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a b s t r a c t

The paper proposes a bi-level multi-objective optimization model to optimally design and operate
renewable energy sources and storage systems in an existing electrical grid with increasing demand.
while respecting network constraints based. The bi-level optimization model combines particle swarm
optimization (PSO) and dynamic linear AC-optimal power flow (DLOPF). The aim of the bi-objective
model is to minimize costs while limiting carbon emissions. PSO sizes and identifies the placement of
battery energy storage (BES) systems, and DLOPF locates and sizes RES in a spatial–temporal framework
using the Levelized Cost of Energy and Storage. Different scenarios were applied to the IEEE-30 bus
system to reveal the behavior of the dynamic network for the different cases, and the associated effect
of integrating RES and BES. The model resulted in optimized scenarios in terms of placement and
sizing of RES and BES at the lowest cost while considering cost minimization and carbon constraints.
This shows how the complexity of the CO2 constraints requires more RES and BES installations and
thus more funds. The maximum CO2 limit achieved is 30%, which has reached the storage limits and
increased the overall cost by $15 m.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There has been considerable expansion and growth of the
lectrical power system over the past two decades. With the
orldwide demand for electricity increasing at the rate of 720
Wh per year (IEA, 2019), global CO2 emissions from the power
ector are also increasing, and in 2021 reached a record 36.3
t (Flagship report, 2022). The penetration of RES such as solar
nd wind is increasing in line with the mounting needs of gov-
rnments worldwide to achieve their energy independence and
missions reduction targets (Maffei et al., 2014).
When a pathway is established for transforming the global

nergy sector from fossil-based to zero-carbon sources, it gives
ise to energy transition policies (IRENA, 2022). As a result, re-
ewables were responsible for 26.3% of worldwide electricity
eneration in 2020 (15.8% hydropower, 5.3% wind power, etc.)
Ritchie and Roser, 2020), and this figure is expected to rise
o 45% by 2040 (World energy outlook 2019, 2019). However,
he installed Energy Storage (ES) capacity needs to be 450 GW
y 2050 to reduce global warming by 2 ◦C (Olabi et al., 2021).

The growth of these new intermittent energy sources is causing
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nc-nd/4.0/).
increased complication for the existing electrical grids and com-
pounding the problem of stabilizing the power flow (Silva, 2018).
RES and ES need to be optimally placed and sized at the planning
stage to meet demand and help the electricity grids operate more
efficiently (Jorgenson et al., 2022). The problem is to find the
optimal combination of RES, fossil fuel and ES technologies while
reducing carbon emissions to a minimum and maximizing the
profitability of the overall electricity network over a multi-period
time frame.

Various electric energy planning approaches for integrating
different types of renewables have been investigated in the liter-
ature. For sizing photovoltaic (PV) systems, a heuristic approach
was used in consideration of the price of electricity (Zebarjadi
and Askarzadeh, 2016). In Pereira et al. (2016), the integration of
wind farms and hydroelectric plants was studied using a deter-
ministic approach with strict targets for CO2 reduction. Artificial
intelligence methods such as PSO, genetic algorithms (GA) and
simulated annealing were compared in Torrent-Fontbona and
López (2016) to optimize the location of renewable generation
sites. These studies demonstrate that PSO outperforms the other
methods. GA was used in a bi-level approach to optimize the siz-
ing and operation of battery energy storage (BES) (Ma et al., 2022)
and reduce the total cost via optimal configuration of a hybrid
PV/Wind Turbine (WT) system with batteries (Yang et al., 2008).

The bi-level optimization approaches are also developed for other
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Nomenclature

Variables

P Active power (MW)
Q Reactive power (MVAr)
S Apparent power (MVA)
F Objective function
D Storage duration
C/I Total operational/investment cost by

production
Γ Total cost by category
A Installed amount of RES
v Voltage magnitude
θ Phase angle
G/B Real/imaginary part of the admittance

matrix
g/b Conductance/susceptance of a branch
ϵ Variables added to guarantee voltage

positivity
E Active energy level in the BES
X Population for PSO
∆F Normalized objective function approx-

imation error between two successive
iterations

∆tol Tolerance for the objective function
approximation error

Parameters

C Elementary operational cost
I Elementary investment cost
O Elementary O&M cost
LT Lifetime
nl Lifetime of the overall system
En CO2 emissions
Ta CO2 emissions constraint (%)
α/β Storage cost constants for BES invest-

ment cost calculation
r Discount rate of the project
η Battery efficiency
n Number of segments needed to linearize

branch flow limits
li Group of lines for the branches’ flow

limits
ra Random parameters between 0 and 1
w Inertia weight in PSO
a Acceleration in PSO

Indices and sets

N Set of buses, i, j ϵ N

T Set of all times, t ϵ T

c/u/s/w Indices of buses with CG/VG/PV/WT
k Iteration number in DLOPF
L Iteration number in PSO
ll/ul Lower level/Upper level
inv Investment
o&m Operation and maintenance
op Operational
dx Particle index in PSO
1451
Upper-scripts

cg/vg Classic generator/virtual generator
pv/wt Photovoltaic/wind turbines
b BES index
l Load index at a bus
c Charge index of the storage system
d Discharge index of the storage system
p/q Active/reactive power
max Maximum value for the upper limit
cgT Total produced by classic generators
inj Injected at the bus
best Best experience of parameter in PSO

Abbreviations

OPF Optimal power flow
DLOPF Dynamic Linearized
AC-OPF Alternating current-OPF
DC-OPF Direct current-OPF
PV Photovoltaic
CG Classic generator
WT Wind turbines
p.u Per unit
RES Renewable energy sources
BES Battery energy storage
VG Virtual generator
ES Energy Storage

applications. Thus, a combination of two-layer GA and simulated
annealing is used for public charging station localization of elec-
tric vehicles (Li et al., 2022). PSO was applied in Maleki et al.
(2016) to determine the optimal size for a hybrid multisource
system PV/WT/BES. The most commonly-used AI algorithms in
the literature are therefore GA and PSO (Lian et al., 2019), with
PSO often preferred for its higher probability and efficiency in
achieving the global optima (Alshammari and Asumadu, 2020).
These approaches presented suitable solutions for reducing com-
putation time and were easy to implement. However, on the
whole they did not take into account power flow optimization
or physical network constraints.

A territorial energy plan that aims to increase the level of
renewable energy sources via a detailed modeling of the net-
work can use optimal power flow (OPF) methods. The authors
in Biswas et al. (2017) incorporated wind and solar power in
their OPF solutions, using the differential evolution algorithm.
However, OPF was used only to optimize a single point in time;
to extend the problem over multiple time periods, a dynamic OPF
(DOPF) was proposed in Gill et al. (2014). The optimal dispatch
of power generation across a network was resolved using DOPF
to satisfy power demand within a given timeframe by mod-
eling ‘intertemporal’ technologies (energy storage) and effects
(e.g., flexible demand, generator ramp rates). Similar studies us-
ing DOPF can be found in the literature (Azizipanah-Abarghooee
et al., 2016; Chung et al., 2011; Haiyan Chen et al., 2005; Morstyn
et al., 2016; Uturbey and Costa, 2003), in which interruptible
load is investigated as part of the electricity market. Other works
have been based on the multi-period optimization method to
help propose the optimal placement and usage of renewables and
storage systems (Lamadrid et al., 2011), or the active–reactive
power dispatch from energy storage (Gabash and Li, 2012). OPF
was used dynamically with renewables in Li et al. (2021), using
spatial–temporal graph information to improve the stability of
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Table 1
Summary of methods for sizing of hybrid renewables energy systems in recent articles.
Refs. Components Modeling of power

flow
Network type Model’s goal Utilized methods

PV WT BES

Ma et al. (2022) ✔ Active power
equilibrium equation

Distribution
network

- Sizing SB
- Operational cost

Bi-level (GA)

Alshammari and
Asumadu (2020)

✔ ✔ ✔ Active power
equilibrium equation

Small rural
community

- Sizing
- Cost
- Emissions

Harmony
search/Jaya/PSO

Xu et al. (2020) ✔ ✔ ✔ Active power
equilibrium equation

Power supply - Configuration
- Inv. cost

Multi-objective
PSO/Weightless
Swarm Algorithm

Arabi-Nowdeh
et al. (2021)

✔ ✔ ✔ Active power
equilibrium equation

Distribution
network

- Size
- Emission
- Losses
PV angle

Sea Horse
Optimization

Sadeghi et al.
(2020)

✔ ✔ ✔ Active power
equilibrium equation

Distribution
network

- Life cycle cost
- Loss of power supply
probability

Multi-objective PSO

Amigue et al.
(2021)

✔ Active, reactive
power flow equations
+ Voltage

Distribution
network

- Optimal placement
- Loss

Slime mould
algorithms

Ali et al. (2017) ✔ ✔ Active, reactive
power flow equations

Distribution
network

- Optimal sizing Ant Lion Optimization
Algorithm

Khan et al. (2020) ✔ ✔ Detailed optimal
power flow model

- Optimal cost Grey Wolf Optimizer
+ OPF

Li et al. (2021) ✔ ✔ Detailed optimal
power flow model

Distribution
network

- Optimal cost Deep Reinforcement
Learning + OPF

This paper ✔ ✔ ✔ Detailed optimal
power flow model

Transmission or
distribution
networks

- Optimal placement
- Sizing
- Cost (Inv. +

Operational)

Bi-level
(PSO + DLOPF)
the network. In Shaheen et al. (2021b), the OPF was resolved
using the Hunger Games Search to minimize generation costs
by integrating RES. For the same purpose, the authors of Sha-
heen et al. (2021a) used Heap’s algorithm to arrive at the OPF.
Although these research works (Li et al., 2021; Shaheen et al.,
2021b,a) present several noteworthy models combining RES with
OPF models, none have considered BES devices.

Several works have been based on the application of nonlinear
PF formulations (Gabash and Li, 2012; Lamadrid et al., 2011;
turbey and Costa, 2003), however, these approaches are time-
onsuming and do not guarantee the global optimum will be
chieved. To overcome this difficulty, linear OPF formulations
llow the use of linear programming (LP) methods (e.g. the sim-
lex algorithm Bartels and Golub, 1969; Smale, 1983). Kargarian
t al. (2018) used this strategy but they used DC-OPF for their
ynamic smart electric grid study, which is only applicable in
ertain circumstances.
BES operations and planning have attracted widespread re-

earch attention among researchers (Ma et al., 2022). A stochas-
ic analysis framework was used to determine BES capacity in
ayram et al. (2017), and a cost–benefit analysis was carried out
o address the issue of BES capacity sizing. In terms of operational
trategy, a centralized energy management system to dispatch
Vs and BESs was studied in AlSkaif et al. (2017). An overview
f the research on the optimization objectives and requirements
f the BES system is presented in Hannan et al. (2021). Based on
his overview and on previous works (AlSkaif et al., 2017; Bayram
t al., 2017), power flow is scarcely considered and applied pri-
arily to distribution networks. A few works have addressed the

ransmission network with RES and BES planning; in Li and Li
2021) for example, a combination of GA for component sizing
nd Mixed-Integer Linear Programming (MILP) for the operation
odel was used for probabilistic sizing of a low-carbon-emission
ower supply system. This model is only applicable with high
1452
voltage direct current. In Keck et al. (2022), the network cost
was not considered in relation to the optimization issue, and a
novel parallel investigation with a near-optimal LP and heuris-
tic optimization approach was carried out on a countrywide
scale to estimate the mix for future power generation. It was
demonstrated that substantial simplification is required for the
LP to be solvable and leads to an overly optimistic installed
capacity and cost. The heuristic approach showed a significant
advantage in terms of performance, requiring only 3% of the
near-optimal runtime and a fraction of the calculation iterations.
Bi-level approaches are widely performed in literature and the
linearization techniques are validated to reduce the computa-
tional time burden. In García-Muñoz et al. (2021), the proposed
approach combines GA algorithm and AC-OPF to optimally locate
and size RES and BES into distribution network. Another two-
stage bi-level approach is detailed in Maiz et al. (2022) for the
expansion planning of virtual power plant, a linearization tech-
nique is applied also. However, the BES design is rarely based
on factors influencing the storage investment cost (e.g., storage
duration and power), the cost depreciation rate is not considered
in addition to the environmental effect. In brief, Table 1 presents
a comparison between different articles in the literature with
the present paper regarding the designed technologies (PV, WT
or BES), modeling of power flow, network type, model’s goal in
addition to the utilized methods for the design and operation.

Motivated by these discussions, the aim of the present study
is to develop a new bi-level PSO-DLOPF using both heuristic and
linear OPF approaches for optimal integration of RES and BES to
minimize the total energy cost, taking into consideration various
constraints such as existing network constraints, the installable
PV surfaces available in each zone, the maximum number of BES
systems, and the different carbon emissions constraints. In the
upper level, a PSO algorithm was used to locate and size a limited
BES to minimize the global cost. In the lower level, a DLOPF
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ptimization algorithm was calculated for minimization of total
nvestment & operational costs while achieving a certain carbon
missions level.
The proposed approach is adapted for energy planning by:

(1) Transforming the model to a dynamic model
(2) Adding RES systems
(3) Adding BES model
(4) Adding Virtual generators to guarantee a mathematical

solution at each time step
(5) Adding a ‘‘typical days selection step’’ to ensure that the

simulation is representative of the entire year operation.

he paper is structured as follows: Section 2 presents the method-
logy, including planning strategies, grid description, the DLOPF
odel and the optimization algorithm. Section 3 presents the

ormulation of the problem and the solution. Section 4 gives the
esults and analysis of the simulation, followed by the conclusion
n Section 5.

. Methodology and models

.1. Methodology

RES and BES could be installed in transmission networks to
ackle the increase in energy requirements and/or to raise the
roportion of renewable energy in the system. A methodology
as developed to optimize the size and location of RES and BES

n transmission networks to generate sufficient power to meet
he higher demand but remain within existing grid constraints.
he overall structure for the proposed approach PSO-DLOPF is
resented in Fig. 1. In a bi-level structure, the upper-level (left
ide of Fig. 1) of the model first optimized BES placement and
ize using an iterative method to minimize an objective function
sing the PSO. This calculation was based on results from a lower-
evel (right side of Fig. 1) model which optimized the placement
f renewable generation units and energy production and storage
ispatch using DLOPF, then transferred the results to the upper-
evel. The upper-level then updated the placement and size of
he batteries and transferred them back to the lower level. The
rocess was repeated until the end criteria were achieved and
he optimum arrived at.

The overall structure of the proposed PSO-DLOPF model shown
n Fig. 1 is detailed as follows:

Step 1. Set iteration number for the upper level, collect input
parameters boundaries, initialize population X as the solution
of the upper level and obtain BES location, duration and
power from X . Transfer X to the lower level.

Step 2. Collect relevant data, input grid parameters and load
data. Initialize voltage (V0) and voltage angle (θ0) values.
Transmit BES design information X to lower level as known
parameters. Calculate the lower-level objective function (Fll)
for the first iteration.

Step 3. Update lower-level iteration by updating Vk and θk ac-
cording to the results of the first iteration. Recalculate Fll.

Step 4. Evaluate the termination condition to determine whether
a stopping criterion is achieved. If so, the recorded optimal
value is passed back to the upper level to calculate the
upper-level objective function value.

Step 5. Increase the number of iterations L = L + 1. Update the
upper-level population X and transfer the updated population
from upper to lower level to repeat steps 2–4.

Step 6. Increase the number of iterations L = L + 1. If the
stopping criterion is met, exit the loop to stop the iteration.

Step 7. Transfer Xbest values to the lower level to obtain the

optimal values for the proposed design.
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2.2. Upper-level model: optimal placement and planning of BES

2.2.1. Definition of optimization problem
The upper-level model finds the optimal placement and size

for the BES by optimizing the levelized cost of energy (LCOE),
which includes total investment, production, maintenance, and
operational (O&M) costs.

The LCOE is defined as the price at which the generated
electricity should be sold for the system to break even at the end
of its lifetime (Walter Short et al., 1995). The upper level objective
function Ful is the LCOE of the system, including BES defined as
the sum of two terms: first, the actualized cost of BES and second
the optimal levelized cost of RES installation, maintenance and
energy production from classic energy sources (Fll). The latter
is a result of the lower-level optimization issue where optimal
placement and sizing of RES and optimal energy production and
storage dispatch is carried out. This is expressed in Eq. (1) (The
optimization variables appear in bold below.)

min Ful = min
Ib.( nl

LTb
)∑I

i=1
∑T

t=1
P li,t

(1+r)t

+ min(Fll) (1)

where Ib is the investment cost of the batteries which is actu-
lized using the discount project rate (r). The ratio between the
ifetime of the overall system (nl) by the BES lifetime (LT b) is used
o account for the replacement cost of the batteries during the
ifespan of the project.

Eq. (2) expresses the investment cost of BES. The cost of batter-
es, as reported in the literature, depends on maximum discharge
ower Pb and discharge duration D (Cole et al., 2021). The battery
nvestment cost is therefore modeled as a specific capital cost
n ($/kW) multiplied by the battery’s maximum power Pb. The
pecific cost is modeled as a linear function of the battery’s dura-
ion. The slope α and intercept β of this function are determined
y linear regression of the specific capital costs of lithium-ion
ystems for typical durations (Cole et al., 2021). The values of Pb

ib
nd Dib are limited by the upper bounds of the existing battery
ower

(
Pbmax

ib

)
and maximum storage duration Dmax

ib
given by

Eq. (3). ib belongs to a continuous interval with all bus indices
(from 1 to N) to give the possibility of installation on all nodes.
To design a battery, the maximum battery energy Eb

ib
is calculated

by Eq. (4) in terms of Dib and Pb
ib for each BES located at node ib.

b
=

N∑
ib=1

(α.Dib + β). Pb
ib (2)

.t

⎧⎨⎩ 0 ≤ Pb
ib ≤ Pbmax

ib

1 ≤ ib ≤ N

0 ≤ Dib ≤ Dmax
ib

(3)

bmax

ib
= Dib .P

bmax

ib (4)

The optimization variables in the upper level are Dib , P
b
ib and

ib.

2.2.2. Particle Swarm Optimization (PSO) model
PSO is used because the upper-level model contains nonlin-

ear equations describing the nonlinear battery costs (2) (Maleki
et al., 2016). PSO is a population-based metaheuristic algorithm
to attempt identification of the global solution to an optimization
problem by simulating the social behavior of animals, such as
bird grouping. In the PSO algorithm, each feasible solution is a
particle and is specified by a vector containing all the variables.
The particles ‘fly’ through the N-dimensional domain space of the
function to be minimized. The state of each particle is represented
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Fig. 1. Flowchart for the proposed bi-level PSO-DLOPF solution.
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l
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(
a
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y its position xed = (xed1, xed2, . . . , xedN) and velocity ved =

ved1, ved2, . . . , vedN). The states are then updated using Eqs. (5)
and (6).

veL+1
dx = wL.veLdx + a1.raL1.

(
peLbestdx − xeLdx

)
+ a2.raL2.(ge

L
best − xeLdx)

(5)

xeL+1
dx = xeLdx + vL+1

dx (6)

he velocity update Eq. (5) contains three key parameters. These
arameters are the momentum component (the acceleration con-
tant a1) which is used to control how far the particle gets
owards its personal best position. The second is the inertial
onstant (w) which controls how long the particle remembers
ts previous velocity. The third is the social component (the
cceleration constant a2), which draws the particle toward the
est position in the swarm. ra1 and ra2 are random variables
etween 0 and 1. The inertia weight w starts from an initial value
f w0 ≥ 0 and decreases throughout the iterations wL+1

= µ×wL.
eL (best experience alone) is the best position achieved so far
best

1454
y particle dx and its k times, and geLbest (best experience of group)
s the best position achieved by the swarm in its optimal position
Maleki et al., 2016).

.3. Lower-level optimization: RES planning

.3.1. Definition of the optimization problem
The objective in the lower-level optimization model is to min-

mize the LCOE of the production system. This corresponds to the
COE of the whole system, not including BES costs. In the lower
evel, four types of generators are present, the RES such as PVs
nd WTs, the classic generators (CGs) and the virtual generators
VGs). VGs are the new elements supposed to be presented at
ll buses with a generation cost significantly higher than real
enerators (CG, PV, WT) aiming to guarantee a feasible solution
t each time step. The optimization is carried out for three typical
urations from one full year. The objective function is presented
y Eq. (7). This function is the levelized cost of energy that com-
ines investment, operational, O&M costs to cover the system’s
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ifetime aiming to estimate the actualized cost per unit of energy
roduced. In this Eq. (7), Γinv [detailed in Eq. (8)] is the sum of the
nvestment costs for the WTs (Iwt ) and PVs (Ipv). Γop is the total
perational cost represented by Eq. (9), where the production
ost of classic generators (CGs) (Ccg ) and virtual generators (VGs)
Cvg ) is minimized. As solar and wind power are clean energy
sources, their corresponding operational costs (Cwt , Cpv) are zero.
The total actualized operational cost for CGs (Ccg ) is expressed
by Eq. (10), where the sum of the active (P cg ) and reactive (Q cg )
power produced is multiplied by the corresponding costs (C cg,p

for active and C cg,q for reactive). As with Eqs. (10), (11) gives
the virtual generation cost (Cvg ). In each bus, the generation
costs of the virtual generators are significantly higher than those
of other generators (both Cvg,p and Cvg,q) to produce a feasible
solution and serve as an indicator for the production deficit on
the corresponding bus. The total operational costs of WTs (Cwt )
and PVs (Cpv) are given respectively by Eqs. (12) and (13). In
terms of investment costs, the installation area for PVs is the
optimization variable Apv, which is multiplied by the investment
cost (Ipv) [Eq. (14)]. Apv is bounded by the available surface area
for installing PVs (Apvmax

) [Eq. (21)]. The continuous variable Awt

gives the ratio of exploitable local wind energy. Awt is bounded
by Awtmax

, which corresponds to the maximum exploitable power
based on unitary WT production, WTt . Awt is indirectly defined by
the available surface area of the bus in question, multiplied by the
investment cost (Iwt ) Eq. (15).

Γo&m in Eq. (16) is dependent on the WTs and PVs installed and
their O&M costs (Owt ,Opv) and on existing CG maintenance costs
(Ocg ). All these variables are bounded as shown in (21). Hourly PV
and WT production (Ppv

s,t and Pwt
w,t ) is bounded by time-dependent

maximum power (Ppvmax

s,t and Pwtmax
w,t ), as detailed in Eqs. (17) and

(18). These maximum powers are calculated using Eqs. (19) and
(20), where PVt and WTt are respectively the unitary PV and WT
power production.

min Fll = min

(
Γop + Γo&m

)
+ Γinv∑N

i=1
∑T

t=1
P li,t

(1+r)t

(7)

Γinv = I
wt

+ I
pv (8)

Γop = C
cg

+ C
vg

+ C
wt

+ C
pv (9)

C
cg

=

T∑
t=1

Ncg∑
c=1

C cg,p.P cg
c,t + C cg,q.Q cg

c,t

(1 + r)t
(10)

C
vg

=

T∑
t=1

Nvg∑
i=1

(Cvg,p.Pvg
i,t + Cvg,q.Q vg

i,t )

(1 + r)t
(11)

wt
=

T∑
t=1

Nwt∑
w=1

Cwt .Pwt
w,t

(1 + r)t
(12)

pv
=

T∑
t=1

Npv∑
s=1

Cpv.Ppv
s,t

(1 + r)t
(13)

pv
=

Npv∑
s=1

Ipv.Apv
s (14)

wt
=

Nwt∑
w=1

Iwt .Awt
w (15)

o&m =

T∑
i=1

(Opv.Apv
+ Owt .Awt

+ Ocg .PcgT ) (16)

≤ Ppv
s,t ≤ Ppvmax

s,t ∀p ∈ [0,Npv
] (17)

≤ Pwt
≤ Pwtmax

∀w ∈ [0,Nwt
] (18)
w,t w,t a
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Ppvmax

s,t = Apv
s .PVt (19)

Pwtmax

w,t = Awt
w .WTt (20)

S.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ P cg
c,t ≤ Pcgmax

c ∀c ∈ [0,Ncg
]

0 ≤ Pvg
i,t ≤ Pvgmax

i ∀i ∈ [0,Nvg
]

0 ≤ Q cg
c,t ≤ Q cgmax

c ∀c ∈ [0,Ncg
]

0 ≤ Q vg
i,t ≤ Q vgmax

i ∀i ∈ [0,Nvg ]
0 ≤ Apv

s ≤ Apvmax

s ∀s ∈ [0,Npv]
0 ≤ Awt

w ≤ Awtmax
w ∀w ∈ [0,Nwt

]

(21)

T∑
t=1

N∑
i=1

Encg .P cg
c,t ≤ EncgT .Ta (22)

n electricity generation, only CGs are considered to emit CO2
ince other power generators (PVs and WTs) are zero-emissions;
he minimization of total CO2 emissions is the objective when de-
igning RES and BES. Following the ε-constraint method (Mavro-
atidis et al., 2018), a constraint setting using an upper limit

or CO2 emissions, referred to as an emissions constraint (Ta),
s expressed in Eq. (22). The Ta can be selected by the system
esigner and varied to obtain various designs that achieve dif-
erent carbon performances. The CO2 emissions are calculated
ver selected periods in which 100% of power is extracted from
lassic generators to fix the value at EncgT . The CO2 emissions are
alculated by the product of P cg

c,t and Encg , which is the carbon
mitted by 1 MWh of classic energy.

.3.2. Optimal power flow model
The linear OPF algorithm optimizes generator dispatch and

etermines the optimal value for the variables identified at each
us of the network by linearizing the AC OPF equations. These
ariables include active and reactive power input, voltage, phase
ngles and storage levels in the battery. Also included are the
ctive and reactive power flows that circulate in each branch
etween two nodes subject to the loading constraints of the
etwork branches. The optimization process is based on Yang
t al.’s methodology (Yang et al., 2016), for which an iterative
ptimization approach was used. A linear optimization process is
irst carried out around an approximation. Following resolution,
new operating point is found and used to update this approx-

mation. This procedure is repeated iteratively until convergence
s achieved. The approach is upgraded in the present work by
dding equations for virtual generators and energy storage in the
esired buses to create a dynamic simulation of the network and
torage devices (Fakih et al., 2022). The OPF model can therefore
e summarized as follows:

.3.2.1. OPF equality constraints.

nergy balance in buses
To guarantee equilibrium between production and demand at

ach bus, the injected power must be equal to the consumed
ower. Eq. (23) expresses the active power equilibrium concept
or each bus, the parameters on the left being the active power
xtracted from the classic (Pcg

i ) and virtual (Pvg
i ) generators, the

ower produced from both PVs (Ppv
i ) and WTs (Pwt

i ), and the
ischarging power variable (Pd

i ). The elements on the right are
he active power demand (P l

i ), the power P inj
i injected into the

etwork at bus i/i ϵ N (where N: set of buses), and the charging
ower variable of the battery (Pc

i ). With reactive power, the same
quilibrium concept is expressed by Eq. (24) which does not
ake into consideration the reactive power variable of the battery
battery power factor equal to 1). Since this model is dynamic,

ll the optimization variables are time-dependent. For the sake
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f simplicity, the time-dependence notation is dropped in all
quations except for battery equilibrium (46).∑
i∈N

Pcg
i + Ppv

i + Pwt
i + Pvg

i + Pd
i = P l

i + P inj
i + Pc

i i ϵ N (23)∑
i∈N

Q cg
i + Q vg

i = Q l
i + Q inj

i i ϵ N (24)

Active and reactive power injection
Power flow equations are usually expressed in their general

nonlinear form as follows:

Pi =

N∑
j=1

(vivjGijcosθij + vivjBijsinθij) (25)

Qi = −

N∑
j=1

(vivjBijcosθij − vivjGijsinθij) (26)

where Pi and Qi are respectively the active and reactive power
injected into the network at bus i, and Gij and Bij are the real and
imaginary parts of the network’s admittance matrix. θ and v are
respectively the voltage angle and the voltage at each bus.

These equations are linearized, given the initial estimated
values for voltage and voltage angle (vk

i , θ
k
i ) and updated at each

iteration k (v0
i = 1, θ0

i = 0). For the linearization procedure, θ

and v2 are considered independent variables and the cosine and
sine functions are linearized using their first-order Taylor series
expansion as follows:

sinθij ≈ S1ij,kθij + S0ij,k (27)

cosθij ≈ h1
ij,kθij + h0

ij,k (28)

s1ij,k = cos θij,k, s0ij,k = sin θij,k–θij,k.cosθij,k (29)

h1
ij,k = − sin θij,k, h0

ij,k = cos θij,k + θij,k.sinθij,k (30)

The following mathematical transformation (31) is then used to
extract a linear expression for an accurate representation of vi.vj.

vi.vj =
1
2

(
v2
i + v2

j −
(
vi − vj

)2)
=

v2
i − v2

j

2
−

v2
ij

2
ith vij = vi − vj

(31)

2
ij is then linearized in (32) to define a new term vs

ij,L:

v2
ij

∼= 2vij,k.vij − v2
ij,k

∼= 2
vi,k − vj,k

vi,k + vj,k

(
v2
i − v2

j

)
− v2

ij,k = vs
ij,L (32)

The linear approximation given in (32) can lead to negative val-
ues, which contradicts the fact that v2

ij determines the influence of
the difference in voltage magnitudes on the losses. To ensure that
the v2

ij , ϵij values are positive, variables are added and the new
inequality constraints added to the optimization problem (Yang
et al., 2016):

2
vi,k − vj,k

vi,k + vj,k

(
v2
i − v2

j

)
− v2

ij,k + ϵij ≥ 0 with ϵij ≥ 0 (33)

ϵij are penalized (multiplied by very high coefficients) as an
bjective function to ensure they are close to zero.
Injected active and reactive powers are then calculated around

known solution (vk
i , θ

k
i ) using linearized Eqs. (34) and (35):

Pi =

N∑
j=1

[
Gp
ij,k

v2
i + v2

j

2
+ Bp

ij,k

(
θij − θij,k

)
− Gp

ij,k

vs
ij,L

2

]
i ϵ N

(34)

i =

N∑
j=1

[
−Bq

ij,k

v2
i + v2

j

2
+ Gq

ij,k

(
θij − θij,k

)
− Bq

ij,k

vs
ij,L

2

]
i ϵ N
(35) n
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where:

Gp
ij,k =

(
Gij.h0

ij,k + Bij.s0ij,k
)
+

(
Gij.h1

ij,k + Bij.s1ij,k
)
θij,k (36)

Bp
ij,k =

(
Gij.h1

ij,k + Bij.s1ij,k
)
vi,k.vj,k (37)

Bq
ij,k = −

(
Gij.s0ij,k + Bij.h0

ij,k

)
−

(
Gij.s1ij,k − Bij.h1

ij,k

)
θij,k (38)

Gq
ij,k =

(
Gij.s1ij,k − Bij.h1

ij,k

)
vi,k.vj,k (39)

Branch flows:
Using the same approximations as for power injections, the

linear equations for branch flows are deduced in (40) and (41)
and the parameters calculated in (42) to (45).

The active and reactive power flows in the branches can be
calculated to facilitate the addition of a maximal apparent power
constraint to the branches:

Pij = gij.v2
i − gp

ij,k.
v2
i + v2

j

2
− bpij,k

(
θij − θij,k

)
+ gp

ij,k

vs
ij,L

2
(40)

ij = −bij.v2
i + bqij,k.

v2
i + v2

j

2
+ gq

ij,k

(
θij − θij,k

)
+ bpij,k

vs
ij,L

2
(41)

here:
p
ij,k =

(
gij.h0

ij,k + bij.s0ij,k
)
+

(
gij.h1

ij,k + bij.s1ij,k
)
θij,k (42)

bpij,k =
(
gij.h1

ij,k + bij.s1ij,k
)
vi,k.vj,k (43)

bqij,k = −
(
gij.s0ij,k + bij.h0

ij,k

)
−

(
gij.s1ij,k − bij.h1

ij,k

)
θij,k (44)

gq
ij,k =

(
gij.s1ij,k − bij.h1

ij,k

)
vi,k.vj,k (45)

Battery State of Charge (SoC):
The active energy level in the battery at time t (Eb

i,t ) is cal-
culated using Eq. (46), where the energy stored in the battery
is updated at each time step based on the energy level from
the previous time step (Eb

i,t−1) or the power stored Pc
i,t , or is

discharged Pd
i,t from the battery in the current time step. ηc and

ηd represent the charge and discharge efficiencies respectively.

Eb
i,t = Eb

i,t−1 + ηcPc
i,t − Pd

i,t/η
d (46)

2.3.2.2. OPF inequality constraints.

Branch flows limit
The inequality constraints are based on the limits of the ap-

parent power flowing in the branches of the grid. A quadratic
Eq. (47) limits the apparent allowable power (Smax

ij ) by a circle
area to avoid overloading, using the active and reactive powers
Pij and Qij flowing between two buses (i and j).

(Pij,k)2 + (Qij,k)2 ≤ S2
max

ij i, j ∈ N (47)

To linearize this equation, the circle area can be approxi-
mated by a polygon region formed by a group of lines li, given
in the Eq. (48). The nonlinear equation is thereby transformed
into n linear equations. With this approach, a higher number of
sides ‘n’ leads to a more accurate solution, but with a greater
computational burden (Akbari and Tavakoli Bina, 2016).(

sin
(
360 ∗ li

n

)
− sin

(
360
n

(li − 1)
))

Qij

−

(
cos

(
360 ∗ li

n

)
− cos

(
360
n

(li − 1)
))

Pij

−Smax
ij ∗ sin

(
360
n

)
≤ 0

(48)

.3.3. DLOPF algorithm
Development of the DLOPF model is based on an LOPF for-

ulation adapted for the use of transmission or distribution
etworks. The load profiles are used as input data covering the
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Fig. 2. IEEE 30 bus electricity system for numerical simulation (base network).
argeted period. Modeling of the network architecture and con-
traints is required, along with a definition of the boundaries (lb
nd ub) of the output solution. The objective function uses real
alues and virtual power is well penalized.
All these conditions must be in place to solve the problem with

single optimization procedure, by summarizing all time periods
o achieve an optimal overall solution. Given a flat start point
v0
i = 1p.u., θ0

i = 0), the LOPF model was built and resolved,
eading to new voltage and angle values which were used to
pdate the estimate. The number of iterations was not fixed; the
rocess was repeated until the stop criterion was reached. This
riterion is defined as the deviation of objective function between
wo successive iterations (k−1 and k) with approximations, using
he following equation:

F =

⏐⏐⏐⏐F k
− F k−1

F k

⏐⏐⏐⏐ k ϵ [1, 2, ..] (49)

hen ∆F < ∆tol, the stop criterion is satisfied.
The optimization variables at the lower level can therefore be

ategorized as:

1. Design variables: Apv, Awt

2. Operation variables: Ppv, Pwt , P cg , Pvg , Q cg , Q vg , V , θ, P c ,
Pd , Eb

3. Case studies

Several case studies are presented below to confirm the effec-
tiveness of the model for integrating RES and BES into transmis-
sion networks, with the dual aim of minimizing production costs
and reducing CO2 emissions.

In this study, an IEEE-30 bus system (Fig. 2) was used (Kris-
tiansen, 2003). The parameters and compositions are summarized
in Table 2. A full description of the system components can
be found in Hota and Naik (2016). The system incorporated six
generation units – either thermal generators or substations – at
buses 1, 2, 13, 22, 23 and 27.

Considering one year of data for electricity demand, wind
power, and solar power in hour scale would result in a very
big optimization problem and, therefore, a long calculation time.
The usual procedure in this case is to refer to days rather than
1457
Table 2
Summary of IEEE-30 bus system.
Item Quantity Details

Bus 30 Hota and Naik (2016)
Branch 41 Electrical lines details, resistance

and reactance (Hota and Naik,
2016)
Maximum transmission capacity
= 9.2 MVA

Classic generator (CG)
(generator or distribution
transformer)

6 Buses: 1, 2, 13, 22, 23 and 27

Connected load 20 59% residential, 19.8% commercial
and 21.2% mix

Phase angle – Ranges [−0.35; +0.35]
Voltage – Ranges [+0.9; +1.1]

the full year. To select the most significant typical days, the
total load profile is calculated for one year first. Then, this to-
tal profile is sliced into subgroups of 3 consecutive days each
(72 continuous hours). This continuation allows visualizing the
continuous behavior of the storage systems. One hundred twenty-
two different subgroups are obtained. Thus, these subgroups are
separated into 3 clusters using k-means clustering that classifies
similar time series in the same cluster (here 3: winter, summer
and spring). This clustering was based on three different features:
the total energy demand of the three days, the maximum power
reached and the variance of the power demand in each period.
The means (centroids) are calculated for the 3 clusters to select
one representative period from each cluster. The calculation of
the Euclidean distance between each subgroup and the centroids
follows this step. Then the nearest element to the 3 different
centroids is selected. The ‘selected days’ are defined as the days
that correspond to the chosen periods. Then, the demand profiles
for each individual bus are formed by selecting the ‘selected days’
through the demand curve of the whole year. These periods are
placed for each bus alongside each other (9 days classified 3 by
3 continuously). The total load profile for all buses is shown in
Fig. 3 for the typical days selected; these are representative of the
dynamics occasioned by seasonal variations (summer: low de-
mand, winter: high demand and mid-season: medium demand),
allowing a nine-day period for consideration of storage dynamics.
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Fig. 3. Total demand for nine typical days from three seasons (high = winter, low = summer, medium = spring) simulated using HOMER Pro software (HOMER
ro, 2022).
Fig. 4. Profile of one m2 of PVs for nine typical days from three seasons (high = winter, low = summer, medium = spring) simulated using HelioScope solar design
oftware.
escriptions

The bus index for the batteries belongs to a continuous interval
ith boundaries limited by the number of available buses. Thus

b ϵ [1,N] with N = 30 buses. The values obtained were then
ounded to the nearest integer to set the bus index.

Battery duration is limited to 8 h. D ϵ [0, 8].
Maximum battery power Pbmax

= 8 MW.
Maximum installable surface for PV (Apvmax

) 300000 m2 each,
n buses 4, 9, 10, 12, 20, 26 and 30. The solar resource per unit
f surface area at the location (Nantes, France) is given in Fig. 4.
his profile should be the same for all buses in this work.
Maximum number of wind turbines allowed per wind farm

Awtmax
) 25, at buses 3,16, 19,21, 25, and 30. The wind power pro-

uction for 1 MW of rated power based on local wind resources
n Nantes is shown in Fig. 5. This profile should be the same for
ll buses in this work.
All existing buses were considered as candidates for instal-

ation of 4 BES. Storage cost constants are presented in Eq. (2),
alues: α = 100 000, β = 200 000 (calculation based on lithium-
on capital cost interpolation for 2, 4 and 6 h in Cole et al.,
021).
The operational and investment costs of the different produc-

ion sources are given in Table 3.
Fig. 4 shows the PV profile simulated using HelioScope solar
esign software (HelioScope | Commercial Solar Software, 2022)
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based on the coordinates of the intended location for the system
(Nantes, France).

Fig. 5 shows the simulated production profile for a wind
turbine (WT). The annual WT profile was simulated using HOMER
Pro software (HOMER Pro, 2022) for the case-study location in
Nantes, selecting the type and number of turbines. The profile
was then normalized.

4. Results and discussion

4.1. Validation of LOPF

The linearized model (LOPF) was validated using the Mat-
power benchmark reference model (Kristiansen, 2003) to confirm
its accuracy; the specifications as defined in Matpower for the
‘Case30’ (Gonzalez-Longatt, 2010) and illustrated by Fig. 2 were
used. Optimization with the LOPF was first carried out on the
network and the resulting active and reactive power and voltage
values were then used as input data for the Matpower model in
simulation mode. The values generated for active/reactive power
transmitted, active/reactive power in branches, voltage levels and
phase angles obtained from LOPF and Matpower are compared in
Table 4 using root mean square error (RMSE) and the Normalized
RMSE (NRMSE).

These minor NRMSE and values confirm the high level of

accuracy of the linearized model.
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Table 3
Investment and operation costs (Statistics | Eurostat, 2021).
Production type Operational cost ($/MWh fuel) Investment cost O & M cost ($/MW/yr)

PV Cpv
= 0 Ipv = 178 ($/m2) Opv

= 8000
WT Cwt

= 0 Iwt
= 997 000 $/MW Owt

= 33 000
CG C cg,p, C cg,q

= 36 0 (already installed) Ocg
= 105 00

VG Cvg,p, Cvg,q
= 109a 0 0

aThis cost ensures that virtual generators are excluded as much as possible.
Fig. 5. Profile of one WT for nine typical days from three seasons (high = winter, low = summer, medium = spring).
Table 4
LOPF Vs. Matpower (RMSE values).
Parameters RMSE (LOPF-Matpower) NRMSE

P 0 kW 0
Q 1.02 kVAr 0.03
Pij 0.22 kW 0.04
Qij 1.5 kVAr 0.28
θ 4.61 degree 4.6
V 0.0089 V 0.00268

4.2. Mono-objective optimization results

Considering the case study illustrated in Fig. 2 in the case
here the network is overloaded. In this case, existing sources
re insufficient to meet the demand in some periods during the
peration of the network. This is particularly the case in some
eri-urban areas undergoing urban densification.
The LCOE optimization is performed on two cases to showcase

he effect of integrating RES and BES to the network:

Case 1: LCOE optimization without RES and BES integration
y considering only CGs and VGs. Thanks to the existence of VGs
he DLOPF will systematically converge to an optimal solution
y using generated power from VGs when the installed capacity
f CGs is insufficient or when the network’s constraints prevent
lectricity supply to some consumers. The PSO part of the model
s not used in this case since there is no BES to be sized.

Case 2: LCOE optimization with RES and BES integration
here the bilevel PSO-DLOPF outlined in Fig. 1 is used on the
ame case network to determine the optimal placement and siz-
ng of RES and BES while respecting all the network’s constraints.

.2.1. Energy management results
Fig. 6 shows optimal power generation by two CGs (1 and 2)

nd one VG (21) for the nine typical days and for both case 1

Fig. 6a, b, c) and case 2 (Fig. 6d, e, f).
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For case 1, the active power generated by the CGs shows
coherent profiles between generated power (Fig. 6a and b) and
load (Fig. 3). The results show that in periods of high demand
(between 4 am and 10 pm in Fig. 3) there was high usage of the
generators (the same period is used in Fig. 6). In periods of low
consumption (between 100 h and 110 h in Fig. 3), there was less
usage of the CGs and the VGs were not used at all. For medium
demand, there was low usage of the VGs (between 5 h and 10 h in
bus 21, Fig. 6-c). Note also in Fig. 6-a,b that the generators were
not used equally even though the production cost was equivalent
for all generators. This is the direct effect of network constraints
(Table 2), handled by the model.

In terms of the overall network, the total installed generation
capacity of the CGs is 180 MW, i.e., greater than the cumulated
maximum power at each bus, which is 90 MW (Fig. 3). Despite
these conditions, production is not sufficient to meet demand.
The deficits are shown in the form of power generated by vir-
tual generators (e.g., bus 21, Fig. 6-c). In this case, the model
demonstrates the limitations of the electrical grid occasioned by
the allowable ranges of other optimization variables (voltage,
phase angle, apparent power in branches, etc.), i.e., the network
constraints. This also happens in other nodes of the network
(not shown here). The difference in level of power production
between the CGs not at maximum production capacity confirms
that power is limited by the transmission capacity of the grid.
The model reveals the achievable performance of a network with
constraints and supply–demand units.

4.2.2. Energy planning results
The results of the PSO-DLOPF approach are presented in this

section; these focus on minimization of investment and operating
costs only; carbon emissions are not considered. To confirm the
effectiveness of the proposed PSO-DLOPF model, two sets of
results are compared in Table 5.

In case 2 above, Table 6 shows that the optimum corresponds
to an installation of 13 wind turbines in three of the candidate
buses (16, 19 and 30); the investment in solar energy PV is limited
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Fig. 6. Active and virtual generated powers for some buses.
Table 5
Optimization results.
Energy supply over 9 days (MWh) Case 1 Case 2

CG 12131 11359
VG 23.26 0
WT – 738.05
PV – 258.58
Total 12154.6 12355.6
Loss (%) 0.05 1.6

Table 6
Final optimal plan.
Bus number (case 2) 12 16 18 19 20 26 30
WT (W) – 7 – 4 – – 2
PV (Ap) ∗ 104 (m2) – – – – 2.7 – 1.5
BES (Pb) (MW) 5.33 – 7.16 4.26 7.64
BES (DT ) (h) 4.9 – 7.02 5.84 3.14

to buses 20 and 30. With these additional production sources
(WTs and PVs), the reduction of classic production extraction
shown in Fig. 6-d and -e (compared respectively with Fig. 6-a and
-b) is justified, especially for medium demand.
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Figs. 7 and 8 give a summary of the energy produced, showing
the energy extracted from the available energy in each bus. The
bar graph shows the energy extracted from the available energy
resources (existing CGs, available surfaces for PVs and WTs) com-
pared to the optimization results of the PSO-DLOPF to satisfy
demand, taking grid constraints into account. The percentage of
energy extracted from CGs is reduced by 6.5% (Table 5) and the
remaining energy is extracted from WTs (5.97%) and PVs (2.09%).
The penetration rate of renewables is therefore significant, reduc-
ing dependence on CGs and therefore the need for VGs. The total
power produced in both cases is greater than the demand; the
differences correspond to the losses along the network. In the
second case, these losses were greater (1.6% more than case 1).
This is due to the interconnection between the different buses
in the network; although the positioning selected is considered
optimal in terms of price, there are still losses along the lines due
power being transmitted from some buses and stored in others
(batteries are not necessarily located on the buses containing the
generators). The loss rate is considered minimal in this case.

In terms of BES, the proposed optimization method places
them in buses whether they contain producers, e.g., bus 19, or
not, e.g., buses 12, 18 and 26. The production/storage behavior is
illustrated in Figs. 9 and 10.
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Fig. 7. Use of energy resources on different buses (case 1).
Fig. 8. Use of energy resources on different buses (case 2).
Fig. 9. Results of WT production, buses 19 and 26.
Fig. 9 shows the use of the installed renewable sources (red
rea) compared to their maximum production capacity (plotted
lack curve). These resources are intermittent and dependent on
eather conditions. All the installed power is extracted from the
Vs at bus 20 (illustrative example) and 95% from the installed
ower is extracted from the WTs of bus 16. Maximum solicitation
f the WTs and PVs is observed compared to their maximum
 p
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installed capacity power (the load1 factor of the WTs at bus 16
is 95% and 99% for the PVs at bus 26).

A comparison of Figs. 9 and 10 shows a synchronous charging
and discharging depending on the local WT production (Ta: bus

1 The load factor is calculating by dividing the sum of extracted power (red
lots) by the installed power (black curve profile).
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Table 7
Final optimal costs.
Associated costs
over 30 yr ($m)

Case 1 Case 2

PV inv. Cost – 4.47
WT inv. cost – 15.5
BES inv. cost – 17.4
CG inv. cost 55 ($1.1 m/MW Statistics |

Eurostat, 2021)
–

PV O&M cost – 2.66
WT O&M cost – 12.87
CG O&M cost 72.45 56.7
CGs op. cost 532.3 497.46
Total 659.7 644.9
Total reduction
amount (%)

2.25%

16 between 45 h and 50 h or Tb: bus 20 between 75 h and 80 h),
here the BES are charged then discharged afterwards. In this
ase, the storage batteries are charged directly from the RES on
he nearest buses. Since some charging and discharging phases
re not synchronous with RES production (Tc: bus 20 between
60 h and 170 h), it can be concluded that optimal storage also
erves the network as a whole and this stored energy is imported
rom the power injected by different producers into the network.
he total stored energy will be discharged and injected into the
rid (see Table 7).
Integrating RES and BES into the grid is not inexpensive con-

idering the estimated real investment and O&M costs ($109.6 m)
s detailed in Fig. 4, but it reduces the production cost by 4.8%
ue to the decrease in CG production. This contributes to a 2.25%
eduction in cost, compared to case 1, over the lifetime of both
ES and BES. In this case, the production deficit (energy produced
y virtual generators) should be extracted from an installed 50
W combined cycle power plant (CCGT).

.3. Bi-objective application results of PSO-DLOPF

.3.1. Renewables, costs and emissions analysis
To illustrate the potential of the PSO-DLOPF in a bi-objective

odel, CO2 emission constraints (Ta) are included in the problem,
with different values in four different scenarios as presented in
the first column of Table 8. This bi-objective approach leads to
a Pareto distribution. Following the ε-constraint method (Mavro-
matidis et al., 2018), the Eq. (22) is used. The CO2 emitted by
1 MWh of CG power is Encg

= 48 000 g CO2/MWh (EDF, 2022).
n each scenario, the ε-constraint Ta is chosen relative to the
mount of CO emitted in the first case (Table 8) so Ta is the
2 t
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Table 8
RES portion by scenario.
Abatement Ta (%) CO2 emissions (gCO2/yr) RES production share (%)

∅ (No limit) 2.2e10 8
70 1.68e10 30
55 1.297e10 46
40 9.127e9 62
30 7.2e9 70.10

percentage of admissible amount of CO2 emissions compared to
the first scenarios (reference case without CO2 constraint). In
this Table 8, it can be seen that the RES portion follows exactly
the same trend as the CO2 abatement rate. The amount of CO2
emissions decreases from 2.2e10 gCO2/yr to 7.2e9gCO2/yr which
is due to the increase in RES share from 8% to 70%. In the last
4 cases, the optimization is heavily influenced by the emission
constraint. In contrast, for the first case where there are no CO2
emissions to limit the CG, power extraction is only influenced by
cost minimization which, explains the 8% portion of RES. Fig. 11
shows the extraction rate of renewable energy invested in the
corresponding nodes following a high CO2 emission requirement
(Ta = 30%). The figure shows that almost 75% of the available
energy is used to produce zero-emission renewable energy.

Reducing CO2 emissions means an increase in the total in-
vestment cost (Fig. 12). Using less power from classic generators
therefore requires the installation of more RES and BES. This justi-
fies the cost increase (from $75.2 m to $353 m, +371%). However,
the total cost (investment + O&M + operation) increases (from
645 m to $660 m, +2,3%) with the reduction in CO2 emissions
esulting from limited use of CGs, as shown in Fig. 13. Conse-
uently, as stricter emission constraints are imposed, the total
ost increases; a 62% reduction in CO2 emissions compared to the
irst case entails a 2.3% increase in costs at the scale considered.

.3.2. BES analysis
To design a BES, the maximum power and duration must be

efined. The maximum power (Pb
ib ) and storage duration (Dib )

istributions are shown as bar plots in Fig. 14. These factors
ncrease in average until they reach the upper bounds (3) for
a = 30%, where the BES are most needed to recover production.
he product of these two factors (Dib and Pb

ib ) gives the size of the
ES in terms of maximum energy (Eb), as in Fig. 15. The maximum
nergy storage increases and the BES increases in size with the
eduction in CO2 emissions. With the constraint Ta = 30%, the
pper limits are achieved approximately (64 MWh), which means
hat the BES investment limit is already covered.
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(
d

Fig. 11. Use of energy resources at different buses (Ta = 30%).
Fig. 12. CO2 emissions in terms of total investment cost.

Fig. 13. Evolution of bi-objective functions.

In some cases, the BES are located where the RESs are installed
e.g., bus 19 in ∅). BES are never placed where there are CGs. By
esigning smaller batteries (no limits), the charging rate is greater

than for large batteries (Ta = 30%). With this charge rate (mean
1463
= 32%) in the largest possible batteries (Ta = 30%) the emissions
limit would be improved (≤ −70%).

5. Conclusion and perspective

In this study, a bi-level PSO-DLOPF approach was developed
for energy planning in transmission networks. The cost minimiza-
tion problem was split into upper and lower-level optimization
models. In the upper level, a PSO was used to locate and size
the BES. In the lower-level, an adapted DLOPF model was used
to maximize the portion of RES, in order to identify the optimal
size and location of RES and dispatch of energy production and
storage dispatch in observance of carbon emissions constraints.
The principle of virtual generators was introduced to guarantee
a solution in view of the increasing power consumption with a
limited grid, in terms of branch capacities, voltages and phase
angles. The model reflects actual network behavior under spe-
cific constraints and ensures an optimal solution over a defined
period constituted of nine typical days selected using a k-mean
clustering approach. In addition, it enabled visualization of the
dynamic behavior of the various parameters and optimization
variables for each bus and in each branch. This bi-level model
demonstrates the importance of storage and its design in terms
of battery specifications.

The optimization model is used to perform a bi-objective
optimization with respect to an economic criterion (LCOE) and
an environmental criterion (CO2 emission). Results show that the
transition to a 30% CO2 emissions limit increases the investment
costs by +371%, the total costs by 2.3% and thus leads to a satura-
tion of the storage capacity. it is therefore not possible to decrease
beyond 30% despite the presence of installable RES capacities. It is
not possible to install more RES because of network constraints.

The work can be extended in various ways: the model can
support the decision-making process (energy planning) by in-
troducing additional characteristics to remove or maintain lo-
cal producers; it could also be coordinated with demand-side
management models.
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