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A B S T R A C T

The healthcare system is no stranger to resource challenges in the face of unlimited demand to fulfill healthcare
objectives of satisfying patients, maintaining service quality, and maximizing profit. Healthcare decision-
makers are responsible for devising effective methods for allocating scarce resources fairly and in a way
that maximizes benefits at the societal level. An emergency medical services (EMS) system plays a crucial
role in stabilizing and transporting seriously injured patients to hospitals within healthcare systems. Several
criteria affect the EMS function, such as call rate, traffic condition, setup, and operating costs. Therefore, the
optimal design of EMS systems, including determining the location of emergency medical bases and allocating
ambulances, helps improve service performance. This paper takes advantage of the mathematical modeling
and simulation-based optimization approaches to identify the best location of emergency medical centers and
assign the ambulances to the selected centers to maximize survival rate and minimize the total cost of the EMS
system. A case study is presented to demonstrate the applicability and efficacy of the developed approach in
this study.
. Introduction and literature review

Over the last few years, the overall healthcare costs have shown a
ignificant increase all across the globe. The complexity of the health-
are systems poses the challenge of managing scarce resources to meet
rowing patient needs. Therefore, it is essential to adopt the most
fficient approaches for resource allocation to achieve this goal. In the
rea of Dublin, capital of the Republic of Ireland, the estimated cost of
upplying the emergency ambulance services was over £28 million in
996, when handling almost 300,000 patient journeys, in which there
ere nine emergency ambulance fleets with 272 emergency vehicles lo-

ated at 89 ambulance stations [1]. In addition to securing pre-hospital
mergency medical treatment and transportation of the utterly unwell
nd injured patients to the hospital, the ambulance fleets transport
atients between hospitals for urgent or planned treatment [1]. Some
esearchers have studied minutely health care management problems
o establish the extent to which the emergency ambulance services
re provided efficiently and economically. The proposed models enable
nalyzing and understanding the insider problem, from theoretical
s well as practical perspectives (e.g., see [2]). Emergency Medical
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Services (EMS) are an indispensable part of any health care system that
aims at providing prehospital emergency medical care. EMS include the
services of supervisors, managers, directors, administrators, and coordi-
nators. When solving for today’s greatest EMS challenges amidst rising
demands, we need to take into consideration not only the complexity
of the model but also the tremendous value of this infrastructure to
the community. On the frontline of national disasters and health crises,
EMS play a crucial role in preventing deaths and injuries. With the shift
in community needs as a result of changing lifestyles and increased
life expectancy, requests for EMS have been on the rise. The provision
of high-quality EMS is expected to be consistently delivered at the
national level. Healthcare managers constantly struggle with competing
budget demands and staffing challenges, making delivery of adequate
service levels even more difficult. This complexity of EMS systems
calls for resource allocation approaches that are capable to optimize
productivity and efficiency.

The primary duty of EMS is to offer urgent vital services and
transport the patients to a specific hospital or clinic. Many studies have
been carried out to seek the optimal locations of facilities, leading
to performance improvement of the EMS system. In spite of a wide
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variety of developed models, the key purpose of these models is to
assign the emergency facilities optimally to services required, so that
the desired outcomes are achieved. This includes studies that cover
topics like the location set covering problem (LSCP) developed by
Toregas et al. [3] and the maximal covering location problem (MCLP)
proposed by Church and ReVelle [4]. Gendreau et al. [5] reconsidered
the MCLP as a dynamic relocation strategy to seek new locations for the
EMS centers to maximize the coverage level requested for ambulances
in the Montreal region. Nevertheless, many related research projects
have neglected the real conditions of EMS systems resulting in the
research findings not being applicable [6,7]. Hence, to make the models
more practical, the stochastic and dynamic nature of EMS needs to
be considered when modeling the system. Galvao and Morabito [8]
attempted to develope the stochastic models based on queueing theory,
in which the ambulances play the role of servers. Ingolfsson et al. [9]
extended a model to maximize the average coverage of requests by
using the least number of ambulances allocated to patients when the
time delay and travel time are assumed to be uncertain.

The existing models for EMS management include complex, dy-
namic, and contemporary challenges and it necessitates that the effi-
ciency of the EMS system with distinctive properties is analyzed by
simulation, which is based upon a computerized model [10]. McCor-
mack and Coates [11] formulated a mathematical programming model
for ambulance fleet allocation and base EMS location by the use of
the simulation model and the genetic algorithm. Compared to other
techniques, simulation has some advantages including the consider-
ation of real characteristics and improvement of the model validity.
Mathematical modeling and simulation methods have been originally
used by Toro-Díaz et al. [12] to improve the logistics performance of
EMS systems. In their paper, they briefly describe lean’s application in
the logistics and healthcare industries, and conceptually develope the
lean-TOC (Theory of Constraint) approach.

With special emphasis on EMS, emergency station location, ambu-
lance allocation, and facilities management are notable subjects for
health care studies [7]. The main objective of facility location and
resource allocation for EMS is to cover all regions of a city along
with providing high service quality at a low cost. The number of
requests for EMS depends on working days per week and working hours
per day. This is due to the feasibility of improving the efficiency of
the EMS system by optimally relocating the emergency stations and
allotting ambulances to the stations. Brotcorne et al. [13] reviewed the
state-of-the-art models for the emergency facility’s location and service
allocation over the last three decades.

Generally, location and allocation models in relation to EMS can be
categorized into two major groups: deterministic models and stochastic
models. The first group lays emphasis upon deterministic mathemati-
cal programming models to optimize the management of facilities in
a static environment, and in the second group, scholars developed
stochastics models with uncertain parameters under dynamic condi-
tions to cover the largest possible demand and optimally allocate
resources. One of the primary stochastic models was the maximum
expected coverage locating problem (MEXCLP) proposed by Daskin
[14]. Daskin’s study aimed to meet demand as large as possible with
the minimum number of facilities (vehicles). ReVelle and Hogan [15]
proposed an optimization model to minimize the number of required
ambulances in order to serve the maximum requests with sufficient
reliability. Gendreau et al. [16] focused on the redeployment problem
for a fleet of ambulances in the context of EMS. The authors attempted
to develope a dynamic method to maximize the covered regions with
the minimum response time via a parallel tabu search heuristic and
simulation.

Given the fluctuating demand for ambulances, Rajagopalan et al.
[17] developed a multiperiod model to identify the minimum num-
ber of ambulances and their locations over time in which coverage
requirements are met with a predefined reliability level. The experi-

mental findings of this study and a simulation model showed that tabu
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search gives fast and near-optimal solutions for maximizing coverage
problems. A tabu search based heuristic has been developed by Toro-
Díaz et al. [18] for large-scale EMS systems in which the model contains
both strategic (location) and operative (dispatching) decisions to bal-
ance efficiency and fairness. Rajagopalan and Saydam [19] proposed
a model for allocating a set of ambulances to minimize expected
response distances using a heuristic search algorithm while fulfilling
coverage requirements. Schmid and Doerner [20] thought of stochastic
demand and multiple demand points that are assumed to be covered
by more than one vehicle. Their multi-period model allows ambulances
to be transported between the stations with the object of maximizing
coverage at various points simultaneously over the planning horizon.

Incorporating dynamic and stochastic settings in the models for
optimizing EMS systems are clearly valuable in improving the practical
implementation of these systems by offering the system providers with
high service quality in terms of response time and coverage level. These
models are normally referred to as NP and the NP-hard complexity
classes (see e.g., [21–23]). To simplify this complexity, the simulation
approach has been used extensively in the literature. Simulation is a
computerized approach to imitate the real-world operational processes
and systems in a dynamic environment, and differs from the analytical
approach, in which the system analysis is theoretical. Simulation has
been widely used in healthcare applications. For instance, Sah et al.
[24] exploited the combination of simulation and goal programming
for total system improvement in an Indian hospital leading to the
reduction in delays and bottlenecks through the hospital processes. In
their research, they specified several criteria including wait time of
patients and resources utilization to achieve the goal of analyzing and
improving the system. Simulation helped them minimize the total cost
of the hospital, subject to adequate allocation of hospital staff and beds.

Aboueljinane et al. [25] provided a survey of simulation models
applied to EMS problems. They classified the decisions that affect the
performance of EMS systems at the design and operational levels into
three categories: long-term decisions, mid-term decisions, and short-
term decisions. The long-term decisions include decisions about the
identification of suitable skills, the number of human resources and
the location of the central EMS station. For example, Harewood [26]
proposed a multi-objective model to identify EMS locations and also
the total ambulances required to meet the service requirement. The
mid-term decisions consist of decisions around shift scheduling, the total
EMS stations and needed resources for them, and scheduling resources
like rescue teams and ambulances. For example, Goldberg et al. [27]
developed a simulation model to schedule vehicles allocated to EMS
centers. The short-term decisions are the decisions around dispatching
rescue teams in order to improve their efficiency, choosing a suitable
hospital or clinic for every patient, and determining redeployment
strategies such as EMS relocation in order to offer better services. For
example, Peleg and Pliskin [28] presented a redeployment strategy to
reduce response time. They used the geographic information system
(GIS) to determine the time between EMS locations and demand points
and between demand points and hospital locations.

In the literature, the EMS performance is broadly assessed based
upon three key factors: timeliness, survival rate, and cost. Hence, these
factors have been considered in most studies for improving the system’s
performance. Wang et al. [29] developed an agent-based simulation of
response to a disaster, to study assignment policies of victims to hospi-
tals based on available geographic information systems and available
response resources such as ambulances and hospital beds. Nogueira
et al. [30] applied both optimization and simulation techniques to
study the EMS of Belo Horizonte, Brazil. Their optimization model was
aimed to identify the location of ambulance bases as well as allocating
ambulances to those bases, and simulation was run to take account of
the dynamic behavior of the system.

Van Barneveld et al. [31] studied the effect of ambulance reloca-
tions on the performance of ambulance service providers. They mod-

eled the ambulance relocation from the current arrangement to the
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target arrangement by way of a linear bottleneck assignment problem.
In their developed model, the performance of the ambulance service
provider was measured by a general penalty function. Zaffar et al.
[32] carried out a comparative study to contrast the performance of
ambulance location models based upon four criteria; percentage of calls
covered, survivability, average response time, and workload balance
among the fleet. To this end, they used a simulation–optimization
approach to compare the performance of three EMS location models in-
cluding maximum coverage, minimum average response time, and max-
imum survivability. They eventually showed that the maximum surviv-
ability objective is more efficient than both response time and coverage
criteria. Fritze et al. [33] proposed an integrated model of spatial
information and integer programming for the EMS location problem.
This model applies the MCLP to ensure all residents can cover by EMS
at minimum cost. Andersson et al. [34] used the maximum expected
performance location problem for heterogeneous regions (MEPLP-HR)
developed by Leknes et al. [35] to analyze both strategic (locating am-
bulance stations), and tactical (allocating ambulances to the stations)
decisions over multiple periods.

Unluyurt and Tuncer [36] employed four different mathematical
models to determine EMS station locations along with maximizing cov-
erage evaluated. Additionally, they evaluated the performance of EMS
location models via discrete event simulation. Eventually, using Istan-
bul data they showed that a simulation-based evaluation methodology
can give a fair framework to assess the effectiveness of models.

Aringhieri et al. [37] reviewed recent studies of the EMS systems to
define ongoing challenges for future research avenues. Ahmadi-Javid
et al. [38] surveyed articles relevant to a healthcare facility (HCF)
location problems and classified the models into two categories: non-
emergency facilities, and emergency facilities. Furthermore, they took
different perspectives on HCF locations such as location and alloca-
tion models for developing health service (see e.g., [39]), ambulance
location and relocation models (see e.g., [40]), location of HCFs from
modeling aspects (see e.g., [41]), emergency response facility location
(see e.g., [42]), methodological advancement in healthcare accessibility
(see e.g., [43]), home healthcare logistics (see e.g., [44]), and an
overview of planning and management of EMSs (see e.g., [6]). Liu
et al. [45] used a robust optimization method for optimizing an EMS
system. Their objective is to minimize the total cost of an EMS system
based on the station construction, ambulances’ location and allocation,
and ambulances procurement and maintenance. Boujemaa et al. [46]
proposed a multistage stochastic programming model for ambulance
redeployment planning. They considered two types of ambulances and
two sets of calls for requesting ambulances. Since their model possesses
a high degree of complexity, the heuristic method was used for solving
the developed model.

Recently, Bélanger et al. [47] provided a broad overview of studies
relevant to vehicle location and relocation, as well as dispatching
decisions in the context of ambulance fleet management. Firstly, they
grouped the studies on static ambulance location models into three
classes; (i) single coverage deterministic models (see e.g. [48]), (ii)
multiple coverages deterministic models (see e.g. [49]), and (iii) proba-
bilistic and stochastic models (see e.g. [50]), which aims to address am-
bulance location problems at the tactical level. Secondly, they reviewed
the most recent approaches by classifying them into three classes; (i)
stochastic and robust location–allocation models (see e.g., [51]), (ii)
maximal survival models (see e.g., [52]), and (iii) equity models (see
e.g., [53]). Thirdly, they examined multi-period relocation models and
dynamic relocation models in ambulance location/relocation problems
(see e.g. [54]). Finally, they reviewed research on dispatching decisions
for allocating the vehicle to an emergency call.

Measuring the performance of health care systems is an essential
process with some difficulties and challenges resulting in identifying
weaknesses and inefficient sources. Data envelopment analysis (DEA)
is a well-known non-parametric method for assessing the relative ef-

ficiencies of a group of decision-making units (DMUs). Farrell [55]
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originated many of the ideas and principles underlying DEA. After a
long-term period, Charnes et al. [56] built on the provoking thought
seminal work and introduced a powerful DEA methodology to assess
the relative efficiencies of multi-input multi-output DMUs. Since the
emergence of DEA, there has been a significant growth both in theoret-
ical developments and applications [57–59]. DEA has also been used to
assess different aspects of healthcare systems such as hospital efficiency
[60], public policies efficiency [61,62], heart surgery efficiency [63]
and health facilities efficiency [64–66]. Golabian et al. [67] conducted
a study to obtain the best return strategy for ambulances to maximize
the expected coverage concerning a predefined dispatch policy. They
proposed a hypercube queuing model to maximize customers’ coverage
probability, in which locations of busy ambulances in each state are not
known and approximated based on customer arrival rates.

There are some papers which extend the analysis to either pre-
dicting demand for ambulances or determining temporary emergency
service center location decisions in disasters. Grekousis and Liu [68] put
forth novel approach by attempting to predict the demand for ambu-
lances in EMS using artificial intelligence. They proposed a three level
model to first predict the future demand and then apply a location–
allocation model to site ambulances prior to actual emergencies oc-
currence. They also used a case study based on data from Athens,
Greece on the actual emergency events occurred to validate their
model. Karatas and Yakıcı [69] proposed a multi-objective facility
location analytics model for determining the number and locations of
Temporary Emergency Service Centers (TESCs) for a regional natural
gas distribution company in Turkey. While their work is important
in natural disasters and other extreme events, it may not directly be
applicable in meeting existing demand for EMS outside these events.

DEA developed by Charnes et al. [56] is an exceedingly endorsed
and powerful method for measuring the performance of the public
and private sectors [57,70]. Since the mid-1980s, there has been in-
creasing interest in the application of DEA to healthcare problems.
The literature review conducted by Hollingsworth et al. [71] examined
91 DEA-based studies on efficiency and productivity in healthcare
systems from both theory and practice. Their review is divided into
two groups of studies; the deployment of DEA to measure efficiency
and productivity of hospitals such as Burgess and Wilson [72], and
general healthcare such as Färe et al. [73]. Hollingsworth [74] built on
the earlier survey and provided an overview of 188 related studies on
non-parametric and parametric efficiency measurement in healthcare
and health. Chilingerian and Sherman [75] reviewed the DEA literature
focusing on efficiency measurement of health care providers such as
general hospitals and academic medical centers, nursing homes, and
physicians. They particularly discussed DEA models applied in health
care application as well as listing inputs and outputs as the consequence
of the extant research literature.

Although many research studies have been done to assess the EMS
performance, the pertinent literature pays less attention to systems cost
as a vital assessment factor. Considering real conditions help us to
gain more practical and reliable solutions to EMS problems. Although
some recent EMS studies such as Nickel et al. [76] and Boujemaa et al.
[77] have tried to consider real conditions in their models, they have
neglected some important conditions such as weather and traffic.

Fig. 1 displays the processes of patient rescue in the EMS system.
This Figure defines all steps of the rescue process to make a valid model
for the emergency location and allocating ambulances.

Referring to Fig. 1, response time, denoted by 𝑇R, is defined as
the time elapsed from a call received by the call center to the time
that the ambulance arrives at the patient position location. Response
time is a key factor and has a direct effect on the survival rate in
such a way that the decrease in response time leads to a rise in the
survival rate. That is, a quick EMS response is essential in improving
survival rates and EMS performance. This study presents a simulation-
based optimization approach based on the maximization of the survival

rate and minimization of the total cost that is purposely developed for
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Fig. 1. Rescue processes for patients.
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a project at the Emergency Management Centre in Isfahan, a central
province in Iran to improve the service performance. In this respect,
we build on the work by Knight et al. [78] and develop their work by
adding cost minimization as an objective function thus enabling man-
agers to improve the total performance of the EMS system. Contrary to
Knight et al. [78], we also assume two different types of ambulances
and establishment cost of EMS centers, as well as considering weather
and traffic as stochastic conditions of EMS location and allocation.
The results calculated from the optimization model is considered as
the primary scenario to make our simulation model. Other scenarios
build on the primary scenario by altering the variables such as the
number and location of EMS. In addition, the stochastic conditions of
emergency locations and their allocated ambulances are considered in
the simulation model. To compare and prioritize the results obtained
from simulation, the DEA method is applied on the basis of two
predetermined objectives: survival rate, and total cost. In a nutshell,
the theoretical and practical contributions of the framework developed
in this study are threefold:

i A dual-objective optimization model is formulated to design an
EMS system by maximizing survival rates and minimizing the
total cost simultaneously. The mathematical model culminates
in the optimal number and location of required EMS as well
as allocating the optimal number of ambulances to the selected
EMS locations.

ii A computer simulation analysis is applied to take account of
the dynamic conditions of the EMS system in order to reach an
appropriate response.

iii Finally, we draw on the dataset from the Emergency Manage-
ment Centre in Isfahan to illustrate the applicability and efficacy
of the proposed framework. The results show that the implemen-
tation of our proposed framework leads to improved survival
rate.

The remainder of this paper is organized as follows; Section 2
describes the modeling methodology and its undelaying assumptions,
Section 3 presents a case study from the city Isfahan, and Section 4
concludes this study with some remarks.

2. Preliminaries

In this section, the maximal expected survival location model for
heterogeneous patients (MESLMHP) and DEA models are, in turn,
reviewed and formulated [56,78].

2.1. Maximal Expected Survival Location Model for Heterogeneous Patients
(MESLMHP)

The survival function plays a key role in locating the ambulance
stations nearer to areas with high demand for EMS since the possibility
4

for survival decreases exponentially with increasing response time. As
a significant contribution, Erkut et al. [40] proposed EMS location
models with the inclusion of a survival function in the existing coverage
models. They showed that more traditional coverage models suffer
from some weaknesses in practice and a survival-maximizing approach
enables the decision-maker to obtain reliable and robust solutions. ‘‘A
survival function is a monotonically decreasing function of the response
time of an emergency medical service (EMS) vehicle to a patient
that returns the probability of survival for the patient’’ ([40], p 42).
Rather than designing the network location model, Knight et al. [78]
developed the MESLMHP based upon Erkut et al. [40] to improve
the performance of an extant EMS system. In this respect, MESLMHP
aims to maximize the overall expected survival probability of different
types of patients. Loosely speaking, several various types of survival
probabilities can be defined based upon patient types. The patient
types can be defined on the basis of time standard, for instance, type I
patients are those that the ambulance reaches within 8 minutes, or by
observing various patient conditions with respect to a relative survival
curve.

Assume that there are m ambulance stations, and n demand loca-
tions. Patients are categorized into k different patient types on the basis
f severity level and survival probability. Let 𝜆𝑙𝑖 indicate the demand of
atient type 𝑙 (𝑙 = 1, 2,… , 𝑘) from demand location 𝑖 (𝑖 = 1, 2,… , 𝑛).
he average utilization of ambulance type ℎ at station 𝑗 is denoted by
𝑗 . The mathematical notations are provided in Table 1. In the view of
𝑗 , the probability of ambulance availability is indicated by (1 − 𝜋𝑗).
he preference matrix 𝜌 =

[

𝜌𝑖𝑗
]

𝑛×𝑚 is used to ensure that an emergency
tation is allocated to a demand point. We point out that if the 𝑗th
mergency station has no available ambulance the (j + 1)th station will
e selected. Furthermore, there can be two general survival functions
here the first function is determined on the basis of severity and re-

ponse time target, and the second one is based on considering different
atient conditions with respect to survival probabilities. Notice that a
ombination of both functions can be observed in some circumstances.
ig. 2 displays three feasible survival functions. The red and green
olid lines represent the survival functions that show that the survival
robability decreases with time, and quick action of EMS is essential.
nother function depicted by a blue solid line in Fig. 2 is a step function

hat is used for thinking of rigid targets such as defined service norms.
et 𝑠𝑙 ∶R → [0, 1]R be a survival function as for each patient type l
nd 𝑡𝑖𝑗 be the travel time between station 𝑗 and demand node 𝑖. There
ight be l different survival functions, which are reliant on the number

f patient types and the importance weights 𝑤𝑙 are allocated to the 𝑙th
atients. The MESLMHP model is given below:

max
𝑘
∑

𝑤𝑙

𝑛
∑

𝜆𝑙𝑖𝐵
𝑙
𝑖,𝜌𝑖𝑗

(1)

𝑙=1 𝑖=1
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Table 1
List of notations used in mathematical formulation of the MESLMHP.

Notations Description

Indices
i Index for demand locations (𝑖 = 1, 2,… , 𝑛)
l Index for patient types (𝑙 = 1, 2,… , 𝑘)
j Index for ambulance stations (𝑗 = 1, 2,… , 𝑚)
𝜆𝑙𝑖 Demand of patient type l from demand location 𝑖

Parameters

𝜋𝑗 Average utilization of ambulance at station 𝑗
Z Total number of available ambulances
𝜌𝑖𝑗 𝑗th preferred station for the 𝑖th demand point
𝑡𝑖𝑗 Travel time between station 𝑗 and demand node 𝑖
𝑤𝑙 Relative importance of patient type 𝑙
𝑠𝑙(𝑡𝑖𝑗 ) Probability degree of survival associated to patient type 𝑙 for time 𝑡𝑖𝑗

Decision variables 𝑥𝑗 Number of ambulances allocated to emergency station 𝑗
Fig. 2. Survival functions.
Source: Adopted from
Knight et al. [78].

t.
𝑚
∑

𝑗=1
𝑥𝑗 = 𝑍

𝑗 ∈ Z0+, 𝑗 = 1, 2,… , 𝑚

here 𝐵𝑙
𝑖,𝜌𝑖𝑗

=
∑𝑚

𝑗=1 𝑠𝑙(𝑡𝑖,𝜌𝑖𝑗 )(1 − 𝜋
𝑥𝜌𝑖𝑗
𝜌𝑖𝑗 )

∏𝑗−1
𝑟=1 𝜋

𝑥𝜌𝑖𝑟
𝜌𝑖𝑟

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∅

indicates the probabil-

ty (expected degree) of survival of a patient of type 𝑙 from demand
ode 𝑖 where ∅ represents the probability of at least one ambulance
ocated at j service node being free, while ambulances located at nodes
to −1 are busy. The equality constraint set of model (1) shows that 𝑍

mbulances are allocated to all EMS stations to maximize the weighted
um of all demand nodes in terms of each probability function. To
ind the actual utilization 𝜋𝑗 , the iterative approach is developed on
he basis of queuing theory where each EMS center can be modeled as
n 𝑀𝑗∕𝑀𝑗∕𝑥𝑗 queue. The iterations are stopped after an allocation of
mbulances matches the demand and the utilization.

The MESLMHP includes the following six phases [78]:
Phase 1: Estimate the mean service rate at station j (𝜇𝑗).
Phase 2: Set the average utilization of the 𝑗th ambulance station for

he initial iteration (𝜋(0)
𝑗 ).

Phase 3: Find 𝑥𝑗 for all centers by solving the MESLMHP problem.
Phase 4: Compute the demand distribution 𝛥(𝑘)

𝑗 for the 𝑗th ambu-
ance station.

Phase 5: Obtain 𝜋𝑗 based on queuing model for 𝑀𝑗∕𝑀𝑗∕𝑥𝑗 which
nsure the allocation calculated in Phase 3.

Phase 6: Iterate phases 3, 4 and 5 until convergence is achieved.
ince this method does not guarantee convergence, the model runs
or some pre-determined iterations or a given time. The steady state1

raphs for cost or survival can be used to specify where convergence
ccurs.

1 A steady state is a case where all state variables remain constant.
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Our paper aims to consider the total costs of the EMS system in-
stallation, e.g., buildings and equipment costs. Therefore, our proposed
model is a bi-objective optimization model to design an emergency
medical system in which the first objective function aims to maximize
the survival rate and the second one aims to minimize the total cost of
the EMS system. Notably, the simulation method is used in this paper
to seek the value of 𝑥𝑗 , (𝑗 = 1, 2,… , 𝑚). In addition, the demand rate of
each demand point is extracted from the data calls.

2.2. Data Envelopment Analysis (DEA)

DEA is a well-established approach for evaluating the relative effi-
ciency of a group of functionally similar decision-making units (DMUs)
(e.g., institutions, banks, hospitals, and hotels) that transforms multiple
inputs (resources) into multiple outputs (goods and service) [56]. DEA
builds on the ‘‘total weights flexibility’’ underpinning. The original
DEA model proposes that the efficiency of a DMU is given as the
maximum of a ratio of weighted outputs to weighted inputs, subject
to the constraint that the same ratio for all the DMUs must be at
most equal to one. Consider 𝑛 DMUs, in which each DMU consumes
𝑚 various inputs to produce 𝑠 various outputs. Let 𝑥𝑖𝑗 , 𝑖 = 1,… , 𝑚
and 𝑦𝑟𝑗 , 𝑟 = 1,… , 𝑠 denote the input and output vectors of DMU𝑗 ,
𝑗 = 1,… , 𝑛, respectively. Charnes et al. [56] proposed the first DEA-CCR
model under constant returns to scale (CRS) followed by the DEA-
BCC model [79] that hypothesizes variable returns to scale (VRS). This
paper’s focus is on the following VRS model to measure the technical
efficiency of the DMU𝑜:

max 𝜌 =
𝑠
∑

𝑟=1
𝑢𝑟𝑦𝑟𝑜 + 𝑢𝑜 (2)

st.
𝑚
∑

𝑖=1
𝑣𝑖𝑥𝑖𝑜 = 1,

𝑠
∑

𝑟=1
𝑢𝑟𝑦𝑟𝑗 −

𝑚
∑

𝑖=1
𝑣𝑖𝑥𝑖𝑗 + 𝑢𝑜 ≤ 0, 𝑗 = 1, 2,… , 𝑛,

𝑣𝑖, 𝑢𝑟 ≥ 0, 𝑖 = 1, 2,… , 𝑚; 𝑟 = 1, 2,… , 𝑠.

where 𝑢𝑟 and 𝑣𝑖 are the importance weights associated with 𝑟th output
and 𝑖th input, respectively, and 𝜌 represents the efficiency measure of
DMU𝑜. Note that the free-in-sign variable, 𝑢𝑜, is associated with the
convexity condition in the dual model leading to a convex hull. If the
optimal objective value is equal to 1, 𝜌∗ = 1, then the DMU𝑜 is called
efficient. Otherwise, the DMU𝑜 is called inefficient.

3. Proposed model

In healthcare, fixed expenditures associated with buildings and
equipment play a pivotal role in healthcare management and absorb
more than 80 percent of the total cost. Although increasing the number
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of ambulances, stations, and crews on duty can improve the ability
of EMS to respond to emergency calls, the system is not necessarily
efficient because the rise in resources would result in long periods of
inactivity for crews between calls and massive fixed cost. In this paper,
the objective is to design an EMS system that minimizes the total cost
(costs of preparation and construction of stations and purchasing cost
of ambulance vehicles) while maximizing the overall expected survival
probability of patients. Therefore, in reality, there are several types
of ambulances in EMS systems. For instance, there are four types of
ambulances in the US.2 Types i and iii ambulances have a square patient
compartment that is installed onto the chassis. The difference between
types i and iii is their chassis whereby type i is attached to a truck
similar to chassis while type iii is attached to a cut-a-way van chassis.
Types i and iii ambulances are often equipped to be used in the locations
such as airports, chemical plants, oil refineries as well as being ready for
Advance Life Support. Type ii ambulances with a van type chassis are
commonly used by hospitals, Health departments when patients require
basic life support. Type iv is classified as mini ambulances and their
compact design enables them to maneuver in the regions where other
types of ambulances may not be possible, leading to a great decline in
the overall response time.

Contrary to the MESLMHP, without loss of generality, it is assumed
that two types of ambulances (ℎ = 1, 2) operate in EMS, so-called gen-
eral, and advanced ambulances. General ambulances are equipped with
primary and emergency facilities while advanced ambulances have
more facilities such as some devices for cardiac patients. According to
the above-mentioned ambulance types, types i and ii are classified as
general ambulances and type iii is classified as advance ambulances.

Let 𝑍ℎ denote the maximum number of the hth ambulance type
which are available to respond to any emergency. Here, 𝑐1 and 𝑐2
present the purchasing cost of general and advanced ambulance types,
respectively. The fixed activation and construction cost of each station
is assumed to be identical for all stations and denoted by C, and the
maximum number of stations which can be in operation is denoted by
D. We have two zero–one variables 𝑦𝑗 and 𝑥ℎ𝑗 in which 𝑦𝑗 indicates
whether or not station j is in operation and 𝑥ℎ𝑗 shows the number of
ambulances of types 1 and 2 allocated to emergency station 𝑗. Given the
definitions of parameters and variables mentioned above, we propose
the following bi-objective network location model to find the optimal
number of necessary stations and allocated ambulances in terms of their
types:

min
𝑚
∑

𝑗=1
𝐶𝑦𝑗 +

𝑚
∑

𝑗=1

2
∑

ℎ=1
𝑐ℎ𝑥

ℎ
𝑗 (3a)

max
2
∑

ℎ=1

𝑘
∑

𝑙=1
𝑤𝑙

𝑛
∑

𝑖=1
𝜆𝑙𝑖

𝑚
∑

𝑗=1
𝑠𝑙(𝑡𝑖,𝜌𝑖𝑗 )(1 − 𝜋

𝑥ℎ𝜌𝑖𝑗
𝜌𝑖𝑗 )

𝑗−1
∏

𝑟=1
𝜋
𝑥ℎ𝜌𝑖𝑟
𝜌𝑖𝑟 (3b)

st :.
𝑚
∑

𝑗=1
𝑥ℎ𝑗 ≤ 𝑍ℎ, ℎ = 1, 2, (3c)

𝑚
∑

𝑗=1
𝑦𝑗 ≤ 𝐷, (3d)

𝑥ℎ𝑗 ≤ 𝑀𝑦𝑗 , ℎ = 1, 2; 𝑗 = 1, 2,… , 𝑚, (3e)

𝑥ℎ𝑗 ≥ 𝑦𝑗 , ℎ = 1, 2; 𝑗 = 1, 2,… , 𝑚, (3f)

𝑥ℎ𝑗 ∈ Z0+, ℎ = 1, 2; 𝑗 = 1, 2,… , 𝑚, (3g)

𝑦𝑗 ∈ {0, 1} , 𝑗 = 1, 2,… , 𝑚. (3h)

The first objective function includes two components: the construc-
tion cost of EMS centers and the total cost of buying ambulances.
Contrary to model (1), the second objective function (3–2) is gener-
alized to two types of ambulances to maximize the overall expected

2 http://metronixinc.com/site/ambulances.html
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survival probability of patients which is of the essence for designing an
emergency medical services system. Notice that similar to model (1),
𝜌𝑖𝑗 denotes the 𝑗th preferred station for the 𝑖th demand point and 𝑥ℎ𝜌𝑖𝑗
is the number of allocated ambulance type h to the preferred station.
Constraints (3-3) ensure that the total allocated type h ambulances
are at most 𝑍ℎ. Constraint (3-4) guarantees that the total constructed
stations are at most D. Constraints (3-5) and (3-6) help to define
zero–one variables.

The demand distribution of each demand point is estimated by the
use of the historical call data which are collected in the emergency
system on a daily basis.

Markedly, the above model cannot be easily solved in the way
that Knight et al. [78] proposed since solving two conflicting objective
functions on the basis of queuing theory is quite complex and adds time.
Due to the fact that the real-world EMS problems are dynamic, it is also
highly desirable to analyze the problem over time while the existing op-
timization tools are not sufficiently appropriate. Therefore, we present
a structured framework in this study to achieve our objectives.

To find an initial solution in model (3), the stochastic variables are
first assumed to be represented by their expected values. Therefore, the
stochastic model is transformed into a deterministic model. The solving
methodology is based on a series of steps as follows:

1. Determining the potential locations for an emergency station
based upon various factors such as population density and ac-
cessibility.

2. Defining the demand points. All people living in a city are po-
tential demand points. For simplicity’s sake, the gravity centers
of areas in the city are considered as demand points.

3. Estimating traveling time between each station and demand
points in the light of various important factors such as the traffic
and weather conditions.

4. Estimating the costs of buying the ambulances and constructing
the emergency stations.

5. Solving the proposed model (3) under the static condition to
reach the primary solution. This solution is used as a primary
input for the computer simulation model in Step 6.

6. Applying simulation to analyze the different scenarios which
can help consider the real-world conditions in the mathematical
model. A range of scenarios can be defined via changing (i) the
number of emergency stations, (ii) the allocated ambulances and
(iii) the probability of ambulances’ availability.

7. Using DEA to assess and rank the results of the scenarios ob-
tained from simulation in Step 6. The scenario with the superior
score is the best arrangement (design) for the emergency medical
services system.

4. Case study

In this section, we present an application to the province of Isfahan
in Iran. Isfahan is located in southern central Iran, 1430 meters above
sea level, with about 5 million population and covers an area of nearly
107,027 square km. The current state of the Isfahan emergency system
shows that the costs associated with the emergency and service time
for serving patients (transport, immediate treatment, and medical trans-
mission) are relatively high. This issue has been discussed with experts
and managers in several lengthy meetings in the form of brainstorming
and the Delphi method. Isfahan health officials have concluded that
the root cause of the problem is the improper location of emergency
centers and ineffective ambulance allocation. Moreover, the Isfahan
health authority has decided to rise the survival rate by increasing the
number of ambulances.

The city of Isfahan is the provincial capital consisting of 15 areas
(see Fig. 3). The most crowded areas of Isfahan are areas 1, 3, 5 and 6.
On the basis of the ageing population, the average age of these areas
is higher than others and historically more than 41 per cent of the

http://metronixinc.com/site/ambulances.html
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Table 2
Patient types.

Type Description Standard response
time (Min)

I Urgent and emergency help 9
II Serious but not urgent 15
III Non-life-threatening 20

Fig. 3. Isfahan areas.

otal emergency calls are received from these four areas of Isfahan.
herefore, their EMS coverage plays a vital role for the health care
anagers of the city. For this reason, we apply the proposed method

n this paper to areas 1, 3, 5 and 6 of Isfahan. Each area is divided into
smaller sections, resultantly, there are 12 urban (demand) points. In

ddition, patients are classified into 3 types as shown in Table 2.
We point out that the standard response times in Table 2 are de-

ermined by the Ministry of Health, Treatment and Medical Education
f Iran. Defining different response times reflect the heterogeneous
roups of the population that the EMS system serves. As the demand
ate and traffic conditions affect response time, we partition all hours
f the day into four smaller intervals including dawn (0:00–5:59),
orning (6:00–11:59), afternoon (12:00–17:59), and evening (18:00–
3:59). The demand rate of the different demand points in terms of each
atient type was collected for a 2-month period of time as summarized
n Table 3.

The health care management team decided to establish 12 emer-
ency stations at most to cover all sections in the four areas. In
ddition, in collaboration with several practitioners, a potential lo-
ation for the emergency center in every section is determined, and
he population gravity centers are used to form the coordinate of all
emand points. Table 4 displays the travel time between emergency
tation j, 𝑗 ∈ {𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ,𝐺,𝐻, 𝐼, 𝐽 , 𝐾,𝐿} and demand point i,
𝑖 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} in four pre-determined time intervals,
which are obtained using GIS software and google maps.

A wide variety of survival functions can be used to show the proba-
bility of survival. There are two general survival functions consisting of
exponential decay functions and step functions. In the exponential de-
cay function, the survival probability decreases over a period of time
while the step function is a piecewise constant function for the survival
probability that jumps by a given amount at a finite number of points.
In this paper, the standard response time is considered to define the step
survival functions. Table 5 shows the survival functions and relative
importance associated with each patient type.
 s

7

After consultations with the health care management team of Isfa-
han, the maximum number of ambulances that the EMS procurement
team can provide are 37 general ambulances and 12 advanced ambu-
lances. The proposed model (3) is solved by the use of CPLEX solver
in the general algebraic modeling system3 (GAMS) to solve the Mixed
Integer Linear Programming (MILP) and find a primary solution. The
weighted sum method is used to solve the two-objective optimization
problem.4 The number of ambulances allocated to the emergency sta-
tions is reported in Table 6 and the respective total cost is $2,152,037.
In addition, the survival rates of the patient types I, II and III are
0.125, 0.638 and 0.803, respectively. It should be noted that we do
not consider the dynamic conditions and divided time when running
the model. It means that the equal amount is considered for demand
rate and travel time at all times.

It is of interest to study the design problem over time. The complex-
ity in observing the dynamic conditions in the proposed model leads
us to apply the simulation model and provide insight based on the
results. Simulation is an advantageous method to assess and analyze
the situation of current and newly designed systems [80,81].

While an optimization model aims to calculate the optimal val-
ues of decision-making variables, solving the model with multiple
dynamic and uncertain parameters is often intricate and uneconomi-
cal. To solve and analyze these types of problems, simulation models
can be combined into optimization models, which is referred to as a
simulation-based optimization method. Simulation-based optimization
is a structural method for determining the optimal parameters in the
system and, in turn, the objective function is measured based on the
simulation model [82]. The simulation based optimization method in
a constant time enables us to evaluate the system’s behavior at specific
values of input variables. A simulation experiment is defined as a test
or a series of tests in a way that significant variations are made to the
input variables of the simulation based optimization.

Thereby, the results obtained from simulation experiments can help
the decision-maker analyze changes in input variables (parameters) and
select the best values for them [83]. Generally, a simulation based
optimization model includes n input variables (𝑥1, 𝑥2,… , 𝑥𝑛) and m
output variables (𝑦1, 𝑦2,… , 𝑦𝑚) with the aim of defining a set of optimal
input variables which optimize the output variables. The simulation
based optimization model is a suitable method for solving complicated
and dynamic problems. As shown in Fig. 4, the output of a simulation
model is used by an optimization strategy to find the optimal value for
output variables along with getting feedback on how improvement can
be made based on the [nearly] optimal solution. Obviously, the role of
defining an appropriate optimization strategy is of great importance in
this approach.

Let us construct the following six steps with the aim of analyzing
the problem dynamically via simulation and reaching a more realistic
and reliable solution:

1. The primary solution is calculated from model (3).
2. Assigning an emergency station to each demand point with the

maximum 3 general and 1 advanced ambulance.
3. Assigning an emergency station to every two neighbor demand

points with a maximum 6 general ambulances and 2 advanced
ambulances.

4. Assigning a fixed emergency station to every two neighbor de-
mand points with the maximum 6 general and 2 advanced
ambulances as well as allocating a temporary emergency cen-
ter (a mobile general ambulance located in crowded points
temporarily) to each pair of demand points.

3 https://www.gams.com/
4 According to Toro-Díaz (2015), meta-heuristic methods can be used to

olve large-scale problems.

https://www.gams.com/
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Table 3
Demand rate of each patient type.

Time interval Demand
points

Patient types Time interval Demand
points

Patient types

I II III I II III

Dawn

1

52 61 60 Dawn

7

32 38 41
Morning 81 83 81 Morning 36 40 39
Afternoon 111 116 95 Afternoon 68 70 64
Evening 163 158 102 Evening 67 84 72

Dawn

2

42 46 40 Dawn

8

26 34 29
Morning 63 64 62 Morning 45 48 37
Afternoon 104 106 114 Afternoon 48 52 48
Evening 125 169 171 Evening 53 68 55

Dawn

3

76 82 62 Dawn

9

21 29 24
Morning 77 86 52 Morning 30 33 28
Afternoon 131 142 130 Afternoon 46 48 41
Evening 122 130 141 Evening 48 50 49

Dawn

4

65 66 68 Dawn

10

12 16 18
Morning 83 85 75 Morning 16 18 22
Afternoon 92 94 94 Afternoon 25 29 35
Evening 121 127 103 Evening 62 65 58

Dawn

5

33 36 28 Dawn

11

18 27 23
Morning 89 92 74 Morning 19 21 20
Afternoon 127 140 135 Afternoon 26 29 34
Evening 156 161 124 Evening 38 42 36

Dawn

6

47 54 46 Dawn

12

15 18 18
Morning 48 54 38 Morning 18 23 17
Afternoon 82 92 84 Afternoon 48 52 41
Evening 51 92 75 Evening 54 61 57
Fig. 4. A simulation–optimization model.

5. Allocating a fixed emergency station to every two neighbor
demand points with the maximum 3 general ambulances and
1 advanced ambulance as well as allocating a temporary emer-
gency center (a mobile general ambulance located in crowded
points temporarily) to each pair of demand points.

6. Allocating an emergency center to demand points that receive
the most call rate (80%) for patient type I with the maximum 3
general ambulances and 1 advanced ambulance. The remaining
demand points are treated by Scenario 3.

Considering Fig. 1, the simulation runs the corresponding model for
efined scenarios via Arena software. Notably, historical data collected
rom Isfahan Health Organization is fitted to a theoretical distribution
f the proposed framework. The validation of the proposed model for
he case study is carried out by tracking the entities ambulances and
atients) and resources of the simulation model and their adaptability
o the expected cases is inspected by Isfahan Health Organization
xperts. The subject matter experts therefore follow the entities to make
ure that all the constraints in the proposed mathematical model have
een covered by the simulation model. Furthermore, the outputs of sim-
lation model for some certain situations and well-known conditions
8

have been considered [84]. The simulation model includes probabilistic
parameters. The historical data are used to estimate the probability
distribution for each parameter as resulted in Table 7.

It should be noted that the demand rate of each patient type and
ambulance response time is reported in Tables 3 and 4, respectively.
Furthermore, the constant parameters are shown in Table 8.

As it is not straightforward to define the start and endpoints for
the simulation model, a steady-state model is presumed. Therefore, the
number of replications needs to be first determined. First, the model is
run 30 times and the statistical description of the outputs is shown in
Table 9.

The equation 𝑛 ≅ 𝑧2
1− 𝛼

2

𝑠2

ℎ2
is used to identify the total number of

replications, in which s is the standard deviation of the initial replica-
tions and h is a fixed number showing the half domain of confidence
interval. Table 10 consequently shows the total number of replications
of each scenario.

Having gone through Table 10, the results allow us to think of
110 imitations for the simulation model. The replication length in this
model is 24 hours for each repetition. A warm-up period, T, is then
applied to help determine the running time for simulation and ensure
that the objective function values are measured in a steady state. Let
us focus on Scenario 1 for example. As our model is sought to obtain
the values of three survival rates and cost, fours Ts is considered for
Scenario 1. Comparing the four trends in Fig. 5 shows that the longest
convergence time is related to the survival rate (c). In other words,
the survival rate for Scenario 1 reaches the steady-state status when
𝑇 = 8000 h, Likewise, T can be estimated for the remaining scenarios.

Table 11 exhibits the survival rates and total cost of each scenario
after simulating the model 110 times.

Generally, results show that the additional service station and am-
bulance lead to an increase in survival rates and total cost. Scenario
2 as the simplest scenario is not acceptable to some extent because it
has the maximum cost compared with other scenarios and the survival
rates of A and B are minimal. It means that increasing cost in Scenario
2 does not improve all the survival rates considerably. In addition, it
might be difficult to make decisions on the basis of Scenarios 3 to 6 due
to the conflicting results for the four decision variables as summarized
in Fig. 6. That is to say, though the survival rate plays a key part in
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Table 4
Travel time between demand points and service nodes.

Time interval Demand points Service nodes (minutes)

A B C D E F G H I J K L

Dawn
1

3.1 12.4 13.3 4.1 3.6 14.5 15 3.2 2 14 15.1 13.8
Morning 3.7 12.6 13.3 4.1 3.7 14.8 15.1 3.4 2.4 14.2 15.4 14
Afternoon 3.9 13.5 13.8 4.9 4 15.4 15.6 3.7 2.5 14.5 16 14.6
Evening 4.2 14 14.1 5.3 5.1 15.8 16 14.1 3 15.3 16.2 15

Dawn
2

12.5 14.1 13.6 15 2.4 13.1 13 14.8 16.5 17.3 14.1 2
Morning 12.7 14.2 13.7 15 2.5 13.3 13.2 15 16.8 17.5 14.4 2.2
Afternoon 13 14.5 14 15.4 2.9 13.9 13.4 15.2 17.2 17.7 14.6 2.4
Evening 13.5 15 14.8 16.1 3.5 14.7 14 15.8 17.6 18.2 15.4 3.3

Dawn
3

17.5 15 3.7 16.8 4.1 12.2 13.8 14.9 6.4 8.2 3.4 2.7
Morning 17.8 15.4 4 17 4.5 12.5 14.2 15.4 7 8.5 3.8 13.4
Afternoon 18.2 16 4.5 17.5 5 13 14.9 16 7.7 9.1 4.2 14
Evening 18.5 16.6 5.2 18.1 5.7 13.6 15.4 16.7 8.2 9.8 4.9 14.6

Dawn
4

19.5 5.2 8.2 14.2 21.1 17.5 25.1 9.3 8.8 22.4 25.4 3.5
Morning 19.7 5.4 8.5 14.6 21.3 17.8 25.6 9.5 9 22.6 25.7 3.7
Afternoon 20 6.1 8.9 15 21.6 18.2 25.9 10.1 9.2 23.1 26.3 4.2
Evening 20.3 6.1 9.2 15.3 22.2 18.6 26 10.6 9.6 23.4 26.7 4.8

Dawn
5

9.9 28.1 18.1 16.8 26.2 8.5 4.2 16.2 18.3 21.1 18.4 3.2
Morning 10.2 28.4 18.3 16.9 26.2 8.6 4.3 16.2 18.5 21.3 18.6 3.5
Afternoon 10.6 28.5 18.8 17.5 26.5 9 4.6 16.5 18.9 21.6 19 3.7
Evening 11 28.7 19.2 17.9 26.9 9.4 4.6 17 19.2 21.8 19.4 4

Dawn
6

14.2 8.2 6.4 12.2 18.1 5.4 4.3 3.1 17.9 4.5 5 6.8
Morning 14.5 8.4 6.4 12.4 18.1 5.7 4.5 3.4 18.2 4.8 5.3 7
Afternoon 14.7 8.7 6.6 12.8 18.5 6 4.8 3.6 18.3 5 5.5 7.2
Evening 15.1 9 6.9 13 18.7 6.2 5 3.8 18.7 5.5 6 7.8

Dawn
7

3.2 4.1 5.6 10.3 11.4 5.6 17.8 14.3 3.1 2.2 5.7 16.3
Morning 3.3 4.3 5.9 10.5 11.6 5.8 18 14.5 3.3 2.5 6 16.5
Afternoon 3.5 4.5 6.2 10.7 11.8 6 18.2 14.7 3.5 2.7 6.3 16.8
Evening 3.7 4.8 6.5 11 12 6.3 18.5 15 3.8 3 6.7 17.2

Dawn
8

5.4 10 9.8 8.7 13.4 15.4 6.1 17.4 14.2 16.3 11.2 13
Morning 5.6 10.5 10.2 9 13.5 15.5 6.3 17.5 14.4 16.5 11.5 13.3
Afternoon 6 10.8 10.5 9.8 13.8 15.8 6.5 17.7 14.7 16.8 11.8 13.5
Evening 6.6 11.3 11 10.2 14.2 16.2 6.8 18.2 15 17.5 12.3 13.8

Dawn
9

15.8 14 10.2 8.9 13.5 16.8 3.2 4.1 5.3 4.8 18.3 6.8
Morning 16 14 10.5 9.1 13.7 17 3.5 4.3 5.5 5 18.5 7
Afternoon 16.2 14.5 10.8 9.4 14 17.3 3.8 4.5 5.8 5.3 18.7 7.2
Evening 16.5 14.7 11.2 9.6 14.2 17.5 4.2 5 6.3 5.8 19 7.8

Dawn

10

3.4 5.5 4.2 12.8 8.5 6.7 7.8 10.2 11.3 15.4 17.2 9.1
Morning 3.6 5.7 4.5 13 8.7 7 8 10.5 11.5 15.8 17.5 9.3
Afternoon 4 6 4.8 13.3 9 7.2 8.3 10.7 11.7 16 17.9 9.5
Evening 4.5 6.4 5.3 13.5 9.5 7.5 8.8 11.1 12 16.5 18.3 10

Dawn
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12.2 10.1 6.8 4.2 3.3 14.8 15 12.1 3.4 2.1 5.8 14.8
Morning 12.5 10.3 7 4.5 3.5 15 15.2 12.3 3.6 2.2 6 15
Afternoon 12.8 10.5 7.3 4.8 6 15.2 15.5 12.5 4 2.5 6.3 15.3
Evening 13.2 10.8 7.5 5.2 6.5 15.5 16 12.8 4.5 3 6.8 15.8

Dawn
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3.2 2 4.6 8.8 9.8 12.3 13.5 16.8 7.8 9.2 13.7 5.5
Morning 3.5 2.2 5 9 10 12.5 13.8 17 9 9.6 14 5.9
Afternoon 3.9 2.8 5.4 9.5 10.4 12.8 14.2 17.3 9.4 10 14.3 6.4
Evening 4.4 3.3 6 9.8 11 13 14.5 17.6 9.9 10.6 14.7 7
Table 5
Proposed survival functions and relative importance of each patient type.

Patient type Step survival functions Weights

I 𝑠𝐼 (𝑡) =
{

1 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 9
0 𝑓𝑜𝑟 𝑡 > 9

4

II 𝑠II (𝑡) =
{

1 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 15
0 𝑓𝑜𝑟 𝑡 > 15

2

III 𝑠III (𝑡) =
{

1 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 20
0 𝑓𝑜𝑟 𝑡 > 20

1

an EMS system, resource limitation does not allow decision-makers to
improve this factor by unreasonable and infeasible decisions.

Let us use the DEA model to compare these 6 scenarios and choose
the best scenario. To do so, there is a need to define the inputs and
outputs for each scenario. The inputs are (i) the number of selected EMS
stations, (ii) the number of the general type of ambulances allocated
9

Table 6
Ambulances allocated to the emergency stations.

Service nodes A B C D E F G H I J K L

General type 4 5 3 5 4 3 3 2 2 2 2 2
Advanced type 1 2 1 1 1 0 2 1 1 0 1 1

to stations, and (iii) the number of advanced ambulances allocated to
stations and the outputs are (i) total cost and (ii) survival rates of types
I, II and III. The results obtained from the DEA model are presented in
Table 12.

On the basis of DEA analysis, scenarios 4 and 5 are superior followed
by scenario 2. Although the survival rates of scenarios 4 and 5 are not
the greatest, DEA compares the scenarios based on both inputs and
outputs to find the best choices. Comparing scenario 4 with scenarios
1 and 2 shows that adding the portable station can help to increase
the survival rate with incurring less cost. At a glance at the result in
Table 12, it can be drawn that patient types I and II have a significant
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Table 7
Parameters’ distributions for the simulation model.

Receiving phone call Time for getting
initial information

Probability of physician
requirement

Time for identifying the
level of emergency care

Probability of ambulance
requirement

Ambulance
allocation time

Service time on
the site

Poisson distribution
with mean 860 calls
per day

Triangular
distribution with (1,
2, 3) minutes

Bernoulli distribution
probability 75%

Exponential distribution
with average 1 min

55% for the general type,
35% for the advanced
type, and 10% does not
need an ambulance

Exponential
distribution with
mean 1 min

Exponential
distribution with
mean 4 min
Table 8
Constant parameters.

Cost of the EMS
construction ($)

Purchasing cost of
ambulance vehicles ($)

Maximum ambulances Maximum EMS

General Advanced General Advanced

275,000 62,500 87,500 37 12 12
Table 9
Statistical output of initial replications.

Scenario Average Standard deviation Minimum output Maximum output

Survival rate Cost Survival rate Cost Survival rate Cost Survival rate Cost

I II III I II III I II III I II III

1 0.123 0.640 0.800 2,000,540 0.011 0.059 0.080 224,338 0.117 0.57 0.79 2,000,003 0.127 0.642 0.806 2,107,854
2 0.121 0.624 0.849 2,320,001 0.012 0.061 0.081 231,109 0.119 0.618 0.848 2,478,945 0.125 0.627 0.855 2,647,542
3 0.130 0.697 .0607 1,628,798 0.017 0.068 0.059 163,594 0.129 0.694 0.605 1,435,379 0.137 0.701 0.702 1,725,386
4 0.131 0.685 0.740 1,943,762 0.028 0.059 0.070 189,341 0.127 0.679 0.738 1,799,856 0.135 0.687 0.747 2,001,360
5 0.135 0.692 0.712 1,822,395 0.011 0.057 0.070 179,835 0.134 0.690 0.711 1,796,853 0.136 0.697 0.714 1,856,347
6 0.124 0.643 0.818 1,998,879 0.013 0.059 0.078 188,576 0.123 0.641 0.817 1.987,874 0.127 0.645 0.825 2,201,347
Fig. 5. Steady-State (Warm-up period).
Fig. 6. Survival rates and total cost of each scenario.
10
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Table 10
Required number of replications.

Scenario Total required replications

1 106
2 112
3 101
4 107
5 103
6 110

Table 11
Results of simulation.

Scenario Survival rate Cost ($) Estimation interval for
cost ($)

I II III

1 0.125 0.638 0.803 2,031,665 2,031,665 ± 41923.22
2 0.122 0.623 0.852 2,587,221 2,587,221 ± 43188.55
3 0.132 0.698 0.609 1,639,999 1,639,999 ± 30571.67
4 0.130 0.683 0.743 1,953,359 1,953,359 ± 35383.14
5 0.133 0.694 0.710 1,839,025 1,839,025 ± 33606.71
6 0.122 0.642 0.821 2,011,628 2,011,628 ± 35240.18

Table 12
DEA’s results for 6 scenarios.

Scenarios DEA scores

1 0.72
2 0.94
3 0.86
4 1
5 1
6 0.88

Table 13
Survival rate of Isfahan municipality regions.

Areas of Isfahan Survival rate

I II III

1,3,5 and 6 (scenario 4) 0.130 0.683 0.743
1,3, 5 and 6 (scenario 5) 0.133 0.694 0.710
2 0.121 0639 0.802
4 0.116 0.583 0.765
7 0.110 0.551 0.553
8 0.102 0.621 0.664
9 0.113 0.589 0.816
10 0.117 0.579 0.746
11 0.103 0.563 0.589
12 0.100 0.521 0.486
13 0.109 0.549 0.568
14 0.110 0.572 0.621
15 0.100 0.512 0.439

effect on choosing scenarios 4 and 5. Thus, building the portable station
in the regions that have the most call of patient I can lead to the
increase in the survival rate. Convincingly, scenario 3 is penultimate
in the ranking order while it has the highest survival rate for types I
and II and lower cost compared with scenarios 4 and 5.

According to the developed approach in this paper, scenarios 4 and
5 are the best configuration for the EMS system for areas 1, 3, 5 and 6
of Isfahan. Let us compare these findings with the existing survival rates
in other areas (see Table 13). Clearly, the survival rates of types I and
II for areas 1, 3, 5 and 6 are higher than other areas at the minimum
cost and the survival rate of types III is acceptable.

5. Conclusion

This study integrates the simulation and optimization methods to
find the best EMS configuration and ambulances allocation with the
aim of increasing survival rate and decreasing cost across the EMS
system. It is difficult to embed dynamic situations such as traffic con-
ditions in mathematical models when analyzing EMS systems. Hence,
11
this paper leverages the simulation method to solve the problem across
different scenarios.

The simulation-based optimization model was implemented in four
selected municipal regions of Isfahan to obtain a proper design for
emergency center locations and ambulances allocation. In this regard,
six scenarios were defined to simulate the model in a dynamic en-
vironment and measure the survival rate and the total cost of each
scenario. In view of the survival rate and costs, DEA was then used
to rank scenarios and select the best ones (scenarios 4 and 5). The
chosen scenarios show that patient types I and II play a crucial role
in increasing the survival rate and it is essential to be regarded in
designing EMS facilities, which can help to improve the survival rate.

For future research, the proposed approach can be extended by
considering some other key factors such as seasonal variations and
weather affecting the travel time of ambulances. With the growing
applications of machine learning techniques, this method could also
be studied in combination with on-going research on identifying the
location of expected emergency events through techniques such as
artificial neural networks and decision models for location–allocation.
Additionally, it could be a worthwhile study to apply the proposed
method in this paper to similar problems in other emergency response
systems such as urban firefighting facilities systems.
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