
2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).
Mexico City, Mexico. November 10-12, 2021

Model Predictive Current Control of a Permanent
Magnet Synchronous Machine with Exponential

Cost Function
1st F. González Sáenz
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Abstract—This paper presents the design of a continuous
control set model predictive control (CCS-MPC) for a permanent
magnet synchronous machine (PMSM). The CCS-MPC is de-
signed for the control of the stator currents of a PMSM following
a similar scheme to the one introduced in field-oriented control
(FOC). In the presented CCS-MPC, the proposed cost function
is modified by the introduction of a set of orthogonal functions
known as Laguerre functions. Furthermore, an exponential cost
function is introduced to afford long horizon predictions. The
control law is derived by the formulation of a constrained opti-
mization problem. By the introduction of the Laguerre functions
and the exponential cost function, the computational burden is
reduced and a long prediction horizon can be accomplished.
Simulation results on Matlab/Simulink are presented to verify
the performance of the proposed methodology.

Index Terms—Model Predictive Current Control, Permanent
Magnet Synchronous Machine, Exponential Cost Function

I. INTRODUCTION

The permanent magnet synchronous machine (PMSM) has
gained wide acceptance in moving control and transportation
applications due to its high performance, high power density,
low rotor inertia, high efficiency, and compact structure [1].
To achieve an accurate performance of the PMSM, high-
performance control techniques are necessary such as field-
oriented control (FOC), which allows performing a similar
control to the one applied in DC motors [2]. The basic
structure of FOC incorporates conventional PI controllers
resulting in dynamic performance response limitations, this
has motivate the development of different type of controllers
for application in the PMSM such as sliding mode control [3],
deadbeat control [4], fuzzy control [5], backstepping control
[6], etc. Among all these control schemes, the development of
predictive controllers depicts an alternative for robust control
of the PMSM [7].

Model predictive control (MPC) has been widely imple-
mented in the industry as an effective method to face con-
trol problems that include constraints, multi-variable control,
and non-linearities [8], [9]. Two different control strategies
regarding MPC can be found in the literature: Finite Control
Set Model Predictive Control (FCS-MPC) [10], [11] and

Continuous Control Set Model Predictive Control (CCS-MPC)
[12], [13], both have been applied to electrical drivers. The
FCS-MPC is based on the optimal voltage vector compute
that minimizes a cost index preset, this MPC method yields a
good transient state performance and provides a large control
bandwidth. However, this method causes high torque and
current ripples, especially in long sampling times. [14].

In the CCS-MPC method, the control algorithm is based
on the prediction of the state variables according to a discrete
model of the system. The predicted state variables are used in
a cost function, which is evaluated over a prediction horizon
to obtain the vector of future control actions. Unlike the FCS-
MPC, a continuous duty cycle is obtained and applied through
a PWM modulator such as space vector modulation (SVM).
The advantages of this approach lie in an improvement of the
total harmonic distortion (THD) of the three-phase currents,
and in a fixed switching frequency [15].

A disadvantage of CCS-MPC is the high computational
burden, which can result in system instability, due to matrices
ill-conditioned, this is the main reason to restrict the prediction
horizon to one step ahead in predictive control of PMSM. In
[16], approximate dynamic programming is used to develop
a computationally efficient direct model predictive current
control. In [17], an integer least-squares problem for sphere de-
coding algorithm is proposed. An alternative to this approach
is to use exponential cost function in the formulation of MPC
as presented in [18]. This methodology can be extended to
PMSM drives to perform MPC with long horizon predictions.

In this paper, the formulation of a CCS-MPC for the current
control of a PMSM is proposed. The main contribution of the
proposed methodology is the formulation of an exponential
cost function, which is optimized for the selection of the
control action. Thus, a computational burden reduction is
obtained, preventing the numerical condition issue and hence,
system instability. The speed loop is designed following a
Lyapunov approach to provide robustness to load torque
disturbances. The current loop is based on MPC and is
designed based on the principle of receding horizon control
taking into consideration the linearized PMSM discrete-time
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model. Simulations results in Matlab/Simulink are presented
to validate the proposed methodology.

II. PMSM MATHEMATICAL MODEL

The PMSM dynamic can be modeled in the rotor reference
frame d − q. The magnetic circuit is assumed to be linear
(i.e. no saturation) with negligible iron losses, and the back
EMF is assumed to be sinusoidal [2]. Furthermore, parametric
variations are not considered. Thus, the voltage equations of
the PMSM are given by:

usd = Rs · isd + Lsd
d
dt isd − pωm · Lsq · isq,

usq = Rs · isq + Lsq
d
dt isq + pωm · (Lsd · isd + ψPM ) ,

(1)
where Lsd and Lsq are the inductances in d − q axis re-
spectively; isd and isq are d − q axis currents; ψPM is the
permanent magnet flux of the rotor; Rs is the stator resistance
for both q − d axis; ωm is the electrical speed; and usd, usq
are the d − q axis voltages. Since the PMSM under study is
a surface PMSM, it is considered that Lsd = Lsq , and the
following equation describes the electromagnetic torque Me:

Me =
3

2
p (ψPM · isq) , (2)

where p is the pair of poles. The math model presented in
(1) contains non-linear terms and coupled dynamics. A linear
model of the PMSM can be obtained by decoupling the non-
linear terms of (1) as in [19]. By defining the following
variables:

udd = ud + pωmψq,

uqq = uq − pωmψd,
(3)

the state space model of a PMSM can be written as:

dx(t)

dt
= Aix(t) + Biu(t), (4)

where

Ai =

[
−Rs

Ls
0

0 −Rs

Ls

]
, Bi =

[ 1
Ls

0

0 1
Ls

]
, (5)

x(t) =

[
id
iq

]
, u(t) =

[
udd
uqq

]
. (6)

Conventionally, usd and usq are converted to PWM signals
by the space vector modulation technique and are supplied to
the PMSM by a power converter. Before this conversion, the
system is decoupled, and the new control signals udd, and uqq
introduced in (3) are calculated for application in the power
converter.

III. CCS-MPC DESIGN APPROACH

A. Predictions based on the Incremental model

MPC control is designed based on the mathematical model
of the plant, commonly expressed as a state-space model.
The continuous state-space model of the PMSM is converted
in its equivalent discrete model based on the Euler forward
discretization. This method is selected to keep a low computa-
tional burden, however, the small sampling time used preserves

the stability of the discrete approximation. Furthermore, to
reduce the error in steady-state, an incremental state-space
model is used. The discrete state-space model can be written
as [20]:[

∆xm(k + 1)
y(k + 1)

]
=

[
Am oTm

CmAm Iq×q

] [
∆xm(k)

y(k)

]
+

[
Bm

CmBm

]
∆u(k),

(7)

y(k) =
[

om Iq×q
] [ ∆xm(k)

y(k)

]
,

where ∆xm(k) = xm(k)−xm(k−1); ∆u(k) = u(k)−u(k−
1); Am = I+AiTs; Bm = BiTs; Ts is the sampling time; q is
the number of outputs; and om is a zero matrix of appropriate
dimensions. For notation simplicity, (7) is rewritten as:

x(k + 1) = Ax(k) + B∆u(k),

y(k) = Cx(k).
(8)

Based on the state-space model (A,B,C), the prediction of
the state variables from the sampling instant ki over a finite
prediction horizon NP can be solved recursively from (8). The
prediction of the state variables at ki +Np can be obtained as
follows:

x(ki +Np | ki) = ANpx(ki)

+

Nc−1∑
i=0

ANp−i−1B∆u(ki+ i).
(9)

Similarly, the predicted output over a control horizon Nc
can be solved recursively based on the state prediction. The
predicted output at ki +Np can be obtained as follows:

y(ki +Np | ki) = CANpx(ki)

+

Nc−1∑
i=0

CANp−i−1B∆u(ki + 1).
(10)

By defining the vectors Y and ∆U as

∆U =
[
∆u (ki)

T
∆u (ki + 1)

T
. . .∆u (ki +Nc − 1)

T
]T
,

Y =
[
y (ki + 1 | ki)T y (ki + 2 | ki)T . . .y (ki +Np | ki)T

]T
,

(11)
The output Y can be written as:

Y = Fx (ki) + Φ∆U, (12)

where

F =


CA
CA2

CA3

...
CANp

 , (13)



Φ =


CB 0 . . . 0

CAB CB . . . 0
CA2B CAB . . . 0

...
CANp−1B CANp−2B . . . CANp−NcB

 .
(14)

For a given set-point signal r (ki) at sample time ki within a
prediction horizon, the objective of the predictive control is to
bring the predicted output as close as possible to the set-point
signal. For simplicity, we assume that the set-point remains
constant in the optimization window. This objective is then
translated into a design to find the “best” control parameter
vector ∆U such that the error between the set-point and the
predicted output is minimized.

B. Laguerre function approach

Due to complicated process dynamics and high demands
on closed-loop performance, the solution of ∆U may imply
a heavy computational load. Instead, an alternative approach
is to use Laguerre networks in the design of model predictive
control [21].

The control trajectory can be determined by a set of
Laguerre functions as:

∆u (ki + k) =
N∑
j=1

cj (ki) lj(k) = L(k)T η, (15)

where L(k) = [l1(k)l2(k) . . . lN (k)]T ; η = [c1c2 . . . cN ]T ;
N is the number of terms used in the expansion; cj , j =
1, 2, . . . , N , and lj(k) are the coefficients and the set of the
Laguerre functions respectively. The Laguerre functions can
be constructed recursively as [22]:

L(k + 1) = AlL(k), (16)

where

Al =


a 0 0 . . . 0
β a 0 . . . 0
−aβ β a . . . 0

...
...

. . . . . .
...

(−1)N−2aN−2β (−1)N−3aN−3β . . . β a

 ,
L(0)T =

√
β
[

1 −a a2 −a3 . . . (−1)N−1aN−1
]
,

where β = 1 − a2; and 0 ≤ a < 1 is the pole of the dis-
crete Laguerre network. For a multiple-input multiple-output
(MIMO) system, each control input ∆um is associated to their
respective set of Laguerre functions Lm and coefficients ηm
respectively. Thus, by using (9) and (15) the prediction of the
future state variable becomes:

x(ki +Np | ki) = ANpx(ki)

+

Np−1∑
i=0

ANp−i−1
[
B1L1(i) + B2L2(i) + . . .+ BmLm(i)

]
ηp,

(17)
where ηTp = [ ηT1 ηT2 . . . ηTm] ; and B1,B2, . . . ,Bm is
the i−column of the B matrix in the incremental model. Thus,

the variable to be optimized are the coefficients of the Laguerre
functions.

C. Control Law

To determine the coefficients ηp of the Laguerre functions,
the formulation of a constrained optimization problem is pre-
sented. Then, the control law is obtained by the minimization
of the following exponential cost function J [18]:

J =

Np∑
j=1

α−2jx (ki + j | ki)T Qαx (ki + j | ki)

+

Np∑
j=0

α−2j∆u (ki + j)
T

Rα∆u (ki + j) ,

(18)

subject to

umin ≤Mη + u(k − 1) ≤ umax,

where

M =


∑k−1

i=0 L1(i)
T oT2 . . . oTm

oT1
∑k−1

i=0 L2(i)
T . . . oTm

...
...

...
...

oT1 oT2 . . .
∑k−1

i=0 Lm(i)T

 ,

γ =
1

α
,

Qα = γ2Q +
(
1− γ2

)
P∞,

Rα = γ2R,

and P∞ is the solution of the algebraic Riccati equation:

AT
[
P∞−P∞B(R+BTP∞B)

−1
BTP∞

]
A+Q−P∞=0.

In (18), α > 1; Q ≥ 0,R > 0 are given, and Qα ≥ 0, Rα > 0
are matrices of appropriate dimensions; ok, k = 1, 2, ...,m is
a zero row vector of L(0)T dimensions; umin, umax are the
lower and upper limit in the control input. It can be seen in
(18) that the state variables and the control input are associated
with their respective exponential factor, therefore, the original
system is transformed by the new variables

∆û(k + j) = α−j∆u(ki + j),

x̂(ki + j | ki) = α−jx(ki + j | ki),
(19)

which lead (8) to the following system:

x̂ (ki + j + 1 | ki) = Âx̂ (ki + 1 | ki) + B̂∆û (ki) . (20)

where Â = A
α and B̂ = B

α . By using these exponentially
weighted variables, the exponentially weighted cost function
is expressed in terms of the transformed variables, and the
construction (13)-(14) is now based on the pair (α−1A,
α−1B). The exponential feasibility is presented in [18]. Thus,
the eigenvalues do not take a large value, avoiding the ill-
conditioned matrix problem.



IV. CURRENT CONTROL OF THE PMSM

For simplicity, the control of the PMSM is commonly
performed in a cascade control approach, an outer loop is
used to regulate the speed of the machine and follow the
reference speed, and an inner loop to regulate the d− q stator
currents and follow the reference current. In this section, the
CCS-MPC presented in section III is developed for the current
control of the PMSM. It is assumed that the d − q currents
are measurable and available for feedback. There are mainly
two steps necessary in predictive control, the prediction of the
output, and the derivation of the control law.

A. Output prediction

For the current control of the PMSM, the d − q
components of the stator current are selected as the
state variables, and the d − q components of the stator
voltage as the control input. Then, by using ŷ(k) = x̂(k) =
[ id(k)− id(k − 1) iq(k)− iq(k − 1) id(k) iq(k) ]T ,
and u(k) = [ ud(k) uq(k) ]T , the output prediction can be
obtained from (17) as:

ŷ(ki +Np | ki) = ÂNp x̂(ki) + φ(m)T ηp, (21)

where

φ(m) =
∑Np−1
i=0 ÂNp−i−1

[
B̂1L1(i) + B̂2L2(i)

]
,

ηTp = [ ηT1 ηT2 ].

note that each element of φ can be solved recursively inde-
pendently, and for a linear time-invariant system it can be
calculated offline for the evaluation in the cost function.

B. Cost function formulation

For regulation of the state variables, the cost function (18)
can be used for a given Qα and Rα. In the case of reference
tracking, the state variables are reformulated as the difference
between the reference point and the output of the system. Thus,
by defining the i∗d and i∗q as the d − q reference currents
respectively, the state variables are rewritten as x̂(k) =
[id(k)− id(k− 1), iq(k)− iq(k− 1), id(k)− i∗d, iq(k)− i∗q ]T .
Thus, by using the predictive output given by (21), and the
Laguerre functions for ∆u, the cost function can be written
as:

J =

Np∑
j=1

x̂ (ki + j | ki)T Qαx̂ (ki + j | ki) + ηTp Rαηp. (22)

In (22), the Rα and Qα matrices are used to balance the
trade-off in the reference tracking and the control action. Qα

can be selected as the identity matrix for an equal trade-off
between the id and the iq reference tracking. For Rα, a large
value will tend to penalize the control action, leading to slow
response in the current reference tracking. To find the optimal
coefficients of the Laguerre functions ηp, the cost function J is
minimized as a constrained optimization problem. In this way,
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Fig. 1. Simplified block diagram of the proposed control scheme

TABLE I
PARAMETERS OF THE PMSM

282V , 3-Φ, PMSM
Parameter value Parameter value
MLN 4.7 Nm p 3
Rs 2.41 Ω Ωnom 3000 Rpm
Lsd 24 mH Lsq 24 mH
ψPM 0.2456 V s iN 3.4 A
J 3.041 · 10−3 kgm2

by replacing (21) in (22), the optimization of the formulated
cost function is rewritten as:

J =minηp ηTp Ωηp + 2ηTp Ψx̂(ki) + Γ,

s.t. umin ≤Mη + u(k − 1) ≤ umax.
(23)

where

Ω =
∑Np

m=1φ(m)Qαφ(m)T + Rα,

Ψ =
∑Np

m=1φ(m)QαÂm,

Γ =
∑Np

m=1x̂(ki)
T (ÂT )mQαÂmx̂(ki).

The solution of (23) is performed based on dynamic pro-
gramming. In this paper, Hildreth’s quadratic programming
algorithm is used [23]. The solution of (23) will lead to
the optimal control trajectory to follow the current reference,
however, by the principle of receding horizon control, only the
first element of the optimal trajectory is applied to the PMSM.
Therefore, the control (ud(k), uq(k)) can be determined as:

u(k) = u(k − 1) +

[
L1(0)T oT2

oT1 L2(0)T

]
ηp. (24)

V. SIMULATION RESULTS

A simplified block diagram of the proposed methodology is
presented in Fig. 1. The proposed control scheme is based on
the structure of conventional FOC. Since the dynamic response
of the mechanical speed is slower than the dynamic response
of the d − q currents, the speed control can be used to set
the reference of the iq current for the CCS-MPC, while the
reference of the id current is set to zero to obtain a constant
torque angle control. The speed control used is based on the
control presented in [24], which is discretized based on Euler



Fig. 2. Closed-loop system response without exponential weighting. From
top: id current, iq current, mechanical speed.

Fig. 3. Closed-loop system response with exponential weighting. From top:
id current, iq current, mechanical speed.

differentiation. Finally, the reference voltage vector is applied
to the PMSM through the space vector pulse width modulation
(SV-PWM).

To verify the performance of the proposed control methodol-
ogy, the block diagram shown in Fig. 1 has been implemented
in Matlab/Simulink. The parameters of the PMSM under test
are listed in Table I. A comparison between the simulation of
the unweighted control scheme and the exponentially weighted
control scheme under steady and transient operation is pre-
sented. For both control schemes, a sampling time of 60µs is
used, and the parameters used in the CCS-MPC were adjusted
by several simulations. The final values of the parameters used
in this simulation are the following: Np = 150, Nc = 10,
Q = CCT , R = 0.01, a = 0.8, N = 15, α = 1.2 and
umin, umax are calculated to keep the reference voltage vector
applied by the SVM-PWM in the linear region.

The performance under steady-state evaluation with and
without exponential cost function is shown in Figs. 2-3 respec-
tively. The speed reference is set at 100 rad/s. At the time
instant of 0.7s a torque load disturbance of 4Nm is applied
to the machine and is maintained for 0.7s until is released at
a time of 1.4s. The results showed a fast dynamic response of
the id and iq currents, and accurate tracking of the reference
speed. When the disturbance is applied to the machine, the
control can mitigate the load torque and remain stable during
the time the disturbance is applied. It can be seen in the results,
that the application of the control voltage through the PWM
leads to some noise in the current performance, this ripple can
be reduced by using an smaller sampling time. It is possible to

Fig. 4. Response under reversal speed of the PMSM without exponential
weighting. From top: id current, iq current, mechanical speed

Fig. 5. Response under reversal speed of the PMSM with exponential
weighting. From top: id current, iq current, mechanical speed

TABLE II
EIGENVALUES AND CONDITION NUMBER FOR BOTH WEIGHTED AND

UNWEIGHTED SYSTEMS

Eigenvalues

Np
Unweighted Weighted

λmin(Ω) λmax(Ω) lambdaminΩ λmaxΩ
10 6× 10−4 0.0071 4.1667×10−4 0.0038
30 6×10−4 0.4173 4.1667×10−4 0.0116
300 6.0066×10−4 1.3092×103 4.3829×10−4 0.0165

Condition Number K(Ω)
10 12.7968 9.0077
30 695.5065 27.7608
300 2.1796 ×106 37.6127

observe in both control schemes that the performance is similar
because the optimal solution of the exponentially weighted
cost function is equivalent to the original solution.

The performance of the proposed control scheme under the
dynamic state is shown in Figs. 4-5 respectively. In this test,
the evaluation of the PMSM under speed reversal is performed.
At time t = 0.1s the reference is set to 150 rad/s and after
1.5s the speed reference is changed to −150 rad/s. Figs. 4-5
shown a fast dynamic response of the currents, and an accurate
speed reference tracking. Similar to the results under steady-
state, the disturbance load torque is mitigated by the control.

To evaluate the effect of the computational burden of
the CCS-MPC under long horizon predictions, the condi-
tion number K(Ω) and the eigenvalues of Ω are calculated.
In this evaluation, the prediction horizon is evaluated for
Np = 10, 30, 300, and the results are shown in Table II
for the condition number and the eigenvalues respectively. It



is observed that the condition number K(Ω) is significantly
reduced for long horizon predictions, this is mainly because
the optimization problem is performed using the exponential
cost function. In the same way, with the modification of
the original cost function, the Ω eigenvalues are significantly
reduced for long horizon predictions. By doing so, a long
prediction horizon can be used safely.

The results obtained demonstrate the effectiveness of the
proposed control scheme, which can successfully control the
speed and current of a PMSM despite torque load disturbances.
With the application of the proposed exponential cost function,
the CCS-MPC can be performed for long-horizon predictions,
leading to robust control of the PMSM. Moreover, the numer-
ical ill-condition of long-horizon CCS-MPC is significantly
reduced by the exponential factor used in the cost function. A
drawback of the proposed methodology is the number of pa-
rameters required to operate accurately in the PMSM control.
These parameters have been adjusted on trial and error, and
further research is necessary to determine the parameters of the
proposed CCS-MPC. Furthermore, large parametric variations
could lead to errors in the output prediction, and then in the
control signal. Finally, in the real system, the processing time
of the digital system should be less than the sampling time to
guarantee a correct performance of the CCS-MPC.

VI. CONCLUSIONS

In this paper, an exponential cost function for the CCS-MPC
of a PMSM is proposed. The CCS-MPC is formulated for the
stator current control of the PMSM, and the application of the
proposed methodology results in robust control of the PMSM
under torque load disturbances. It can be observed from the
simulations results, that the PMSM follows the reference under
steady and dynamic operation.

The exponential cost function is formulated to reduce the
computational burden of long-horizon predictions in CCS-
MPC, this is verified by the calculation of the condition
number and the eigenvalues of the matrix required for the state
prediction. In the same way, the proposed exponential cost
function reduces the numerical ill-condition in CCS-MPC. The
obtained results demonstrate that the proposed methodology
is an alternative to implement long horizon predictions in
electrical drives. Further research can be oriented to the
sensorless operation of the proposed scheme, this issue will
be investigated in the future.
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