adaptive coefficients of the algorithm.

The objective function of the IF-LMS algorithm is given by

𝜉IF-LMS(k) =
1
2
|e(k)|2

⏟⏞⏟⏞⏟

standard LMS term

+ 𝛼 (F(k)w(k))
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

feature-inducing term

, (2)

where 𝛼 ∈ R+ is the weight dedicated to the sparsity-promoting penalty function ∶ RN+1 → R+. Moreover, the function
of the feature matrix F(k) is to expose the hidden sparsity. Indeed, the feature matrix should transform the adaptive filter
w(k) to a sparse vector, that is, F(k)w(k) should be a vector with many entries close or equal to zero. It is worth mentioning
that w(k) does not require to be a sparse vector; however, F(k) must be chosen such that F(k)w(k) produces a sparse
vector. Once the hidden sparsity is revealed by F(k), the function  should exploit the exposed sparsity.

There are various candidates for to exploit revealed sparsity, such as the l0-norm,13-15 the l1-norm,16-19 the threshold-
ing approaches,20-23 etc. In this work, we adopt the l1-norm due to its simplicity and computational efficiency. Therefore,
the minimization problem (2) is reduced to
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YAZDANPANAH 3

𝜉IF-LMS(k) =
1
2
|e(k)|2 + 𝛼||F(k)w(k)||1. (3)

The feature matrix F(k) represents any linear combination applied to w(k) in order to generate a sparse vector. For
the sake of computational efficiency, we construct F(k) so that at each row exactly two adjacent entries are different from
zero. Therefore, for adjacent coefficients wi(k) and wi+1(k), for some i, we want to design parameters m,u ∈ R such that
mwi(k) + uwi+1(k) is equal or close to zero. After learning the desired m and u, by using the l1-norm penalty function,
we should learn the adaptive filter coefficients wi(k) and wi+1(k) such that the relation mwi(k) + uwi+1(k) ≈ 0 is satisfied.
Hence, we can assume F(k) ∈ RN×(N+1) of the following form

F(k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m1(k) u1(k) 0 · · · 0
0 m2(k) u2(k) · · · 0
⋮ ⋱ ⋱

0 0 · · · mN(k) uN(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

where all entries of F(k) are zero except the main diagonal m(k) = [m1(k) · · · mN(k)]T and the upper diagonal u(k) =
[u1(k) · · · uN(k)]T .

To expose the hidden sparsity of w(k) by F(k), we should learn the nonzero entries of F(k) such that
||F(k)w(k)||1 is minimized. For this purpose, we can use the stochastic gradient descent technique and propose the
recursions

m(k + 1) = m(k) − 𝜇F∇m(k)||F(k)w(k)||1, (5)

u(k + 1) = u(k) − 𝜇F∇u(k)||F(k)w(k)||1, (6)

where 𝜇F denotes the learning rate. After computing the gradients, we get

m(k + 1) = m(k) − 𝜇Fwf (k)⊙ sgn(g(k)), (7)

u(k + 1) = u(k) − 𝜇Fwl(k)⊙ sgn(g(k)), (8)

where

wf (k) = [w0(k) · · · wN−1(k)]T , (9)

wl(k) = [w1(k) · · · wN(k)]T . (10)

In other words, wf (k) and wl(k) are the first and the last N components of w(k), respectively. Also, g(k) is
defined by

g(k) = m(k)⊙wf (k) + u(k)⊙wl(k). (11)

We also utilize the gradient descent strategy to minimize the objective function (3). Thus, we will have

w(k + 1) = w(k) − 𝜇∇w(k)

(1
2
|d(k) −wT(k)x(k)|2 + 𝛼||F(k)w(k)||1

)

, (12)

where 𝜇 is the step-size parameter. After computing the gradient, the recursion for w(k) can be given by

w(k + 1) = w(k) + 𝜇e(k)x(k) − 𝜇𝛼p(k), (13)

where p(k) ∈ RN+1 is the gradient of ||F(k)w(k)||1 with respect to w(k). Hence, the ith entry of p(k) is given by
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4 YAZDANPANAH

Algorithm 1. Pseudocode for the IF-LMS algorithm

Initialization
w(0) = [0 · · · 0]T, m(0) ∼  (−1, 1), u(0) ∼  (−1, 1)
choose a positive 𝛼 and the learning rates 𝜇 and 𝜇F
for k ≥ 0 do

e(k) = d(k) −wT(k)x(k)
g(k) = m(k)⊙wf (k) + u(k)⊙wl(k)
m(k + 1) = m(k) − 𝜇Fwf (k)⊙ sgn(g(k))
u(k + 1) = u(k) − 𝜇Fwl(k)⊙ sgn(g(k))
for 0 ≤ i ≤ N do

pi(k) =
⎧
⎪
⎨
⎪
⎩

m1(k)sgn
(

m1(k)w0(k) + u1(k)w1(k)
)
, if i = 0

ui(k)sgn
(

mi(k)wi−1(k) + ui(k)wi(k)
)
+mi+1(k)sgn

(
mi+1(k)wi(k) + ui+1(k)wi+1(k)

)
, if i = 1, · · · , N − 1

uN(k)sgn
(

mN(k)wN−1(k) + uN(k)wN(k)
)
, if i = N.

w(k + 1) = w(k) + 𝜇e(k)x(k) − 𝜇𝛼p(k)
end for

pi(k) =
⎧
⎪
⎨
⎪
⎩

m1(k)sgn (m1(k)w0(k) + u1(k)w1(k)) , if i = 0
ui(k)sgn (mi(k)wi−1(k) + ui(k)wi(k)) +mi+1(k)sgn (mi+1(k)wi(k) + ui+1(k)wi+1(k)) , if i = 1, · · · ,N − 1.
uN(k)sgn (mN(k)wN−1(k) + uN(k)wN(k)) , if i = N.

(14)

Therefore, to implement the IF-LMS algorithm, at each iteration, we firstly learn the nonzero entries of the feature
matrix by updating Equations (7) and (8), then we learn the adaptive filter coefficients by updating Equation (13). To
summarize the IF-LMS algorithm, all steps are described in Algorithm 1.

Remark 1. In theory, F(k) can be zero for some k, but in practice, it is very rare since for happening this event both m(k)
and u(k) should be zero. When at least one of m(k) or u(k) is different from zero, by (7) and (8), for the next update, the
nonzero vector will push the zero one to a nonzero vector too. Moreover, when F(k) is equal to zero for some k, it will not
generate any risk for the convergence of the IF-LMS algorithm. Since for F(k) = 0, the IF-LMS algorithm will be reduced
to the conventional LMS algorithm.

3 SOME PROPERTIES OF THE IF-LMS ALGORITHM

In this section, we analyze the step-size parameter𝜇 to introduce the valid range for this parameter so that the convergence
is guaranteed. Also, we study the weight given to the l1-norm penalty, that is, 𝛼. To this end, denote the difference between
the adaptive filter and the optimum solution by w̃(k) ≜ w∗ −w(k). If we subtract from w∗ the both sides of (13), and then
take the Euclidean norm of both sides, we get

||w̃(k + 1)||2 − ||w̃(k)||2 = 𝜇2
𝛼

2||p(k)||2 + 𝛼
(
2𝜇w̃T(k)p(k) − 2𝜇2e(k)xT(k)p(k)

)

+
(
𝜇

2e2(k)||x(k)||2 − 2𝜇e(k)w̃T(k)x(k)
)
. (15)

By taking the expected values of both sides of the equation above, we get

E
[
||w̃(k + 1)||2 − ||w̃(k)||2

]
= 𝜇2

𝛼
2E

[
||p(k)||2

]
+ 𝛼

(
2𝜇E

[
w̃T(k)p(k)

]
− 2𝜇2E

[
e(k)xT(k)p(k)

])

+
(
𝜇

2E
[
e2(k)||x(k)||2

]
− 2𝜇E

[
e(k)w̃T(k)x(k)

])
. (16)

Note that the convergence of the IF-LMS algorithm must be guaranteed even when hidden sparsity is not exploited (when
𝛼 = 0).13,24,25 Therefore, assuming 𝛼 = 0, Equation (16) reduces to

E
[
||w̃(k + 1)||2 − ||w̃(k)||2

]
= 𝜇2E

[
e2(k)||x(k)||2

]
− 2𝜇E

[
e(k)w̃T(k)x(k)

]
. (17)
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YAZDANPANAH 5

T A B L E 1 Computational cost of the least mean square (LMS) and the improved feature LMS (IF-LMS) algorithms in terms of real
multiplications and real additions per iteration

Algorithm Number of additions Number of multiplications

LMS 2N + 2 2N + 3

IF-LMS 8N + 2 8N + 6

Then using the same argument as in References 2, pp. 85–87, it can be concluded that a necessary condition for the
convergence of the IF-LMS algorithm is

0 < 𝜇 < 2
tr(R)

, (18)

where tr(⋅) is the trace operator, and R = E
[
x(k)xT(k)

]
.

To study the weight given to the l1-norm, 𝛼, note that the right-hand side of (16) can be considered as a quadratic
function of 𝛼 such as

f (𝛼) = a(k)𝛼2 + b(k)𝛼 + c(k), (19)

where

a(k) = 𝜇2E
[
||p(k)||2

]
> 0, (20)

b(k) = 2𝜇E
[
w̃T(k)p(k)

]
− 2𝜇2E

[
e(k)xT(k)p(k)

]
, (21)

c(k) = 𝜇2E
[
e2(k)||x(k)||2

]
− 2𝜇E

[
e(k)w̃T(k)x(k)

]
. (22)

If we choose 𝜇 as in (18), we have the necessary condition for the convergence of the IF-LMS algorithm. Thus, for 𝜇 as
in (18), we have E

[
||w̃(k + 1)||2 − ||w̃(k)||2

]
< 0. However, by Equation (17), E

[
||w̃(k + 1)||2 − ||w̃(k)||2

]
= c(k). Therefore,

if we select 𝜇 as in (18), we get c(k) < 0. Thus, the discriminant of f (𝛼) is positive, that is

b2(k) − 4a(k)c(k) > 0. (23)

As a result, the quadratic function (19) has two real and distinct roots. If we denote these roots by 𝛼min(k) and 𝛼max(k),
since a(k) > 0, we conclude that f (𝛼) < 0, for 𝛼 ∈ [𝛼min(k), 𝛼max(k)]. Thus, the necessary conditions for the convergence
of the IF-LMS algorithm are 𝛼 ∈ [𝛼min(k), 𝛼max(k)] and 0 < 𝜇 < 2

tr(R)
.

Remark 2. Note that 𝛼min(k)𝛼max(k) = c(k)
a(k)

< 0; thus, 𝛼min(k) < 0 < 𝛼max(k). As a consequence, we choose 𝛼 ∈ [0, 𝛼max). In
practice, by adopting the grid search approach, we select 𝛼 in a similar manner of choosing 𝜇. Indeed, we adopt 𝜇 and 𝛼
as small positive real numbers; if the algorithm diverges, we reduce them.

Remark 3. The sufficient condition for the convergence of the IF-LMS algorithm may require a significantly smaller 𝜇
than 2

tr(R)
, especially when the measurement noise is strong. Therefore, in practice, we choose a very small 𝜇.

Remark 4. The computational complexity of the IF-LMS algorithm is not much higher than that of the LMS algorithm,
and both algorithms have computational burden (N). The required number of real additions and real multiplications
per iteration for the LMS and the IF-LMS algorithms are described in Table 1.

4 SIMULATIONS

In this section, we utilize the LMS and the IF-LMS algorithms in some system identification problems. In all cases,
the adaptive filter coefficients are initialized with the null vector. Also, the nonzero entries of the feature matrix are
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6 YAZDANPANAH

initialized randomly using  (−1, 1). The input signal has zero-mean white Gaussian distribution with unit variance,
except one experiment where will be mentioned. The mean squared error (MSE) learning curves and the normalized
misalignment (MIS) curves, ||w∗ −w(k)||∕||w∗||, are computed by averaging the outcomes of 100 independent trials, and
they are smoothed by a box filter of length 100. Moreover, the grid search strategy is adopted to choose the values of
hyperparameters, such as 𝜇, 𝛼, and 𝜇F .

4.1 Synthetic examples

As the first synthetic example, the LMS and the IF-LMS algorithms are employed to identify an unknown random sys-
tem w∗ of order 79 whose coefficients are drawn from zero-mean white Gaussian distribution with unit variance. The
signal-to-noise ratio (SNR) is equal to 0 dB in this scenario, where SNR = 10 log10

(
𝜎

2

𝜎2
n

)

in which 𝜎2 and 𝜎2
n are the out-

put and noise signal variances, respectively. In the IF-LMS algorithm, 𝜇F and 𝛼 are chosen as 0.002 and 0.2, respectively.
Figure 1A shows the MSE learning curves of the LMS and the IF-LMS algorithms using three different step-size values.
As can be seen, for each step-size value, the IF-LMS algorithm can attain lower steady-state MSE compared to the LMS
algorithm. Also, when the step-size value is equal to 0.02 and 0.018, the IF-LMS algorithm has a higher convergence
rate compared to the LMS algorithm, whereas for the step-size equal to 0.015, they have the same convergence speed.
Figure 1B depicts the impulse response of w∗. Moreover, Figure 1C, D, and E present F(k)w(k), m(k), and u(k) after the
convergence of the IF-LMS algorithm, respectively. As can be observed, w∗ is not a sparse system. But F(k) reveals the
hidden sparsity in w∗ and transforms the adaptive filter to the sparse domain.

Furthermore, Figure 2A shows the MSE learning curves of the IF-LMS algorithm identifying w∗, when the SNR
is 0 dB, and the values of 𝛼 vary from 0.01 to 1. As can be seen, for all tested values of 𝛼, the IF-LMS algorithm
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(E)

F I G U R E 1 (A) The mean squared error learning curves of the least-mean-square and the improved feature least-mean-square
(IF-LMS) algorithms identifying the unknown random system w∗ using various step-size values; (B) the impulse response of w∗;
(C) F(k)w(k); (D) m(k); (E) u(k) after the convergence of the IF-LMS algorithm
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YAZDANPANAH 7
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F I G U R E 2 The mean squared error learning curves of the improved feature least-mean-square algorithm identifying w∗ for:
(A) different values of 𝛼; (B) different values of 𝜇F

converged, whereas its steady-state MSE and convergence rate are affected significantly by changing the value of 𝛼.
Also, Figure 2B depicts the MSE learning curves of the IF-LMS algorithm identifying w∗, when the SNR is 0 dB
and the values of 𝜇F change from 0.0005 to 0.1. As can be observed, the IF-LMS algorithm can obtain a good
agreement between the steady-state MSE and the convergence velocity by choosing 𝜇F around 0.001. Moreover, we
can observe that even for a large 𝜇F , such as 1, the IF-LMS algorithm did not diverge, whereas it attained a high
steady-state MSE.

As the second synthetic example, we use the LMS, the variable step-size LMS (VSS-LMS),26 and the IF-LMS algorithms
to identify an unknown random system w′

∗ of order 79 whose coefficients are drawn from zero-mean white Gaussian
distribution with unit variance. Figure 3A, shows the MSE learning curves of the LMS, the VSS-LMS, and the IF-LMS
algorithms identifying w′

∗. For the first 2000 iterations, the additive noise on the output of the system is a zero-mean white
Gaussian noise (WGN), where the SNR is equal to 10 dB. However, at the iteration 2001, the SNR is changed to 14 dB, and
the impulse response of the unknown system changed to another random system of the same order whose coefficients
are drawn from zero-mean white Gaussian distribution with unit variance. For the LMS and IF-LMS algorithms, the
step-size parameter, 𝜇, is adopted as 0.02. In the IF-LMS algorithm, 𝜇F and 𝛼 are chosen as 0.002 and 0.2, respectively. For
the VSS-LMS algorithm, 𝜇(0), 𝛼, and 𝛾 are chosen as 0.02, 0.995, and 5 × 10−7, respectively. As can be seen, the IF-LMS
algorithm has lower steady-state MSE and slightly higher convergence rate as compared to the LMS algorithm. Initially,
compared with the IF-LMS algorithm, the VSS-LMS algorithm attains a higher convergence speed and the same MSE.
However, after an abrupt change in the unknown system, the VSS-LMS algorithm has the worst MSE compared to the
LMS and IF-LMS algorithms. Thus, the IF-LMS algorithm has the lowest MSE and a competitive tracking capability.
Moreover, Figure 3B,C, shows the impulse response of w′

∗ and F(k)w(k) after the convergence of the IF-LMS algorithm,
respectively. As can be seen, w′

∗ is not a sparse system; however, F(k) reveals the hidden sparsity and transforms the
adaptive filter to the sparse domain.

As the third synthetic example, we utilize the LMS and the IF-LMS algorithms to identify a bandpass system w′′
∗ .

This bandpass system is of order 199, and the lower transition frequency, the lower cut-off frequency, the upper cut-off
frequency, and the upper transition frequency of w′′

∗ are given by 𝜋

3
− 0.45, 𝜋

3
− 0.1𝜋, 𝜋

3
+ 0.1𝜋, and 𝜋

3
+ 0.45, respectively.

Figure 4A illustrates the MSE learning curves of the tested algorithms identifying w′′
∗ . In this case, the SNR is 10 dB,

and the step-sizes of both algorithms are 0.005. Moreover, for the IF-LMS algorithm, the parameters 𝜇F and 𝛼 are set
to 0.05 and 0.1, respectively. We can observe that the IF-LMS algorithm outperformed the LMS algorithm by obtaining
remarkable lower steady-state MSE. Moreover, Figure 4B depicts the MSE learning curves of the IF-LMS and the LMS
algorithms identifying w′′

∗ when the input signal is a first-order autoregressive process. In this case, the input signal is
generated by x(k) = 0.95x(k − 1) +m(k), where m(k) is a zero-mean WGN with unit variance. For this experiment, the
step-sizes of both algorithms are chosen as 0.002. Also, for the IF-LMS algorithm, the values of 𝜇F and 𝛼 are selected as
0.005 and 0.9, respectively. As can be seen in Figure 4B, the convergence rate of the IF-LMS algorithm is significantly
higher than that of the LMS algorithm.
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8 YAZDANPANAH
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F I G U R E 3 (A) The mean squared error learning curves of the least-mean-square (LMS), the variable step-size LMS, and the improved
feature least-mean-square (IF-LMS) algorithms identifying the unknown random system w′

∗; (B) the impulse response of w′
∗; (C) F(k)w(k)

after the convergence of the IF-LMS algorithm
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F I G U R E 4 The mean squared error learning curves of the least-mean-square (LMS) and the improved feature least-mean-square
algorithms identifying the unknown bandpass system w′′

∗ , when the input signal is: (A) zero-mean white Gaussian noise with unit variance;
(B) a first-order autoregressive process
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YAZDANPANAH 9

4.2 Underwater channel estimation

In this scenario, as a real-life example, we utilize the LMS and the IF-LMS algorithms to estimate the impulse response
of an underwater communication channel. The underwater channel acquisition details are presented in Reference 27. In
this real-life example, the step-sizes of both algorithms are 0.0006, and the SNR is 10 dB. Also, the adopted adaptive filter
is of order 2880. For the IF-LMS algorithm, 𝜇F and 𝛼 are selected as 0.002 and 0.02, respectively. Figure 5A depicts the
MSE learning curves of the LMS and the IF-LMS algorithms. Also, the MIS curves of the IF-LMS and the LMS algorithms
are shown in Figure 5B. As can be observed, the IF-LMS algorithm attained notable lower steady-state MSE and MIS in
comparison with the LMS algorithm.

4.3 Wireless channel estimation

In this scenario, as another real-life test, we employ the LMS and the IF-LMS algorithms to estimate the impulse response
of a wireless channel between 240 and 300 GHz for the transmitter-receiver distance of 80 cm. More details regarding this
wireless channel acquisition are provided in Reference 28. For this scenario, the adaptive filter order is 4096. Also, the
step-size parameters of both algorithms are 0.0004, and the SNR is selected as 14 dB. For the IF-LMS algorithm, 𝜇F and 𝛼
are chosen as 0.5 and 0.15, respectively. Figure 6A,B presents the MSE learning curves and the MIS curves of the employed
algorithms. We can observe that, as compared to the LMS algorithm, the IF-LMS algorithm obtained considerably lower
steady-state MSE. Also, note that although the convergence speed of the IF-LMS algorithm is lower than that of the LMS
algorithm at the beginning of the transient period, the IF-LMS algorithm can reach the LMS algorithm before entering
the steady-state.
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F I G U R E 5 Underwater channel estimation: (A) the mean squared error learning curves; (B) the misalignment curves
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F I G U R E 6 Wireless channel estimation: (A) the mean squared error learning curves; (B) the misalignment curves
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10 YAZDANPANAH

5 CONCLUSIONS

In this paper, by introducing a learnable feature matrix, the IF-LMS algorithm has been proposed. This algorithm
can exploit hidden sparsity in unknown systems without requiring a priori information about the spectral charac-
teristics of the systems. Moreover, this algorithm can be utilized in all systems that the traditional LMS algorithm
is applicable. Also, we have analyzed the step-size parameter of the IF-LMS algorithm and the weight given to the
sparsity-promoting penalty function. Furthermore, in simulation results, we have employed the IF-LMS algorithm to
identify some synthetic and real-life systems. Finally, we should mention that the proposed idea is not limited to
the LMS algorithm and can be extended to other algorithms, such as the normalized LMS, the affine projection, and
the recursive least squares. Also, for the sake of computational efficiency, we assumed that only two entries at each
row of the feature matrix are nonzero; however, we can suppose all entries to be nonzero and learn them using the
SGD approach.
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