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Preface

The idea of editing this book emerged during the fourth meeting on Combinatorial
Optimization, Routing and Location, held in Benicassim, Spain, in May 2012
(CORAL 2012) and was formalized during the 12th International Symposium on
Locational Decisions (ISOLDE XII), held in Nagoya and Kyoto, Japan, in July the
same year.

Our goal was to edit a comprehensive and structured book gathering the
essential knowledge on modern Location Science, as opposed to a collection of
exhaustive surveys or a pedagogical textbook with worked examples and exercises.
Rather, this is a book on “what you should know” about various aspects of Location
Science. It provides the basic knowledge and structures of the field. It can be used
either in standard academic programs or in specialized courses.

The book contains an introduction to modern Location Science and 23 chapters
grouped under three main headings: basic concepts (five chapters), advanced
concepts (12 chapters), and applications (six chapters).

We have identified some of the best reputed specialists in the field to write the
different chapters of the book. Each chapter was reviewed several times by at least
one of the editors. The process was completed within two years. Today we are glad
to present to the location community a high quality book which we hope to update
on a regular basis.

We thank all the authors who accepted our challenge to be involved in this book.
The quality of their work together with their dedication and enthusiasm contributed
to making this project a success.

Finally, thanks are also due to Mr Christian Rauscher and to the Springer staff
for their help and encouragement throughout this project.

Montréal, Canada Gilbert Laporte
Karlsruhe, Germany Stefan Nickel
Lisbon, Portugal Francisco Saldanha da Gama
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Evrim Didem Güneş and Stefan Nickel
21.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
21.2 Healthcare Facility Location .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

21.2.1 Objective Functions in Healthcare Facility Location .. . . 556
21.2.2 An Overview of Healthcare Facility Location

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559



Contents xv

21.3 Ambulance Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
21.3.1 The Strategic and Tactical Level: Finding

Ambulance Base Locations and Assigning
Ambulances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

21.3.2 The Operational Level: Ambulance Relocation . . . . . . . . . 569
21.4 Hospital Layout Planning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

21.4.1 The Quadratic Assignment Problem .. . . . . . . . . . . . . . . . . . . . 572
21.4.2 A Mixed-Integer Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
21.4.3 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

21.5 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

22 The Design of Rapid Transit Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Gilbert Laporte and Juan A. Mesa
22.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
22.2 Objectives and Network Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
22.3 Location of Rapid Transit Networks: Models and Algorithms.. . . . 587

22.3.1 Location of a Single Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 587
22.3.2 Rapid Transit Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

22.4 Location of Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
22.5 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

23 Districting Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Jörg Kalcsics
23.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
23.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

23.2.1 Political Districting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
23.2.2 Sales Territory Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
23.2.3 Service Districting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
23.2.4 Distribution Districting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

23.3 Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
23.3.1 Basic Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
23.3.2 Districts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
23.3.3 Problem Formulation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

23.4 Districting Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
23.4.1 Complete and Exclusive Assignment . . . . . . . . . . . . . . . . . . . . 604
23.4.2 Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
23.4.3 Contiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
23.4.4 Compactness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
23.4.5 District Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
23.4.6 Other Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

23.5 Solution Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
23.5.1 Location-Allocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
23.5.2 Set-Partitioning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
23.5.3 Computational Geometry Methods . . . . . . . . . . . . . . . . . . . . . . . 617



xvi Contents

23.5.4 Construction Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
23.5.5 Meta Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

23.6 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

24 Location Problems Under Disaster Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Maria Paola Scaparra and Richard L. Church
24.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
24.2 Notation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
24.3 Identifying Critical Facilities: Interdiction Models . . . . . . . . . . . . . . . . . 626

24.3.1 The r-Interdiction Median Problem .. . . . . . . . . . . . . . . . . . . . . 627
24.3.2 The r-Interdiction Covering Problem . . . . . . . . . . . . . . . . . . . . 629
24.3.3 Other Interdiction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

24.4 Hardening Facilities: Protection Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
24.4.1 The r-Interdiction Median Problem with

Fortification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
24.5 Planning Robust Systems: Design Models . . . . . . . . . . . . . . . . . . . . . . . . . . 632

24.5.1 Planning for a Risk-Averse Designer . . . . . . . . . . . . . . . . . . . . . 633
24.5.2 Planning for a Risk-Neutral Designer . . . . . . . . . . . . . . . . . . . . 634

24.6 Future Trends .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
24.7 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643



Chapter 1
Introduction to Location Science

Gilbert Laporte, Stefan Nickel, and Francisco Saldanha da Gama

Abstract This chapter introduces modern Location Science. It traces the roots of
the area and describes the path leading to the full establishment of this research
field. It identifies several disciplines having strong links with Location Science
and offers examples of areas in which the knowledge accumulated in the field of
location has been applied with great success. It describes the purpose and structure
of this volume. Finally, it provides suggestions on how to make use of the contents
presented in this book, namely for organizing general or specialized location courses
targeting different audiences.

Keywords Application areas • Foundations • Location courses • Location
science, Related disciplines

1.1 Introduction

In the past decades, Location Science has become a very active research area,
attracting the attention of many researchers and practitioners. Facility location
problems lie at the core of this discipline. These consist of determining the “best”
location for one or several facilities or equipments in order to serve a set of demand
points. The meaning of “best” depends on the nature of the problem under study,
namely in terms of the constraints and of the optimality criteria considered.
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Location Science is a rich and fruitful field, gathering a large variety of problems.
The research conducted in this area has led to the creation of a considerable amount
of knowledge, both in terms of theoretical properties and modeling frameworks,
together with solution techniques. This knowledge has evolved over time, pushed
by the need to solve practical location problems, by technical and theoretical
challenges, and often by problems arising in various disciplines. In fact, the
interaction with other disciplines such as economics, geography, regional science
and logistics, just to mention a few, has always been a driving force behind the
development of Location Science. Nowadays, the potential of this field of study
in the context of many real-world systems is widely recognized. This book emerges
from the need to gather in a single volume the basic knowledge on Location Science
as well as from the importance of somehow structuring the field and showing how
it interacts with other disciplines.

In this introductory chapter we start by tracing the roots of what is now known
as Location Science. This is done is Sects. 1.2 and 1.3. In Sect. 1.4 we present the
purpose and structure of this book. Finally, in Sect. 1.5 we provide some suggestions
on how to make the best use of the book.

1.2 The Roots

In order to trace the roots of modern Location Science, one must go back to an old
geometric problem which is simple to state: What is the point in the Euclidean
plane minimizing the sum of its distances to three given points (Fig. 1.1)? This
problem is widely credited to the French mathematician Pierre de Fermat (1601–
1665)1 although its origin is a matter of debate (see Wesolowsky 1993).

Since the seventeenth century, different solutions have been proposed for
Fermat’s problem. There is evidence that the first one is due to the Italian scientist
Evangelista Torricelli (1608–1647). The geometric approach proposed by Torricelli
is depicted in Fig. 1.2 and can be described as follows: By joining the three given
points with line segments, a triangle is obtained. Equilateral triangles can now

Fig. 1.1 Fermat’s problem

1The problem is presented in his famous essay on maxima and minima.
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Fig. 1.2 Torricelli’s
geometric construction for the
Fermat problem

be constructed on the sides of this triangle, their vertices pointing outwards.
A circumscribing circle can then be drawn around each of these three triangles.
The circles will intersect at a single point called the Torricelli point or, as some
authors call it, the Fermat-Torricelli point. If all the angles in the initial triangle are
at most equal to 120ı, this point is the optimal solution to the problem; otherwise,
the Torricelli point falls outside the initial triangle. In this case, the optimal solution
is the initial point located at the apex of the angle greater than 120ı (Heinen 1834).

It is interesting to note that nowadays this problem still attracts the attention of
the scientific community (see, for instance, Nam 2013).

The first documented attempt to position location analysis within an economic
context is due to Johann Heinrich von Thünen (1783–1850), an educated landowner
in northern Germany. Von Thünen wished to understand the rural developments
around an urban center. The results of his analysis were presented in 1826 in a
treatise entitled Die isolierte Staat in Beziehung auf Landwirtschaft und Nation-
alökonomie, which was edited as a book in 1842 and translated into English in
1966 (von Thünen 1842). Figure 1.3 depicts the cover of the 1842 edition. Von
Thünnen (1842) considered an isolated and homogeneous area with an urban center
and aimed to discover laws which then governed agricultural prices translating them
into land usage patterns. He also considered several types of agricultural activities
(e.g., grain farming and livestock) grouped according to their relative economic
yield per unit area, their perishability, and the difficulty in delivering the products to
the (central) market. His findings led him to postulate that three factors should have
a crucial impact on the spacial distribution of the activities: (1) the more perishable
a product is, the closer to the market it will be grown; (2) the higher the economic
productivity of a product per land area, the closer to the market it will be grown;
(3) higher transportation difficulty leads to locating an activity closer to the market.
One should therefore expect that the different agriculture activities will evolve in
concentric rings around the urban center (Fig. 1.4).
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Fig. 1.3 “Die Isolierte Staat”
by Johann Heinrich von
Thünen, Rostock, 1852
(Source: University of
Toronto—Robarts Library,
https://www.archive.org/
details/
derisoliertestaa00thuoft)

There still exists an intensive debate on the theory of von Thünen (Block and
DuPuis 2001). Despite its merit, von Thünen’s model is only descriptive, i.e., it is
aimed at predicting the behavior of the system. In fact, at the time, models were
mostly used to answer to questions such as “why do we do it?”. Von Thünen’s work
can be viewed as fundamental in urban economics and location theory. Nowadays,
it is still relevant in areas such as geography, agricultural economics and sociology
(Block and DuPuis 2001). These authors emphasize that the centrality theory of von
Thünen is still relevant for some dairy products such as milk. Other researchers have
pursued von Thünen’s centrality idea. The results are reviewed by Fischer (2011).

The first normative location models aimed at determining “what we should do”,
were proposed by Carl Friedrich Launhardt (1832–1918) and Alfred Weber (1868–
1958). Launhardt (1900) introduced the problem of tracing an optimal rail route
connecting three points. Interestingly, the author casted this problem within an
industrial context. The problem was revisited by Pinto (1977) who stated it as
follows: Consider the three nodes depicted in Fig. 1.5. Suppose that wA tons of

https://www.archive.org/details/derisoliertestaa00thuoft
https://www.archive.org/details/derisoliertestaa00thuoft
https://www.archive.org/details/derisoliertestaa00thuoft
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Fig. 1.4 Von Thünen’s rings.
From “Die Isolierte Staat” by
Johann Heinrich von
Thünen”, Rostock 1842,
p. 389 (Source: University of
Toronto—Robarts Library,
https://www.archive.org/
details/
derisoliertestaa00thuoft)

Fig. 1.5 Location problem
proposed by Launhardt
(1900) within an industrial
context

iron ore (collected at A) have to be combined with wB tons of coal (collected at
B) to produce wC tons of pig-iron to be dispatched to C . The problem calls for
an industrial facility to be located somewhere between A, B and C . If dA, dB , dC
denote the Euclidean distances between the industrial location (to be determined)
and nodes A, B , and C , respectively, then the goal is to determine the location of
the industrial plant that will minimize the total weighted transportation cost given
by wAdA C wBdB C wC dC .

https://www.archive.org/details/derisoliertestaa00thuoft
https://www.archive.org/details/derisoliertestaa00thuoft
https://www.archive.org/details/derisoliertestaa00thuoft
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Fig. 1.6 Launhardt’s
geometric solution

This problem introduced by Launhardt is exactly what we now call the three-
node Weber problem. However, as pointed out by Pinto (1977), the problem was
introduced about 10 years before Weber (1909). Indeed, Launhardt (1900) proposed
a simple geometric solution scheme for the problem. The solution is obtained as
follows (see Fig. 1.6): Consider the triangle ABC defined by the original nodes (the
locational triangle) and select one node, say C . Consider another triangle whose
sides are proportional to the weights wA, wB and wC .2 Draw a triangle AOB similar
(in the geometric sense) to the weight triangle but such that the edge proportional
wC has the same length as edge AB, which is the one opposite to C in the locational
triangle. The new triangle AOB is depicted in Fig. 1.6.3 We can now circumscribe
nodesA, B andO , by just touching each point. Finally, a straight line can be drawn
connecting O and C . The intersection between the circle and this line yields the
optimal location for the industrial facility.

This same problem was treated by Weber (1909) or, to be more accurate, by
the mathematician Georg Pick (1859–1942), who is the author of the appendix
in which the mathematical considerations of Weber’s book are presented. The
problem was solved in a different way but this resulted in the same solution. As
put by Lösch (1944), the solution to this problem was discovered by Carl Friedrich
Launhardt and rediscovered “one generation later” by Alfred Weber. Nevertheless,
Weber (1909), presented a deeper analysis of the problem. He first noted that if
the geometric construction leads to a point outside the original triangle, then the
optimal solution lies on the boundary of the original triangle. Second, he observed
that the pole method, which Launhardt (1900) believed should work for polygons

2This triangle is referred to by Weber (1909) as the weight triangle.
3Node O was called by Launhardt the pole of the locational triangle.
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with more than three sides, does not necessarily yield the optimal solution when
more than three nodes are involved. A practical algorithm for solving the problem
with an arbitrary number of nodes was proposed by Weiszfeld (1937).4 The iterative
procedure proposed in this work was recently revisited in depth by Plastria (2011).

A synthesis of the first steps towards inserting location theory into an economic
context is due to Lösch (1944). The importance of this work stems from the fact that,
for the first time, location theory and the theory of market areas were connected.
This work constitutes the first explicit recognition of the strong link that is often
observed between these two areas.

1.3 Towards a New Science

The 1960s set the foundations of Location Science as new scientific area. We first
witnessed the natural extension of the Weber problem to the multi-facility case.
This was done, among others, by Miehle (1958) and Cooper (1963). In particular,
the latter work introduced the planar p-median problem for which each demand
node must be served by one out of p new facilities to be located. This became
a fundamental problem in Location Science, which still attracts the attention of
the scientific community (see the recent papers by Brimberg and Drezner 2013,
Brimberg et al. 2014, and Drezner et al. 2014).

The seminal papers by Hakimi (1964, 1965) opened new important research
directions. Hakimi (1964) introduced the concept of absolute median of a graph:
a single facility is to be located anywhere in a network so as to minimize the sum
of the distances of the nodes of the network to the facility. The author proved that
there always exists an optimal solution for which the absolute median is a vertex
of the graph. It is also in this paper that the concept of absolute center was first
introduced: a single facility has to be located (anywhere in the network) in order to
minimize the maximum distance between the facility and all the vertices. This work
was extended to the multi-facility case by Hakimi (1965): now, p facilities are to
be located. The vertex-optimality property is still valid for the resulting p-median
problem. This property is of major importance because it means that many network
location problems can be cast into a discrete setting which, in turn, leads to the
possibility of using integer programming and combinatorial optimization techniques
for tackling these problems.

4The author is now known to be Andrew Vázsonyi (1916–2003).
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It is interesting to note that an important step toward the development of
discrete facility location problems was taken in the same year when Balinski (1965)
proposed the first mixed-integer linear programming (MILP) formulation for a
discrete problem which also became classical in Location Science: the uncapacitated
facility location problem (UFLP). Some inequalities proposed in this work were
later used by ReVelle and Swain (1970) who formulated the first MILP model for
the discrete p-median problem. One year later, Toregas et al. (1971) introduced the
first integer programming formulation for a covering-location problem.

By the early 1970s, the foundations were laid for what would soon become a
very active research field. The recent book by Eiselt and Marianov (2011) describes
the works that can be considered to constitute the basis of Location Science.

In the past 40 years, significant advances have been made in several areas of
Location Science, which is attested by several review papers, such as those by
Brandeau and Chiu (1989), ReVelle and Laporte (1996), Avella et al. (1998), Hale
and Moberg (2003), ReVelle and Eiselt (2005), ReVelle et al. (2008), and Smith
et al. (2009).

Initially, the major concern of the researchers had to do with theoretical develop-
ments and properties of the problems and their solutions. Much work was developed
on continuous and network location problems as well as on fundamental discrete
facility location problems. Further links were created with other areas. For instance,
the developments in continuous location problems led to the important connection
between location analysis and computational geometry. This link remains quite
strong to this day. In fact, one of the most relevant structures in computational
geometry, the Voronoi diagram [after Georgy Feodosevich Voronoy (1868–1908)],
is of major importance in the resolution of many continuous location problems (see,
for instance, the review by Okabe and Suzuki 1997).

Nowadays, location problems can still be categorized according to the location
space (continuous, network or discrete), but also according to their context, namely
the objectives, constraints or type of facilities involved. Eiselt and Marianov (2011)
highlight the three major forms of facility location problems according to the type
of objective function: minsum, covering and minmax. For some time, it was also
popular to distinguish between public, semi-public and private facility location.

Location Science is highly interconnected with other disciplines and has appli-
cation in many areas. The theoretical foundations of this area lie in mathematics,
economics, geography and computer science. The developments we have observed
touch each of these areas.

More recently, stimulated by real-world problems, many areas have emerged
where facility location has been applied with great success. Among these, we can
point out logistics (see, for instance, Melo et al. 2006, for a problem in the context
of logistics network design), telecommunications (see, for instance, Gollowitzer and
Ljubić 2011, for a telecommunications network design problem), routing (e.g., in
the truck and trailer routing problem introduced by Chao 2002, the location of the
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trailer-parking places is one of the relevant decisions to make), and transportation
(see, e.g., Nickel et al. 2001, for a location problem in the context of public
transportation systems). The application of location theory in these areas partially
explains why discrete facility location problems have progressively acquired a major
relevance when compared with the early developments in Location Science.

Nowadays, Location Science is a very active and well-established research area
with its own identity and research community. In addition to the fundamental prob-
lems, we observe different research branches being intensively investigated such has
multi-criteria facility location, multi-period facility location, facility location under
uncertainty, location-routing and competitive location, just to mention a few.

1.4 Purpose and Structure of This Book

As highlighted above, many location problems have applications in other disci-
plines. Researchers working in these disciplines often encounter location decisions
as part of broader problems. From the point of view of researchers coming
from the location community, the recent decades have shown that several very
successful applications of the knowledge gathered in Location Science require a
deep understanding of these disciplines.

In this book, readers will find a full coverage of basic aspects, fundamental
problems and properties defining the field of Location Science, as well as advanced
models and concepts that are crucial to the solution of many real-life complex
problems. The book also presents applications of location problems to several fields.
It is intended for researchers working on theory and applications involving location
problems and models. It is also suitable as a textbook for graduate courses in
facility location. This book is neither a typical textbook with worked examples
and exercises, nor a collection of extensive surveys. It is more a book on “what
you should know” about various aspects of Location Science; it provides the basic
knowledge and structures the field. It is divided into three parts: basic concepts,
advanced concepts and applications.

I. Basic concepts
This part is devoted to the fundamental problems in Location Science, which
include:

• Chapter 2: p-median problems;
• Chapter 3: Fixed-charge facility location problems;
• Chapter 4: p-center problems;
• Chapter 5: Covering location problems;
• Chapter 6: Anti-covering location problems.

The goal of this part is to provide the reader with the basic background of
location theory. The problems described in Part I serve as a basis for much of
the content of Parts II and III.
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II. Advanced concepts
This part covers models and concepts that aim at broadening and extending the
basic knowledge presented in Part I, thus providing the reader with important
tools to better understand and solve real-world location problems. The chapters
in this part are the following:

• Chapter 7: Location of dimensional facilities in a continuous space;
• Chapter 8: Facility location under uncertainty;
• Chapter 9: Location problems with multiple criteria;
• Chapter 10: Ordered median location problems;
• Chapter 11: Multi-period facility location;
• Chapter 12: Hub location problems;
• Chapter 13: The quadratic assignment problem;
• Chapter 14: Competitive location;
• Chapter 15: Location-routing and location-arc routing;
• Chapter 16: Location and logistics;
• Chapter 17: Stochastic location models with congestion;
• Chapter 18: Aggregation in location.

III. Applications
The links between Location Science and other areas are the focus of the third
part. By presenting a wide range of applications, it is possible not only to
understand the role of facility location in such areas, but also to show how
to handle realistic location problems. These applications include:

• Chapter 19: Location and GIS;
• Chapter 20: Location problems in telecommunications;
• Chapter 21: Location problems in healthcare;
• Chapter 22: The design of rapid transit networks;
• Chapter 23: Districting problems;
• Chapter 24: Location problems under disaster events.

1.5 How to Use This Book

Over the past decades, problems, models, properties, and techniques from Location
Science have been increasingly taught to students enrolled in different programs. We
have identified six types of post-graduate curricula having a strong location content:
business, computer science, economics, engineering, geography and mathematics.
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Depending on the audience, different contents emerge as the most appropriate.
This book can be used with the purpose of organizing courses tuned for specialized
targets by selecting specific combinations of chapters. Below, we offer some
suggestions.

Business

2: p-Median
problems

3: Fixed-charge facility
location problems

5: Covering location
problems

8: Facility location
under uncertainty

9: Location problems
with multiple criteria

11: Multi-period
facility location

12: Hub location
problems

13: The quadratic
assignment problem

14: Competitive
location

15: Location-routing and
location-arc routing

16: Location and
logistics

18: Aggregation in
location

23: Districting
problems
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Computer science

2: p-Median
problems

3: Fixed-charge facility
location problems

4: p-Center
problems

5: Covering location
problems

6: Anti-covering
location problems

7: Location of dimensional
facilities in a continuous space

9: Location problems
with multiple criteria

10: Ordered median
location problems

13: The quadratic
assignment problem

14: Competitive
location

17: Stochastic location models
with congestion

18: Aggregation in
location

19: Location
and GIS

20: Location problems
in telecommunications

21: Location problems
in healthcare

22: The design of rapid
transit networks

23: Districting
problems

24: Location problems under
disaster events
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Economics

2: p-Median
problems

3: Fixed-charge facility
location problems

4: p-Center
problems

5: Covering location
problems

6: Anti-covering
location problems

7: Location of dimensional
facilities in a continuous space

8: Facility location
under uncertainty

9: Location problems
with multiple criteria

10: Ordered median
location problems

11: Multi-period
facility location

14: Competitive
location

17: Stochastic location models
with congestion

18: Aggregation in
location

19: Location
and GIS

21: Location problems
in healthcare

22: The design of rapid
transit networks
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Engineering

2: p-Median
problems

3: Fixed-charge facility
location problems

11: Multi-period
facility location

12: Hub location
problems

13: The quadratic
assignment problem

16: Location and
logistics

17: Stochastic location models
with congestion

18: Aggregation in
location

19: Location
and GIS

20: Location problems
in telecommunications

22: The design of rapid
transit networks

23: Districting
problems

Geography

2: p-Median
problems

4: p-Center
problems

5: Covering location
problems

6: Anti-covering
location problems

8: Facility location
under uncertainty

14: Competitive
location

18: Aggregation in
location

19: Location
and GIS

21: Location problems
in healthcare

23: Districting
problems

24: Location problems under
disaster events
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Mathematics

2: p-Median
problems

3: Fixed-charge facility
location problems

4: p-Center
problems

5: Covering location
problems

6: Anti-covering
location problems

7: Location of dimensional
facilities in a continuous space

8: Facility location
under uncertainty

9: Location problems
with multiple criteria

10: Ordered median
location problems

11: Multi-period
facility location

13: The quadratic
assignment problem

14: Competitive
location

15: Location-routing and
location-arc routing

17: Stochastic location models
with congestion

18: Aggregation in
location

This book can also be used to build specialized courses in specific areas. Below,
we provide examples in four areas: facility location and supply chain management,
location of undesirable facilities, location of emergency facilities, and location in
transportation systems.

Facility location and supply chain management

3: Fixed-charge facility
location problems

8: Facility location
under uncertainty

11: Multi-period
facility location

12: Hub location
problems

15: Location-routing and
location-arc routing

16: Location and
logistics
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Location of undesirable facilities

2: p-Median
problems

3: Fixed-charge facility
location problems

6: Anti-covering
location problems

9: Location problems
with multiple criteria

15: Location-routing and
location-arc routing

18: Aggregation in
location

Location problems in transportation systems

2: p-Median
problems

3: Fixed-charge facility
location problems

7: Location of dimensional
facilities in a continuous space

12: Hub location
problems

15: Location-routing and
location-arc routing

22: The design of rapid
transit networks

Location of emergency facilities

4: p-Center
problems

5: Covering location
problems

8: Facility location
under uncertainty

17: Stochastic location models
with congestion

18: Aggregation in
location

21: Location problems
in healthcare

24: Location problems under
disaster events

When used for teaching, this book should be complemented with examples and
exercises; when used for research, it should be complemented with specialized
readings. We found the following comprehensive references particularly relevant:
Mirchandani and Francis (1990), Drezner (1995), Drezner and Hamacher (2002),
Nickel and Puerto (2005), Eiselt and Marianov (2011), and Daskin (2013).
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Chapter 2
The p-Median Problem

Mark S. Daskin and Kayse Lee Maass

Abstract The p-median problem is central to much of discrete location modeling
and theory. While the p-median problem is NP-hard on a general graph, it can
be solved in polynomial time on a tree. A linear time algorithm for the 1-median
problem on a tree is described. We also present a classical formulation of the
problem. Basic construction and improvement algorithms are outlined. Results
from the literature using various metaheuristics including tabu search, heuristic
concentration, genetic algorithms, and simulated annealing are summarized. A
Lagrangian relaxation approach is presented and used for computational results on
40 classical test instances as well as a 500-node instance derived from the most
populous counties in the contiguous United States. We conclude with a discussion
of multi-objective extensions of the p-median problem.

Keywords Algorithm • Center • Covering • Lagrangian relaxation • Median •
Multi-objective

2.1 Introduction

The p-median problem is that of locating p facilities to minimize the demand
weighted average distance between demand nodes and the nearest of the selected
facilities. The problem dates back to the seminal work of Hakimi (1964, 1965). The
p-median problem is one of several classical location problems which also include
the capacitated and uncapacitated facility location problems (Chap. 3), the p-center
problem (Chap. 4), covering problems (Chap. 5) and anti-covering problems (Chap.
6). The p-median problem lies at the heart of many practical location problems, and,
as shown below (Sect. 2.7), some of the other classical location problems can readily
be formulated as p-median problems, leading to multicriteria location problems as
outlined in Chap. 9.

Our objective is not to review every paper and every result related to this seminal
problem. Rather, we summarize key results, algorithms and important extensions.

M.S. Daskin (�) • K.L. Maass
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We refer the reader to ReVelle et al. (2008) for a fairly recent annotated bibliography
of the p-median and related models.

The remainder of this chapter is organized as follows. Section 2.2 outlines several
key properties of the problem. Section 2.3 discusses optimal solution algorithms
for the problem on a tree. Section 2.4 formulates the p-median problem as an
optimization problem. Section 2.5 outlines algorithms for the problem on a general
network. Section 2.6 presents selected computational results. Section 2.7 outlines
two key multi-objective extensions of the p-median problem. Finally, conclusions
are briefly presented in Sect. 2.8.

2.2 Model Properties

There are three key properties of the p-median problem that are important to know.
First, Kariv and Hakimi (1979) showed that the p-median problem is NP-hard on a
general graph. This is the bad news. The good news, as outlined below, is that there
are many effective algorithms and approaches to solving the p-median problem.

Second, Hakimi (1965) showed that at least one optimal solution to the p-median
problem consists of locating only on the nodes. To see that this is true, consider
a solution that entails locating a facility somewhere on an edge between nodes A
and B. Let DA be the total demand served by this facility that enters the edge via
node A, and let DB be the total demand served by the facility that enters via node B.
Clearly, if DA > DB we can move the facility to node A and reduce the objective
function. This contradicts the assumed optimality of the facility at an intermediate
location on the edge. Similar arguments hold if DB > DA in which case we move
the facility to node B. If DA D DB we can move the facility to either node without
adversely impacting the objective function value. Note that moving the facility to
one of the nodes may result in the reassignment of demands to or from the facility if
doing so will reduce the objective function. Such reassignments will only improve
the objective function. Also note that moving the facility to one of the nodes may
also result in some demands that were served by the facility, and that entered via the
other node, to now enter the facility directly without traversing the edge between A
and B. This would occur if traveling directly to the facility is shorter than traveling
via the edge between A and B. Finally, we note that the nodal optimality property
holds if the distance between a demand node and a candidate facility site is replaced
by any concave function of the distance.

Finally, the demand weighted total cost or distance (or the demand weighted
average cost or distance) decreases with the addition of each subsequent facility.
This is clearly true since, if there exists an optimal solution to the problem with
p facilities, then adding a p C 1st facility at any of the candidate nodes that does
not have a facility will decrease the demand-weighted total cost or distance and
therefore will also decrease the objective function. Locating the p C 1 facilities
optimally is clearly as good or better than first locating p facilities optimally and
adding a subsequent facility to that solution.
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Table 2.1 Median results for top 100 counties in US

p
Demand weighted
average distance Change Sites

1 969.45 St. Louis, MO
2 450.65 518.80 San Bernardino, CA; Allegheny,

PA
3 320.15 130.50 Los Angeles, CA; Shelby, TN;

Hudson, NJ
4 257.23 62.92 Los Angeles, CA; Tarrant, TX;

New York, NY; Jefferson, KY
5 190.22 67.01 Los Angeles, CA; Cook, IL;

Dallas, TX; New York, NY;
Orange, FL

We would also expect that the marginal improvement in the demand weighted
total (or average) cost or distance would decrease monotonically as we add facilities.
This is frequently the case, but not always. As an example of a situation in which
this is not so, consider the p-median problem with the 100 largest counties in the
contiguous United States based on the 2010 census. While these counties represent
only 3.2 % of the 3,109 counties in the contiguous United States, they account for
42.2 % of the total population. Using great circle distances and population as a
proxy for demand, we obtain the results shown in Table 2.1. The demand weighted
average distance decreases with the number of facilities as shown in the second
column. However, the change in the demand weighted average distance increases
from about 63 miles to 67 miles as we increase from four to five facilities.

2.3 The p-Median Problem on a Tree

While the p-median problem is NP-hard on a general graph, the problem can be
solved in polynomial time on a tree. We illustrate this with a linear time algorithm
for finding the 1-median on a tree, which was proposed by Goldman (1971). This
algorithm also helps explain why the problem is called the “median” problem. If
any node of the tree has half or more of the total demand of all nodes on the tree,
then it is clearly optimal to locate at that node. Moving away from that node will
move the facility further from half or more of the demand and closer to less than
half of the demand, thereby increasing the objective function value.

To outline this algorithm, we define the following sets:

I D f1; : : : ; i; : : : ; mg the set of candidate locations

J D f1; : : : ; j; : : : ; ng the set of demand nodes:
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Fig. 2.1 Example tree
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In addition, we define the following additional inputs:

dj demand of customer j
cij unit cost of satisfying customer j from facility i.

Now suppose that no node has half or more of the total demand. We call any
node that is connected to only one other node in the tree, a tip node. We let d

0

j be the

modified demand at node j 2 J. We also define Dtotal D
X

j2Jdj . The algorithm

is as follows.

Step 1: Let d 0
j D dj for all nodes j 2 J.

Step 2: Select any tip node. Call the tip node, node A and the node to which it is
connected node B. Remove node A and edge (A, B). Add the modified demand at
node A to the modified demand at node B. If the new modified demand at node B
equals or exceeds Dtotal/2, stop; node B is the 1-median of the tree. Otherwise repeat
step 2.

This is clearly an O(n) algorithm since Step 2 can be performed in constant time
and each node is examined at most once in Step 2. The complexity of Step 1 is also
clearly O(n).

We can illustrate this algorithm with the tree shown in Fig. 2.1. The demand
associated with each node is shown in a box beside the node and the edge distances
are shown beside the edges. Nodes A, B, E and F are tip nodes. The total demand
in the tree is DtotalD 1,000. Clearly, no node has half or more of the total demand.
We select node E as the first tip node to eliminate (since it has the largest demand
of any tip node). We remove node E and link (C, E) from the tree and add 250 (the
demand at node E) to the demand at node C. The modified demand at node C is now
375, which does not exceed half of the total demand. Next we can process node F,
removing it as well as arc (D, F) and adding its demand to that of node D, resulting
in a modified demand at node D of 375. Next we process node B, removing it as
well as arc (B, D) and adding its demand to that of node D, resulting in a modified
demand at node D of 525, which exceeds half of the total demand in the tree. Node
D is therefore the 1-median of the tree.
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Note that in computing the location of the 1-median we do not need to use the
distances. In fact, node D would be the 1-median of the tree for any arc distances for
the tree. To compute the objective function value, we clearly do need the distances.
The objective function value for the 1-median located at node D in Fig. 2.1 is 5,375.

Kariv and Hakimi (1979) present an O(n2p2) algorithm for the p-median problem
on a tree. Tamir (1996) improved the computation time and presented an O(pn2)
algorithm for the problem of locating p facilities on a tree.

2.4 Model Formulation

In this section, we formulate the p-median problem. In addition to the notation
defined above, we define the following additional input:

p the number of facilities to locate.

Finally, we define the following decision variables:

yi D
�
1 if a facility is located at candidate site i
0 otherwise

xij the fraction of the demand of customer j that is supplied from facility i.

With this notation, we can formulate the p-median problem as follows:

minimize
X

i2I
X

j2Jdj cijxij (2.1)

subject to
X

i2Ixij D 1 8j 2 J (2.2)

X
i2Iyi D p (2.3)

xij � yi � 0 8i 2 II j 2 J (2.4)

yi 2 f0; 1g 8i 2 I (2.5)

xij � 0 8i 2 II j 2 J: (2.6)

The objective function (2.1) minimizes the demand-weighted total cost. Con-
straints (2.2) mean that all of the demand at demand site j must be satisfied.
Constraints (2.3) require exactly p facilities to be located. Constraints (2.4) state that
demand nodes can only be assigned to open facilities. Constraints (2.5) stipulate that
the location variables must be integer and binary. Finally, constraints (2.6) state that
the assignment variables must be non-negative.
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Note that we do not require the assignment variables to be binary variables. If
the unit cost from a demand node to the nearest open facility is strictly less than
the unit cost between that node and any other open facility, then the corresponding
assignment variables for that demand node will naturally be binary. That is, all of
the demand at that node will be assigned to the nearest open facility. If the unit
costs between a demand node and two or more open facilities are the same, and the
unit costs are less than the unit costs between the demand node and any other open
facility, the assignment variables may indicate that the demand is to be split between
the set of nearest facilities. We can always round all but one of these assignment
variables down to 0 and round the last one up to 1 if we require all-or-nothing
demand assignments or single sourcing.

2.5 Solution Heuristics for the p-Median Model on a General
Network

In this section, we outline a number of heuristic algorithms for solving the p-median
problem on a general network. We conclude the section by structuring a Lagrangian
relaxation algorithm (Fisher 1981, 1985).

2.5.1 Basic Construction and Improvement Algorithms

The simplest algorithm is the myopic or greedy adding algorithm. In this algorithm,
all candidate facility sites are examined and the one whose addition to the current
solution reduces the demand-weighted total distance the most is added to the
incumbent solution. The process continues until the solution includes p facilities.
The following is pseudocode for the myopic algorithm. In this and all subsequent
pseudocodes, we define z .J; X/ D

X
j2Jdjminm2X

˚
cmj

�
; where X is the current

set of candidate facility sites. Note that the function depends on both the set of
demand nodes to be considered and the candidate locations to be used.

Myopic Algorithm Pseudocode

1. Set X  ∅. /* X is the set of locations to be used
2. Find i� D argmini2I fz .J; X[fig/g.
3. Set X  X[fi�g.
4. If jX j < p, go to Step 2; else stop.

Step 1 initializes the set of locations to the empty set. Step 2 finds the best node
to add to the emerging solution. Step 3 adds that site to the solution. Step 4 asks if
less than p facilities have been added to the emerging solution. If so, the algorithm
continues with Step 2; if not, the algorithm stops.
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The myopic algorithm can readily paint itself into a corner. There is no guarantee
of optimality for the myopic algorithm. As illustrated below in the computational
results, the algorithm can perform quite poorly. That said, it is clear that it is optimal
if we are locating only a single facility.

Exploiting the optimality of the myopic algorithm for the 1-median problem,
Maranzana (1964) proposed a neighborhood improvement algorithm. Starting with
any feasible solution to the p-median problem, the algorithm assigns each demand
node to its nearest facility. Ties are broken arbitrarily. The set of nodes assigned to
a facility constitutes the neighborhood of that facility. Within each neighborhood,
the algorithm examines each candidate node and selects the one that minimizes
the demand-weighted total distance among all nodes in the neighborhood. In other
words, within each neighborhood, the algorithm solves a 1-median problem. If
no facility locations have changed, the algorithm stops; otherwise, if any facility
locations have changed as a result of solving the 1-median problem, the algorithm
re-assigns all demand nodes to the nearest open facility. If no assignments have
changed, the algorithm stops; otherwise, the algorithm continues by solving the 1-
median problem in each neighborhood. This process of determining neighborhoods
and solving 1-median problems within each neighborhood continues until no further
improvement is possible. The pseudocode below outlines the neighborhood search
algorithm.

Neighborhood Search Algorithm Pseudocode

1. Input: X /* X is a set of p facility locations
2. Set: Ni  �; 8i 2 I /* Ni is the set of demand nodes for which

/* candidate site i is the closest open facility
3. For j 2 J do
4. Set i�  argmini2I

˚
cij
�

5. Set Ni�  Ni�[fj g
6. End For
7. Set Xnew  � /* Xnew is the set of new facility locations
8. For i 2 I do
9. If jNi j > 0 then

10. Find k� D argmink2Ni z .Ni ; fkg/
11. Set Xnew  Xnew[fk�g
12. End If
13. End For
14. If X ¤ Xnew then set X  Xnew and go to Step 2; else stop

Step 1 initializes the solution with any set of p facilities. Steps 2 through
6 initialize and then set the neighborhoods. Step 7 initializes a new candidate
set of facility locations. Steps 8 through 13 find the new candidate locations. In
particular, in Step 10, the algorithm finds the 1-median within each neighborhood
and adds that vertex to the emerging new solution in Step 11. The algorithm, as
written, assumes that the sets of demand locations and candidate sites are the same.
While the neighborhood search algorithm finds the optimal location within each
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neighborhood, there is no guarantee that it will find the global optimum for the
problem.

The exchange algorithm, proposed by Teitz and Bart (1968), is another heuristic
improvement algorithm that tends to do better than the neighborhood search
algorithm. The algorithm attempts to improve the current solution by removing a
node that is in the solution and replacing it with a node that is not in the solution.
If an exchange of this sort can be found and improves the solution (i.e., reduces
the demand-weighted total distance), it is implemented. The algorithm terminates
when there is no such exchange that improves the solution. The pseudocode for one
variant of the exchange algorithm is shown below.

Exchange Algorithm Pseudocode

1. Input: X /* X is a set of p facility locations
2. For i 2 X do
3. For k 2 InX
4. If z .J; X/ > z .J; X[fkg n fig/ then
5. Set X  X[fkg n fig and stop
6. End If
7. End For
8. End For

Step 1 initializes the solution with any set of p facilities. In Step 2 we loop over
the sites in the current solution. In Step 3 we loop over candidate sites that are not
in the solution. In Step 4, we ask if removing one site from the current solution
and replacing it with a site not in the current solution will improve the objective
function. If so, we make that substitution and the algorithm stops.

There are numerous ways of implementing an exchange algorithm. The algo-
rithm might implement the first exchange that improves the solution, as shown in
the pseudocode above. Alternatively, the algorithm might find the first node in the
solution whose removal will result in an improvement to the solution and then find
the best node to insert into the solution in place of the removed facility. Finally, the
algorithm can find the best improving pair of nodes over all possible nodes to be
removed and inserted into the solution.

If either of the first two approaches are adopted—that is, if the exchange
algorithm does not find the best overall exchange possible—there are alternate ways
in which the algorithm can proceed. One option is to continue the search with the
next indexed node that is not in the solution, attempting to replace the node that was
just inserted into the solution with another node. Another option is to proceed to
the next node in the solution and attempt to find exchanges based on that node. A
third option is to reinitiate the search from the first node in the solution. The various
options for selecting an exchange to implement, as well as the different ways in
which the algorithm can proceed once an improving exchange has been identified,
result in numerous possible implementations of the exchange algorithm. Most of the
literature does not identify which implementation was employed.
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2.5.2 Metaheuristics for the p-Median Problem

The myopic algorithm is a construction algorithm. The neighborhood and exchange
algorithms are improvement algorithms. A large variety of metaheuristic algorithms
have been devised to find solutions to the p-median problem. Mladenović et al.
(2007) provide a relatively recent review of these techniques. Below we highlight a
few of the classic papers and approaches in this field.

Chiyoshi and Galvão (2000) present a statistical analysis of a simulated annealing
algorithm (Kirkpatrick 1984) for the p-median model. They employed the 40-
instance dataset proposed by Beasley (1990). The dataset includes instances ranging
from 100 to 900 demand locations. They found that in 100 runs of a simulated
annealing algorithm for each instance, the best solution found was the optimal
solution in 26 of the 40 instances. The maximum deviation from optimality for
the best of the 100 runs for the 40 instances was 1.62 %. Al-khedhairi (2008)
also employed simulated annealing for the Beasley dataset and found the optimal
solution in 33 of the cases. However, the maximum deviation was over 18 % for
the seven instances for which the simulated annealing algorithm failed to find
the optimal solution. Murray and Church (1996) also discuss the application of
simulated annealing to the p-median problem as well as to the maximal covering
problem.

Alp et al. (2003) propose an effective genetic algorithm (Goldberg 1989; Haupt
and Haupt 1998; Holland 1975; Michalewicz 1994; Mitchell 1998) for the p-median
problem. For the 40-instance Beasley dataset, they ran their algorithm 10 times for
each instance. They found the optimal solution at least once in 28 of the 40 cases. In
six of the cases, the genetic algorithm always identified the optimal solution. In the
12 cases in which the genetic algorithm failed to find the optimal solution, the best
of the ten runs resulted in objective functions that deviated from the optimal value
by 0.02–0.4 %.

Rolland et al. (1996) applied tabu search (Glover 1990; Glover and Laguna 1997)
to the p-median problem. They tested their algorithm using randomly generated
datasets ranging in size from 13 to 500 nodes. For instances with 100 nodes or
fewer, the results were compared to two-exchange heuristics as well as to the optimal
solution found using an integer programming algorithm. For the larger instances,
optimal solutions were not obtained and the three heuristics were compared with
each other. In all cases, the tabu search algorithm outperformed the other two
heuristics. For the smaller instances (100 nodes or fewer) the tabu search algorithm
averaged 0.5 % from optimality with a maximum deviation of 6 %. Tabu search
found the optimal solution in 66 % of the smaller test cases. For the 12 larger test
cases, tabu search found the best solution in all but one case.

If an improvement (e.g., the neighborhood search or exchange algorithm outlined
above) is started with many different randomly generated solutions, the p facilities
that are selected are often similar across the various solutions. In other words, some
sites are selected in many of the runs and many other candidate sites are never
selected. Using this observation, Rosing and ReVelle (1997) developed a heuristic
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concentration algorithm for the p-median problem. The idea is to generate a number
of good solutions based on randomized starting solutions. A subset of the nodes
that are selected in the various runs is then used to reduce the number of location
variables in formulation (2.1)–(2.6) above. In other words, the concentration set, or
the set of candidate sites, is reduced from J to a smaller set consisting of a subset of
the nodes selected as facilities in the various randomized runs.

Heuristic concentration is based on eliminating some of the location variables.
Church (2008) proposed the BEAMR approach which attempts to eliminate some of
the assignment variables. BEAMR attempts to utilize only the hj closest assignment
variables for each demand node. To ensure feasibility, the model also includes
a variable for each demand node allowing the assignment to a dummy facility
further than the hj closest candidate facilities. This assignment does not need
to satisfy constraints (2.4). The resulting model provides a lower bound on the
objective function value for the p-median problem. An upper bound can be found
by simply assigning every demand node to the nearest of the selected facility
sites. If the bounds are not close enough, then some of the hj values can be
increased, particularly for those nodes for which assignment to one of the nearest
hj candidate sites was not possible. The algorithm typically results in provably
optimal solutions using a fraction of the constraints and variables of the original
formulation (2.1)–(2.6).

Rosing et al. (1998) compared heuristic concentration to tabu search in problems
with 100 and 200 demand nodes and candidate sites. Heuristic concentration found
the optimal (or best known) solution in 17 of the 21 test cases, while tabu search
found the optimal (or best known) solution in only two cases.

Mladenović and Hansen (1997) introduced a variable neighborhood search
algorithm. Hansen and Mladenović (1997) applied this algorithm to the p-median
problem. They found that variable neighborhood search outperformed both a greedy
interchange algorithm and two different tabu search-based algorithms.

Hansen and Mladenović (2001) reviewed the basics of variable neighborhood
search algorithms and compared a variety of metaheuristic algorithms, including
variable neighborhood search for the 12 largest of the 40 Beasley instances. They
found that variable neighborhood search and heuristic concentration outperformed
tabu search and a greedy interchange algorithm. Variable neighborhood search was
slightly better than heuristic concentration.

2.5.3 A Lagrangian Heuristic for the p-Median Problem

In this subsection, we outline a Lagrangian relaxation algorithm to the p-median
problem. The advantage of Lagrangian relaxation over any heuristic approach is
twofold. First, at every iteration of the Lagrangian procedure we obtain lower and
upper bounds on the objective function value. Second, the Lagrangian procedure can
readily be embedded in a branch-and-bound algorithm to obtain provably optimal
solutions.
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We relax constraint (2.2) to obtain the following Lagrangian problem:

Max�Minx;yL D
X

i2I
X

j2Jdj cijxij C
X

j2J�j
�
1 �

X

i2I
xij
�

D
X

i2I
X

j2J
�
dj cij � �j

�
xij C

X
j2J�j

(2.7)

subject to (2.3)–(2.6).
For fixed values of the Lagrange multipliers, �j, we compute the value of

being able to add a facility at node i 2 I. This value is given by Vi DX
j2J min

˚
0; dj cij � �j

�
. We then select the p sites with the p most negative Vi

values, breaking ties arbitrarily. This determines the values of the location variables,
yi. The assignment variables are determined by setting xij D 1 if (i) yi D 1 and (ii)
dj cij � �j < 0, and setting xij D 0 otherwise. The resulting values can be used to
evaluate (2.7), providing a lower bound on the objective function value. To obtain an
upper bound on the objective function value, we simply assign every demand node
to the nearest candidate facility for which yi D 1 and evaluate (2.1) using these
assignment values.

Some of constraints (2.2) are likely to be violated by the solution to the
Lagrangian problem as outlined above. In particular, some demand nodes may not
be assigned to any facility and some may be assigned to multiple facilities. This
occurs when the Lagrange multipliers are not at their optimal values. Subgradient
optimization can be used to improve the Lagrange multipliers. Daskin (2013)
provides a detailed explanation of the Lagrangian algorithm for the p-median
problem.

The Lagrange multipliers coupled with the best lower and upper bounds can be
used to force candidate sites in and out of the solution at any point in the Lagrangian
procedure. Typically, it is most useful to do so when the bounds are very close to
each other but still differ by a small amount. Let LB and UB be the best-known lower
and upper bounds, respectively. Using the Lagrange multipliers associated with LB,
sort the Vi values so that V[i] is the ith smallest value. In other words, V[1] is the most
negative value and V[p] is the last value that resulted in selecting a candidate facility
site in the Lagrangian solution. Additionally, VŒpC1� is the next largest value.

Consider a candidate site i 2 I that is in the best-known solution. Then, if UB <
LB�ViCVŒpC1�, site i 2 I can be forced into the solution; in other words, we can set
yi D 1 in all subsequent Lagrangian iterations and in any branching below the node
at which this check is done (e.g., the root node of a branch-and-bound algorithm).
Similarly, if site i 2 I is not part of the best-known solution and UB < LB�VŒp�CVi ,
then site i 2 I can be forced out of the solution; in other words, we can set yi D 0 in
all subsequent Lagrangian iterations and in any branching below the node at which
this check is done (e.g., the root node).



32 M.S Daskin and K.L Maass

2.6 Computational Results

In this section, we provide sample results for some of the algorithms outlined above.
We begin with Table 2.2 which shows the results of using a Lagrangian relaxation
algorithm embedded in branch-and-bound for the Beasley dataset. The instances
were all solved using an expanded version of the SITATION software (Daskin 2013)
on a Macintosh computer running OS X version 10.8.5 with a 2.7 GHz Intel Core i7
processor and 16 GB of 1,600 MHz DDR3 memory using Parallels 7.0.15107. The
average solution time was under 45 s. The longest solution time—for PMED36—
was under 13 min. Seventeen of the 40 instances were solved at the root node and
all but three of the instances required less than 40 branch-and-bound nodes. The
average solution time is 44.9 s and the average number of branch-and-bound nodes
needed is 21.5.

The second part of the table illustrates the impact of using the variable forcing
rules outlined at the end of Sect. 2.5 at the end of the Lagrangian algorithm at the
root node of the branch-and-bound tree. The rules are quite effective at eliminating
candidate nodes; on average nearly 85 % of the candidate sites that could not be
in the solution were excluded at the root node using these rules. (The number of
candidate sites that could not be in the solution was equal to the total number of
candidate sites minus the number of facilities). Overall, 81 % of the candidate sites
were either forced in or out of the solution, on average.

Next we turn our attention to tests performed using the 500 most populous
counties among the 3,109 counties in the contiguous United States. While these
represent less than one sixth of the total counties, they encompass over 75 % of the
population living in the contiguous United States. Great circle distances between
the county centroids were employed. We used SITATION to solve the p-median
problem for this dataset with the number of facilities increasing from 1 to 25.
The solution time for each of these 25 runs was under 5 s and only two instances
required branch-and-bound to obtain provably optimal solutions. In each of these
two instances, only three nodes in the branch-and-bound tree needed to be explored
after the root node forcing rules were employed. Figure 2.2 plots the results for five,
10, 15, 20 and 25 medians. The model locates the first five cities near the major
cities of New York, Los Angeles, Dallas, Chicago and Miami. Additional facilities
are then added to better serve the rest of the counties. Figure 2.3 plots the demand-
weighted average distance versus the number of medians. As expected, the average
distance decreases with the number of medians. Also, the marginal improvement
decreases with the number of medians in this case.
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Table 2.2 Lagrangian relaxation results for Beasley datasets

Dataset # Dem # Med. Objective Iterations B&B nodes CPU time (s)

Pmed1 100 5 5,819 1,200 1 2.94
Pmed2 100 10 4,093 3,500 9 8.92
Pmed3 100 10 4,250 2,958 7 7.70
Pmed4 100 20 3,034 1,200 1 3.06
Pmed5 100 33 1,355 1,200 1 3.03
Pmed6 200 5 7,824 5,758 19 15.09
Pmed7 200 10 5,631 1,200 1 3.08
Pmed8 200 20 4,445 1,200 1 3.09
Pmed9 200 40 2,734 4,981 15 14.73
Pmed10 200 67 1,255 1,200 1 5.31
Pmed11 300 5 7,696 1,788 3 4.81
Pmed12 300 10 6,634 5,927 19 17.3
Pmed13 300 30 4,374 1,200 1 4.80
Pmed14 300 60 2,968 1,747 3 8.70
Pmed15 300 100 1,729 1,200 1 7.94
Pmed16 400 5 8,162 8,447 29 24.55
Pmed17 400 10 6,999 9,220 29 27.89
Pmed18 400 40 4,809 1,200 1 6.55
Pmed19 400 80 2,845 1,200 1 9.30
Pmed20 400 133 1,789 2,401 5 24.50
Pmed21 500 5 9,138 1,200 1 3.70
Pmed22 500 10 8,579 13,687 39 55.86
Pmed23 500 50 4,619 1,200 1 8.64
Pmed24 500 100 2,961 3,995 10 41.42
Pmed25 500 167 1,828 4,721 11 72.44
Pmed26 600 5 9,917 5,380 15 22.25
Pmed27 600 10 8,307 2,925 7 12.53
Pmed28 600 60 4,498 1,200 1 12.30
Pmed29 600 120 3,033 1,200 1 18.81
Pmed30 600 200 1,989 2,001 4 57.55
Pmed31 700 5 10,086 6,517 19 29
Pmed32 700 10 9,297 3,212 7 15.41
Pmed33 700 70 4,700 1,200 1 19.88
Pmed34 700 140 3,013 1,200 1 33.02
Pmed35 800 5 10,400 9,680 31 47.64
Pmed36 800 10 9,934 140,011 437 767.16
Pmed37 800 80 5,057 5,754 14 97.06
Pmed38 900 5 11,060 17,905 57 107.78
Pmed39 900 10 9,423 22,018 65 136.27
Pmed40 900 90 6,128 1,200 1 32.89

(continued)
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Table 2.2 (continued)

Dataset # Dem # Med. No. sites forced in No. forced out % in % out % forced

Pmed1 100 5 4 94 80 99 98
Pmed2 100 10 2 79 20 88 81
Pmed3 100 10 3 71 30 79 74
Pmed4 100 20 15 75 75 94 90
Pmed5 100 33 25 59 76 88 84
Pmed6 200 5 0 161 0 83 81
Pmed7 200 10 8 189 80 99 99
Pmed8 200 20 18 178 90 99 98
Pmed9 200 40 1 71 3 44 36
Pmed10 200 67 52 116 78 87 84
Pmed11 300 5 0 280 0 95 93
Pmed12 300 10 0 257 0 89 86
Pmed13 300 30 27 267 90 99 98
Pmed14 300 60 9 160 15 67 56
Pmed15 300 100 78 178 78 89 85
Pmed16 400 5 0 336 0 85 84
Pmed17 400 10 0 327 0 84 82
Pmed18 400 40 24 314 60 87 85
Pmed19 400 80 67 307 84 96 94
Pmed20 400 133 49 163 37 61 53
Pmed21 500 5 5 495 100 100 100
Pmed22 500 10 0 397 0 81 79
Pmed23 500 50 44 444 88 99 98
Pmed24 500 100 14 308 14 77 64
Pmed25 500 167 36 191 22 57 45
Pmed26 600 5 0 542 0 91 90
Pmed27 600 10 0 539 0 91 90
Pmed28 600 60 50 496 83 92 91
Pmed29 600 120 97 450 81 94 91
Pmed30 600 200 24 131 12 33 26
Pmed31 700 5 0 639 0 92 91
Pmed32 700 10 0 645 0 93 92
Pmed33 700 70 13 603 19 96 88
Pmed34 700 140 98 459 70 82 80
Pmed35 800 5 0 684 0 86 86
Pmed36 800 10 0 478 0 61 60
Pmed37 800 80 10 610 13 85 78
Pmed38 900 5 0 780 0 87 87
Pmed39 900 10 0 707 0 79 79
Pmed40 900 90 85 805 94 99 99
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Fig. 2.2 (continued)
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Fig. 2.2 (continued)
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Fig. 2.2 Optimal locations for 5, 10, 15, 20 and 25 medians

Fig. 2.3 Demand-weighted average distance versus number of medians
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Fig. 2.4 Histogram of the
frequency of county selection
out of 325 possible cases
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Fig. 2.5 Percent error due to
limiting the candidate
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With 1–25 medians being selected, there conceivably could be 325 unique nodes
chosen as medians. This was not the case. Only 55 unique nodes were selected and
these were biased toward the larger demand nodes. With the dataset sorted from
the most populous to the least populous county, Fig. 2.4 plots the distribution of
the number of times nodes in different groupings were selected. Nearly half of the
counties selected were among the top 50 most populous counties. Over 75 % of the
selected counties were in the top 150 most populous counties.

Figure 2.5 plots the percent error due to limiting the candidate solution set to
the most populous 100, 200, 300 and 400 counties, compared to allowing all 500
counties to be in the solution. The errors are generally less than 1 % as long as at
least 200 nodes are in the candidate set. Even when the candidate set is limited to
only 100 nodes, the maximum error in the 25 runs was under 4 %, though the error
seems to be growing with the number of medians in this case.
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Fig. 2.6 Errors due to using
various heuristic algorithms
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We next consider the impact of using different construction and improvement
algorithms to solve the problem. Five different algorithms were tested: the greedy
adding or myopic algorithm (GA), the greedy adding algorithm with the node
exchange algorithm applied after every median is added (GAS-Every), the greedy
adding algorithm with the neighborhood algorithm applied after every median
is added (Neighborhood-Every), the greedy adding algorithm with the exchange
algorithm applied after all nodes have been added (GAS-Last), and the greedy
adding algorithm using the neighborhood algorithm only after all nodes have been
added to the solution (Neighborhood-Last).

Figure 2.6 plots the results. Both the greedy adding algorithm (GA) and the
Neighborhood algorithm applied after all nodes have been added to the solution
(Neighborhood-Last) result in large errors, often exceeding 10 %. The other three
algorithms perform much better and result in errors that are under 4 % and often
under 2 %.

Figure 2.7 plots the results of using a genetic algorithm similar to that proposed
by Alp et al. (2003). The variant employs a standard crossover operator. To ensure
feasibility of the solution generated by the crossover operator, we randomly drop
nodes from any solution that has more than p facilities (always retaining facilities
that are in both parent’s solutions) and randomly add facilities from the parents
when the operator results in fewer than p facilities being selected. The standard
genetic algorithm can result in large errors and the errors seem to grow with the
number of medians. However, if the final genetic algorithm solutions are subject to
an exchange algorithm, the errors are under 1 % and average under 0.1 % for the 25
cases.



40 M.S Daskin and K.L Maass

Fig. 2.7 Errors due to using
a genetic algorithm

0%

2%

4%

6%

8%

10%

12%

0 5 10 15 20 25
Pe

rc
en

t E
rr

or

Number of Medians

Percent Error for Gene�c Algorithms

Gen Alg Gen Alg w Subs

2.7 Multi-objective Extensions of the p-Median Model

The formulation above, (2.1)–(2.6), can be modified to obtain a formulation of the
maximum covering problem (Church and ReVelle 1974). The maximum covering
problem finds the location of p facilities to maximize the number of demand nodes
that are covered within some coverage distance, dc. In particular, we let dij be the
distance between candidate site i 2 I and demand node j 2 J. We then define

bcij D
�
0 if dij � dc
1 if dij > dc:

If we now solve (2.1)–(2.6) with cij replaced by ĉij, we will be able to solve a
maximum covering problem. In essence, we are minimizing the total number of
uncovered demands, which is equivalent to maximizing the number of covered
demands.

We can also find the tradeoff between the covering and average cost (or average
distance) objective by minimizing a suitable linear combination of the two cost
terms. In particular, we minimize a weighted sum Qcij D ˛cij C .1 � ˛/ Ocij of the
original cij and the coverage term ĉij, with 0 � ˛ � 1. Clearly, if ˛ D 1, the model
will simply minimize the demand weighted total distance or cost. Also, if ˛ D 0,
the model will minimize the number of uncovered demands.

The choice of ˛ is critical if we want to trace out the complete tradeoff curve.
Many researchers and practitioners simply solve the problem for fixed values of ˛.
For example, they might solve the problem for ˛ D 0; 0:05; 0:1; : : : ; 1:0. We do
not recommend this approach because it is simultaneously likely to miss important
points on the tradeoff curve and to result in obtaining many identical solutions.
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Instead, one should solve the problem using ˛1 D 1 � �1, where �1 > 0

is a suitably small value so that we are guaranteed to get one of the (possibly)
alternate optima for the p-median problem. Let Z1 be the objective function value
we obtain and let D1 D

X

i2I

X

j2J
dj cijxij be the demand-weighted total distance

corresponding to this solution and U 1 D
X

i2I

X

j2J
dj Ocijxij be the total uncovered

demand corresponding to this solution. Next, solve the problem with ˛2 D �2,
where �2 > 0 is a suitably small value such that we are guaranteed to get one
of the (possibly) alternate optima for the maximum covering problem. Let Z2 be
the corresponding objective function value and let D2 and U2 be the demand-
weighted total distance and uncovered demand corresponding to this solution. We
then solve ˛3D1 C .1 � ˛3/ U 1 D ˛3D

2 C .1 � ˛3/U 2 for ˛3. This results in
˛3 D

�
U 2 � U 1

�
=
�
D1 �D2 C U 2 � U 1

�
. We then use this value of ˛ to weight

the two objectives. This will either result in a new solution being found with a
demand-weighted total distance of D3 and uncovered demand U3, or the solution
will return one of the two original solutions on the tradeoff curve. If a new solution
is found, the procedure continues by exploring the region between solution 1 and
solution 3 (i.e., using ˛4 D .U 3 � U 1/=.D1 �D3 C U 3 � U 1/) and then between
solution 3 and solution 2. If no new solution is found, then no new solution can
be identified between solutions 1 and 2. This process continues until all adjacent
solutions have been explored in this manner. As a final note, we observe that this
is the weighting method, which will fail to find the so-called duality gap solutions
(Cohon 1978).

The tradeoff between the demand weighted total distance and the maximum
distance—the p-center objective—can also be found using formulation (2.1)–(2.6) if
we suitably modify the distance (or cost) matrix, assuming all distances are integer
valued. (This is not an overly restrictive assumption since we can approximate any
real distances by integer values. For example, if we need distances accurate to the
nearest 0.01 mile (or about 50 ft) we just multiply all distances by 100 and round the
resulting values.) We do so by initially solving the problem as formulated, letting
cij be the distance between demand node j 2 J and candidate location i 2 I.
We record the maximum distance, D0

max. We then modify the distance matrix so

that cnew
ij D

�
cij if cij < D

0
max

M if cij � D0
max

, where M is a very large number. We then resolve

formulation (2.1)–(2.6) replacing the original costs or distances cij by cnew
ij . If M is

sufficiently large, the new solution will not entail assignments with distances greater
than or equal to D0

max. LetD1
max < D

0
max be the new maximum distance. The process

continues in this manner until no feasible solution can be found, indicating that the
final value of Dmax that was obtained is the solution to the p-center problem. While
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Fig. 2.8 Sample tradeoff
between average distance and
percent covered

77

78

79

80

81

82

135 140 145 150 155 160 165

Pe
rc

en
t C

ov
er

ag
e

Demand-Weighted Average Distance

PERCENT COVERAGE VS. AVERAGE DISTANCE

this approach seems to also be a weighting approach since we are assigning a large
weight to any distance greater than or equal to the most recently found maximum
distance, it is really the constraint method (Cohon 1978) since we are precluding the
assignment of demand nodes to facilities that are too far away. This approach will
find all non-dominated solutions.

We close this section by illustrating these two multi-objective problems. Fig-
ure 2.8 plots the tradeoff between the average distance and the percent of the demand
covered within 200 miles using ten facilities with demand represented by the 500
most populous counties of the contiguous United States. The maximum covering
solution results in nearly an 18 % increase in the average distance from 137.32 to
161.93 miles, while increasing the percent covered by approximately 4 %. Obtaining
the 12 solutions shown in the figure took under 10 min of solution time.

Figure 2.9 is a sample center-median tradeoff curve using the 250 most populous
counties in the contiguous US. While this is under 10 % of the counties, it still
encompasses over 61 % of the total population in the contiguous US. The algorithm
above found 22 solutions (shown with squares and a solid line), only nine of which
(shown with circles and a dashed line) could be found using a weighting method.
The average distance ranges from about 125 miles to 152 miles, while the maximum
distance ranges from a low of 349 miles to a high of 553 miles. Several good
compromise solutions are clearly shown at the bend in the curve. Figure 2.10 is
an example of one such compromise solution. Obtaining the 22 solutions shown in
the figure took nearly 16 h of computing time.
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Fig. 2.10 Sample compromise center-median solution
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2.8 Conclusions

The p-median problem is central to much of discrete location theory and modeling.
This chapter has outlined several important model properties and has reviewed a
classic formulation of the problem. While the problem is NP-hard on a general
graph, it can be solved in polynomial time on a tree. We summarized a linear-time
algorithm for the 1-median on a tree and cited results for the general p-median
problem on a tree. The chapter then presented classic construction and improvement
algorithms for the p-median problem and pointed the reader to literature on a
number of modern heuristic algorithms that have been employed in solving the
problem on general graphs. Computational results were presented for both the
classical Beasley datasets as well as a 500-node instance based on the most populous
counties in the contiguous United States. A well-constructed Lagrangian algorithm
embedded in a branch-and-bound algorithm can solve problem instances with up to
1,000 demand nodes and 1,000 candidate sites in reasonable time. (For p D 1

the myopic algorithm—which amounts to total enumeration in this case—will
find provably optimal solutions.) Larger problem instances may require the use of
heuristic algorithms such as tabu search or simulated annealing.

The chapter concluded with two multi-objective extensions of the p-median
problem. The first examines the tradeoff between the p-median objective and the
maximum covering objective, while the second explores the tradeoff between the p-
median objective and the p-center objective. For small instances it is often possible
to solve bi-objective problems using extensions of the Lagrangian algorithm
outlined above. For larger instances, using a genetic algorithm is often advisable
since the population of solutions in a genetic algorithm automatically gives an initial
approximation of the non-dominated set of solutions.
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Chapter 3
Fixed-Charge Facility Location Problems

Elena Fernández and Mercedes Landete

Abstract Fixed-Charge Facility Location Problems are among core problems in
Location Science. There is a finite set of users with demand of service and a
finite set of potential locations for the facilities that will offer service to users.
Two types of decisions must be made: Location decisions determine where to
establish the facilities whereas allocation decisions dictate how to satisfy the users
demand from the established facilities. Potential applications of various types
arise in many different contexts. We provide an overview of the main elements
that may intervene in the modeling and the solution process of Fixed-Charge
Facility Location Problems, namely, modeling hypotheses and their implications,
characteristics of formulations and their relation to other formulations, properties of
the domains, and appropriate solution techniques.

Keywords Discrete location • Models and formulations • Solution Algorithms •
Inequalities and facets

3.1 Introduction

Fixed-Charge Facility Location Problems (FLPs) are among core problems in
Location Science. In FLPs there is a finite set of users with demand of service and a
finite set of potential locations for the facilities that will offer service to users. Two
types of decisions must be made. Location decisions determine where to establish
the facilities whereas allocation decisions dictate how to satisfy the users demand
from the established facilities. Each possible decision incurs fixed-charge costs for
the facilities that are established and assignment costs for the allocation decisions.
In FLPs the aim is to make optimal decisions with respect to the considered costs.
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Applications of FLPs arise in an wide variety of contexts. The book by Drezner
and Hamacher (2002) surveys different applications of fixed-charge facility location
in such diverse areas as the public sector, software for GIS or robotics. Furthermore,
fixed-charge facility location also plays a critical role in many other areas like supply
chain management, distributed systems, humanitarian relief, emergency systems,
location-routing problems or freight transportation. Melo et al. (2009) survey
facility location models in the context of supply chain management until 2009.
Klose and Drexl (2005) summarize applications of FLPs within distributed system
design. The paper by Balcik and Beamon (2008) is a recent sign of the interest of
the combination of both humanitarian relief analysis and facility location models.
Further examples of applications can be found in Owen and Daskin (1998), Daskin
et al. (2002), Nagy and Salhi (2007) and Jiaa et al. (2007). In fact, the applicability
of fixed-charge facility location models goes beyond the area of Location Analysis.
Some fixed-charge facility location models are also valid within other fields like
machine scheduling, cluster analysis or combinatorial auctions (Escudero et al.
2009; Klose and Drexl 2005; Singh 2008).

It has been traditionally assumed that in FLPs location decisions are strate-
gic, whereas allocation decisions are tactical or operational. There are potential
applications, however, in which location and allocation decisions are at the same
hierarchy level in the decision making process. One example of application in which
both decisions are strategic can be found in the design of a backbone network
in telecommunications. An example of application in which both decisions are
operational can be faced by some logistic companies which, at each time period,
have to solve a FLP to determine the warehouses locations and the distribution
pattern to be applied within the corresponding period.

Because FLPs are difficult optimization problems with many potential applica-
tions the study of their properties and efficient solution methods is of interest on
its own. A further motivation for this study is that it sets the basis for the analysis
of more complex models related to FLP extensions. In some cases, these extensions
can, in turn, be modeled as some basic FLP. For example, some multi-period facility
location problems (see Chap. 11) or some hub-arc location problems (see Chap. 12)
can be can be reduced to the FLPs studied here (see, for instance Albareda-Sambola
et al. 2009a; Contreras and Fernández 2013).

There are indeed a number of issues that define the characteristics of FLPs.
These will be discussed in this chapter and include the possibility of satisfying
the demand of each of the users from more than one facility, or capacity limits on
the maximum demand that can be served from any selected facility, among others.
Furthermore, several alternative formulations can be valid for a given FLP. Usually,
none of these alternatives has a clear advantage over the others although, as it often
happens with other discrete optimization problems, each of them is better suited
for a certain solution technique. We aim to give the reader a broad overview of
the main elements that may intervene in the solution process of FLPs, namely,
modeling assumptions and their implications, characteristics of formulations and
their relation to other formulations, properties of the domains, and appropriate
solution techniques. However, in order to keep the length of the chapter within
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a reasonable limit, it has been impossible to address all relevant variants and
extensions of the problem. As a consequence, we have selected some topics which,
in our opinion, cover most of the major issues related to fixed-charge facility
location. Diversity among the selected topics has been a major guideline as well.

The material presented in this chapter is the result of the research carried out
by many authors in this area over the last 60 years. Most of it has been published
but occasionally we present and prove some unpublished results which are either
adaptations of well-known results for other cases, or simple results that can be easily
derived from the existing state of knowledge.

The remainder of this chapter is structured as follows. In Sect. 3.2 we introduce
our notation and we provide an overview of the problems we study. Section 3.2
also discusses modeling issues leading to standard formulations or to alternative Set
Partitioning formulations and properties of the domains. A sample of possible solu-
tion methods, namely Lagrangean relaxation and column generation is presented
in Sect. 3.3. Some of the major difficulties of FLPs that will offer service to users
derive from the assumption that individual facilities do not have enough capacity to
satisfy the demand of all customers. Releasing this assumption yields a particular
FLP known as the Uncapacitated Facility Location Problem (UFLP), which is
studied in Sects. 3.4 and 3.5. The UFLP satisfies some specific properties that do
not hold for general FLPs. These properties can be exploited for modeling purposes
or for deriving specific solution techniques. In particular, Sect. 3.4.1 studies some
properties derived from Linear Programming duality, whereas Sect. 3.4.2 presents a
formulation for the UFLP based on its supermodular property and relates it with the
so-called radius based formulations. Finally, Sect. 3.5 gives some polyhedral results
related to the UFLP. The chapter closes in Sect. 3.6 with some comments.

3.2 Overview and Modeling Issues

In this chapter we will use indistinctively the term service center when referring
to a facility, and customer or demand point when referring to a user. Let I D
f1; : : : ; i; : : : ; mg denote the index set for the potential locations for the facilities
and J D f1; : : : ; j; : : : ; ng the index set for the users. We will refer to potential
locations by their indices, so we will say that a facility is open at location i , or
simply that facility i is open, if the decision to establish a service center at the
potential location i is made. We will also denote users by their indices and simply
refer to user j . Associated with each i 2 I , qi denotes the maximum capacity of
facility i , if it is opened. The service demand of user j 2 J is denoted by dj . As
mentioned, there are two types of costs. The decision to establish a facility at i 2 I
incurs a fixed-charge (setup) cost fi . For i 2 I and j 2 J , cij is the cost for serving
all the demand of customer j from facility i .
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Classical formulations for FLPs use two sets of decision variables: one set for the
selection of the facilities to open and another set for the allocation of users demand
to open facilities. For the location decisions, associated with each i 2 I we define

yi D
�
1 if a facility is open at location i
0 otherwise.

For the allocation decisions, associated with i 2 I , j 2 J we define

xij D
�
1 if the demand at user j is served by facility i
0 otherwise.

A standard integer programming formulation for the FLP is as follows:

minimize z D
X

i2I
fiyi C

X

i2I

X

j2J
cijxij (3.1)

subject to
X

i2I
xij D 1 j 2 J (3.2)

X

j2J
dj xij � qiyi i 2 I (3.3)

yi 2 f0; 1g i 2 I (3.4)

xij 2 f0; 1g i 2 I; j 2 J: (3.5)

Constraints (3.2) guarantee that each customer is served from one facility, while
constraints (3.3) play a double role: (1) they ensure that the capacity of facilities is
not exceeded; and (2) they prevent users from being allocated to non-open facilities.
Constraints (3.4) and (3.5) define the domains of the decision variables. In the above
formulation inequalities (3.3) can be substituted by the two sets:

X

j2J
dj xij � qi i 2 I (3.6)

xij � yi i 2 I; j 2 J: (3.7)

Now the set of knapsack constraints (3.6) enforce that facility capacities are not
violated, whereas inequalities (3.7) relate the two sets of decision variables. While
constraints (3.3) are equivalent to (3.6) and (3.7) when the binary condition of the
y variables (3.4) is enforced, the compact set of constraints (3.3) dominates (3.6)
and (3.7) when the integrality of the location variables is relaxed to 0 � yi � 1,
i 2 I .

Formulation (3.1)–(3.5) is appropriate for models requiring that the total
demand of each customer be served from the same facility. A number of situations
exist where such a requirement is justified, the most obvious one being the case
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where the demand of each customer represents a physical object that cannot be
split. This case is known as the single allocation FLP (SFLP). Equations (3.1)–(3.5)
is a valid formulation for the SFLP. Many FLP models, however, allow splitting the
demand at users among several open facilities. Such models, which are referred to
as multiple allocation FLPs (MFLPs), arise, for instance, when customers represent
population areas and not all the individuals in a given area need to be served from
the same service center. In MFLPs allocating customer j to facility i means that
some positive fraction of dj is served from facility i . Hence, for i 2 I , j 2 J
the allocation decision variables xij are defined as the fraction of demand of user
j served by facility i; and the domain for the x variables is thus substituted by its
continuous relaxation

0 � xij � 1; i 2 I; j 2 J: (3.8)

With the above definition of the allocation decision variables, constraints (3.2)
have a slightly more general interpretation than in the single allocation case. Since
they impose that the sum of all the fractions served from the different facilities be
one, they also guarantee that the total demand at each user is satisfied. Therefore,
in order to obtain a valid formulation for the MFLP, in formulation (3.1)–(3.5) we
“only” have to change the domain of the allocation variables x. It then follows
that (3.1)–(3.4) together with (3.8) is a valid formulation for the MFLP.

The FLP is N P-hard since a polynomial transformation can be used to reduce
the node cover problem, which is known to be N P-hard (Garey and Johnson
1979), into the FLP (see, for instance, Cornuéjols et al. 1990).

The reader may note that the “difficult” decision in FLPs is the selection of the
facilities to open. This is readily seen in the multiple allocation case where, if the
set of facilities to open is given, S � I , the best allocation of customers within S
can easily be obtained by solving the following transportation problem:

TP.S/ minimize z D
X

i2S

X

j2J
.cij=dj /sij (3.9)

subject to
X

i2S
sij � dj j 2 J (3.10)

X

j2J
sij � qi i 2 S (3.11)

sij � 0 i 2 S; j 2 J: (3.12)

In formulation (3.9)–(3.12) above the continuous decision variable sij denotes
the amount of demand of customer j which is served from facility i . Hence we
have the relation, xij D sij=dj .

In the single allocation case, finding an optimal allocation of customers to
a given set of open facilities S � I is still a difficult problem, namely a
Generalized Assignment Problem, which is also N P-hard (Fisher et al. 1986).
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Now, a formulation for finding the best allocation of customers within the set of
facilities S is given by:

GAP.S/ minimize z D
X

i2S

X

j2J
cijxij (3.13)

subject to
X

i2S
xij D 1 j 2 J (3.14)

X

j2J
dj xij � qi i 2 S (3.15)

xij 2 f0; 1g i 2 S; j 2 J: (3.16)

So far we have presented FLPs as a minimization problems in which both
types of decisions incur costs. However, the type of objective function depends on
the decision maker. Minimization FLPs usually appear in the public sector when
locating facilities for essential services: public hospitals or schools, dumps for
garbage collection, etc. In the private sector, however, service to customers produces
a profit to companies so that the objective of companies facing location decisions
for their service centers is to maximize the net profit, defined as the difference
between the revenue derived from the serviced customers and the cost for the
location of the selected facilities. There is indeed an essential difference between
these two models: while minimization FLPs impose that all customers be served
(no demand point can be excluded from an essential service), in maximization FLPs
not all users necessarily have to be served. The company may not have enough
incentive for servicing all customers and only those generating a profit in an optimal
location setting will be served. However, as we will next see, from a mathematical
programming point of view the maximization and minimization versions of the FLP
are equivalent.

Consider a maximization FLP where bij denotes the profit for servicing customer
j 2 J from facility i 2 I . As indicated in Cornuéjols et al. (1990), typically, bij is
a function of the unit production costs at facility i .hi /, the unit transportation costs
from facility i to customer j .tij/, and the service price for customer j .sj /. That is,
bij D dj .sj � hi � tij/. Then, the objective function for a maximization FLP is

maximize z D �
X

i2I
fiyi C

X

i2I

X

j2J
bijxij: (3.17)

In principle, if not all customers have to be served, allocation constraints should
be stated as inequalities, i.e.

P
i2I xij � 1, j 2 J . However, such constraints are

easily transformed into equalities by simply defining a fictitious potential facility
0, representing the facility to which all unserved demand is allocated. To this end,
we assume a sufficiently large capacity for the fictitious facility, q0 D P

j2J dj ,
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and set to zero, both the fixed-charge cost of the fictitious facility (f0 D 0) and
the allocation profits of all customers (b0j D 0, j 2 J ). Thus, without loss of
generality we can assume that in the maximization FLP allocation constraints must
also be satisfied as equality.

Taking into account the expression of the coefficients bij and because of the
equality allocation constraints, the second term in (3.17) can be rewritten as

X

i2I

X

j2J
bijxij D

X

i2I

X

j2J
dj .sj � hi � tij/xij

D
X

i2I

X

j2J
dj sj xij �

X

i2I

X

j2J
dj .hi C tij/xij

D
X

j2J
dj sj �

X

i2I

X

j2J
c0

ijxij:

Hence objective (3.17) reduces to

X

j2J
dj sj �min

2

4
X

i2I
fiyi C

X

i2I

X

j2J
c0

ijxij

3

5 : (3.18)

Since the first term in (3.18) is a constant, the maximization FLP is equivalent to a
minimization FLP.

3.2.1 Set Partitioning Formulation of FLPs

Below we present alternative formulations for FLPs which use decision variables
to model the overall customers demand allocated to open facilities. Consider for
the moment the single allocation case and note that feasible assignments to a
given facility i 2 I are associated with subsets of customers T � J such thatP

j2T dj � qi . We will use the notation Ki to denote the index set of feasible
assignment subsets for facility i 2 I , Tk � J the index set of the customers served
in feasible assignment k 2 Ki , and pki for the fixed-charge cost of facility i plus the
cost for assigning to i all the customers indexed in Tk , i.e. pki D fi CPj2Tk cij.
Also, for i 2 I , k 2 Ki , j 2 J , let aijk D 1 if j 2 Tk and 0 otherwise. Consider
now the following decision variables:

zki D
�
1 if the subset of customers Tk is assigned to facility i
0 otherwise.
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Then, a set partitioning formulation for the SFLP is

SPSFLP minimize
X

i2I

X

k2Ki
pkizki (3.19)

subject to
X

i2I

X

k2Ki
aijkzki D 1 j 2 J (3.20)

X

k2Ki
zki D yi i 2 I (3.21)

yi 2 f0; 1g i 2 I (3.22)

zki 2 f0; 1g i 2 I; k 2 Ki: (3.23)

Constraints (3.20) ensure that each customer is assigned to exactly one facility.
Constraints (3.21) guarantee that no assignment is selected for a non-open facility
and also that one feasible assignment is selected for each open facility. Observe
that, because of (3.20), constraints (3.21) can be written as � inequalities and will
still be satisfied as equalities. Constraints (3.22) and (3.23) define the domain of the
decision variables. The above a formulation will be referred to as SPSFLP.

A set partitioning formulation for the multiple allocation case can be obtained
from the above formulation by simple relaxing the integrality conditions on the z
variables to 0 � zki � 1, i 2 I; k 2 Ki . It is now necessary to use the � expression
for constraints (3.21), since optimal solutions may exist with some open facility
only serving fractions of demand of the allocated customers. This formulation will
be referred to as SPMFLP.

The large number of variables both in SPSFLP and in SPMFLP make these
formulations suitable for column generation.

3.3 Solution Algorithms for Fixed-Charge Facility Location

In this section we overview solution methods for FLPs. Several heuristic and
exact algorithms have been proposed for FLPs and an exhaustive survey on the
related literature is outside the scope of this chapter. Branch-and-bound methods
proposed in the early papers (Sá 1969; Davis and Ray 1969; Ellwein and Gray
1977; Akinc and Khumawala 1977; Nauss 1978; Neebe and Rao 1983) were
followed by many algorithms based on Lagrangean relaxation (Geoffrion and
McBride 1978; Christofides and Beasley 1983; Guignard and Kim 1983; Barceló
and Casanovas 1984; Klincewicz and Luss 1986; Pirkul 1987; Beasley 1988;
Guignard and Opaswongkarn 1990; Barceló et al. 1990, 1991; Cornuéjols et al.
1991; Beasley 1993; Sridharan 1993, 1995; Holmberg et al. 1999). Some of the
first works on approximation algorithms are those of Shetty (1990), Shmoys et al.
(1997) and Chudak and Shmoys (1999). Algorithms based on Benders and cross
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decomposition have been respectively proposed in Wentges (1996) and Van Roy
(1986), whereas branch-and-price has been applied by Díaz and Fernández (2002)
and Klose and Görtz (2007). Some recent works are Barahona and Chudak (2005),
Sankaran (2007), Sharma and Berry (2007), Ghiani et al. (2012), and Zhen et al.
(2012). For an overview of heuristics for FLPs the interested reader is addressed
to Jacobsen (1983), Filho and Galvão (1998), Delmaire et al. (1999a,b), Hindi and
Pienkosz (1999), Cortinhal and Captivo (2003), Ahuja et al. (2004) and references
therein.

The most obvious strategy for solving an FLP instance to optimality is to use
a standard mixed integer programming (MIP) solver with formulation SFLP or
MFLP, depending on the case. This approach may, however, fail on large instances,
especially for the single source case. Some alternatives are presented below, which
somehow exploit the structure of the problem and lead either to an exact algorithm
or to methods that can be embedded within an exact algorithm. First we study
Lagrangean relaxation, which has been used by a number of authors both for the
single and multiple allocation cases. Then we address the pricing problem for the
set partitioning formulation SPSFLP, which is one of the main ingredients of the
branch-and-price algorithm of Díaz and Fernández (2002).

3.3.1 Lagrangean Relaxation

We next present a Lagrangean relaxation of model SFLP in which the assignment
constraints (3.2) are relaxed. This relaxation has been used by a number of authors
(see, for instance, Pirkul 1987; Barceló et al. 1990, 1991; Beasley 1993; Holmberg
et al. 1999). The Lagrangean subproblem associated with a given set of multipliers
� 2 Rn, is

LSFLP.�/ D minimize
X

i2I

0

@fiyi C
X

j2J
cijxij

1

AC
X

j2J
uj

 
1 �

X

i2I
xij

!
(3.24)

subject to
X

j2J
dj xij � qiyi i 2 I (3.25)

xij 2 f0; 1g i 2 I; j 2 J (3.26)

yi 2 f0; 1g i 2 I: (3.27)

After rearranging its terms the objective function can be rewritten as

X

j2J
�j Cmin

X

i2I

0

@fiyi C
X

j2J

�
cij � �j

�
xij

1

A :
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A solution to LSFLP.�/ can be obtained applying the following two steps:

(1) For each i 2 I solve the knapsack problem

KP.i/ W maximize
X

j2J

�
cij � �j

�
xij (3.28)

subject to
X

j2J
dj xij � qi (3.29)

xij 2 f0; 1g j 2 J: (3.30)

Let J.i/ denote the index set of variables at value 1 in an optimal solution to
KP.i/ and v.i/ D P

j2J.i/
.cij � �j / its associated optimal value.

(2) For each i 2 I , with fi C v.i/ < 0 then yi D 1, and xij D 1, for j 2 J.i/.
The Lagrangean dual associated with LSFLP.�/ is

DSFLP max
�2Rn

LSFLP.�/:

Proposition 3.1 The optimal value of the Lagrangean dual DSFLP coincides with
the value of the linear programming (LP) relaxation of program SPSFLP.

Proof Consider the following Lagrangean function resulting from relaxing con-
straints (3.20) in SPSFLP in a Lagrangean fashion:

LSPSFLP.�/ D minimize
X

i2I

X

k2K
pkizki C

X

j2J
�j

0

@1 �
X

i2I

X

k2Ki
aijkzki

1

A

(3.31)

subject to
X

k2Ki
zki � yi i 2 I (3.32)

zki � 0 i 2 I; k 2 Ki (3.33)

yi 2 f0; 1g i 2 I: (3.34)

The objective function (3.31) can be expressed as

X

j2J
�j Cmin

2

4
X

i2I

X

k2Ki
pkizki �

X

i2I

X

k2Ki

X

j2J
�j aijkzki

3

5 D

X

j2J
�j Cmin

2

4
X

i2I

X

k2Ki
.pki �

X

j2Tk
�j /zki

3

5 :
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Thus, for a given vector � , the solution to LSPSFLP.�/ can be obtained as follows:

• For i 2 I , do

– Find k.i/ 2 arg maxk2Ki fpki � P
j2Tk

�j g.
– If pk.i/i � P

j2Tk.i/
�j < 0 then yi D 1, zk.i/i D 1, zki D 0; k 2 Ki n fk.i/g.

If pk.i/i � P
j2Tk.i/

�j � 0 then yi D 0, zki D 0, k 2 Ki .

Note that, for each feasible solution .Oz; Oy/ to (3.32)–(3.34), for each i 2 I

there exists a one-to-one correspondence between . Oyi ; .Ozki/k2Ki /, and a vector
. Oyi ; . Oxij/j2J /, that satisfies constraints (3.25). In particular, Oxij D P

k2Ki aijkOzki for
all i 2 I , j 2 J . Note that the above solution is well defined since for i 2 I there
is at most one k 2 Ki with Ozki D 1. Furthermore, by definition of the z variables, for
i 2 I , . Oxij/j2J represents a feasible assignment to facility i , i.e.

P
j2J dj Oxij � qi Oyi .

Finally, the objective function values of the two solutions coincide since for i 2 I
fixed,

P
k2Ki pkiOzki D fi Oyi C P

j2J
cij Oxij. Therefore, taking into account the above

considerations,LSPSFLP.�/ can be rewritten as

X

i2I
�i Cminimize

X

j2J

0

@fiyi C
X

j2J
cijxij

1

A �
X

j2J

X

i2I
�j xij (3.35)

subject to
X

j2J
dj xij � qiyi i 2 I

xij 2 f0; 1g i 2 I; j 2 J
yi 2 f0; 1g i 2 I;

which is indeed LSFLP.�/. �
The reader will immediately conclude that a similar result holds for the MFLP.
Proposition 3.1 establishes that DSFLP and the LP relaxation of SPSFLP are

equally tight in terms of the lower bounds they produce (the same is true forDMFLP

and the LP relaxation of SPMFLP). Now, the question that arises naturally is how
to compare both types of formulations from an algorithmic point of view.

As we have seen, the Lagrangean subproblem LSFLP.�/ is rather easy to solve
and subgradients are easy to compute at each point. For a given vector � , let
.y.�/; x.�// denote an optimal solution to LSFLP.�/. Then, a subgradient of
LSFLP.�/ is given by ' D .'j /j2J , where 'j D 1�Pi2I xij.�/. Therefore,DSFLP

can be efficiently solved with subgradient optimization. However, when looking
for an exact algorithm, the Lagrangean dual DMFLP may not be very handy within
an enumeration scheme. In contrast the LP relaxation of SPSFLP may be more
demanding thanDSFLP from a computational point of view (the pricing subproblem
must be solved repeatedly to generate all the needed columns), but it can be very
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well integrated within a branch-and-price scheme. For this reason, the next section
studies the pricing problem for generating columns for SPSFLP, which is the main
component of an exact branch-and-price algorithm for the SFLP based on this
formulation (Díaz and Fernández 2002).

3.3.2 The Pricing Problem for SPSFLP

Suppose we have solved the LP relaxation of the subproblem of SPSFLP associated
with a subset of columns K D .Ki /i2I . Let � , and � denote the optimal values of
the dual variables associated with constraints (3.20) and (3.21), respectively. Then
in order to know whether there exists a z variable of the overall formulation that, if
added to the current set of columns, would improve the current LP solution, we must
find the column of the coefficient matrix of SPSFLP with the smallest reduced cost.
The reduced cost of variable zki, i 2 I; k 2 Ki , is given by rki D pki�Pj2J �j aijk�
�i . Thus, in order to find the column that yields the smallest reduced cost we must
solve the following pricing problem:

.PP/ min
i2I; k2Ki

rki D pki �
X

j2J
�j aijk � �i :

Since pki D fi CP
j2Tk cij, then rki D fi CPj2J

�
cij � �j

�
aijk � �i . Note

also that feasible columns aik, k 2 Ki; i 2 I , are characterized by the conditionP
j2J dj aijk � qi . Thus, the solution to PP can be obtained by solving a series of

independent problems, one for each i 2 I . Since, for a given i 2 I , the value fi��i
is fixed, then the corresponding problem reduces to

PPi minimize
X

j2J

�
cij � �j

�
aijk

subject to
X

j2J
dj aijk � qi

aijk 2 f0; 1g j 2 J:

3.4 The Uncapacitated Facility Location Problem

An important particular case of the FLP arises under the assumption that the
capacity of any open facility is sufficient to satisfy the demand of all customers,
i.e. qi �Pj2J dj , i 2 I , so that the capacity constraints (3.3) are not needed. This
particular case is known as the Uncapacitated Facility Location Problem (UFLP)
and has received a considerable amount of attention. Next we focus on the UFLP
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and study some of its properties. The interested reader is addressed to Cornuéjols
et al. (1990) for a deeper analysis and further details.

A first observation is that the UFLP basically involves one main decision: finding
the set of facilities to open. Note that an optimal allocation of customers within a
given set of open facilities, say S , is trivial, and consists of serving all the demand of
each customer from a facility in S with minimum allocation cost, with ties broken
arbitrarily. That is, for j 2 J , let i.j / 2 arg minfcij j i 2 Sg be arbitrarily chosen,
then xi.j /j D 1, xij D 0, i 2 I n i.j / is an optimal allocation of customers within
the set of facilities S . Thus, a closed expression for the objective function value for a
set of facilities S � I is z.S/ DPi2S fi C

P
j2J mini2S cij. The main implication

of this observation is that the UFLP can be stated as the minimization of a known
set function. Before addressing this issue, we study some properties and algorithmic
alternatives, derived from a standard MIP formulation for the UFLP.

Indeed a MIP formulation for the UFLP can be obtained with the y and x
decision variables of the previous sections. Now it is no longer necessary to impose
the binary condition on the allocation variables, even if single allocation is imposed.
The argument is simple: if some customer is allocated to more than one facility in
an optimal solution, the allocation costs of that customer to all its allocated facilities
must be equal (otherwise the solution would not be optimal). Thus the customer can
be fully served from any arbitrarily selected open facility of minimum allocation
cost. On the other hand, even if capacity constraints are no longer needed, it is still
necessary to impose that no customer is assigned to a non-open facility. Thus, by
replacing constraints (3.3) by (3.7) we obtain the following valid formulation for the
UFLP:

UFLP minimize
X

i2I
fiyi C

X

i2I

X

j2J
cijxij (3.36)

subject to
X

i2I
xij D 1 j 2 J (3.37)

xij � yi i 2 I; j 2 J (3.38)

0 � xij i 2 I; j 2 J (3.39)

yi 2 f0; 1g i 2 I: (3.40)

A broad literature exists on the UFLP. From seminal papers (Kuehn and
Hamburger 1963; Stollsteimer 1963; Manne 1964; Balinski 1966; Efroymson 1966;
Spielberg 1969a,b; Khumawala 1972; Bilde and Krarup 1977; Cornuéjols et al.
1977; Guignard and Spielberg 1977; Nemhauser et al. 1978) and other early
contributions (Guignard 1980; Cornuéjols and Thizy 1982; Guignard 1988; Beasley
1988; Körkel 1989; Beasley 1993; Aardal 1998), to more recent works (Goldengorin
et al. 2004; Klose and Drexl 2005; Mladenović et al. 2006; Janacek and Buzna 2008;
Beltran-Royo et al. 2012; Letchford and Miller 2012, 2014), virtually any type of
solution algorithm has been proposed for it. As with the general facility location
problem, an extensive literature review is outside the scope of this chapter. The
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interested reader is referred to Krarup and Pruzan (1983), Cornuéjols et al. (1990),
Labbé et al. (1995), ReVelle and Laporte (1996) or Verter (2011) for overviews of
the main contributions.

3.4.1 Bounds for UFLP Derived from LP Duality

Consider the LP relaxation of UFLP, in which constraints (3.38) have been
written as yi � xij � 0, and the upper bound constraints on the y variables
as �yi � �1, i 2 I . Let u, w and t denote the vectors of dual variables of
appropriate dimensions associated with constraints (3.37), (3.38) and the upper
bound constraints, respectively. Then, the dual of the LP relaxation of UFLP is

DUFLP maximize
X

j2J
uj �

X

i2I
ti (3.41)

subject to
X

j2J
wij � ti � fi i 2 I (3.42)

uj � wij � cij i 2 I; j 2 J (3.43)

wij � 0 i 2 I; j 2 J (3.44)

ti � 0 i 2 I: (3.45)

The optimal values for the t variables can be determined from the optimal w

values as ti D
�P

j2J wij � fi
�C

, i 2 I , where .a/C D maxf0; ag. In turn, the

optimal w values can be determined from the optimal u values as wij D
�
uj � cij

�C
,

i 2 I; j 2 J . Therefore, DUFLP can be expressed in terms of only u variables as

DUFLP maxD.u/ D
X

j2J
uj �

X

i2I

0

@
X

j2J

�
uj � cij

�C � fi
1

A
C

:

Furthermore, the following optimality conditions hold:

(a) There exists an optimal DUFLP solution where uj � mini2I cij for all j 2 J .
If uj < mini2I cij for some j 2 J , then we can increase the value of uj without
decreasing the objective function value.

(b) There exists an optimal DUFLP solution where
P

j2J
�
uj � cij

�C � fi � 0 for
all i 2 I .
If
P

j2J
�
uj � cij

�C � fi > 0 for some i 2 I , we can decrease the value of
some component uj (with uj > cij/ without decreasing the objective function
value.
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Condition (b) means that the objective function value of an optimal dual solution
reduces to

P
j2J uj . In other words, an optimal dual solution exists with ti D 0 for

all i 2 I . Hence, the complementarity slackness conditions for constraints (3.42) are

0

@fi �
X

j2J

�
uj � cij

�C
1

A yi D 0 i 2 I: (3.46)

These conditions, which apply to any primal-dual optimal pair to the LP relax-
ation of UFLP, hold trivially for all i 2 I with yi D 0. When yi > 0, (3.46) holds
provided that

P
j2J

�
uj � cij

�C D fi . For the integer UFLP the complementarity
slackness conditions (3.46) give the guidelines for primal-dual heuristics. Two
alternative strategies may be applied: (1) the primal solution is obtained first and
then a vector u is built to satisfy

P
j2J

�
uj � cij

�C D fi for all i 2 I with
yi D 1; or (2) the dual solution u is first obtained and then the primal solution sets
yi D 1 for all i 2 I with

P
j2J

�
uj � cij

�C D fi . The first strategy can be applied
starting from any set of open facilities S (which can be obtained, for instance, with
a greedy heuristic). The associated dual solution u.S/ can be obtained by setting
uj .S/ D mini2S cij for all j 2 J (note that this solution need not satisfy condition
(b)). The DUFLP objective function value for uj .S/ is

D.u.S// D
X

j2J
uj .S/ �

X

i2I

0

@
X

j2J

�
uj .S/ � cij

�C � fi
1

A
C

D

X

j2J
min
i 02S ci

0j �
X

i2I

0

@
X

j2J

�
min
i 02S ci

0j � cij

	C
� fi

1

A
C

D

X

j2J
min
i 02S ci

0j �
X

i…S

0

@
X

j2J

�
min
i 02S ci

0j � cij

	C
� fi

1

A
C

:

Since the value of the primal solution associated with S is Z.S/ D P
i2S fi CP

j2J mini2S cij, the deviation between the primal/dual values of S and u.S/ is

Z.S/ �D.u.S// D
X

i2S
fi C

X

i…S

0

@
X

j2J

�
min
i 02S ci

0j � cij

	C
� fi

1

A
C

:

The above expression for the deviation suggests choosing S in order to satisfyP
j2J

�
mini 02S ci 0j � cij

�C � fi � 0 for all i … S , since in this case the above
deviation reduces to

P
i2S fi .
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To illustrate the second strategy let u be a dual solution satisfying the optimality
condition (b) above and define I.u/ D fi 2 I jPj2J .cij�uj /C�fi D 0g. Assume
further that uj � mini2I.u/cij. Consider now a set of facilities S.u/ � I.u/ satisfying
maxi2I.u/ cij D maxi2S.u/ cij, for all i 2 I and let sj D fi 2 S.u/ j cij < uj g, j 2 J .
Then,D.u/ D Z.S.u// (see Proposition 3.2. in Cornuéjols et al. 1990). This means
that under the above assumptions, S.u/ is an optimal UFLP solution.

Note that D.u/ D Z.S.u// means that the optimal UFLP value coincides with
that of its LP relaxation. Thus, in general, one should not expect to find a solution u
that together with S.u/ satisfies the conditions stated above. However the DUALOC
heuristic (see Erlenkotter 1978; Bilde and Krarup 1977), which follows this spirit
has proved to be extremely effective for finding optimal or near-optimal solutions
for the UFLP. The basic idea is to start with u D .uj /j2J D .min

i2I cij/j2J , and then

progressively attempt to increase each component uj while satisfying condition (b).
If uj can be increased, then its next value is minfcij j cij > uj g, provided that this
value satisfies (b). If not, uj is increased to the maximum possible value. Indeed,
the outcome of the above heuristic depends on the order in which the indices in
j 2 J are considered. Necessary and sufficient conditions for the duality LP gap to
be zero, which may lead to tighter bounds have been proposed in Mladenović et al.
(2006). Heuristics in the same spirit have been proposed for other discrete facility
location problems, like the one for the stochastic version of the FLP proposed in
Louveaux and Peeters (1992).

3.4.2 The UFLP as the Optimization of a Supermodular
Set Function

As mentioned, the UFLP can be stated as the minimization of a set function. In
this section we see that an alternative formulation for the UFLP can be obtained
by exploiting the supermodularity property of this set function, which has been
observed by several authors, namely Spielberg (1969a), Frieze (1974), Babayev
(1974), Fisher et al. (1978), and we relate such a formulation with a radius based
formulation. We start by recalling some well-known results on supermodular set
functions (see, e.g., Section III.3.1 in Nemhauser and Wolsey 1988) and introduce
some additional notation.

Definition 3.1 Let N be a finite set, and Z a real-valued function on the subsets
of N . The function Z is supermodular if Z.S/ C Z.T / � Z.S [ T / C Z.S \
T /; 8S; T � N .

For i 2 N let �i .S/ D Z.S [ fig/ � Z.S/ be the incremental value of adding
element i to the set S .

Lemma 3.1 Each of the following statements is equivalent and defines a super-
modular set function.
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(a) Z.S/CZ.T / � Z.S [ T /CZ.S \ T /; 8S; T � N .
(b) Z.S [ fig/�Z.S/ � Z.T [ fig/�Z.T /; 8S � T � N and i 2 N .
(c) If, in addition, Z is non-increasing, then Z.T / � Z.S/ C P

i2T nS
�i .S/,

8S; T � I .

In the following we suppose that N is the set of potential facilities, i.e. N D I ,
and we consider as set function Z the cost function of UFLP solutions. That is
Z.S/ D P

i2S fi C
P

j2J mini2I cij. To see that Z.:/ is supermodular we recall
that a positive linear combination of supermodular functions is supermodular and
we observe that Z.S/ D f .S/ C c.S/ with f .S/ D P

i2S fi and c.S/ DP
j2J mini2I cij. Thus, it is enough to see that both f .:/ and c.:/ are supermodular.

Because f .S/ is linear, it is clear that it is supermodular. We next see that c.:/ is
also supermodular.

Proposition 3.2 c.:/ is supermodular and non-increasing.

Proof We will use the characterization of supermodular functions of Lemma 3.1b.
For S � T � I , and i 2 I n T ,

c.S [ fig/ � c.S/ D
X

j2J



min

i 02S[fig ci
0j � min

i 02S ci 0j
�
D
X

j2J
min

�
0; cij � min

i 02S ci 0j
�
�

X

j2J
min

�
0; cij � min

i 02T ci
0j

�
D
X

j2J



min

i 02T[fig
ci 0j � min

i 02T ci
0j

�
D

c.T [ fig/ � c.T /;

where the inequality follows since mini 02S ci 0j � mini 02T ci 0j for all j 2 J .
Furthermore, c is non-increasing since

c.S [ fig/� c.S/ D
X

j2J



min

i 02S[fig
ci 0j �min

i 02S ci
0j

�
� 0: �

For the function c.:/ the incremental value of adding element i to the set S is
c.S [ fig/� c.S/. Hence, statement (b) of Lemma 3.1 can be rewritten as

c.T / � c.S/C
X

i2T nS

Œc.S [ fig/� c.S/� D c.S/C
X

i2T nS

Œc.S [ fig/� c.S/� ;8S; T � I:

(3.47)

The UFLP formulation below exploits the supermodular property of z.:/ and c.:/
as well as the non-increasing property of c.:/. Consider the polyhedron
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PSF D
8
<

:.�; x; y/ 2 R � B
jI j�jJ j � B jI j W � �

X

i2S
fiyi C c.S/C

X

i…S
�i .S/yi ;8S � I

9
=

; ;

where � is a continuous variable and B
jI j�jJ j and B

jJ j are the domains of the binary
vectors associated with the location and allocation variables x and y, respectively.

Theorem 3.1 Let T � I and .�; xT ; yT / 2 R � B
jI j�jJ j � B

jI j, with x and
y the incidence vectors of the UFLP solution associated with subset T . Then,
.�; xT ; yT / 2 PSF if and only if � � Z.T /.
Proof If .�; xT ; yT / 2 PSF then

� �
X

i2T
fiy

T
i C c.T /C

X

i…T
�i .T /y

T
i D

X

i2T
fi C c.T / D Z.T /:

Suppose now that � � Z.T /. We have

f .T / D
X

i2T
fiy

T
i D

X

i2T\S
fiy

T
i C

X

i2T nS
fiy

T
i

D
X

i2S
fiy

T
i C

X

i2T nS
fiy

T
i ; for all S � I:

Since c is non-increasing supermodular, by (3.47), we also have

c.T / � c.S/C
X

i2T nS

h
c.S [ fig/� c.S/

i
D c.S/C

X

i…S

h
c.S [ fig/� c.S/

i
yTi ;

for all S � I:

Thus, for all S � I

Z.T / D f .T /C c.T / �
X

i2S

fiy
T
i C

X

i2TnS

fiy
T
i C c.S/C

X

i…S

h
c.S [ fig/ � c.S/

i
yTi :

Hence, � � Z.T / �
X

i2S
fiy

T
i C c.S/C

X

i…S
�i .S/y

T
i ; for all S � I .

Therefore, .�; yT ; xT / 2 PSF and the result follows. �
As a consequence of Theorem 3.1, the UFLP can be stated as the following MIP

(see Nemhauser and Wolsey 1981):

minimize � (3.48)

subject to � �
X

i2I
fiyi C c.S/C

X

e…S
�i .S/yi 8S � I� (3.49)
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� � 0 (3.50)

yi 2 f0; 1g i 2 I; (3.51)

where I� D I [ fi�g and i� is a fictitious facility such that (1) ci�k > maxi2I cij,
for all j 2 J ; and (2)

P
j2J ci�j > maxi2I .fi C P

j2J cij/. This assumption
guarantees that at least one variable yi is at value one in any optimal solution to the
above formulation.

Taking into account the supermodularity of c.:/ we can obtain a tighter formula-
tion by respectively substituting objective (3.48) and constraints (3.49) by

minimize
X

i2I
fiyi C

X

j2J
�j ; (3.52)

and �j � min
i2S cij C

X

i…S



min

i 02S[fig
ci 0j �min

i 02S ci
0j

�
yi ; 8S � I�; j 2 J:

(3.53)

The following observation indicates that only a polynomial number of con-
straints (3.53) is required to obtain a valid formulation for the UFLP.

Remark 3.1 For S � I and j 2 J given, the right-hand side of their associated
constraint (3.53) does not change if the summation is taken over all i 2 I , since
mini 02S[fig ci 0j � mini 02S ci 0j D 0, for i 2 S . Moreover, for any S � I , the value
of mini2S cij will be one of the values cij, with i 2 S . That is, for any S its associated
constraint (3.53) can be written as

�j � csj C
X

i2I
.cij � csj/

�yi ; for some s 2 S:

To apply the above remark and obtain a formulation with a polynomial number
of constraints, for each j 2 J , we order the elements of I in non-decreasing values
of their coefficients cij, and we denote by ir the r th index according to that ordering.
That is, ci1j � ci2j � : : : � cimj � cimC1j , where cimC1j D ci�j is the allocation
cost of customer j to the fictitious facility i�.

Theorem 3.2 The UFLP can be formulated as

.SUFLP/ vS D minimize
X

i2I

fiyi C
X

j2J

�j (3.54)

subject to �j � cir j C
X

i2I

.cij � cir j /N yi r D 1; : : : ;mC 1; j 2 J
(3.55)

�j � 0 j 2 J (3.56)

yi 2 f0; 1g i 2 I: (3.57)
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The proof which is based on Remark 3.1 is left to the reader. Formulation (3.54)–
(3.57) involves jmj binary variables y and jJ j continuous variables �. Its total
number of constraints is .mC 1/jJ j.

The reader familiar with Benders type reformulations (Benders 1962) will
immediately observe that, in fact, constraints (3.55) are nothing but Benders cuts.
Thus formulation (3.54)–(3.57) admits an alternative interpretation as a Benders
type reformulation for the UFLP. The interested reader is addressed to the inspiring
chapter by Magnanti and Wong (1990) for an extensive description of the
application of Benders reformulations to the UFLP.

We close this section by interpreting SUFLP as a radius-based formulation.
Such formulations have been broadly used in recent years for different types of
location and hub location problems, after the work by Elloumi et al. (2004). Their
main characteristic is the use of decision variables to model the service cost for
customers. Using the above notation, in which, for j 2 J , cir j denotes the r th
smallest allocation cost for customer j , we define a new set of binary decision
variables zrj, r D 1; : : : ; m, where zrj D 1 if and only if the allocation cost of
customer j is at least cirj . With these decision variables, the allocation cost of
customer j can be written as the telescopic sum ci1j C

Pm
rD2.cir j � cir�1j /zrj, so

that an alternative UFLP formulation is

.RUFLP/ vR D minimize
X

i2I

fiyi C
X

j2J

 
ci1j C

mX

rD2

.cirj�cir�1j /zrj

!
(3.58)

subject to zrj C
X

i2I
cij<cir j

yi � 1 r D 1; : : : ; mC 1; j 2 J

(3.59)

zrj 2 f0; 1g j 2 J; r D 1; : : : ; mC 1
(3.60)

yi 2 f0; 1g i 2 I: (3.61)

The equivalence between both formulations can be established by observing that
feasible solutions to SUFLP define feasible solutions to RUFLP and vice versa.
Indeed, if .�; y/ is feasible for SUFLP we obtain a feasible RUFLP solution by
setting, for each j 2J , zrj D 0 for all r with cirj � �j , and zero otherwise.
Constraints (3.55) guarantee that .z; y/ satisfies constraints (3.59) and is feasible
for RUFLP. Conversely, we can also check that a feasible SUFLP solution can be
obtained from a feasible RUFLP solution by setting for, j 2 J , �j D cir� j with
r� D arg minfcir j W yir D 1g.
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3.5 Polyhedral Analysis of the UFLP

This section concentrates on the polyhedral analysis of the UFLP. We assume the
reader is familiar with the basic polyhedral concepts (an exposition can be found, for
instance in Nemhauser and Wolsey 1988). Although any UFLP formulation can be
analyzed from a polyhedral perspective, we focus on the set packing formulation for
the UFLP, because it is the one that has received more attention from a polyhedral
point of view. An alternative analysis to the one we develop next, based on a set
partitioning UFLP formulation, can be found in Guignard (1980).

As indicated in Sect. 3.2 facility location problems can also be modeled as
maximization problems in which the expression of the objective function is (3.17).
In the case of the UFLP such a formulation can be easily transformed into a set
packing one by doing the change of variables Nyi D 1 � yi , i 2 I ; i.e. Nyi D 1

if and only if facility i is not opened. The objective function can be rewritten in
terms of the new variables as �Pi2I fi C

P
i2I fi Nyi C

P
i2I

P
j2J pijxij, whose

maximization reduces to maximizing the objective
P

i2I fi Nyi C
P

i2I
P

j2J pijxij

within the appropriate domain. Hence, a set packing formulation for the UFLP is

.KUFLP/ maximize z D
X

i2I
fi Nyi C

X

i2I

X

j2J
pijxij (3.62)

subject to
X

i2I
xij � 1 j 2 J (3.63)

xij C Nyi � 1 i 2 I;8j 2 J (3.64)

xij 2 f0; 1g i 2 I; 8j 2 J (3.65)

yi 2 f0; 1g i 2 I: (3.66)

Formulation KUFLP can be viewed as a set packing formulation and thus its set
packing properties are inherited. For this we will consider the intersection graph,
that we denote by G.m; n/, with a node for each variable of KUFLP and with an
edge for each pair of variables sharing a constraint in KUFLP.

In the following P mn and F mn denote the convex hull of the feasible solutions
of KUFLP and its LP relaxation, LKUFLP, respectively. For m� � m and n� � n,
we call m� � n� adjacency matrix S to any m� � n�, 0-1 matrix with no zero row
and no zero column. Given an adjacency matrix S and two ordered sets IS � I

and J S � J , we denote by GS D .V S ;ES/ the subgraph of G.m; n/ given by
V S D fxij W i 2 I S ; j 2 J S; sij ¤ 0g [ f Nyi W i 2 I S g, ES D f.xij; xkj/ W i; k 2
I S ; i < k; j 2 J S ; sij D skj D 1g [ f. Nyi ; xij/ W i 2 I S ; j 2 J S ; sij D 1g. Finally,
˛.G/ denotes the independence number of graphG; i.e., the maximal cardinality of
a packing of nodes in G, and B denotes a cyclic matrix of type .k; t/, i.e. its size is
k � k and its rows are 0-1 vectors with t adjacent 1’s, which move one position to
the right in each row.
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Some relevant contributions on the polyhedral analysis of KUFLP are (in
chronological order): Cornuéjols et al. (1977), Guignard (1980), Cornuéjols and
Thizy (1982), Cho et al. (1983a,b), Myung and Tcha (1996), Cánovas et al. (2000,
2001, 2002, 2003), Baiou and Barahona (2009a) and Chen et al. (2012). New trends
in this area relate to the study of how to adapt the known polyhedral properties of
the UFLP to problems generalizing it. Nice examples are the papers by Hamacher
et al. (2004) and by Baiou and Barahona (2009b). In both cases the authors give
results allowing to directly adapt any valid inequality of the UFLP to the Hub
Location Problem and the Two-Level Facility Location Problem, respectively. Next
we summarize the main results in this area.

First of all, P mn is full-dimensional, i.e., dim.P mn/ D mn C p. Thus, two
different facets of P mn always define two different sets of feasible solutions for
KUFLP.

Cho et al. (1983a) have proven that for m � 2 or n � 2 the coefficients matrix
of KUFLP is totally unimodular, so the polyhedral analysis is of little interest. They
have also given a complete description of the facets of P mn when m D 3 or n D 3.
Recently, Baiou and Barahona (2009a) and Chen et al. (2012) have presented new
conditions for F mn to be integral, i.e., to have all its extreme points integral. Both
papers define a particular type of odd cycles in the intersection graph of KUFLP
without which the extreme points of the polyhedron F mn are integral.

The remainder of this section is divided in three parts: extreme points of F mn,
valid inequalities and facets of P mn, and lifting procedures.

3.5.1 Extreme Points

We are aware of two papers dealing with the characterization of the fractional
extreme points. Cornuéjols et al. (1977) give a characterization for the extreme
points of F mn: Let If D fi 2 I W 0 < Nyi < 1g; J0 D fj 2 J W xij 2 f0; 1 � Nyi g
for all i and xij non-integer for some ig and let U be the jIf j � jJ0j matrix whose
elements are

uij D
�
1 if xij > 0;

0 if xij D 0:

Theorem 3.3 (Cornuéjols et al. 1977) The fractional feasible solution .x; y/ of
LKUFLP is an extreme point of F mn if and only if

(a) 1 � Nyi D maxj fxijg for all i 2 If ;
(b) for each j 2 J; there is at most one i with 0 < xij < 1 � Nyi ;
(c) the rank of U equals jIf j:
Cánovas et al. (2001) have later provided a characterization for the extreme points
of a more general polyhedron and proved that condition (a) of Theorem 3.3 follows
from conditions (b) and (c). Cho et al. (1983a) make use of this characterization
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to prove that a certain family of valid inequalities can cut fractional solutions of
LKUFLP. The results of Cánovas et al. (2001) also characterize the extreme points
of the polyhedra associated with the FLP formulation in Leung and Magnanti (1989)
and of other related problems.

3.5.2 Valid Inequalities and Facets

Next we present several families of valid inequalities of P mn. Further details and
results can be found in Cho et al. (1983a) and Cánovas et al. (2002).

Cornuéjols et al. (1977) presented the first polyhedral study of the KUFLP. They
proposed, without proof, the following family of valid inequalities of P mn

X

i2IC
bijxij C

X

i2IC
Nyi � 2k � dk=te; (3.67)

where k and t are integers such that k D tp C 1 for some integer p;B is a cyclic
matrix of type .k; t/ and IB � I; J B � J are subsets of cardinality k: Later,
Cornuéjols and Thizy (1982) proved that (3.67) is a facet.

Several well-known families of facets for the KUFLP with binary coefficients are
discussed below:

Theorem 3.4 (Cho et al. 1983b) Consider I S � I and J S � J . Then, the
inequality

X

i2IS

X

j2JS
sijxij C

X

i2IS
Nyi � ˛.GS/;

where sij D 0 or 1, is facet-defining for P mn (and different from a clique facet) if
and only if S is a jI S j � jJ S j, maximal mn-adjacency matrix.

A characterization of maximal mn-adjacency matrices can be found in Cho et al.
(1983b). A special case of maximal mn-adjacency matrix gives rise to a concrete
family of facet-defining inequalities of P mn:

Theorem 3.5 (Cornuéjols and Thizy 1982) Consider ` and t such that 2 � t <
` � m and subsets P � I , D � J , such that jDj D

�
`

t

	
, jP j D `. Let A`t be the

matrix whose columns are all vectors 0-1 with t ones and ` � t zeros. Then,

X

i2I

X

j2J
a`tij xij C

X

i2I
Nyi �

�
`

t

	
C t � 1

is a facet-defining inequality of P mn.
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By exploiting the set packing structure of KUFLP, the odd holes in the intersec-
tion graph of KUFLP allow to define two new families of valid inequalities.

Theorem 3.6 (Cornuéjols and Thizy 1982) The inequality

3X

iD1
xii C

3X

iD1
x.iC1/ mod 3;i C

3X

iD1
Nyi � 4

is facet-defining for P33.

Theorem 3.7 (Cornuéjols and Thizy 1982) The inequality

x13 C x41 C
5X

iD1
xii C

5X

iD1
x.iC1/ mod 5;i C

5X

iD1
Nyi � 7

is facet-defining for P55.

Families of facet defining inequalities for KUFLP with general integer coeffi-
cients are also known.

Theorem 3.8 (Cánovas et al. 2000) Let S be an r � c adjacency matrix satisfy-
ing

(i) 8i1; i2 2 I S 9j 2 J S such that si1j si2j D 1 and
(ii) 8.i; j / 2 I S � J S with sij D 1 9` 2 I S , ` ¤ i , such that s j̀ D 1 and

sihs`h D 0 8h ¤ j .

Then,

X

i2IS

X

j2JS
sijxij C

X

i2IS

0

@
X

j2JS
sij � 1

1

A Nyi �
X

i2IS

X

j2JS
sij � jI S j C 1

is a facet-defining inequality of P rc.

Theorem 3.9 (Cánovas et al. 2002) Let S be the k � k adjacency matrix, k � 3,
given by

S D
�

0 11�.k�1/
1.k�1/�1 I.k�1/�.k�1/

	

Then,

X

i2IS

X

j2JS
sijxij C .k � 2/ Ny1 C

kX

iD2
Nyi � 2k � 2

is a facet-defining inequality of P kk.
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Theorem 3.10 (Cánovas et al. 2002) Consider three numbers, k � 5, 1 � a <

k � 3 and b D k � 3 � a and let S be the k � k adjacency matrix given by

S D

0

BBBBB@

Ia�a 0a�b 0a�1 0a�1 1a�1
0b�a Ib�b 1b�1 0b�1 1b�1
11�a 01�b 1 0 0

01�a 11�b 0 1 0

01�a 01�b 1 1 1

1

CCCCCA
:

Then,

X

i2IS

X

j2JS
sijxij C

X

i2ISnfk�2;k�1g
Nyi C a Nyk�2 C b Nyk�1 � 2k � 3

is a facet-defining inequality of P kk.

Theorem 3.11 (Cánovas et al. 2002) LetB be the cyclic .2kC1; 2/matrix, k � 1,
and let S be the .2k C 2/ � .4k C 2/ adjacency matrix given by

S D
�
B.2kC1/�.2kC1/ I.2kC1/�.2kC1/

01�.2kC1/ 11�.2kC1/

	
:

Then,

X

i2IS

X

j2JS
sijxij C

2kC1X

iD1
2 Nyi C .k C 1/ Ny2kC2 � 6k C 3

is a facet-defining inequality of P .2kC2/.4kC2/.

Other types of inequalities have been suggested. For instance, Myung and Tcha
(1996) develop a family of inequalities that may cutoff feasible solutions but not
optimal ones. In particular, they propose a method for generating inequalities for a
constrained KUFLP which considers its feasible domain and the objective function
value, as well. For the sake of brevity, details are omitted here.

3.5.3 Lifting Procedures

The procedures that transform a valid inequality (facet) of a polyhedron Pm�n�

into a valid inequality (facet) of an higher polyhedron P mn; m � m� or n � n�;
are called lifting procedures. Such results invite the study of small polyhedra. The
following result indicates how to lift all the facets in the previous section.
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Theorem 3.12 (Cho et al. 1983b) Let

X

i2P

X

j2D
�ijxij C

X

i2P
	i Nyi � �0 (3.68)

be a facet-defining inequality of Pm�n�

. Then, (3.68) is also a facet-defining
inequality of P mn form � m�, n � n�.

Cho et al. (1983b) also give a constructive procedure for obtaining facets of P mn

from cyclic adjacency matrices which do not define facets themselves.

Theorem 3.13 (Cho et al. 1983b) Consider P � I , D � J , such that jP j D
jDj D q, q � 3. Consider the facet-defining inequality of P qq given by

X

i2P

X

j2Di
xij C

X

i2P
Nyi � 2q � 2

where the sets Di are all the different subsets of D with jDi j D q � 1. Suppose we
add jS j C jT j facilities of I to P in such a way that each facility in S covers q � 1
destinations and each facility in T covers all the q destinations. Let jS j D s and
jT j D t . Then,

X

i2I[S[T

X

j2Di
�ijxij C

X

i2I[S[T
	i Nyi � .2q C s � 2/.q � 1/C t.q � 2/

is a facet-defining inequality of P .qCsCt /q , where

I. �ij D 	i D q � 1; i 2 P [ S; j 2 Di ,
II. �ij D 	i D q � 2; i 2 T; j 2 Di .

3.6 Conclusions

Fixed-Charge Facility Location Problems capture the main issues arising in fixed-
charge location, so they are an excellent workbench for reviewing relevant aspects
in this field. This was the aim of this chapter where we have covered a broad
range of possibilities related to the modeling and the solution process of FLPs.
Indeed the problems studied in this chapter can be seen as simplifications of
more realistic models that take into account additional issues. We have studied
deterministic static problems, without taking uncertainty into account (see, for
instance, Lin 2009; Albareda-Sambola et al. 2011, 2013; Gao 2012) or temporal
aspects (see, for instance, Albareda-Sambola et al. 2009a, 2010, 2012). Also, the
way we have considered capacity constraints on the facilities may seem simplistic,
since modular capacities (incurring their corresponding costs) can be more realistic
(see, for instance, Gouveia and Saldanha da Gama 2006; Gourdin and Klopfenstein
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2008; Correia et al. 2010). FLPs can be extended in various ways: One can
consider more involved objective functions or multiple objectives (Fernández and
Puerto 2003; Boland et al. 2006; Wu et al. 2006; Zanjirani Farahani et al. 2010),
problems combining FLP decisions with network design (Melkote and Daskin
2011; Contreras et al. 2012), additional constraints (Albareda-Sambola et al. 2009b;
Gendron and Semet 2009; Marín 2011), or the possibility of installing several
facilities at the same site (Ghiani et al. 2002), to mention just a few possibilities.
Some of these extensions are addressed in other chapters of this book.
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Chapter 4
p-Center Problems

Hatice Calik, Martine Labbé, and Hande Yaman

Abstract A p-center is a minimax solution that consists in a set of p points that
minimizes the maximum distance between a demand point and a closest point
belonging to that set. We present different variants of that problem. We review
special polynomial cases, determine the complexity of the problems and present
mixed integer linear programming formulations, exact algorithms and heuristics.
Several extensions are also reviewed.

Keywords p-Center • Location in public sector • Minimax facility location

4.1 Introduction

Minimizing the total or average distance that potential users have to travel to reach a
facility may not be the right decision criterion for placing a public facility. Total- or
average distance minimization tends to favor clients who are clustered in population
centers to the detriment of clients who are spatially dispersed. Discrimination of this
kind with regard to accessibility may have a negative impact on remote clients in the
case of an emergency service (ambulances, fire brigades, police stations, etc.). As a
result, decision makers may want to consider a criterion focusing on clients who are
the poorest served.
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The center problem, defined as finding a vertex whose distance to all the other
vertices of a graph is minimum, has been known for a long time in graph theory
(see, for instance, Berge 1967).

Hakimi (1964) introduced the absolute center problem to locate a police station
or a hospital such that the maximum distance of the station to a set of communities
connected by a highway system is minimized. Given a graph G D .V;E/ with
V D fv1; : : : ; vng, weight wj for node vj 2 V and length `ij for edge fi; j g 2 E
connecting nodes vi and vj , the aim of the absolute center problem is to find a
point x on the nodes or edges such that maxjD1;:::;n wj d.vj ; x/ is minimized, where
d.vj ; x/ is the length of the shortest path between node vj and point x (referred to
as distance between vj and x). The optimal value is called the absolute radius of
graphG. If x is limited to the nodes of G, then we obtain the center of graphG and
the optimal value is the radius of G. The center of G is not necessarily an absolute
center of G. In other words, the absolute radius can be smaller than the radius. To
see this, consider a very simple example with two nodes of weight 1 and an edge
connecting them with length 1. In this example, the absolute radius is 0.5 whereas
the radius is 1.

Hakimi (1964) proposed a solution method to compute the absolute center of a
graph and motivated further studies of this problem by casting it as a game. Two
people, X and Y, are playing a game on a graph G. First player X chooses a point
x in G, then player Y chooses a point y in G and X pays d.x; y/ units to Y. When
X chooses point x, Y chooses a point farthest from x to maximize his gain. Hence,
player X computes the absolute radius of graph G to minimize his loss.

In the conclusion of his subsequent paper on median and covering problems,
Hakimi (1965) mentions the generalization of the absolute center problem to the
p-center problem. Given a set Xp D fx1; : : : ; xpg of p points in G, the distance
d.Xp; vj / between Xp and node vj is computed as miniD1;:::;p d.xi ; vj /. The
p-center problem is to find a set Xp of p points in G such that maxjD1;:::;n wj d
.vj ; Xp/ is minimized.

As defined above, the p-center problem is a network location problem. The
literature contains several variants. In this chapter, we refer to the following
variants:

• vertex-restricted p-center problem:Xp is restricted to be a subset of the node set;
• unweighted p-center problem: all node weights are equal;
• discrete p-center problem: the graph G D .J [ I;E/ is bipartite and complete

with I denoting the set of possible facility locations and J denoting the set of
demand points.

One can find a discussion of several theoretical results and exact methods for
the p-center problem on general and tree networks in Tansel (2011). A large scale
review of the exact and heuristic methods proposed for the p-center and capacitated
p-center problems is provided by Calik (2013).
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This chapter is organized as follows. We review some polynomial cases, identify
the complexity of the problems in general and present some approximation results
in Sect. 4.2. Section 4.3 is devoted to the mixed integer linear programming models
and algorithms for solving p-center problems. Heuristics are discussed in Sect. 4.4
and some extensions of the p-center problem are considered in Sect. 4.5. Section 4.6
concludes the chapter.

4.2 Polynomial Cases, Complexity and Approximation
Results

An algorithm to compute an absolute center of a graph was proposed by Hakimi
(1964). The idea is to compute, for each edge, an optimal point assuming that
the center is restricted to be on that edge. Such an optimal point is called a local
center of that edge. Then the algorithm finds the best local center. Hence, the
overall complexity is equal to the number of edges multiplied by the complexity
of computing a local center of an edge.

The computation of a local absolute center is based on the observation that the
objective function is piecewise linear on each edge and that local minima correspond
to intersection points and vertices (see Minieka 1970). A point x on edge fvk; vmg 2
E qualifies as an intersection point if there exist two distinct nodes vi ; vj 2 V such
that x is the unique point on fvk; vmg for which d.vi ; x/ D d.vi ; vk/C d.vk; x/ D
d.x; vj / D d.x; vm/C d.vm; vj /.

It follows from this definition that the number of intersection points on an edge
is bounded byO.n2/. Nevertheless, Kariv and Hakimi (1979) observed that at most
n C 1 such points can be local minima of the objective function. The resulting
algorithm proposed by Kariv and Hakimi (1979) solves the absolute center problem
in O.jEjnC n2logn/ time.

An algorithm for finding an absolute center in the weighted case can be derived
along the same lines. First, a solution can also be found in the set of local centers,
i.e., solutions to the problems in which the solution is restricted to be on an edge.
Then, the objective function remains piecewise linear on each edge but the slopes
of the linear pieces depend on the vertex weights wj . Kariv and Hakimi (1979)
showed that, on an edge, at most 3n � 2 intersections points can determine a local
minima. A point x on an edge fvk; vmg is now an intersection point if there exist
two distinct nodes vi ; vj 2 V such that x is the unique point on fvk; vmg for which
wi d.vi ; x/ D wi .d.vi ; vk/Cd.vk; x// D wj d.x; vj / D wj .d.x; vm/Cd.vm; vj //.
The complexity of the resulting algorithm proposed by Kariv and Hakimi (1979) is
O.jEjnlogn/.

Goldman (1972) proposed anO.n2/ algorithm to find an absolute center of a tree
in the unweighted case. The algorithm checks whether an edge contains an absolute
center and if not, searches the two subtrees obtained by deleting this edge. Handler
(1973) proposed anO.n/ algorithm exploiting the fact that the midpoint of a longest



82 H. Calik et al.

path of the tree is an absolute center and that the distance is a convex function along
any path of the tree. Given any node vi , the algorithm first determines the vertex vj
whose distance to vi is maximum, then determines the node vk whose distance to
vj is maximum. The path linking vj and vk is a longest one and the absolute center
is its midpoint.

Kariv and Hakimi (1979) provided an O.nlogn/ algorithm for the weighted
center problem on a tree, which was improved to O.n/ by Megiddo (1983).

For an arbitrary graph G and p � 2, Kariv and Hakimi (1979) proved that the
p-center problem is NP-hard even on a planar graph where the maximum degree is
3 and all node weights and edge lengths are equal to 1. The result is also true for
the vertex-restricted problem. The authors show that the problem with p � 2 can be
solved in O.n2logn/ time when G is a tree.

Hochbaum and Shmoys (1985) developed a two-approximation algorithm for the
unweighted discrete problem with I D J and edge lengths satisfying the triangle
inequality. The algorithm runs in O.jEjlogjEj/ time. Hsu and Nemhauser (1979)
proved that it is NP-hard to find an approximation with a better guarantee. Dyer and
Frieze (1985) gave an O.np/ algorithm with a guarantee of minf3; 1C ˛g, where ˛
is the ratio of the largest weight and the minimum weight. In the unweighted case,
this guarantee is 2.

4.3 Exact Methods for p-Center Problems

We first observe that the different variants of the p-center problem can be trans-
formed into a discrete p-center problem and solved as such.

In the case of the vertex-restricted p-center problem, the set I of possible
locations and the set J of demand points are both equal to the set of vertices V .

The weighted and unweighted absolute p-center problems enjoy the same
property as their single facility counterpart: an optimal solution can always be found
in the set of vertices and intersection points. This follows from the fact that each
point xi of an optimal solution Xp must be a local minimizer of the function given
by the maximum (possibly weighted) distance to the vertices that are allocated to
xi , i.e., which are closer to that xi than to any other point of Xp . To transform an
absolute p-center problem into a discrete p-center problem one thus simply sets
I D V [ P , where P denotes the set of intersection points, and J D V .

The remainder of this section is now devoted to models and algorithms for
solving the discrete p-center problem.

Several methods based on solving finite series of an auxiliary problem called the
set covering problem are developed. The set covering problem is a kind of covering
problem (see Chap. 5), which is closely related to the p-center problem. Given a
zero-one matrix A D Œaji�, the set covering problem consists of finding a set of
columns at minimum cost that covers the rows of the matrixA. In order to minimize
the number of facilities required to serve all customers within a given radius value
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r , one can solve a set covering problem with unit column costs by constructingA as
follows:

aji D
�
1; if d.j; i/ � r;
0; otherwise

8j 2 J; i 2 I:

If the optimal value of the set covering problem is greater than p, then the optimal
value of the p-center problem needs to be greater than r ; if it is less than or equal to
p, then it means that the optimal value of the p-center problem is less than or equal
to r .

The first set covering based approach was proposed by Minieka (1970). Let r1 <
r2 < : : : < rK be an ordering of the distinct distance values in the distance matrix
D D Œdji� W dji D d.j; i/; i 2 I; j 2 J and R D fr1; r2; : : : ; rKg. The method
by Minieka (1970) solves the set covering problem for a smaller value in R not yet
considered at each step by updating the matrix A. The algorithm terminates when
the optimal value of the set covering problem is greater than p. Since the number
of different distance values in D is at most jI j:jJ j, the algorithm converges to an
optimal solution in a finite number of steps.

Garfinkel et al. (1977) improved the set covering based approach by Minieka
(1970) by first finding a heuristic solution, then, reducing the search space of the
radius values and eliminating some of the intersection points. They also reduce the
size of the set covering matrix by using standard matrix reductions and heuristic
techniques. For the selection of the radius values at the next step, they proposed
using a bisection or binary search strategy instead of moving to the next smaller
radius value.

The first mixed integer programming (MIP) formulation for the discrete p-center
problem was proposed by Daskin (2013). The following decision variables are
defined: yi D 1 if a facility is placed at node i 2 I and 0 otherwise, xij D 1 if
j 2 J is assigned to a facility placed at i 2 I and 0 otherwise. The formulation by
Daskin can be stated as follows:

Minimize z (4.1)

subject to
X

i2I
djixij � z 8j 2 J; (4.2)

X

i2I
xij D 1 8j 2 J; (4.3)

xij � yi 8i 2 I; j 2 J; (4.4)
X

i2I
yi � p; (4.5)

yi 2 f0; 1g 8i 2 I; (4.6)

xij 2 f0; 1g 8i 2 I; j 2 J: (4.7)
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The objective function (4.1) together with (4.2) ensure that the objective value is no
less than the maximum of the distances between demand points and their facilities.
Constraints (4.3) establish the assignment of each demand point to exactly one
facility. Constraints (4.4) avoid assignment of demand points to locations with no
facility. Constraint (4.5) restricts the number of facilities to p. Constraints (4.6)
and (4.7) are the binary restrictions.

Daskin (2013) also proposed a set covering based algorithm, in which the radius
value of the set covering problem is selected from an interval of real numbers
between pre-determined lower and upper bounds. At each step of the algorithm,
the interval is halved and one of the segments is removed depending on whether the
objective value of the set covering problem is greater than p or less than or equal
to p.

Ilhan and Pınar (2001) proposed a two-phase extension of the algorithm devel-
oped by Daskin (2013). In the first phase, they solve the linear programming (LP)
relaxation of the feasibility problem defined by (4.5), (4.6), and

X

i2I
ajiyi � 1; 8j 2 J; (4.8)

iteratively for fixed r values to obtain a relatively tight lower bound for the p-center
problem. In the second phase, they restrict the interval of the radius values with
the lower bound obtained in the first phase and solve the integer programming (IP)
version of the same feasibility problem iteratively to obtain the optimal value of the
p-center problem.

Elloumi et al. (2004) proposed a new IP formulation for the p-center problem.
This formulation utilizes the fact that the optimal value of the p-center problem
is restricted to a finite set of distance values. They introduced additional binary
variables zk , k D 2; : : : ; K , with zk D 0 if all demand points can be covered by
p facilities within a radius value of rk�1 and zk D 1 otherwise. The formulation is
given below:

Minimize r1 C
KX

kD2
.rk � rk�1/zk (4.9)

subject to (4.5), (4.6),
X

i2I
yi � 1; (4.10)

zk C
X

i Wdji<rk

yi � 1 8j 2 J; k D 2; : : : ; K; (4.11)

zk 2 f0; 1g k D 2; : : : ; K: (4.12)
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Constraint (4.10) eliminates the solutions with no open facility. Constraints (4.11)
and the objective function (4.9) ensure that all demand points are served by a facility
within the smallest possible distance.

A semi-relaxation of this formulation, which is obtained by removing the
binary restriction on the y variables, provides the best known lower bound for the
p-center problem. This lower bound can be obtained by solving a finite series of LP
problems, which are the LP relaxations of the set covering problems. Elloumi et al.
(2004) also provided an exact algorithm that combines the important properties of
the algorithms of Minieka (1970) and Ilhan and Pınar (2001). Their algorithm uses
the two-phase idea and a binary search strategy similar to the algorithm by Ilhan and
Pınar (2001), but restricts the set of radius values to solve the set covering problems
with the finite radius set R as in Minieka (1970).

Calik and Tansel (2013) developed new IP formulations and a new exact
algorithm based on the decomposition of their models for solving the p-center
problem. They associated a binary variable uk with rk , for each k 2 f1; : : : ; Kg.
In particular, uk is equal to 1 if rk is selected as the optimal value and 0 otherwise.
Initially, they proposed the following formulation:

Minimize
KX

kD1
rkuk (4.13)

subject to (4.5), (4.6),
X

i Wdji�rk
yi � uk 8j 2 J; k D 1; : : : ; K; (4.14)

KX

kD1
uk D 1; (4.15)

uk 2 f0; 1g k D 1; : : : ; K: (4.16)

Constraint (4.15) sets exactly one of the variables uk to 1 and the corresponding
rk value is selected as the optimal value according to the objective function (4.13).
Constraints (4.14) ensure that each customer is served within the selected radius
by at least one facility. Constraints (4.16) are binary restrictions. The authors
proposed a tightened formulation by using a relationship between their formulation
and the formulation proposed by Elloumi et al. (2004). In this formulation,
constraints (4.14) are replaced with constraints (4.17) given below:

X

i Wd.i;j /�rk
yi �

kX

qD1
uq; 8j 2 J; k D 1; : : : ; K: (4.17)

The semi relaxations of these formulations, in which the binary restriction of
the y-variables are removed, provide the tight lower bound obtained by Elloumi
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et al. (2004). The algorithm developed by Calik and Tansel (2013) solves their
formulations for restricted sets of radius values iteratively to converge to an optimal
solution. They proposed several selection strategies for a two-element specialization
of their algorithm. They also utilize the matrix reduction rules known for the set
covering problem in their restricted formulations when solving large problems.

In the recent studies, instances from the OR-Library (Beasley 1990) and TSPLIB
(Reinelt 1991) have been used for making computational experiments. The data
for the uncapacitated p-median problem found in the OR-Library consists of 40
instances with n D 100 � 900 and p D 5 � .n=3/. This data was used in
the experiments conducted by Ilhan and Pınar (2001), Elloumi et al. (2004), and
Calik and Tansel (2013). In addition to these instances, Elloumi et al. (2004) used
the instances u1060, rl1323 and u1817 (n D 1060; 1323, and 1817, respectively)
and Calik and Tansel (2013) used the instances u1817, d15112, and pcb3038
(n D 1817; 2500, and 3038, respectively) from the TSPLIB.

4.4 Heuristics

Mladenović et al. (2003) introduced the first meta-heuristic approaches for finding
approximate solutions to the p-center problem. They proposed a multistart local
search algorithm (M-I), a chain substitution Tabu Search (TS) algorithm, and a vari-
able neighborhood search (VNS) algorithm and conducted large scale experiments
on 40 p-median instances from the OR-Library and instances with up to 3,038
nodes from TSPLIB. These experiments reveal that their algorithms outperform the
algorithm proposed by Hochbaum and Shmoys (1985). Among the three heuristics
proposed, TS and VNS algorithms outperform M-I algorithm, VNS performs the
best on the average in terms of both the solution quality and solution time; however,
TS provides slightly better results for the instances with smaller p values.

Pullan (2008) proposed a memetic genetic algorithm (PBS) for the vertex-
restricted p-center problem, which combines a population based meta-heuristic
with a local search algorithm. By using the phenotype crossover and directed
mutation tools of the genetic algorithm, a wide range of elite starting solutions
are generated and then, these solutions are improved to local optimality by using
a local search algorithm. From the computational experiments using the instances
previously tackled by Mladenović et al. (2003), an improvement in the CPU times
and in the objective value of some problems is observed when PBS is compared with
the VNS algorithm. The PBS algorithm can be executed also in a parallel processing
mode. The experiments conducted by increasing the number of parallel processors
utilized in the algorithm provide better CPU times.

Salhi and Al-Khedhairi (2010) obtained tight lower and upper bounds by using a
three-level meta-heuristic and integrated these bounds with the algorithm by Daskin
(2013) to solve the vertex-restricted p-center problem. In the first and second
levels of the algorithm, a variable neighborhood strategy is utilized with distinct
neighborhood structures. In the third level, a perturbation mechanism is introduced
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to avoid sticking at local optima. The computational experiments conducted on
the 40 p-median instances of the OR-Library revealed that the utilization of these
bounds decreases the solution times of Daskin’s algorithm.

Other than the meta-heuristic algorithms, Martinich (1988) proposed a vertex
closing approach for the vertex-restricted p-center problem on complete networks
with distance values that satisfy the triangle inequality. Initially, the algorithm places
a facility on each node and considers the problem of finding n � p facilities to
close so that the maximum of the distances between the nodes and their facilities
is minimized. In this study, the optimal solutions were characterized with the
embedded sub-graphs of the original graph. From this analysis, initial lower and
upper bounds were obtained, two polynomial time algorithms were proposed and
procedures to verify the optimality of the solutions for several special cases were
developed. In terms of the number of instances solved to optimality, they outperform
the algorithm by Hochbaum and Shmoys (1985).

Bozkaya and Tansel (1998) showed that there exists a spanning tree of any
connected network such that the optimal absolutep-center of this tree is optimal also
for the network under consideration. They conducted experiments on two classes
of spanning trees to observe how often these trees provide the optimal solution.
They concluded that these two classes of spanning trees do not always include the
optimizing tree, but they do in most of the instances.

Mihelič and Robič (2005) solved the vertex-restricted p-center problem by
introducing a heuristic algorithm based on solving a finite series of minimum
dominating set problems. Given a graph G D .V;E/, the minimum dominating
set problem aims to find a node subset S � V of minimum cardinality so that any
node in V n S is adjacent to some node in S . They assumed that the underlying
network is complete and the distance values satisfy the triangle inequality. The
computational experiments performed on 40 standard test instances indicate that
their algorithm performs much better than the other polynomial time heuristics
found in the literature and competes with the best known non-polynomial time
algorithms.

4.5 Variants

In this section, we briefly discuss some extensions of the p-center problem.

4.5.1 The Capacitated p-Center Problem

One first variant concerns problems with capacitated facilities. There are few studies
on this variant. Bar-Ilan et al. (1993) introduced a ten-approximation algorithm for
the special case of unit demands. The guarantee was improved to 6 by Khuller and
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Sussmann (2000). If multiple centers can be located at the same location, then the
guarantee is further improved to 5.

Jaeger and Goldberg (1994) proposed a polynomial time algorithm for the
capacitated p-center problem when the graph is a tree, capacities are equal, and
multiple facilities can be located at the same location. In this work, the demand of a
node can be split among different facilities.

Ozsoy and Pinar (2006) proposed an exact algorithm to solve the capacitated
p-center problem. The idea is to see if the all nodes can be assigned within a given
distance and update lower and upper bounds on the radius using this information.
In the subproblem solved to see whether it is possible to assign all nodes within a
given distance, the objective is to minimize the number of facilities required.

In addition to the subproblem solved by Ozsoy and Pinar (2006) to obtain bounds
on the optimal radius, Albareda-Sambola et al. (2010) proposed a second approach
where they solved the problem of maximizing the demand covered within a given
distance using at most p facilities. They used bounds from the Lagrangian relaxation
of the two subproblems to eliminate some radius values and concluded that the first
approach for finding the minimum number of required facilities is a better approach.
Based on this conclusion, they proposed an exact algorithm using binary search over
possible values of the optimal radius.

A very large-scale neighborhood heuristic was developed by Scapparra et al.
(2004). Two types of exchanges were considered. In a cyclic exchange, one takes
a sequence of nodes that are served by different facilities and replaces the facility
of each node with the facility of the next node in the sequence (the facility of the
last node in the sequence becomes the facility of the first node). In a path exchange,
we again take a sequence of nodes served by different facilities and replace the
facility of each node with the facility of the next node. The facility of the last node
is replaced by a facility different from the facilities of the nodes in the sequence. A
relocation step that moves the facilities to better locations with respect to the set of
nodes they are serving is also added to the algorithm.

Three data sets were used in the last three papers mentioned. The first data set
contains 20 instances of the capacitated p-median problem from the OR-Library
(Beasley 1990), with 50 and 100 nodes. The second data set is from Lorena and
Senne (2004) and is also for the capacitated p-median problem. Here there are six
instances with the number of nodes ranging from 100 to 402. Finally, Scapparra
et al. (2004) provided a data set with 8 instances containing 100 and 150 nodes.
Additional instances of the p-median problem were used by Albareda-Sambola
et al. (2010). These authors also compared their approach with the one of Ozsoy
and Pinar (2006).

4.5.2 The Conditional p-Center Problem

The second variant is the conditional p-center problem. In this variant, there
are q existing facilities and additional p facilities are to be located so that the



4 p-Center Problems 89

maximum distance between a node and its facility (among p C q facilities) is
minimized. Minieka (1980) introduced the conditional 1-center problem. Drezner
(1989) showed that the conditional p-center problem can be solved by solving
O.logn/ p-center problems. Suppose that the nodes are ranked in non-increasing
order of their distances to their facilities (using the existing q facilities). Then there
exists a node s such that the optimal value of the conditional p-center problem is
equal to the maximum of the optimal value of the p-center problem solved for the
first s nodes and the distance of the s C 1st node to its facility using the existing q
facilities. The algorithm tries to find the best s using bisection.

Berman and Simchi-Levi (1990) solved the conditional p-center problem by
solving a p C 1 center problem. They add a dummy demand node and a dummy
possible location. The distance from a demand node to the dummy location is the
distance of that node to its facility considering the existing facilities. The distance
of the dummy demand node to the dummy location is zero and its distance to the
other possible locations is a very large number. As a result, an optimal solution to
the p C 1-center problem includes the dummy facility location and opens p other
facilities. Berman and Drezner (2008) improved this approach and showed that the
conditional p-center problem can be solved by solving a p-center problem where
the distance between a node and a potential facility is set to the minimum of this
distance and the distance between this node and the closest existing facility.

4.5.3 The Continuous p-Center Problem

The next variant is the continuous p-center problem. When demand points are
continuously distributed over the whole graph, a set Xp of p points of the graph
minimizing the largest distance from a demand point to a closest point of Xp is
called a continuous p-center.

In the single facility case, i.e., when p D 1, the problem can still be solved
by choosing a best solution among all the local continuous centers, i.e., solutions to
continuous center problem in which the location is restricted to an edge. On an edge,
the objective function is again piecewise linear with O.jEj/ breakpoints. Based on
these facts, O.jEj2log.jEj/ algorithms were proposed by Hansen et al. (1991) and
Tamir (1988).

On a tree, the absolute center coincides with the unweighted absolute center.
For the continuous p-center problem, Tamir (1987) identified a finite set of

rational numbers containing the optimal solution value. Hence, a continuous
p-center can be found by solving a finite number of continuous set covering
problems, i.e., problems in which one looks for the smallest set of facilities needed
to cover all points of the graph (vertices and interior points to edges) within a given
maximum distance.
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4.5.4 The p-Center Problem with Uncertain Parameters

Finally, we consider the variants with uncertain parameters. Averbakh and Berman
(1997) studied the minmax regret version of the problem where the node weights
are uncertain within given intervals. They showed that the robust version of the
problem can be reduced to the resolution of nC1 deterministic problems. Averbakh
(1997) showed that the robust 1-center problem is strongly NP-hard on general
networks when there is uncertainty in edge lengths. Averbakh and Berman (2000)
developed polynomial time algorithms for the robust weighted 1-center problem
with uncertainty in both node weights and edge lengths on a tree network.

4.6 Conclusions

We conclude this chapter with some future research directions. The majority of the
solution methods proposed for the p-center problem are based on either the set
covering or the dominating set problems. Well known optimization methods such
as the cutting plane, branch-and-cut, Benders decomposition, or dynamic program-
ming are rarely used. Recently, Calik (2013) provided a Benders decomposition
method to solve the vertex restricted p-center problem and developed a branch-
and-cut method for the capacitated p-center problem with multiple allocation. The
experimental study conducted by Calik (2013) revealed that the utilization of a
branch-and-cut method enables obtaining optimal solutions of large instances in
small CPU time. The multiple allocation variant, which was previously studied by
Jaeger and Goldberg (1994) on trees, is also an open research area for the capacitated
p-center problem.

Although there are many studies for the p-center problem on trees, the capac-
itated version is not extensively investigated. The only study on this problem
considers facilities with identical capacities and allows multi centers and multiple
allocation. Hence investigating the capacitated p-center problem on tree networks
with non-identical capacities, without multi centers and/or with single allocation
might be a worthwhile undertaking.

Another variant of the p-center problem that has recently attracted the attention
of the researchers is the fault tolerant p-center problem. This is a generalization of
the p-center problem in which each customer is assigned to ˛ different facilities.
The idea is to make back-up services available in case of a failure of some
facilities. The fault tolerance can also be taken into account for the capacitated
p-center problem. Among the existing studies for the fault tolerant p-center and
capacitated p-center problems, Krumke (1995), Khuller et al. (2000), and Chechik
and Peleg (2012) focus on approximation algorithms and a recent study by Chen
and Chen (2013) presents two exact algorithms. Therefore, developing different
exact approaches and meta-heuristic algorithms for this problem might appeal to
the researchers.
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Chapter 5
Covering Location Problems

Sergio García and Alfredo Marín

Abstract When deciding where to locate facilities (e.g., emergency points where
an ambulance will wait for a call) that provide a service, it happens quite often that
a customer (e.g., a person) can receive this service only if he/she is under a certain
distance to the closest facility (e.g., the ambulance can arrive in less than 7 min
at this person’s home). The problems that share this property receive the name of
covering problems and have many applications (analysis of markets, archaeology,
crew scheduling, emergency services, metallurgy, nature reserve selection, etc.).
This chapter surveys the Set Covering Problem, the Maximal Covering Location
Problem, and related problems and introduces a general model that has as particular
cases the main covering location models. The main theoretical results in this topic
as well as exact and heuristic algorithms are reviewed. A Lagrangian approach to
solve the general model is detailed and, although the emphasis is on discrete models,
some information on continuous covering is provided at the end of the chapter.

Keywords Covering • Discrete optimization • Location

5.1 Introduction

When deciding where to locate facilities (e.g., emergency points where an ambu-
lance will wait for a call) that provide a service, it happens quite often that a
customer (e.g., a person) can receive this service only if he/she is under a certain
distance to the closest facility (e.g., the ambulance can arrive in less than 7 min
at this person’s home). The problems that have this property receive the name
of covering problems and, when the previous condition holds, it is said that the
customer is covered.
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The first mentions to covering problems in literature can be found in Berge (1957)
where the problem of finding a minimum cover on a graph is introduced and a
theorem that provides an algorithm to find a minimum cover using a matching is
stated and in Hakimi (1965) where it must be decided on the minimum number of
police patrols required to protect a highway network. However, the problem was
mathematically formulated for the first time in the Location area in Toregas et al.
(1971), although out of a Location context it had already been formulated in Roth
(1969).

In general, there are two types of covering problems: set covering and maximal
covering. In a set covering problem (Toregas et al. 1971), the total cost of locating a
set of facilities so that every customer is covered must be minimized. Particularly, if
all the facilities have the same location cost, this is equivalent to minimize the total
number of facilities to be located. A quick analysis of a solution to the set covering
problem will usually show that with just a few facilities it is possible to cover an
important percentage of the demand and that only by locating a high number full
coverage can be achieved. Since locating as many facilities as needed may not
be possible (e.g., due to budget constraints), a natural variant is to maximize the
number of customers that are covered (or, equivalently, minimize the non-covered
customers) by locating a fixed number of facilities. This problem is the maximal
covering problem which was introduced in Church and ReVelle (1974).

According to Balas and Padberg (1976), the set covering problem is one of the
three special structures in pure integer programming with the most wide-spread
applications, together with set partitioning and the traveling salesman problem. Just
to mention a few, set covering models have been applied in the following areas:
analysis of markets (Storbeck 1988), archaeology (Bell and Church 1985), crew
scheduling (Ceria et al. 1998), deployment of emergency services (Toregas et al.
1971; Eaton et al. 1986), mail advertising (Dwyer and Evans 1981), metallurgy
(Vasko et al. 1989), nature reserve selection (Church et al. 1996) and Steiner
matrices (Feo and Resende 1989).

Due to its importance and the rich literature on this topic, it is not surprising that
reviews have been published regularly. The first one is Christofides and Korman
(1975), a comparison of five computational methods for the set covering problem.
Later, we have Chung (1986) which examines several applications of the maximal
covering model to problems that do not belong to the Location field, and ReVelle
(1989), a review focused on emergency service. Broader reviews are Schilling et al.
(1993), an exhaustive survey on covering models in Location reviewing 96 papers,
and Caprara et al. (2000), a comparison of recent algorithms (exact and heuristic)
for the set covering problem. Plastria (2002) is an exhaustive review of continuous
covering models and it is a perfect complement to this chapter. More recently, we
have Berman et al. (2010) which considers some of the latest trends by reviewing
gradual coverage, cooperative coverage, and variable radius coverage models, and
Snyder (2011) which reviews the seminal covering models plus some extensions.
Finally, the most recent survey is Farahani et al. (2012), an exhaustive list of models
reviewing more than 150 papers that study covering problems in the area of facility
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location. More focused as a detailed tutorial than as a proper survey, Daskin (1995)
is an excellent introduction to the basic properties of covering models.

At this point, it must be said that there are many different models involving
covering and that the goal of this chapter is not to cover them all but to provide
an insight on the main models and results on the topic. Particularly, we focus on
discrete models because they have received most of the attention in literature. The
rest of this chapter is organized as follows: the main models from the literature
are obtained in Sect. 5.2 as particular cases of a general model. Section 5.3
summarizes the main theoretical results on two of the main models (Set Covering
and Maximal Covering Location). Then, we survey exact (Sect. 5.4) and heuristic
(Sect. 5.5) solution methods. Since Lagrangian relaxation technique is widely used
for approaching covering models, we extend it to the general model described
in Sect. 5.6. Finally, although the focus of this chapter is on discrete models,
some information on continuous covering is provided in Sect. 5.7 for the sake of
completeness.

5.2 Models

We will use a general covering model to present as particular cases the main
covering location problems in the literature as well as several other basic location
problems which can be also considered sophisticated extensions of covering models.

Let J D f1; : : : ; ng be the set of customers (also called demand points) and let
I D f1; : : : ; mg be the set of potential centers (facilities). Since many applications
of covering models come from Location, we will use indistinctively “sites” for
customers and potential centers. For each pair .i; j / 2 I � J , a known constant
aij 2 f0; 1g represents whether demand point j can be covered (value one) or not
(value zero) by a center installed at site i . These constants can be obtained with
different procedures depending on the model under consideration as we will see
below.

Associated to each i 2 I , a fixed cost fi � 0 has to be paid for opening a center
at site i . In some models it is possible to open more than one center at the same
site. In this case we assume that the cost of the centers to be opened in i 2 I is
equal (i.e., fi is the opening cost for all centers to be opened at site i ). Each demand
point j 2 J must be covered by at least bj 2 Z

C
0 facilities, where bj D 0 if site j

does not need to be covered. Besides, a maximum number of p 2 Z
C facilities can

be opened (note that when the fixed costs of the centers are zero, this maximum
number is always reached by some optimal solution).

Non-negative integer variables yi represent the number of facilities to be opened
at site i 2 I . These are the main location variables and they will be explicitly present
in all the particular cases that are obtained from the general model. The maximum
number of facilities that can be opened at site i is given by the constant ei 2 Z

C.
Particularly, if ei D 1, then yi is a binary variable that takes value one if a facility is
located at site i (and zero otherwise).
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A second family of (binary) variables is wjk. Here, j belongs to the set of demand
points J while k belongs to an index set K D f1; : : : ; hg, whose meaning will
depend on the particular model that is considered. Associated to variables wjk, fixed
costs gjk 2 R are given. These costs gjk can be negative, representing in this case
the profit from wjk taking value one. In order to avoid unnecessary complicating
constraints in the basic model, without loss of generality, we assume that gj1 �
gj2 � : : : � gjh for each j 2 J . Whenever this condition does not hold, it will be
explicitly stated.

The mathematical Integer Programming formulation for our general covering
model is:

(COV) Minimize
X

i2I
fiyi C

X

j2J

X

k2K
gjkwjk (5.1)

subject to
X

i2I
yi � p; (5.2)

X

i2I
aijyi D bj C

X

k2K
wjk 8j 2 J; (5.3)

yi 2 f0; 1; : : : ; eig 8i 2 I; (5.4)

wjk 2 f0; 1g 8j 2 J;8k 2 K: (5.5)

The objective function (5.1) has two parts. The first sum returns the total fixed
cost of opening yi facilities at site i 2 I . The second sum returns the total cost (or
profit, if negative) provided by the w-variables that take value one. Constraint (5.2)
limits the number of centers to p. Note that all the centers installed at the same site
contribute to the sum.

The main constraints in the model are (5.3). For each demand point j 2 J , the
left-hand side of (5.3) measures the number of open facilities which are covering j .
This number must be at least equal to the lower bound bj on the right-hand side,
while the sum of wjk variables measures the slack in the coverage of j , i.e., the
number of centers which are covering j besides the minimum number bj . Due to
the condition that we imposed on the g-values, the w-variables taking value one will
be in the first positions, that is, constraints wjk � wj;kC1, j 2 J , k 2 f1; : : : ; h� 1g
are satisfied without including them explicitly in the formulation. In such a way,
a cost gj1 will be paid if demand point j is covered by at least bj C 1 centers;
additional cost gj2 will be paid if demand point j is covered by at least bjC2 centers
and so on.

Constraints (5.4) are the integrality constraints for y-variables and impose that at
most ei centers can be installed at site i . Constraints (5.5) state that variables w are
binary.

Therefore, model (COV) forces to cover each demand point j with a minimum
of bj facilities by using at most p facilities while minimizing the location cost of the
facilities plus an additional cost (or, instead, minus an additional benefit) associated
to the number of facilities which over-cover customers. By giving particular values
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to the constants in (COV), different models from the literature (and, particularly, all
the classical models) are obtained. The details are given next.

Set Covering Problem: In the Set Covering Problem (SCP) we have that, under
the context of emergency center location of Toregas et al. (1971), aij D 1 if the
response time or distance dij from a center located at i 2 I when an emergency
happens at j 2 J is under a certain given threshold s (i.e., aij D 1 if and only if
dij � s). There is no maximum number of centers to be located (i.e., p D m) and
all demand points must be covered at least once (bj D 1 8j 2 J ). The only costs
in the objective function are fi D 1 8i 2 I because the goal is just to minimize
the number of open centers. Therefore, variables wjk can be removed from the
model by replacing the equalities in (5.3) by inequalities “�” (equivalently, take
h D m � 1 and gjk D 0 for all j 2 J , k 2 K in (COV)). In the SCP, opening
more than one facility at the same site is not optimal. Thus, ei D 1 8i 2 I .
Given the special importance of this model, its classical formulation is explicitly
shown:

(SCP) Minimize
X

i2I
yi

subject to
X

i2I
aijyi � 1 8j 2 J; (5.6)

yi 2 f0; 1g 8i 2 I:

As an optimization problem, the SCP is a classical problem. The particular case
where I D J is the set of nodes of an undirected graph and aij D 1 if and only
if edge .i; j / exists, usually called Node Covering Problem, has been deeply
studied during the last century. The interested reader can consult the survey by
Balinski (1965). Other interesting seminal papers are Norman and Rabin (1959)
and Hohn (1955), where the mathematical problem is identified in the context of
electronic circuits when analyzing a general way of designing a contact network
satisfying given requirements and employing a minimum number of contacts.
Surprisingly, although the SCP is an NP-complete problem (Garey and Johnson
1979), it happens often that the linear relaxation already provides an integer
solution. Another important property that must be remarked is that the SCP
has usually many different optimal solutions, i.e., sets of centers with the same
minimum cardinality which cover all the demand points.

Weighted Set Covering Problem: The Weighted SCP (WSCP) is a generalization
of the SCP where the opening costs fi can be different from one.

Redundant Covering Location Problem: The Redundant Covering Location
Problem (RCLP) was approached in Daskin and Stern (1981) as an extension
of the SCP where the aim is to choose, among the optimal solutions to the SCP,
the one which maximizes the number of demand points covered at least twice.
Each site can only shelter one center. Again, aij D 1 if and only if dij � s,
p D m, bj D 1 8j 2 J (because the demand points must be covered at least
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once), and ei D 1 8i 2 I . Since we are also interested in knowing whether
each demand point j 2 J is covered or not by a second center (disregarding
the number of additional facilities which cover j ), only variables wj1 would be
necessary if equalities (5.3) were replaced by inequalities (5.6) as in the SCP
discussed above. Alternatively, the RCLP can be obtained as a particular case
of (COV) by taking h D m� 1, gjk D 0 8j 2 J , k � 2, and gj1 D �1 8j 2 J .
In order to prioritize the minimization of the number of open facilities, we define
fi D nC 1 8i 2 I as a cost large enough.

Hierarchical Covering Location Problem (HCLP): An objective function which
allows the simultaneous minimization of the number of facilities that are opened
and the maximization of the number of previously existing facilities that are kept
(within the minimum total number of facilities) was introduced in Plane and
Hendrick (1977) in a paper devoted to the location of fire stations. Values aij are
equal to one if and only if focal point i can be served by a pumper company at
location j in less than the response time specified for site i . They found a major
difficulty when using the SCP: this model does not differentiate between those
sites that have existing fire stations and those that require the construction of a
station. This drawback was fixed by modifying the objective function of the SCP
as follows: consider a partition of the set of facilities I D I0 [ I1, where I0 is
the set of existing facilities and I1 is the set of potential new facilities. Then,
define fi D 1 8i 2 I1 and fi D 1 � " > 0 8i 2 I0 with " a small positive
amount. This way, the slightly lower cost of the already existing centers makes
them more interesting when minimizing the total cost.

Maximal Covering Location Problem: The Maximal (or Maximum) Covering
Location Problem (MCLP) was introduced in Church and ReVelle (1974) and, as
it has been explained in the previous section, it entails an important change with
regard to the goal of the previous models listed in this section because, since
now the number of facilities to be located is limited to a given value p < m,
we do not require to cover all the demand but to maximize the covered demand.
Then, h D p and bj D 0 8j 2 J . Again, ei D 1 8i 2 I and values aij are
defined as usual. Since we need to know whether a demand point is covered
or not without minding about the number of different facilities that cover it,
we avoid that variables yi and variables wjk with k ¤ 1 contribute to the
objective function (5.1) by fixing their corresponding coefficients to zero, i.e.,
fi D 0 8i 2 I and gjk D 0 8j 2 J , 8k � 2. Besides, we set gj1 D �1 in order
to maximize the number of demand points covered by the open facilities.
An alternative to this model that was proposed in Church and ReVelle (1974) is
to combine mandatory covering of some demand points (assume these points
are indexed by means of J1 � J ) and maximization of the coverage of the
remaining points (those in J n J1). This situation can also be approached by
means of model (COV) by taking h D p, bj D 1 8j 2 J1, bj D 0 8j 2 J nJ1,
ei D 1 8i 2 I , and fi D 0 8i 2 I . The g-coefficients are defined as follows:
gj1 D �1 8j 2 J n J1, gjk D 0 8j 2 J n J1, 8k � 2, and gjk D 0 8j 2 J1,
8k 2 K . We call this model MCLP’.
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Backup Set Covering Problems: Several models can be grouped under this name.
The common idea is to cover the demand points with more than one facility
in order to guarantee the coverage in case of either failure or overflow in one
or some of the centers (in this sense, the RCLP can be considered a backup
problem). There are two natural goals: minimization of the number of open
facilities and maximization of the backup coverage. Sometimes this problem
has been approached from the point of view of multiobjective optimization as,
for example, in Storbeck and Vohra (1988) and model BACOP1 in Hogan and
ReVelle (1986). Some other times, both objectives are combined into a unique
function as in model BACOP2 in Hogan and ReVelle (1986). Details are provided
next.
Coverage of all demand points is not mandatory, and each site can host several
facilities. Demands tj are associated to points j 2 J . A maximum number of
p facilities can be opened (h D p). Values aij are obtained as in most of the
previous models. A parameter 0 < ˇ < 1 measures the relative importance of
covering once or twice each demand point: the smaller ˇ is, the more importance
is given to cover each point twice. The goal here is to maximize the demand
covered by the facilities and also the demand covered twice, using ˇ to give each
objective its relative importance. Taking this into account, we define fi D 0 8i 2
I , ei D p 8i 2 I , gjk D 0 8j 2 J , 8k � 3 and bj D 0 8j 2 J . Variables wj1
are used to represent whether customer j is covered or not and variables wj 2
are used to check whether j is covered twice or not. We define gj1 D �ˇtj
and gj2 D �.1 � ˇ/tj . Model (COV) is valid when ˇ � 1=2. When ˇ < 1=2,
constraints wj1 � wj 2 8j 2 J must be included to preserve the correct definition
of the w-variables.
Batta and Mannur (1990) propose a different criterion for coverage which
can also be viewed as a particular case of (COV). Recently, Curtin et al.
(2010) developed a backup coverage model in order to locate police patrols,
where a priority tj of crime incident in j 2 J is known, the number of police
patrols is limited to p and aij takes value one if, and only if, a patrol located
at i can cover a crime incident located at j . The model is called PPAC and
is a particular case of (COV) obtained by defining fi D 0 8i 2 I , h D p,
gjk D �tj 8k, bj D 0 8j 2 J , and ei D 1 8i 2 I .

Maximum Expected Covering Location Problem: Several covering location
models are based on probabilistic principles. One of the most important is
the Maximum Expected Covering Location Problem (MECLP) (Daskin 1983),
where each facility has a probability of 0 < q < 1 of being busy or failing,
independently of any circumstance of the system. Therefore, a demand point
covered by ` facilities has a probability 1�q` of receiving service. In this model,
demands tj associated to the demand points are also known, and the goal is to
locate at most p facilities in such a way that the total expected demand (the
sum of the demands of the points times their probability of being serviced) is
maximized. Apart from PPAC, this is the first model considered here where
all the w-variables really make sense, since it is necessary to know how many
facilities are covering each demand point in a given feasible solution. When
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variable wjk takes value one, this can be then be re-interpreted as demand point j
is covered at least k times. Thus, in order to obtain the right total in the objective
function (5.1), we define gjk D �tj .1 � q/qk�1 8j 2 J; 8k 2 K . This way,
we have that

P`
kD1 gjk D �tj .1 � q`/ which is the correct contribution of j

to objective function when j is covered by ` facilities and wjk � wj;kC1 8k.
But this last inequality is satisfied implicitly because qk � qkC1 means that
coefficients fgjkgk are sorted in increasing order for every demand point j .
Finally, we define fi D 0 8i 2 I and bj D 0 8j 2 J . It is also natural in this
problem to assume that a site can host more than one facility because it could
lead to better solutions which is why we define ei D p 8i 2 I .
Some of the strong assumptions of this model (e.g., servers are independent,
servers have the same failure probabilities) have been relaxed several times in
the literature. See, for example, Batta et al. (1989) and Galvão et al. (2005).

Probabilistic Location Set Covering Problem: In order to examine the relation-
ships between the number of facilities being located and their reliability, ReVelle
and Hogan (1989a) proposed a Probabilistic Location Set Covering Problem
(PLSCP) whose main (and almost unique) difference with the SCP is that
values bj can be greater than one and they are obtained in such a way that the
reliability of coverage of each point j 2 J is guaranteed to be at least equal to a
threshold value ˛. Particularly, bj is calculated as the minimum integer number
such that

�
Fj

bj

	bj
� 1 � ˛;

where Fj is an average busy fraction associated with point j . Optionally, in this
model ei can take values greater than one since this can lead to better solutions.

Maximum Availability Location Problem: Suppose now that a profit uj associ-
ated with each demand point j 2 J is obtained only if at least `j facilities
cover it. The total number of facilities is limited, a site can host more than
one facility and there is no facility opening cost. The Maximum Availability
Location Problem (MALP), first described in ReVelle and Hogan (1989b), is
a particular case of (COV) obtained by defining fi D 0 8i 2 I , ei D p 8i 2 I ,
bj D 0 8j 2 J , and gjk D 0 8j 2 J , 8k ¤ `j , whereas gj`j D �uj 8j 2 J .
Since now the g-values are not sorted in increasing order, constraints wjk �
wj;kC1 8j 2 J; 8k < h; must be included.

Covering Problem: The so-called Covering Problem (CP) in Kolen and Tamir
(1990) is that of minimizing the costs of opening some facilities plus the penalty
costs associated to uncovered demand points. It is obtained from (COV) by
defining p D m, ei D 1 8i 2 I , bj D 0 8j 2 J , gjk D 0 8j 2 J , 8k � 2 and
gj1 D �uj 8j 2 J where uj is the penalty for not covering demand point j .
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A constant �Pj2J gj1 must be added to the objective to get the right optimal
value. This way, when variable wj1 takes value one, j is covered and the penalty
cost �gj1 is removed from the objective function.

Minimum Cost Maximal Covering Problem (MCMCP): This is the name for the
model introduced in Broin and Lowe (1986) whose only difference with regard
to CP is that the total number of facilities is limited. They gave a dynamic
programming algorithm for solving MCMCP in O.p2nminfm2; n2g/ time when
the matrix A D .aij/ is totally balanced.

p-Median Problem: Studied in detail in Chap. 2, the p-Median Problem (pMP)
consists in, given a set of n demand points, choosing p of them to locate facilities
and allocating each demand point to one of these facilities (which receive the
name of medians) in such a way that the total cost be minimum, where the cost of
allocating j to i is the distance dij between the two points (assuming dii D 0 8i
and dij > 0 in all other cases).
Instead of using the classical formulation for pMP, an artificial set J can be
designed in order to get it as a particular case of (COV): for each demand point j ,
a vectorDj D .D1j ; : : : ;DGj j / which is obtained by sorting in increasing order
the values in fd1j ; : : : ; dnj g (removing multiplicities):

0 D D1j < D2j < : : : < DGj j D max
1�i�nfdijg:

Then define J D f.`; j / W j 2 f1; : : : ; ng; ` 2 f2; : : : ; Gj gg and ai;.`;j / D
1 if and only if dij < D j̀ . Besides, we set fi D 0 8i 2 I , ei D 1 8i 2
I , b.j;`/ D 0 8.`; j / 2 J , and h D p. Coefficients g.`;j /1 are defined with
value D`�1;j �D j̀ and g.`;j /k D 0 8k � 2.
With this approach, constraints (5.3) force variables w.j;`/1 to take value zero
if there is no open facility at a distance less than D j̀ from demand point j
and the allocation cost of j is increased from D`�1;j to D j̀ , as desired. A
constant

Pn
jD1 DGj j must be added to the objective function to get the right

optimal value. This formulation has been very successfully used in García et al.
(2011), where a column-and-row generation algorithm is developed to solve very
large instances.

Uncapacitated Facility Location Problem: The problem considered in Chap. 3
(UFLP) and pMP differ in the number of centers which in UFLP is not fixed
beforehand, but there is a fixed cost fi for opening a facility at site i . Therefore,
a straightforward modification of these parameters will allow to obtain UFLP
as a particular case of (COV). This particular formulation was first proposed
in Cornuéjols et al. (1980) and later in Kolen and Tamir (1990).

Table 5.1 summarizes the information about covering models in the literature
which have been shown in this chapter to be particular cases of (COV).
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5.3 Theoretical Results

The Set Covering Problem is an NP-hard model (Garey and Johnson 1979). As
a consequence, much effort has been put into understanding better the structure
of this model in order to develop solving algorithms (which are reviewed later
in this chapter). This knowledge can be divided mainly into three categories:
preprocessing, relation with other problems, and polyhedral analysis.

When solving SCP, all the setup costs fi can be assumed to be positive because
if fi � 0 for a certain facility i , then we can fix yi D 1, remove this variable from
the model and delete any inequality (5.6) that includes yi . As explained in some
early papers (Roth 1969; Lemke et al. 1971; Toregas and Revelle 1972, 1973), it
is trivial that if a demand point j can be covered only by a certain facility i1 (that
is, fi 2 I W aij D 1g D fi1g), then we can fix yi1 D 1. We have also some
dominance rules: constraint (5.6) for a demand point j1 can be removed if there is
another demand point j2 such that fi 2 I W aij2 D 1g � fi 2 I W aij1 D 1g, that is,
if all the facilities covering demand point j2 can cover also j1. Similarly, a facility i1
which covers a set of demand points which can be all covered by a cheaper facility i2
will never be used: if fi1 � fi2 and fj 2 J W ai1j D 1g � fj 2 J W ai2j D 1g,
then we can fix yi1 D 0. Sometimes, it is possible to use several facilities to cover
all the demand points covered by another facility (Lorena and Lopes 1994): if we
assume that the y-columns are sorted in increasing order in cost (with those columns
with equal cost sorted in decreasing order in the number of rows that they cover),
and we define ˇj D minfi 2 I W aij D 1g 8j and Hi D [j2J fˇj W aij D 1g 8i ,
then we can fix yi D 0 if

P
`2Hi f` < fi . Applying these tests cyclically (i.e., not

just once) can lead to substantial reductions in the size of the formulation.
The SCP formulation can be further improved by studying the polyhedral

structure of its polytope. Balas (1980) uses disjunctions based on conditional bounds
to obtain strong cuts in the form of cover constraints. Particularly, the inequalities
introduced in Bellmore and Ratliff (1971) are generalized. Given an inequality of the
form

P
j2J ˛j yj � ˇ, with ˛j 2 f0; 1g 8j and ˇ a positive integer, some necessary

and sufficient conditions using the bipartite incidence graph of the matrix defining
the SCP polytope are given in Cornuéjols and Sassano (1989) for this inequality to
be a facet. Sassano (1989) studies the properties of this polytope and presents two
sequential lifting procedures to obtain valid inequalities and facets. Particularly, it is
shown that the SCP polytope is full dimensional if and only if every demand point
can be covered by at least two different facilities. It is also characterized when an
inequality of the form

P
i2J0 yi � 1 with J0 � J is a facet. When the polytope is

full-dimensional, then the trivial inequality yj � 1 is shown to be always a facet,
and the trivial inequality yj � 0 is a facet if and only if every demand point can be
covered by at least two different facilities different from j . Some deeper results on
facets and lifting can be found in Nobili and Sassano (1989). Balas and Ng (1989a)
characterize facet-defining inequalities for the SCP polytope with right-hand side 2
and coefficients 0, 1 or 2. In Balas and Ng (1989b) it is shown that each of these
facets can be obtained using a lifting procedure from an inequality with only three
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non-zero coefficients that is valid in a lower dimensional polytope. Sánchez-García
et al. (1998) do a similar study for the case of facets with coefficients in f0; 1; 2; 3g
and right-hand side equal to 3.

The connection of SCP to other classical problems has also been studied in the
literature. Balas and Padberg (1976) show how to turn a set partitioning problem
into a set covering. In Krarup and Pruzan (1983) it is discussed how SCP can be
transformed into a set packing, set partitioning or simple plant location problem.
Reciprocal results are given to turn a set partitioning or simple plant location
problem into a set covering problem.

Less theoretical results can be found for the Maximal Covering Location
Problem, which is known to be NP-hard (Megiddo et al. 1983). In the literature,
MCLP has been formulated using other classical models. For example, Church
and ReVelle (1976) show the equivalence between MCLP and a certain p-median
problem where the distances in this second problem are defined as

d 0
ij D

(
0; if dij � s;
1; if dij > s;

with dij the distances from the original problem and s is the maximum distance that a
demand point can be from the facility that covers it. Another different reformulation
is given in Klastorin (1979) where the problem is formulated as a generalized
assignment problem by adding some artificial variables.

The Maximal Expected Coverage Location Problem and the Backup Coverage
Location Problem are shown in Church and Weaver (1986) to be special cases
of the vector assignment p-median problem. Techniques developed for this latter
model are used to solve instances of the first two problems. The Capacitated Set
Covering Problem and the Capacitated Maximal Covering Location Problem are
formulated in Current and Storbeck (1988) as a capacitated plant location problem
and a capacitated p-median problem, respectively.

Several technical results on covering problems with special emphasis on trees
and matrices in standard greedy form can be found in Kolen and Tamir (1990).

5.4 Solution Methods

The first exact algorithms for the Set Covering Problem were almost purely
enumerative: Lemke et al. (1971) develop a branch-and-bound method that exploits
the structure of the SCP formulation and solutions. Later, Etcheberry (1977) uses a
branch-and-bound strategy where the branching is done on constraints and not on
variables. The lower bounds of the tree are calculated using Lagrangian relaxation
instead of the simplex method.

Using cutting planes from conditional bounds, the algorithm proposed in Balas
(1980) is exploited in Balas and Ho (1980). This method uses two sets of heuristics:
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one to find good upper bounds (primal heuristics) and another to obtain lower
bounds and cutting planes (dual heuristics). Subgradient optimization is applied to
find better lower bounds. This last technique is also used in Beasley (1987) where
a branch-and-bound method is proposed whose main elements are a dual ascent
procedure and subgradient optimization. This algorithm is improved in Beasley and
Jørnsten (1992) by incorporating the heuristic published in Beasley (1990) along
with some other enhancements.

Of special interest is Neebe (1988) which solves the problem of calculating for
every possible maximum distance the minimum number of facilities that cover
all the nodes (instead of solving the set covering problem for a single maximum
distance). This approach uses a chain of linear programming relaxations and, after
every linear model, some tests are used to obtain an integer solution. Although
these tests do not guarantee that an optimal integer solution will be found, the
author claims to solve to optimality almost all the instances he considers (up to
100 nodes). Each of the auxiliary problems is solved with a modification of the
procedure suggested in Lemke et al. (1971).

Fisher and Kedia (1990) propose an algorithm for a model which includes
both set covering and set partitioning constraints. It is an exact branch-and-bound
algorithm that uses greedy and 3-opt heuristics applied to the dual problem.
Exploiting the use of bounds, Mannino and Sassano (1995) propose a lower
bounding procedure and a branch-and-bound scheme to solve set covering problems
that appear in Steiner triple systems (a certain matrix structure). Balas and Carrera
(1996) develop a procedure applied to a Lagrangian dual problem at each node that
combines subgradient optimization with primal and dual heuristics which tighten
the upper and lower bounds. These strengthened bounds allow to fix some variables.
In general, Lagrangian methods are the most extended and effective methods in
the literature. More recently, Avella et al. (2009) propose a cutting plane algorithm
where the separation algorithm is solved in an exact way on a subproblem defined
by a subset of the original constraints and variables of the set covering problem
formulation.

On the contrary, not many exact algorithms have been developed for the Maximal
Covering Location Problem. Downs and Camm (1996) obtain a primal solution
using the greedy heuristic of Church and ReVelle (1974). They use complementary
slackness conditions for the maximal covering problem formulation to obtain a
dual feasible solution. This solution is the starting vector of multipliers for the
Lagrangian dual problem of MCLP which is solved with subgradient optimization.
If an integer solution is not obtained, branch-and-bound is used.

5.5 Approximate Solution Methods

As it happens with any hard optimization problem, there are more heuristic
algorithms than exact methods in the literature. Roth (1969), the first paper to
formulate the Set Covering Problem, already proposes a probabilistic heuristic. A
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random initial solution is selected and then refined using a set of predefined rules
based on the concept of �-optimal cover. This procedure is repeated many times with
the hope of finding a good solution. Chvátal (1979) proposes a basic greedy heuristic
that selects iteratively the facility with the largest number of nodes covered per unit
cost. A bound is established for the worst value of the solution provided by the
heuristic. Feo and Resende (1989) develop a probabilistic heuristic for set covering
problems arising in Steiner triple systems. It is a non-deterministic variation of a
previous deterministic heuristic where randomization is introduced to escape from
local minima.

Many more different metaheuristic techniques have been used to approach SCP:
surrogate relaxation (Lorena and Lopes 1994), simulated annealing (Jacobs and
Brusco 1995; Brusco et al. 1999), genetic algorithms (Al-Sultan et al. 1996; Beasley
and Chu 1996). However, as with the exact case, subgradient methods are the most
effective. Ceria et al. (1998) use a primal-dual subgradient Lagrangian algorithm to
provide information for a later greedy heuristic to decide which variables to fix to
one. Caprara et al. (1999) use variable pricing to update the subset of columns that
define a core problem in their subgradient optimization heuristic. This is a difference
with respect to Ceria et al. (1998) where the core set is not modified. They also
improve the way in which the step-size and ascent direction definitions are usually
done in subgradient optimization in order to speed up convergence.

For the Maximal Covering Location Problem and similar problems, we can find
several heuristics. Already in Church and ReVelle (1974) where the problem is
introduced, a greedy heuristic is provided. Later, Daskin (1983) describes a heuristic
for the Maximum Expected Covering Location Problem which finds good solutions
for all values of q (the probability of a facility not working). It starts with all the
facilities located at the node that covers the maximum demand and then considers
single node substitutions. For each of the new solutions, it is analyzed if there is
an interval where the current best solution is improved. By iterating this procedure,
interval [0,1] is partitioned and a heuristic solution is given for each of the resulting
subintervals. In MCLP, Galvão and ReVelle (1996) develop a Lagrangian heuristic
that uses a vertex interchange heuristic to improve upper bounds. In Galvão et al.
(2000), heuristics based on Lagrangian and surrogate relaxations are compared.
Here, the relaxed surrogate problem is a binary knapsack problem whose linear
relaxation is solved in the heuristic. The authors show that, when the initial set of
multipliers is obtained using a dual descent procedure, the performance of the two
methods is similar.

Eaton et al. (1986) deal with a hierarchical covering problem where sites with
multiple cover are maximized while the number of vehicles is minimized in an
application to ambulance deployment in Santo Domingo. Although they proposed
two formulations, no solver was available at that moment in the Ministry of Health
of Dominican Republic and they then developed a heuristic that minimizes the
number of facilities, maximizes multiple coverage and minimizes response time.
In their algorithm, they create a cover matrix, then order coverage zones in a list and
remove dominated sites iteratively.
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A further reason for using heuristics is that aggregation is used to reduce the
size of the problem so that larger size instances can be tackled. Daskin et al.
(1989) study the effect of node aggregation for MCLP. Three aggregation schemes
are tested based on relative demands on the disaggregate nodes, distances between
the disaggregate nodes and a mix of both. The first and the third methods are shown
to perform much better than the second. In Current and Schilling (1990) three rules
are proposed to reduce the aggregation error in SCP and MCLP.

5.6 Lagrangian Relaxation

Among the many different methods that have been developed in the literature for
covering models, we highlight here Lagrangian Relaxation (LR) for several reasons.
First, LR can be used as a heuristic method but can additionally provide good lower
bounds which can be embedded into a branch-and-bound framework to develop an
exact method. Second, as shown in Sects. 5.4 and 5.5, LR has been widely used
in covering problems. Third, it can be designed for the general model (COV) and
then used on any particular case without loss of accuracy. And, finally, LR usually
produces very good results in a reasonable amount of computational time. Readers
not familiarized with this technique are referred to Guignard (2003).

In what follows, we apply LR to model (COV) by making the natural choice of
relaxing constraints (5.3). Since the non-relaxed linear constraints (5.2) and yi �
ei 8i 2 I give rise to a totally unimodular coefficients matrix, lower bounds
produced by means of LR will not be greater than lower bounds produced by
the usual linear relaxation. A Lagrangian multiplier vj 2 R associated to each
constraint in (5.3), unrestricted in sign, will be used. So, a family of Lagrangian
relaxed subproblems is obtained with objective functions
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�
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wjk �

X

j2J
vj bj :

By solving

.COVLR.v// min
P

i2I
�
fi CPj2J vj aij

�
yi CPj2J

P
k2K

�
gjk � vj

�
wjk

s.t. (5.2); (5.4); (5.5);

and then adding constant �Pj2J vj bj , we will get a lower bound on the objective
value of (COV) when the set of multipliers is v D .v1; : : : ; vn/.
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Let now .y�.v/;w�.v// be an optimal solution to (COVLR(v)). Prob-
lem (COVLR(v)) splits into

.COVLRy.v// min
P

i2I
�
fi CPj2J vj aij

�
yi

s.t. (5.2); (5.4);

and

.COVLRw.v// min
P

j2J
P

k2K
�
gjk � vj

�
wjk

s.t. (5.5):

(COVLRw(v)) can be easily solved by inspection:

w�
jk.v/ D 1 , gjk � vj 8j 2 J;8k 2 K:

If, as in most of the models that we considered, gjk-values are sorted in increasing
order for each j 2 J , and assuming that vj 2 .gj`j ; gj;`jC1�, then the optimal
solution to (COVLRw(v)) will look like as follows:

w�
j1.v/ D : : : D w�

j `j
.v/ D 1; w�

j;`jC1.v/ D : : : D w�
jh.v/ D 0:

The corresponding optimal value will be v.COVLRw.v// D P
j2J .

P`j
kD1 gjk �

`j vj /.
Regarding (COVLRy(v)), we define f 0

i WD fi C
P

j2J vj aij 8i 2 I and we sort
these values in increasing order:

f 0
.1/ � : : : � f 0

.t/ � 0 � f 0
.tC1/ � : : : � f 0

.n/:

An optimal solution to (COVLRy(v)) is recursively obtained by taking

y�
.i/.v/ D

(
e.i/ if

Pi�1
`D1 y�

.`/.v/ � p � e.i/;
p �Pi�1

`D1 y�
.`/.v/ if

Pi�1
`D1 y�

.`/.v/ > p � e.i/;

i D 1; : : : t; and y�
.i/.v/ D 0; i D t C 1; : : : ; n. Assuming that

Pi 0

`D1 e.`/ � p <Pi 0C1
`D1 e.`/, with i 0 � t , we then have that

v(COVLRy(v)) D
i 0�1X

iD1
e.i/

0

@f.i/ C
X

j2J
vj a.i/j

1

A



5 Covering Location Problems 109

C
0

@p �
i 0X

iD1
e.i/

1

A

0

@f.i 0/ C
X

j2J
vj a.i 0/j

1

A :

A suitable set of Lagrangian multipliers v must be chosen so that v(COVLR(v)) pro-
vides a good lower bound on the optimal value of (COV). This can be achieved by
means of ascent procedures which iteratively modify v, like subgradient algorithms
or tailored dual ascent algorithms. Good feasible solutions (and the corresponding
upper bounds) can be generated from good sets of multipliers as follows. Consider
any optimal solution to the relaxed problem given by .y�.v/;w�.v//. We relax the
notation by calling simply y� the optimal values of the y-variables. Once these
have been determined, the best values which the w-variables can take are obtained
by solving for each j 2 J the subproblem

(COV)j Minimize
X

k2K
gjkwjk

subject to
X

k2K
wjk D

X

i2I
aijy

�
i � bj ;

wjk 2 f0; 1g 8k 2 K:

If
P

i2I aijy
�
i � bj < 0, the subproblem is infeasible. Otherwise, assuming thatP

i2I aijy
�
i � bj � h (note that in general h is taken large enough) and sorting

g-values in increasing order, the optimal solution to (COV)j can be obtained just by
making the first

P
i2I aijy

�
i � bj w-variables equal to one, that is,

v(COV)j D
P
i2I aijy

�

i �bjX

kD1
gjk:

5.7 Continuous Covering Location Problems

When speaking about continuous covering, it means that the set of candidates where
facilities can be located is not discrete but a whole (continuous) space. Because of
the nature of these problems, most of them are in the plane or, if height/depth is
relevant, in the 3D-space. Besides, most of the applications locate one single facility
because these models are already difficult enough.

Analogous to the discrete Set Covering Problem, the continuous Minimal
Covering Circle Problem (MCCP) consists in finding the smallest circle in the plane
that contains all the points of a given set which need to be covered. The center of
this circle is the optimal site. This is a very old problem which according to Plastria
(2002) was studied in the nineteenth century, but may have been introduced even
earlier. One of the main properties of the solution to MCCP is that there are always
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at least two demand points on the border of the minimal circle. Although several
algorithms to solve this problem have been proposed over time, the best known is the
method published in Elzinga and Hearn (1972) for the case of Euclidean distances.

When the radius of the circle is fixed, it may be not large enough to cover all
the demand points and, as in the discrete Maximal Covering Location Problem,
the objective is now to cover as much demand as possible. These maximal covering
problems have usually multiple solutions, maybe even a region of optimal solutions,
and this region may not even be convex (see Plastria 2002). However, it can be
proved that there is an optimal solution which is either a demand point or an
intersection point of two circles centered at demand points (see Drezner 1981
and Chazelle and Lee 1986 for details on algorithms). There is a similar property
when the facilities can be located on any part of a network (Church and Meadows
1979). Church (1984) shows an analogous property for planar maximal covering
problems with Euclidean or rectilinear distances.

More recently, Drezner et al. (2004) studied a gradual covering problem with
Euclidean distances where a finite set of points needs to be covered with one single
facility. If the facility can be located anywhere on the plane and the total cost of non-
covered points is minimized, then the solution is in the convex hull of the demand
points.

5.8 Conclusions

In this chapter we have provided an overview on covering problems with a special
emphasis on discrete models. Instead of providing a list of the many covering
models that can be found in the literature, we have focused on detailing those that
are considered to be more relevant because of the attention received in the literature
in the last decades. Moreover, we show that many of the models discussed in this
review can be seen as particular cases of a general covering model that we introduce
here. As far as we know, this is the first attempt to develop such a unified approach
for the study of set covering problems.

Having set covering problems received so much attention in the literature, it
seems that the number of theoretical results is too small. These results reduce
basically to some preprocessing rules and to the study of some facets. And none
of them has been used to develop an algorithm that can be considered to be a major
breakthrough in the area. Therefore, future research should try to make better use
of these results or obtain new theoretical properties for these problems. Particularly,
developing exact methods for covering models that are not the SCP seems highly
desirable.
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Chapter 6
Anti-covering Problems

Emilio Carrizosa and Boglárka G.-Tóth

Abstract In covering location models, one seeks the location of facilities opti-
mizing the weight of individuals covered, i.e., those at the distance from the
facilities below a threshold value. Attractive facilities are wished to be close to the
individuals, and thus the covering is to be maximized, while for repulsive facilities
the covering is to be minimized. On top of such individual-facility interactions,
facility-facility interactions are relevant, since they may repel each other. This
chapter is focused on models for locating facilities using covering criteria, taking
into account that facilities are repulsive from each other. Contrary to the usual
approach, in which individuals are assumed to be concentrated at a finite set of
points, we assume the individuals to be continuously distributed in a planar region.
The problem is formulated as a global optimization problem, and a branch and
bound algorithm is proposed.

Keywords Big square small square • Covering problems • Global optimization •
Regional demand • Repulsive facilities

6.1 Introduction

Locational Analysis addresses decision problems involving the location of facilities
which interact with a set of individuals, and, eventually interact among them. For
attractive facilities, such as schools, libraries, emergency services or supermarkets,
individuals wish the facilities to be as close as possible to them. Such pull models
(facilities are pulled towards demand) do not properly model repulsive facility
location problems (Alonso et al. 1998; Carrizosa and Plastria 1998; Erkut and
Neuman 1989; Fliege 2001; Plastria and Carrizosa 1999), like, for instance, the
location of a polluting plant, wished to be as far as possible from the individuals.
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For such undesirable facilities, a push model, pushing facilities away from the sites
affected by facilities nearness, is more suitable: the location for the facilities is
then sought maximizing a certain non-increasing function of the distances from the
individuals to the facilities. For both desirable and undesirable facilities, interactions
may be measured as a function of the individual-facility distance (or time), or, as
studied here, via coverage; see e.g. Kolen and Tamir (1990), Li et al. (2011), Murray
et al. (2009), Schilling et al. (1993) for extensive reviews on covering models and
solution approaches. It is important to stress here that, independently of the nature of
the facility, either attractive or repulsive, the very same models for covering function
apply (Farhan and Murray 2006), the difference being algorithmic: such covering is
to be maximized for desirable facilities and minimized for undesirable facilities.

On top of individual-facility interactions, facility-facility interactions are also
likely to be relevant. Such interactions may be critical when facilities are obnoxious,
and risk or damage to population scales nonlinearly (e.g., with hazardous materials
deposits or dangerous plants which may suffer chain reactions) and thus negative
impacts are to be dispersed. Facility-facility interactions are also important in
models for locating facilities which, although they are perceived as attractive by
the users, they are perceived as repelling by other facilities competing for the very
same market. In these models, locating the facilities far away from each other
avoids cannibalization and optimizes competitive market advantage (Christaller
1966; Curtin and Church 2006; Lei and Church 2013).

Although the models described are general, the algorithmic approach presented
here is restricted to the planar case (Drezner and Wesolowsky 1994; Plastria 2002;
Plastria and Carrizosa 1999): facilities are identified with points in the plane, and
interact with the remaining facilities and with individuals, also identified with points
in the plane. Interactions are measured via distances in the plane. See Plastria (1992)
for an excellent review of planar distances and planar location models and e.g.
Berman et al. (1996), Berman and Huang (2008), Berman and Wang (2011) for
covering models for which interactions are not measured via planar distances, but
network distances instead, typically shortest-path distances.

Contrary to most papers in the literature, affected individuals are not assumed
here to be concentrated at a finite number of points, and, instead, an arbitrary
distribution (in particular, a continuous distribution) on their location is given. This
way we can directly address models in which affected individuals are densely spread
on a region, but we also address models in which uncertainties exist about the exact
location of the individuals, due to their mobility (Carrizosa et al. 1998b).

Regional models are not so common in the location literature, since, even when
individuals are assumed to be continuously distributed, a discretization process is
usually done, and such continuous distribution is replaced by a discrete one, by e.g.
replacing all points in each district by its centroid, or other central point, see e.g.
Francis and Lowe (2011), Francis et al. (2008, 2000, 2002), Murray and O’Kelly
(2002), Plastria (2001), Tong and Church (2012). Nevertheless, discretization is well
known not to perform well in applications, this issue being especially relevant in
covering models, since significant discrepancies may exist between what is modeled
as covered and what is actually covered, see e.g. Current and Schilling (1990),
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Daskin et al. (1989), Kim and Murray (2008), Murray (2005), Murray and Wei
(2013), Tong (2012), Tong and Murray (2009). For this reason, some papers are
found in which the regional aspect is directly handled. See for instance Blanquero
and Carrizosa (2013), Carrizosa et al. (1995, 1998c), Fekete et al. (2005), Yao and
Murray (2014) for single-facility Weber problems with regional demand, Murat
et al. (2010) for a heuristic method for the extension to p facilities, and Tong (2012),
Tong and Murray (2009) for discrete covering problems, in which the individuals
are identified with objects (polygons) in the plane, which can be considered as fully
or partially covered.

The remainder of the chapter is structured as follows. In Sect. 6.2, a rather general
p-facility covering model for continuously distributed demand is described; how
to address the optimization problem is presented in Sect. 6.3, and illustrated in
Sect. 6.4. Conclusions and future lines of research are outlined in Sect. 6.5.

6.2 Regional Covering Model

Location models are specific in the way the interactions are modeled. Two types of
interactions take place, namely, individual-facility interactions and facility-facility
interactions. Depending on the specific problem, just one or the two types of
interactions may be relevant; see e.g. Erkut and Neuman (1989).

Since these two types of interactions have different nature, they are discussed
separately in what follows.

6.2.1 Individual-Facility Interactions

For a given individual location a and any facility location x; let c.a; x/ 2 Œ0; 1�
denote how much a is covered (affected) by the facility at x: In its general form,
c.�; �/ may be any function ' W R

C �! Œ0; 1�; which is non-increasing in the
(Euclidean) distance kx � ak separating a and x;

c.a; x/ D '.kx � ak/; (6.1)

so that, the lower the distance, the higher the coverage. This assumption, yet
sensible, may not be sound for specific problems of locating undesirable facilities;
for instance, Karkazis and Papadimitriou (1992) addresses the problem of locating
a polluting plant whose pollutant is discharged by means of high stacks, and thus
maximal interaction (damage) takes place at a non-negligible distance of the facility.

We remark that we are using the Euclidean distance, but this is not the only
choice of distance function k � k found in the literature in covering models: see e.g.
Fernández et al. (2000) for a proposal of (weighted) `p norms and Plastria (2002)
for a thorough discussion on planar distances.
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The basic form of ' is an all-or-nothing function, already suggested in Church
and ReVelle (1974), see also e.g. Drezner and Wesolowsky (1994),

c.a; x/ D '.kx � ak/ D
�
1; if kx � ak � R
0; otherwise;

(6.2)

where the threshold value R is called the range (Christaller 1966) or coverage
standard. For an attractive facility,R represents the highest distance a user is willing
to overcome to utilize a facility, whereas for undesirable facilities, R represents the
distance of the boundary of the zone within which the facility would have a negative
impact (Farhan and Murray 2006). Extensions of (6.2) abound in the literature,
leading to so-called gradual covering models (Berman et al. 2009c, 2003; Drezner
et al. 2004). For instance the all-or-nothing function above is replaced by a piecewise
constant function modeling different levels of coverage in Berman and Krass (2002),
by a piecewise linear function in Berman et al. (2003), Berman and Wang (2011),
Drezner et al. (2004), or by more general nonlinear functions, such as the logistic
model

c.a; x/ D '.kx � ak/ D 1

1C exp.˛a C ˇakx � ak/ ; (6.3)

in Fernández et al. (2000), see also Berman et al. (2010, 2003), Karasakal and
Karasakal (2004). Observe that in some of the papers cited above the coverage
functions c are introduced for attractive facilities, and thus maximization, instead
of minimization, is pursued. However, the models for c are the very same.

Expressions above for c, as (6.2), are adequate just for the single-facility case.
When several facilities are to be located, the covering model (6.1) can be extended
in several ways, by first defining, for each facility i D 1; 2; : : : ; p; the function
'i converting distances into coverage. In the simplest and most popular model in
the literature, for a p-tuple of facility locations x D .x1; : : : ; xp/; covering c of an
individual location a by x is given by

c.a; x/ D max
1�i�p ci .a; xi /: (6.4)

In the particular form of individual covering ci given by (6.2) using 'i instead of '
and Ri instead of R; one considers the individual location a to be covered by the
p-tuple of facility locations x D .x1; : : : ; xp/ if it is covered by at least one of the
p facilities, i.e., if at least one facility i is at a distance smaller than its threshold
value Ri :

Multifacility covering functions other than (6.4) can be found in the literature,
see Berman et al. (2010) for an updated review. One may consider fuzzy operators
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to aggregate the covering functions ci ; yielding, for example, the proposal of Hwang
et al. (2004),

c.a; x/ D 1 �
Y

1�i�p
.1 � ci .a; xi // ; (6.5)

which, if each ci has the form (6.2) is identical to (6.4). Alternatively, realizing that
the max operator used in (6.4) is nothing but taking one of the ordered values of
ci .a; xi /; further extensions are natural:

c.a; x/ D max
.�1;:::;�p/2


pX

iD1
�ici .a; xi / (6.6)

for a given
: Taking as 
 the set


 D
(
.�1; : : : ; �p/ W

pX

iD1
�i D 1; �i � 0 8i

)
;

one recovers (6.4); taking


 D
(
.�1; : : : ; �p/ W

pX

iD1
�i D 1; 1

r
� �i � 0 8i

)
;

for some integer r 2 f1; 2; : : : ; pg; one obtains as coverage the weighted sum of
the r highest covers. These covering models belong to the class of so-called ordered
covering models (Berman et al. 2009c), in which a weighted sum of the ordered
values of the covers are considered.

Another class of models is given by the so-called cooperative cover model,
discussed in Berman et al. (2009a):

c.a; x/ D
�
1; if

Pp
iD1 �i ci .a; xi / � �

0; otherwise
(6.7)

for some positive fixed scalars �i and threshold value �: Assuming that each facility
covering function ci follows the all-or-nothing model (6.2), model (6.7) means that
we may consider an individual to be covered if the weighted sum of 1-facility covers
yields a value above a threshold limit �:

Summing up, the different proposals in the literature can be considered as
particular cases of a general model of the form

c.a; x/ D � �c1.a; x1/; c2.a; x2/; : : : ; cp.a; xp/
�
; (6.8)
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where � should take values in Œ0; 1� and should be componentwise non-decreasing,
so that the higher each individual-facility cover, the higher the cover of individual
location a by the p facilities.

So far we have modeled the interaction between an affected individual at a and
the facilities at x D .x1; : : : ; xp/. Now we address the problem of defining a global
individuals-facilities covering measure C.x/.

If the main concern is how much the highest coverage is, a worst-case perfor-
mance measure is suitable:

C.x/ D sup
a2A

c.a; x/: (6.9)

Under (6.9) as criterion, searching locations x for the facilities such that C.x/ � ˛
means that no individual at all suffers a coverage of more than ˛:

The (safe) worst-case approach (6.9) may be unfeasible for densely populated
regions, and, instead of searching locations not affecting individuals, the average
coverage may be a suitable choice. Formally, assume that affected individuals are
distributed along the plane, following a distribution given by a probability measure
	 on a set A � R

2; and the individuals-facilities coverages are aggregated into one
single measure, namely, the expected coverage, given by

C.x/ D
Z

A

c.a; x/ d	.a/: (6.10)

Assuming, as in (6.10), an arbitrary probability measure 	 for the distribution
of affected individual locations gives us full freedom to accommodate different
important models. Obviously, for a finite set A of affected individual locations,
A D fa1; : : : ; ang; denoting 	a D 	.fag/; we recover the basic covering model,

C.x/ D
X

a2A
	ac.a; x/; (6.11)

in which the covering is given by the weighted sum of the covers of the different
points a: However, we can consider absolutely continuous distributions, in which 	
has associated a probability density function f in the plane, and now (6.10) becomes

C.x/ D
Z

A

c.a; x/f .a/ da: (6.12)

Several types of density functions f are worthy to be considered. One can take,
for instance, f as the uniform density on a region A � R

2 (a polygon, a disc), and
thus f is given as

f .a/ D
(

1
ar.A/ ; if a 2 A
0; otherwise;

(6.13)
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where ar.A/ denotes the area of the region AI assuming a uniform density of
individuals along the full region A under study seems to be rather unrealistic;
instead, one may better split the region A into smaller and more homogeneous
subregions Aj (e.g. polygons), give a weight !j to each Aj ; and assume a uniform
distribution fj for each Aj W

f .a/ D
rX

jD1
!j fj .a/; (6.14)

where each fj is uniform on Aj ; and thus its expression is given in (6.13).
Let us particularize (6.14) for the all-or-nothing case in which the covering

function is given by (6.4), and each ci is given by (6.2), i.e., c.a; x/ takes the value
1 if at least one facility i is at a distance from a below the threshold Ri; and takes
the value 0 otherwise. Then, for any x, C.x/ takes the form

C.x/ D
Z
c.a; x/f .a/da

D
rX

jD1
!j

1

ar.Aj /

Z

Aj

c.a; x/da (6.15)

D
rX

jD1
!j

1

ar.Aj /
ar.Aj \ [riD1Bi .xi //;

where, for each i D 1; : : : ; p,Bi.xi / gives the set of points covered by facility i; i.e.,
the disc centered at xi and radius Ri : Hence, the problem is reduced to calculating
areas of intersections of discs Bi .xi / with the subregions Aj : Such calculation,
although cumbersome in general, are supported in GIS, see Kim and Murray (2008),
Murray et al. (2009), Tong and Murray (2009).

Needless to say, the density f does not need to be piecewise constant, and one
can take, for instance, a mixture of bivariate gaussians, f .a/ D Pr

jD1 !j fj .a/;
where each fj is a bivariate gaussian density centered at some uj and with
covariance matrix Sj ;

fj .a/ D 1

2�
pjSj j

e� 1
2 .a�uj />S

�1
j .a�uj /; (6.16)

or, more generally, a radial basis function (RBF) density,

fj .a/ D gj .ka � ujk/ (6.17)

for some decreasing function gj ; so that the density is the highest at some knot point
uj and decreasing in all directions.
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Fig. 6.1 Pdf of a mixture of 50 bivariate gaussians

A model like (6.16), or in general (6.17), may be rather promising when the only
information provided for the region is just a set u1; : : : ; ur of points, aggregating
the actual coordinates of affected individuals around, and then a kernel density
estimation process (Bowman and Foster 1993; Wand and Jones 1993, 1995) is
done. For instance, Fig. 6.1 represents the probability density function (pdf) of the
form (6.16) with 50 knots.

6.2.2 Facility-Facility Interactions

The facility-facility interactions may be defined similarly. As in (6.1), the effect
caused by facility at xi on facility at xj is measured by the scalar cFij .xi ; xj /;

cFij .xi ; xj / D 'Fij .kxi � xj k/ (6.18)

for some non-increasing function 'Fij : All pairwise facility-facility effects are
aggregated into one single facility-facility interactions measure CF .x/; which,
similarly to (6.8), is assumed to take the form

CF .x/ D �F
�
.cFij .xi ; xj //i¤j

�
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for some componentwise non-decreasing �F : The simplest case is given by

�F
�
.cFij .xi ; xj //i¤j

� D max
i¤j

cFij .xi ; xj /; (6.19)

and thus CF .x/ is calculated as the highest facility-facility interaction, i.e., the one
of the closest pairs of facilities. Hence, under (6.19),

CF .x/ � ı if and only if

cFij .xi ; xj / � ı 8i; j; i ¤ j; if and only if

kxi � xj k � .'Fij /�1.ı/ 8i; j; i ¤ j:

Assuming all cFij in (6.18) are modeled by means of the same 'Fij function, 'Fij D
'F , we have

CF .x/ � ı if and only if min
i;j
i¤j
kxi � xj k � ; (6.20)

with  D �
'F
��1

.ı/. See Lei and Church (2013) for a discussion and extension
of (6.19) to so-called partial-sum criteria.

6.2.3 The Anti-covering Model

Depending on the specific problem under consideration, either one or the two
covering criteria C , CF are to be optimized. Pure repulsion among facilities
naturally leads to a dispersion criterion (Erkut and Neuman 1991; Kuby 1987;
Lei and Church 2013). By (6.20), minimizing CF amounts to maximizing the
minimal distance among facilities. This criterion alone yields a simple geometrical
interpretation: a set of p non-overlapping circles (the location of the facilities) is
sought so that their (common) radius is maximized (Mladenović et al. 2005).

When bothC and CF are relevant, one naturally faces a biobjective optimization
problem in which both C and CF are to be minimized,

min
x2S

�
C.x/; C F .x/

�
; (6.21)

where S � .R2/p is the feasible region, which is assumed to be a compact subset,
and thus embedded in a box. Sensible examples for S may be S D Sp; where S
is a polygon in the plane, or S D f�1g � f�2g � : : : � f�kg � Sp�k , where S is a
polygon in the plane, and �1; : : : ; �k are fixed points in the plane, corresponding to
facilities already located.
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One can address the problem of finding (an approximation to) the set of Pareto-
optimal solutions to (6.21), as done for other problems in Blanquero and Carrizosa
(2002), Romero-Morales et al. (1997). Alternatively, one can consider one of the
criteria as constraint, and address instead the problem of minimizing the covering
C.x/ keeping the facility-facility cover CF .x/ below a threshold limit ı W

minimize C.x/
subject to CF .x/ � ı

x 2 S :

(6.22)

Assuming for CF the model given by (6.18), problem (6.22) amounts to finding p
points x1; : : : ; xp so that they are at a distance at least

�
'F
��1

.ı/ from each other
and the covering C is minimized. This is the approach proposed e.g. in Berman and
Huang (2008), in which undesirable facilities are located (on a network) so as no
facilities are allowed to be closer than a pre-specified distance.

6.3 Computational Approach

While nowadays computational tools allow one to address discrete p-facility
problems with a very large p, e.g. Avella and Boccia (2007), Avella et al. (2006),
nonconvex continuous location problems, as those addressed here, can only be
solved exactly for a very small number of facilities to be located. The most popular
and most effective technique is a geometric branch and bound, which can already be
found under the name of Big Square Small Square (BSSS) (Hansen et al. 1985), and
later modified by a number of authors (Blanquero and Carrizosa 2008; Drezner and
Suzuki 2004; Plastria 1992; Schöbel and Scholz 2010), coining names such as BTST
(Big Triangle Small Triangle) or Big Cube Small Cube. See Drezner (2012) for a
recent review of such variants. In our case the search space is the set of p rectangles
for the p facilities, that gives a multi-dimensional interval, also called a box. The
main steps of the branch and bound are as usual: a list of boxes is handled, each box
being associated with a subproblem, namely, the covering location problem in which
facilities are to be located within such box; at each step one box is selected from
the list and divided into smaller boxes. Bounds on the optimum over the subboxes
are calculated, so that boxes which are found not to contain the global optimum are
removed, while the rest is saved for further processing. The branching and bounding
rules are iterated until the gap between the underestimation and underestimation of
the optimal value is smaller than the prescribed accuracy.

In our implementation, selection of the next box is done by the smallest lower
bound, and the division rule is defined by halving both sides of the largest rectangle
into four equal sized rectangles. An upper bound on the minimum is calculated
evaluating the objective function at the midpoint of the selected box. In what
follows, a bounding procedure, valid for arbitrary pdfs, is discussed.
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A branch and bound can only be used as soon as increasingly tight bounds
are built for C.x/ on a box X D .X1; : : : ; Xp/. Each Xi is a rectangle Xi D
.Œai ; bi �; Œci ; di �/ where the i -th facility is allowed to be located. One has then on
a given box X

min
x2X

C.x/ D min
x2X

Z

A

c.a; x/d	.a/ �
Z

A

min
x2X

c.a; x/d	.a/:

For the general function c.a; x/ D �.c1.a; x1/; c2.a; x2/; : : : ; cp.a; xp//; as
in (6.8), with � non-decreasing function of ci .a; xi / 8i , it can be derived further to

Z

A

min
x2X

c.a; x/d	.a/ D
Z

A

�

�
min
x12X1

c1.a; x1/; : : : ; min
xp2Xp

cp.a; xp/

	
d	.a/

D
Z

A

�

�
min
x12X1

'1.ka � x1k/; : : : ; min
xp2Xp

'p.ka � xpk/
	
d	.a/;

where, as in (6.1), ci .a; xi / D 'i .ka � xik/ for a non-increasing function 'i of the
distance for all i . This leads to

min
x2X

C.x/ �
Z

A

�

�
'1.max

x12X1
ka � x1k/; : : : ; 'p. max

xp2Xp
ka � xpk/

	
d	.a/

D
Z

A

�

�
'1. max

x12ext.X1/
ka � x1k/; : : : ; 'p. max

xp2ext.Xp/
ka � xpk/

	
d	.a/;

where ext.Xi/ denotes the set of vertices of the boxXi . For the particular case of an
all-or-nothing covering function as given in (6.2), the above integral simplifies to

Z

I.X/
d	.a/;

where the set I.X/ D Sp
iD1 Ii .Xi/ with Ii .Xi/ D fa 2 Ajci .a; xi / D 18xi 2

ext.Xi/g, i.e. Ii .Xi/ is the set of points a such that, for facility i; all points in Xi
cover a (the gray region in Fig. 6.2). For an easier description of the set Ii .Xi / one
can consider its inscribed circle, I�

i .Xi / as shown in Fig. 6.2.
This leads to

min
x2X

C.x/ �
Z
Sp
iD1 Ii .Xi /

d	.a/ �
pX

iD1

Z

I�

i .Xi /

d	.a/�
pX

i;jD1
i<j

Z

I�

i .Xi /
T
I�

j .Xj /

d	.a/:



126 E. Carrizosa and B.G.-Tóth

Fig. 6.2 Intersection of
covered areas from ext.Xi /
giving the region which is
covered by all points in the
box. The integral is computed
over the inscribed circle of
this region, I�

i .Xi /

Xi

i i

i i

I (X

I (X* )

)

In what follows, the so obtained bound will be denoted by LB.X/,

LB.X/ D
pX

iD1

Z

I�

i .Xi /

d	.a/�
pX

i;jD1
i<j

Z

I�

i .Xi /
T
I�

j .Xj /

d	.a/:

Notice, that the integral could be computed directly as
R
A
f .a/minx2X c.a; x/da,

but that is not practical for the all-or-nothing covering function. Numerical inte-
grators take many sample points around discontinuities, that are introduced with
c.a; x/, therefore taking a very long time for a single integration.

6.4 Numerical Examples

The branch and bound method outlines above was implemented in Fortran 90
(Intel©Fortran Compiler XE 12.0), using the integration tools of the IMSL Fortran
Numerical Library. Executions were carried out on an Intel Core i7 computer with
8.00 Gb of RAM memory at 2.8 GHz, running Windows 7.

Two types of experiments were performed. First, a series of problems with
randomly generated demand functions were solved for p D 1 and p D 2: The
demand function was generated as a mixture of r bivariate gaussian distribution
functions (6.16) with centers and weights uniformly generated in Œ0; 10�2 and
Œ0:1; 0:1 C 1=.10r/�, respectively. We set the covariance matrix to wiE , that is
the identity matrix scaled by the knot weight. The location of the facilities were
sought in the square Œ2; 8�2. Three parameters were considered, leading to different
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problems: the radiusR, the minimal distance  in (6.20), and the number of knots r .
As stopping criterion, the algorithm, stopped when the gap was smaller than 10�2:

In order to reduce the random variability of the results, for each choice of radius
R; minimal distance  and number of knots r; three independent instances were
generated and solved. The results presented in the tables correspond to the median
out of the three values obtained.

In Table 6.1 running times in seconds are shown for the problem of locating one
facility with a smaller and a larger radius (R D 1:8 andR D 2:4). It is not surprising
that the computational time grows with the number of knots, as for all knots we need
to do at least one integration.

Running times in seconds are reported in Table 6.2 for the problem of locating
two facilities. Again, the values presented are the median value of the three runs
performed. When at least two out of the three instances could not reach the desired
accuracy in 8 h, the message “> 8h” is reported. The results clearly show that,
the higher the number of knots or the radius, the higher the running times. The
connection between the elapsed time and the minimal distance is not so evident.
One can find cases where either smaller or higher minimal distance can be solved
faster, so it looks rather problem dependent.

A second experiment was done in order to analyze the impact of the radius,
displaying the Pareto frontier if one maximizes the radius and minimizes the
coverage. In Fig. 6.3 the Pareto front is displayed for a problem with a mixture
of 50 bivariate gaussian distributions setting minimal distance  D R, and radii
R D 0:45; 0:6; : : : ; 1:65; 1:8. The pdf of such mixture of gaussians was shown in

Table 6.1 Results for
single-facility problems
(p D 1) with different
minimal distances

r R D 1:8 R D 2:4

10 3.6 1.9

20 11.8 38.0

50 143.7 244.0

100 675.5 897.6

Table 6.2 Results for
two-facility problems
(p D 2) with different
minimal distances

r Minimal distance R D 1:2 R D 1:8

10 R 110.5 186.1

1:5R 182.8 124.7

2R 178.1 83.4

20 R 114.0 2714.5

1:5R 95.7 2593.5

2R 86.4 2543.9

50 R 3926.2 12282.9

1:5R 3754.7 18167.5

2R 3675.1 >8h

100 R 20026.1 >8h

1:5R >8h >8h

2R >8h >8h
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Fig. 6.4 Optimal covering for extreme radii (left) and all radii (right)

Fig. 6.1, while the solutions for the different radii are drawn in Fig. 6.4. In the latter,
the demand function contours as well as the knots (with blue crosses) are shown.
On the left, we focus on the optimal solution of the two extreme radii (R D 0:45

and R D 1:8). The optimal covered regions, i.e., the disc centered at the optimal
facilities and radius R; are plotted. On the right, the optimal covered regions for all
radii addressed are given.
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6.5 Conclusions

While we have focused on purely repulsive facilities, the approach described here
can be used to address location problems of semi-desirable facilities (Carrizosa
and Plastria 1999; Blanquero and Carrizosa 2002; Romero-Morales et al. 1997;
Plastria et al. 2013), in which, instead of having a set A of affected individuals,
all negatively affected and wishing to have the facilities as far as possible, one
has two separated sets, AC and A�; identifying respectively the individuals feeling
the facilities attractive, and thus want them as close as possible, and those feeling
the facilities repulsive, and thus want them as far as possible. This would imply
replacing the expected coverage function (6.10) by

C.x/ D �
Z

AC

cC.a; x/ d	C.a/C
Z

A�

c�.a; x/ d	�.a/; (6.23)

where cC and c� are the covering models respectively for positively and negatively
affected individuals. For finite probability measures 	C and 	�; this model corre-
sponds to minimizing a weighted sum of the points covered, where now the points
in AC have a negative weight, already studied in Berman et al. (2009b) in a discrete
setting. The planar version, including the regional case, remains unexplored. It calls
for deriving new bounds for the branch and bound; but, as done here in the repulsive
case, on can construct bounds after obtaining bounds for the covering functions
c.a; x/: Whilst for c� the key is that c� is nonincreasing, monotonicity (in this
case, decreasingness) can be used to bound �cC: This approach is not new, since it
already dates back to the seminal branch and bound BSSS (Hansen et al. 1985) but
it deserves being tested.

The basic all-or-nothing cover function c in (6.2) is built assuming R fixed, and
givenR, the coverC is minimized. A dual problem consists of maximizingR so that
the cover C remains below a threshold value. This so-called maxquantile problem
(Plastria and Carrizosa 1999) would be solved by doing a binary search in the space
of the valuesR, and solving, for eachR; one problem as those solved in this chapter.

While affected individuals have been assumed to be (continuously) distributed
in a planar region, facilities are considered here to have negligible size, so they are
properly modeled as points. Adapting the branch and bound (in particular, the design
of bounds) for the case of extensive facilities, e.g. Carrizosa et al. (1998a), deserves
further study.

We have considered from the beginning the number of facilities p to be fixed.
A related, somehow dual, problem is the problem of locating as many facilities
as possible so that the coverage function C (or CF , or both) remain(s) within a
given interval. Such is the case of the so-called anticovering location problem, e.g.
Chaudhry (2006), Moon and Chaudhry (1984), Murray and Church (1997), which,
in its simplest version, seeks the highest numberp� of facilities such that no two are
at a distance smaller than a threshold valueR: Aggregation of the individual-facility
cover functions c.a; x/ to C.x/ by any of the procedures described in Sect. 6.2 is
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easily shown to be monotonic in the number p of facilities. The same holds for the
aggregation of the facility-facility cover cFjk .xj ; xk/ to CF .x/: Hence, in order to
find the highest p� for which such covers remain within a given interval, one only
needs to solve sequentially the problem for different values of p: The design of more
direct and efficient procedures is definitely a promising research line.
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Chapter 7
Location of Dimensional Facilities
in a Continuous Space

Anita Schöbel

Abstract In many cases, the facilities to be located cannot be represented by
isolated points, but may be modeled as dimensional structures. Examples for one-
dimensional facilities are straight lines, line segments, or circles while boxes, strips,
or balls are two-dimensional facilities. The goal of this chapter is to review the
location of lines and circles in the plane and the location of hyperplanes and
hyperspheres in higher dimensional spaces. We also discuss the location of some
other dimensional facilities. We formulate the resulting location problems, point
out some of their important properties and review the basic solution techniques and
algorithmic approaches. Our focus lies on presenting a unified understanding of the
common characteristics these problems have, and on reviewing the new findings
obtained in this field within the last 10 years.

Keywords Circle location • Hyperplane location • Line location

7.1 Introduction

Within the locational context, the problem of locating a dimensional facility was
first posed in Wesolowsky (1972, 1975) where the location of a line minimizing the
sum of rectangular or Euclidean distances to a set of existing points was introduced.
Since this time, the subject of locating lines and hyperplanes, circles, spheres,
and other dimensional facilities has been intensively studied. Surveys are given in
Martini and Schöbel (1998), Díaz-Bánez et al. (2004), an extensive list of papers
dealing with the location of dimensional structures (most of them before 2000) is
also given in Blanquero et al. (2009).

Within the last 10 years, many new results have been found and published. In
this chapter, one goal is to review these new findings. More importantly, another
goal is to present a unified understanding of the subject which is now possible since
the field has become more mature. We hence not only present a list of problems
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treated in the literature, but point out common characteristics and common solution
techniques which are used for many different types of such location problems.

Applications in the location of dimensional facilities are various: These range
from real-world applications in location theory and operations research to appli-
cations in robust statistics and computational geometry. Particular applications are
mentioned at the beginning of the respective sections.

The chapter is organized as follows. We start with a general introduction into the
topic in Sect. 7.2 where we introduce the basic notation, define the problems to be
considered and mention the properties on which we will put some focus later on. We
then discuss the two most extensively researched structures in dimensional facility
location: The location of lines and hyperplanes in Sect. 7.3 and the location of circles
and hyperspheres in Sect. 7.4. We finally review other interesting extensions and
problem variations in Sect. 7.5. The chapter is ended by some conclusion in Sect. 7.6
summarizing the findings and pointing out lines for further research.

7.2 Location of Dimensional Facilities

The location of dimensional facilities is a natural generalization of locating one or
more points. As in classical location problems we have given

• a finite set V D fv1; : : : ; vng � RD of existing facilities or existing points with
positive weights wj > 0; j D 1; : : : ; n, and

• a distance measure d W RD �RD ! R evaluating the distance for each pair of
points in RD . We mostly consider distances derived from norms or gauges.

We look for a new facility X which minimizes a function of the weighted distances
to the existing points

minimize f .X/ D g

0

BBB@

w1d.X; v1/
w2d.X; v2/

:::

wnd.X; vn/

1

CCCA ; (7.1)

where the most common functions used for f are the minsum (or median) function,
i.e., g1.y1; : : : ; yn/ D Pn

jD1 yj or the minmax (or center) function given as
gmax.y1; : : : ; yn/ D maxjD1;:::;n yj . Also, other objective functions such as the
centdian, or more general, ordered median objective functions g� (see Chap. 10)
are possible.

If the new facility X is required to be a point, or a set of points, we are in the
situation of classical continuous facility location, see Drezner et al. (2001). In this
chapter, however, we assume that X is not a point but a dimensional structure such
as a line, a circle, a hyperplane, a hypersphere, a polygonal line, etc. This, in turn,
means that the distance d.X; v/ in (7.1) is the distance between a set X (which
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represents the dimensional facility) and a point v. It is given by using the standard
definition

d.X; v/ D min
x2X d.x; v/: (7.2)

Note that in some applications d.X; v/ is defined as maxx2X d.x; v/, and that the
average distance to all points in the set also is a reasonable definition; however, (7.2)
is the most common model in this context.

We now specify the distances d we are mostly working with in this chapter.
The most common distances in location theory are derived from norms, i.e., d W
RD � RD ! R is given as d.x; y/ WD kx � yk for some norm k � k. Moreover,
distances derived from a gauge  W RD ! R given throughd.x; y/ D .y�x/ have
also been used in the location of dimensional facilities. Note that gauge-distances
are no metrics since they are in general not symmetric, and that norms are special
gauges. We also use the vertical distance and its generalizations, being neither a
norm nor a gauge but giving insight into the problem, in particular for the location of
lines and hyperplanes. For two points x D .x1; : : : ; xD/; y D .y1; : : : ; yD/ 2 RD

the vertical distance is given as

dver .x; y/ D
� jxD � yDj if xi D yi ; i D 1; : : : ;D � 1

1 otherwise.
(7.3)

This distance leads to trivial location problems if X is required to be a point but
yields interesting problems with applications mainly in statistics when locating lines
or hyperplanes.

Figure 7.1 presents two examples on how distances are computed, and optimal
dimensional structures may look like. In both examples we have given six existing
points, all of them with unit weights. The left part of Fig. 7.1 shows a line
minimizing the maximum vertical distance to the set of existing facilities. In the

Fig. 7.1 Two illustrations for locating dimensional facilities. Left: A line minimizing the maxi-
mum vertical distance. Right: A circle minimizing the sum of Euclidean distances



138 A. Schöbel

right part a circle minimizing the sum of Euclidean distances to the existing facilities
is depicted. The lengths of the thin lines in both examples correspond to the
distances from the existing facilities to the line (or to the circle, respectively). Note
that the distance between a facility v 2 X and X is zero—this happens twice in the
right part of the figure where the minsum circle passes through two of the existing
points.

In the following sections we discuss different types of dimensional facilities
to be located. Most of the resulting optimization problems are multi-modal and
neither convex nor concave. Hence, methods of global optimization are required.
However, in many of these location problems it is possible to exploit one or more
of the following properties showing that they have much more structure than just an
arbitrary global optimization problem.

LP properties: Some of the problems become piecewise linear, sometimes even
resulting in linear programming (LP) approaches which can be solved highly
efficiently.

FDS properties: A finite dominating set (FDS) is a finite set of possible solutions
from which it is known that it contains an optimal solution to the problem. This
allows an enumeration approach by evaluating all possible elements of the FDS.

Halving properties: In many cases, any optimal facility to be located splits the sets
of existing points into two sets of nearly equal weights. This allows to enhance
enumeration approaches.

In our conclusion we provide a summary on these properties and give some general
hints when they hold and why they are useful.

7.3 Locating Lines and Hyperplanes

Given a set of points V � RD the hyperplane location problem is to find a
hyperplane H minimizing the distances to the points in V . In this section we
consider such hyperplane location problems for different types of distances and
different objective functions.

Note that line location deals with finding a line in R2 minimizing the distances
to a set of two-dimensional points and is included in our discussion as the special
case D D 2.

7.3.1 Applications

The location of lines and hyperplanes has many applications within at least three
different mathematical fields: Operations research, computational geometry, and
statistics. Applications in operations research are various. The new facility to be
located may be, e.g., a highway (see Díaz-Bánez et al. 2013), a train line (see Espejo
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and Rodríguez-Chía 2011), a conveyor belt, or a mining shaft (e.g., Brimberg et al.
2002). Line location has also been mentioned in connection with the planning of
pipelines, drainage or irrigation ditches, or in the field of plant layout (see Morris
and Norback 1980).

In computational geometry, the width of a set is defined as the smallest possible
distance between two parallel hyperplanes enclosing the set (Houle and Toussaint
1985). If the set is a polyhedron with extreme points V D fv1; : : : ; vng determining
the width of this set is equivalent to finding a hyperplane minimizing the maximum
distance to V . The relation between hyperplane location and transversal theory
is mentioned in Sect. 7.3.4.1. In machine learning, a support vector machine is a
hyperplane (if it exists) separating red from blue data points and maximizing the
minimal distance to these points (see Bennet and Mangasarian 1992; Mangasarian
1999). If the set of red and blue points are not linearly separable, one may look for
a hyperplane which minimizes the maximum distance to the points on the wrong
side. This problem can again be solved as a restricted hyperplane location problem,
see Carrizosa and Plastria (2008) and Plastria and Carrizosa (2012).

In statistics, classical linear regression asks for a hyperplane which minimizes
the sum of squared vertical distances to a set of data points, while orthogonal
regression (also called total least squares, see Golub and van Loan 1980) calls for
a hyperplane minimizing the sum of squared Euclidean distances. However, these
estimators are usually not considered as robust. This gives a reason for computing
L1-estimators minimizing the sum of absolute vertical (or orthogonal) differences,
since the median of a set is considered more robust than its mean. We refer to
Narula and Wellington (1982) for a survey on absolute errors regression. More
general, many robust estimators can be found as optimal solutions to ordered
hyperplane location problems, i.e., hyperplane location problems minimizing an
ordered median objective function (see Chap. 10 for the definition of ordered median
functions). Such problems are treated in Sect. 7.3.6. An example are trimmed
estimators which neglect the k largest distances assuming that these belong to
outliers. We list some of the most popular estimators and their corresponding
hyperplane location problems in Table 7.1. For each of them we specify the distance
function d which is used to measure the distance from the data points (i.e., the
existing points) to the hyperplane, and the vector� 2 Rn which specifies the ordered

Table 7.1 Correspondence between line and hyperplane location problems and robust estimators

Estimator Distance Weights of ordered median function

Least squares d D d2ver � D .1; : : : ; 1/

Total least squares d D `22 � D .1; : : : ; 1/

Least trimmed squares d D d2ver � D .1; : : : ; 1; 0; : : : ; 0/

Least absolute deviation d D dver � D .1; : : : ; 1/

Least trimmed absolute deviation d D dver � D .1; : : : ; 1; 0; : : : ; 0/

Least median of squares d D d2ver � D .0; : : : ; 0; 1; 0; : : : ; 0/ (n odd)

� D .0; : : : ; 0; 1; 1; 0; : : : ; 0/ (n even)
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median function g� used for modeling the respective estimator. More applications
to classification and regression are pointed out in Bertsimas and Shioda (2007).

7.3.2 Ingredients for Analyzing Hyperplane Location Problems

7.3.2.1 Distances Between Points and Hyperplanes

A hyperplane is given by its normal vector a D .a1; : : : ; aD/ 2 RD and a real
number b 2 R:

Ha;b D fx 2 RD W atx C b D 0g:

Given a distance d W RD � RD ! R, the distance between a point v 2 RD and
a hyperplane Ha;b is given as d.Ha;b; v/ D minfd.x; v/ W atx C b D 0g. For the
vertical distance (see again the left part of Fig. 7.1) the following formula can easily
be computed:

Lemma 7.1 (Schöbel 1999a)

dver .Ha;b; v/ D

8
<̂

:̂

jat vCbj
aD

if aD 6D 0
0 if aD D 0 and atv C b D 0
1 if aD D 0 and atv C b 6D 0

The second case and the third case comprise the case of a hyperplane which is
vertical itself. Its distance to a point v is defined as infinity unless the hyperplane
passes through v. If not all existing points lie in one common vertical hyperplane,
this means that a vertical hyperplane can never be an optimal solution to the
hyperplane location problem, hence without loss of generality we can assume the
hyperplaneHa;b to be non-vertical if the vertical distance is used.

If d is derived from a norm or a gauge  W RD ! R, the following formula for
computing d.Ha;b; v/ has been derived in Plastria and Carrizosa (2001).

Lemma 7.2 (Plastria and Carrizosa 2001)

d.Ha;b; v/ D
(

at vCb
ı.a/

if atv C b � 0
�at v�b
ı.�a/ if atv C b < 0;

where ı W RD ! R is the dual (polar) norm common in convex analysis (e.g.,
Rockafellar 1970), i.e.,

ı.v/ D supfvtx W .x/ � 1g:

Note that d.Ha;b; v/ D jat vCbj
ı.a/

if  is a norm.
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7.3.2.2 Dual Interpretation

The following geometric interpretation is helpful when dealing with hyperplane
location problems: A non-vertical hyperplane Ha;b (with aD D 1) may be inter-
preted as point .a1; : : : ; aD�1; b/ in RD . Vice versa, any point v D .v1; : : : ; vD/

may be interpreted as a hyperplane. Formally, we use the following transformation.

Definition 7.1

TH.v
1; : : : ; vD/ WD Hv1;:::;vD�1;1;vD

TP .Ha1;:::;aD�1;1;b/ WD .a1; : : : ; aD�1; b/

It can easily be verified that

dver .Ha;b; v/ D dver .TH .v/; TP .Ha;b//

for non-vertical hyperplanes with aD D 1. In particular, we obtain

Lemma 7.3 Let H be a non-vertical hyperplane and v 2 RD be a point. Then

v 2 H () TP .H/ 2 TH.v/:

This means thatHa;b passes through a point v if and only if TH.v/ passes through
.a1; : : : ; aD�1; b/.

In the resulting dual space the goal is to locate a point which minimizes the sum
of distances to a set of given hyperplanes fTH.v/ W v 2 V g. In the results of the next
sections it will become clear that this is a helpful interpretation.

Figure 7.2 shows an example of the dual interpretation in R2. We consider five
points (depicted in the left part of the figure), namely v1 D .0; 1

2
/, v2 D .0; 1/,

v4

v5

v1

v2

v3

L4
L3

L1

L2
L5

Fig. 7.2 Left: Five existing points and a line in primal space. Right: The same situation in dual
space corresponds to five lines and one point
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v3 D .�1; 0/, v4 D .�2;�1/ and v5 D .1;� 1
2
/. In the dual interpretation these

points are transferred to the five lines in the right part of the figure.

L1 D H0;1; 12
D f.x1; x2/ W x2 D �1

2
g

L2 D H0;1;1 D f.x1; x2/ W x2 D �1g
L3 D H�1;1;0 D f.x1; x2/ W x2 D x1g
L4 D H�2;1;�1 D f.x1; x2/ W x2 D 2x1 C 1g

L5 D H1;1;� 1
2
D f.x1; x2/ W x2 D �x1 C 1

2
g

It can also be seen that the line H� 1
2 ;1;� 1

2
through the two points v1 and v3 is

transformed to the point v D .� 1
2
;� 1

2
/ in dual space which lies on the intersection

of L1 and L3. Furthermore, note that in the point .�1;�1/ in dual space three of
the lines meet, namely, L2;L3; and L4. Hence, this point corresponds to the line
H�1;1;�1 D f.x1; x2/ W x2 D x1 C 1g which passes through the three points v2; v3;
and v4.

7.3.3 The Minsum Hyperplane Location Problem

Let us now start with the minsum hyperplane location problem defined as follows:
Given a set of existing points V D fv1; : : : ; vng � RD with positive weights wj >
0; j D 1; : : : ; n, find a hyperplaneHa;b which minimizes

f1.Ha;b/ D
nX

jD1
wj d.Ha;b; vj /:

A hyperplaneH minimizing f1.H/ is called minsum hyperplane w.r.t the distance
d . Let us assume throughout this section that there are n > D affinely independent
points, otherwise an optimal solution is the hyperplane containing all of them.

7.3.3.1 Minsum Hyperplane Location with Vertical Distance

We first look at the problem with vertical distance dver . As explained after
Lemma 7.1 we may without loss of generality assume that aD D 1. This simplifies
the problem formulation to the question of finding a1; : : : ; aD�1; b 2 R such that

f1.a; b/ D
nX

jD1
wj jvtj aC bj (7.4)



7 Location of Dimensional Facilities in a Continuous Space 143

is minimal (with aD D 1). In order to get rid of the absolute values, we define

H>
a;b WD fj 2 f1; : : : ; ng W vtj aC b > 0g

H<
a;b WD fj 2 f1; : : : ; ng W vtj aC b < 0g

HD
a;b WD fj 2 f1; : : : ; ng W vtj aC b D 0g:

We furthermore set

W >
a;b WD

X

j2H>
a;b

wj ; W D
a;b WD

X

j2HD

a;b

wj ; W <
a;b WD

X

j2H<
a;b

wj

and letW WDPn
jD1 wj be the sum of all weights. Since f1.a; b/ is piecewise linear

in b we receive:

Theorem 7.1 (Halving Property for Minsum Hyperplanes) (Schöbel 1999a;
Martini and Schöbel 1998) Let Ha;b be a minsum hyperplane w.r.t the vertical
distance dver . Then

W >
a;b �

W

2
and W <

a;b �
W

2
(7.5)

Note that the halving property (7.5) is equivalent to

W >
a;b � W <

a;b CW D
a;b and W <

a;b � W >
a;b CW D

a;b: (7.6)

Looking again at (7.4), note that f1 is not only piecewise linear in b but is also
convex and piecewise linear in theD variables a1; : : : ; aD�1; b. The latter yields the
following incidence property.

Theorem 7.2 (FDS for Minsum Hyperplanes with Vertical Distance) Let dver
be the vertical distance and let n � D. Then there exists a minsum hyperplane w.r.t
dver that passes throughD affinely independent points.

Sketch of Proof We can rewrite the objective function f1.Ha;b/ to

f1.Ha;b/ D
X

j2H>
a;b

wj .v
t
j aC b/C

X

j W2H<
a;b

wj .�vtj a � b/ (7.7)

which is easily seen to be linear as long as the signs of vtj aC b do not change, i.e.,
on any polyhedral cell given by disjoint sets H�;H� specifying which existing
points should be below (or on) and above (or on) the hyperplane:

R.H�;H�/ WD ˚.a1; : : : ; aD�1; b/ W vtj aC b � 0 for all j 2 H�

vtj aC b � 0 for all j 2 H�o :
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Note that these polyhedra can be constructed in dual space by using the arrangement
of hyperplanes TH.vj /; j D 1; : : : ; n, i.e., the right hand side of Fig. 7.2 shows
exactly the polyhedra in dual space on which the objective function is linear. The
fundamental theorem of linear programming then yields an optimal solution at a
vertex of some of the cells R.H�;H�/, i.e., a hyperplane satisfying vtj a C b D 0

for at least D indices from f1; : : : ; ng. ut
Note that many papers mention this result. For D D 2, it was shown in

Wesolowsky (1972), Morris and Norback (1983), Megiddo and Tamir (1983) and
generalized to higher dimensions, e.g., in Schöbel (1999a).

In our example of Fig. 7.2 the depicted line is an optimal solution.

7.3.3.2 Minsum Hyperplane Location with Norm-Based Distance

We now turn our attention to the location of hyperplanes with respect to a norm k�k.
In this case, we can use Lemma 7.2 and obtain the following objective function

f1.Ha;b/ D
nX

jD1
wj
jvtaC bj
kakı (7.8)

where k � kı denotes the dual norm of k � k. Still, the objective function is piecewise
linear in b, hence the halving property holds again:

Theorem 7.3 (Halving Property for Minsum Hyperplanes) (Schöbel 1999a;
Martini and Schöbel 1998) Let d be a norm and Ha;b be a minsum hyperplane
w.r.t d . Then

W C
a;b �

W

2
and W �

a;b �
W

2

We also receive the incidence property of Theorem 7.2.

Theorem 7.4 (FDS for Minsum Hyperplanes) (Schöbel 1999a; Martini and
Schöbel 1998, 1999) Let d be derived from a norm and let n � D. Then there exists
a minsum hyperplane w.r.t d that passes through D affinely independent points. If
and only if the norm is smooth, we have that all minsum hyperplanes pass through
D affinely independent points.

Sketch of Proof Different proofs for this property exist. Here, we use the cell
structure of the proof of Theorem 7.2 for the vertical distance. The idea is to use
piecewise quasiconcavity instead of piecewise linearity on these cells. Neglecting
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vertical hyperplanes, we again look at the regions R.H�;H�/ in dual space. On
any such region we obtain that the objective function (7.8) can be rewritten as

f1.Ha;b/ D
X

j2H>
a;b

wj
vtj aC b
kakı C

X

j W2H<
a;b

wj
�vtj a � b
kakı

D 1

kakı

0

@
X

j2H>
a;b

wj .v
t
j aC b/C

X

j W2H<
a;b

wj .�vtj a � b/
1

A ;

i.e., it is a positive linear function divided by a positive convex function and
hence is quasiconcave. Consequently, it takes its minimum at a vertex of a region
R.H�;H�/, i.e., again at a hyperplane passing through D affinely independent
existing points. ut

Note that this theorem has been known for a long time for line location problems
(D D 2) in the case of rectangular or Euclidean distances (Wesolowsky 1972,
1975; Morris and Norback 1980, 1983; Megiddo and Tamir 1983), and has been
generalized to line location problems with arbitrary norms in Schöbel (1998, 1999a)
and to D-dimensional hyperplane location problems with Euclidean distance in
Korneenko and Martini (1990, 1993). The extension to hyperplanes with arbitrary
norms is due to Schöbel (1999a) and Martini and Schöbel (1998).

7.3.3.3 Minsum Hyperplane Location with Gauges

For gauges the results of Theorems 7.4 and 7.3 do not hold any more. There exist
counterexamples showing that optimal hyperplanes need not be halving, see, e.g.,
Schöbel (1999a). However, redefining the halving property by taking into account
the non-symmetry on both sides of a hyperplane, the following similar result [based
on formulation (7.6)] may be transferred to gauge distances.

Theorem 7.5 (Halving Property for Minsum Hyperplanes with Gauges) (Plas-
tria and Carrizosa 2001) Let d be a gauge and H.a; b/ be a minsum hyperplane
w.r.t. d . Then we have

X

j2H<
a;b

wj
ı.a/

�
X

j2H>
a;b[HD

a;b

wj
ı.a/

X

j2H>
a;b

wj
ı.�a/ �

X

j2H<
a;b[HD

a;b

wj
ı.�a/ :

Also, for gauge-distances it does not hold that there always exists an optimal
minsum hyperplane passing throughD of the existing points, for a counterexample
see again Schöbel (1999a). However, the following weaker result holds.
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Theorem 7.6 (Incidence Property for Minsum Hyperplanes) (Plastria and Car-
rizosa 2001) Let d be derived from a gauge and let n � D. Then there exists
a minsum hyperplane w.r.t the distance d that passes through D � 1 affinely
independent points.

Note that this incidence property does not define an FDS.

7.3.4 The Minmax Hyperplane Location Problem

We now turn our attention to the minmax hyperplane location problem in which we
look for a hyperplaneHa;b which minimizes

fmax.Ha;b/ D max
jD1;:::;nwj d.Ha;b; vj /:

A hyperplaneH minimizing fmax.H/ is called minmax hyperplane w.r.t d . Again,
let us assume n > D. Since the main results for the location of minmax hyperplanes
are similar for different types of distance functions, we need not distinguish between
vertical, norm-based and gauge distances here. We start with a link to computational
geometry.

7.3.4.1 Relation to Transversal Theory

Minmax location problems often rely on Helly’s theorem (Helly 1923). For the
location of hyperplanes, this result can only be applied for the vertical distance,
since the sets f.a; b/ W d.Ha;b; v/ � ˛g are non-convex in general if d 6D dver .
Instead, the following relation to transversal theory may be exploited.

Definition 7.2 Given a family of sets M in RD, a hyperplane H is called a
hyperplane transversal with respect to M if M \H 6D ; for all M 2M .

Using this definition it is directly clear that fmax.H/ � r if and only if H is a
hyperplane transversal for the set M D fMj.r/; j D 1; : : : ; ng with

Mj.r/ D fx 2 RD W wj d.x; vj / � rg:

Instead of looking for a hyperplane minimizing the maximum distance to a set
of existing points, we can hence equivalently look for the smallest possible r � 0
such that a hyperplane transversal for the sets Mj.r/; j D 1; : : : ; n exists. As an
example, in Fig. 7.3 we search a line minimizing the maximum rectangular distance
to the five given points, each of them with unit weight. Since it is a line transversal
for the five sets Mj.r/, the depicted line l satisfies fmax.l/ � r .
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Fig. 7.3 A line transversal l
to the five sets (each of them
with radius r) exists, hence
the objective function value
of this line satisfies
fmax.l/ � r

r r

7.3.4.2 The Finite Dominating Set Property

The main result for minmax hyperplane location is the following blockedness
property.

Theorem 7.7 (FDS for Minmax Hyperplanes) (Schöbel 1999a; Martini and
Schöbel 1998, 1999; Plastria and Carrizosa 2012) Let d be derived from a norm
or a gauge and let n � D C 1. Then there exists a minmax hyperplane w.r.t d that
is at the same (maximum) distance from D C 1 affinely independent points. If and
only if the norm or the gauge is smooth, we have that all minmax hyperplanes are
at maximum distance from D C 1 affinely independent points.

Sketch of Proof for Norms Similar to the proof for median hyperplanes we look at
the case for vertical distances first. Here, the objective function is linear as long as
the maximum distance does not change (if n > 1). We hence may use a type of
farthest Voronoi diagram in the dual space, i.e., a partition of the dual space into
(not necessarily connected) polyhedral cells

C.vj / WD f.a; b/ W d.Ha;b; vj / � d.Ha;b; v/ for all v 2 V g
D f.a1; : : : ; aD�1; b/ W jvtj aC bj � jvti aC bj for all i D 1; : : : ; ng

and it can be shown that an extreme point of such a cell is an optimal solution for
the case of the vertical distance. Note that the cell structure does not change when
we replace the vertical distance by a distance d derived from a norm, since we have

C 0.vj / WD f.a; b/ W d.Ha;b; vj / � d.Ha;b; v/ for all v 2 V g

D f.a1; : : : ; aD�1; b/ W jv
t
j aC bj
ı.a/

� jv
t
i aC bj
ı.a/

for all i D 1; : : : ; ng

D C.vj /;

and using again that the objective function on these cells is quasiconcave, the result
follows. ut
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Note that in contrast to minsum hyperplane location problems, the result also
holds for gauges. This was shown for DD 2 in Schöbel (1999a) and for arbitrary
D recently in Plastria and Carrizosa (2012). Using transversal theory, it can
furthermore be extended to metrics (under some mild conditions of monotonicity),
see Schöbel (1999a) for the case of D D 2.

A geometric point of view was taken in Nievergelt (2002) for the Euclidean
case. He interprets the minmax hyperplane location problem as follows: locate
two parallel hyperplanes such that the set of existing points lies completely
between these two hyperplanes and minimize the distance between these parallel
hyperplanes. He shows that in an optimal solution the two hyperplanes are rigidly
supported by the points in V , i.e., there does not exist any other pair of parallel
hyperplanes enclosing all points and passing through the same points of V . This
property coincides with the blockedness property of Theorem 7.7. The algorithm
proposed in Nievergelt (2002) uses projective shifts to improve a solution in a finite
number of steps.

7.3.5 Algorithms for Minsum and Minmax Hyperplane
Location

We describe the main approaches used for computing minsum hyperplanes.

7.3.5.1 Enumeration

Theorems 7.2, 7.4, and 7.7 specify a finite dominating set for both the minsum
and the minmax hyperplane location problem. The trivial approach is to enumerate
all candidates in the FDS. For the minsum case these are just the hyperplanes
passing through D of the existing points. More effort is necessary to determine
the hyperplanes being at maximum distance from D C 1 of the existing points for
the minmax case. For D D 2 and norm-based distances these are parallel to one
edge of the convex hull of the existing points (Schöbel 1999a).

7.3.5.2 Linear Programming for Hyperplane Location with Vertical
and Block Norm Distances

For the vertical distance dver the hyperplane location problem can be formulated as
a linear program. To this end, we define additional variables dj � 0 which contain
the distances d.H; vj /; j D 1; : : : ; n. For the minsum problem we then obtain

minimize
nX

jD1
wj dj (7.9)
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subject to dj � vTj aC b for j D 1; : : : ; n (7.10)

dj � �vTj a � b for j D 1; : : : ; n (7.11)

dj � 0 for j D 1; : : : ; n (7.12)

aD D 1 (7.13)

b; ai 2 R for i D 1; : : : ;D � 1: (7.14)

For the minmax problem, the objective (7.9) has to be replaced by the minmax
objective function fmax, i.e., by

minimize max
jD1;:::;nwj dj ;

which can be rewritten as linear program by using a bottleneck variable z and then
replacing the objective by Minimizez and adding wj dj � z for j D 1; : : : ; n as
constraints. It is also possible to use other types of objective functions. For the
minsum problem (see Zemel 1984) and for the minmax problem (see Megiddo
1984), the above LP formulation can be solved in O(n) time.

Now consider a block norm B with unit ballB D convfe1; : : : ; eGg, i.e., eg; g D
1; : : : ; G are the fundamental directions of the block norm. The idea is to solve the
problem for each of the fundamental directions separately. To this end, we extend
the vertical distance dver to a distance dt , t 2 RD as follows.

dt .u; v/ WD
� j˛j if u � v D ˛t for some ˛ 2 R

1 otherwise:

We then know the following result.

Lemma 7.4 (Schöbel 1999a) Let H be a hyperplane and let d be derived from a
block norm B with fundamental directions e1; : : : ; eG . Then for any point v 2 RD

there exists Ng 2 f1; : : : ; Gg such that

d.H; v/ D deNg
.H; v/ D min

gD1;:::;G deg .H; v/;

i.e., the fundamental direction e Ng is independent of the point v.

This result allows to solve the problem with block norm distance in O(Gn) time
in the planar case by iteratively solving the minmax hyperplane location problem
with respect to distance deg , g D 1; : : : ; G, and taking the best solution. Note
that the G problems may be solved by transformation to the vertical distance as
follows: Choose a linear (invertible) transformationT with T .eg/ D .0; 0; : : : ; 0; 1/.
Transform all points v0

j D T .vj /; j D 1; : : : ; n. We obtain that

dver .T .H/; T .v// D deg .H; v/
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for any hyperplaneH and any point v 2 RD , i.e., we have transformed the problem
with distance deg to a problem with vertical distance which can be solved by linear
programming as above. Transforming an optimal hyperplane H 0 for the resulting
problem back to T �1.H 0/ gives an optimal solution to the problem with distance
deg . Details can be found in Schöbel (1999a, 1996).

7.3.5.3 Enhancing the Enumeration for Line Location
with Euclidean Distance

For the Euclidean distance, the minsum straight line problem has received a
lot of attention. Many of the ideas proposed here could also be used for other
distance functions (see Schieweck and Schöbel 2012); nevertheless they have been
investigated mainly for the Euclidean case. Algorithms rely on Theorems 7.3 and 7.4
and use the representation of the problem in the dual space.

The Euclidean minsum straight line problem with unit weights can be solved
by sweeping along the so called median trajectory in the dual space (see
Yamamoto et al. 1988). The median trajectory is the point-wise median of the
lines TH.vj /; j D 1; : : : ; n, see Fig. 7.4 for the median trajectory in our example.
The breakpoints on the median trajectory coincide with lines passing through two
of the existing points and satisfying the halving property. Hence, the complexity
of the approach depends on the number h.n/ of halving lines. In Yamamoto et al.
(1988) the complexity of the approach is given as O(log2.n/h.n/) which can be
improved to O(log.n/h.n/) (see Schieweck and Schöbel 2012) by substituting the
algorithm for dynamic convex hulls of Overmars and van Leeuwen (1981) by the
newer O(log.n/) algorithm of Brodal and Jacob (2002).

Note that the order of h.n/ is not known yet. It has been shown that the number
of halving lines is in O(n4=3) (see Dey 1998) yielding an O(n4=3 log.n/) approach
for the line location problem with Euclidean distance. The best known lower bound
for the Euclidean minsum line location problem is ˝.n logn/ using reduction from

Fig. 7.4 The median
trajectory for the example of
Fig. 7.2

L4
L3

L2
L5

L1
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the uniform-gap on a circle problem (Yamamoto et al. 1988). We conclude that the
question for an optimal algorithm for this problem is still open.

The Euclidean line location problem with arbitrary weights can be solved in
O(n2), see Lee and Ching (1985).

For the Euclidean minmax line location problem the relation to transversal theory
is exploited leading to an optimal O(n logn) algorithm for the case with arbitrary
weights (Edelsbrunner 1985).

7.3.6 Ordered Median Line and Hyperplane Location Problem

A rather general objective function in location theory is the ordered median function
(see Nickel and Puerto 2005, or Chap. 10). For tackling ordered median line location
problems, one can combine the ideas of the preceding results on minsum and
minmax location.

Theorem 7.8 (FDS for Ordered Line Location) (See Lozano and Plastria 2009
for the Planar Euclidean Case) Let d be derived from a norm and let n � 2. Then
there exists a solution l� to the ordered line location problem w.r.t distance d that
satisfies at least one of the following conditions:

• l� passes through two of the existing points.
• l� passes through one of the existing points and is at same weighted distance

from two of the existing points.
• l� is at the same weighted distance from three of the existing points.
• There exist two pairs of existing points vj ; vj 0 2 V and vk; vk0 2 V such that

wj d.l
�; vj / D wj 0d.l�; vj 0/ and wkd.l

�; vk/ D wk0d.l�; vk0/;

i.e., l� is at the same weighted distance from both points of each of the two pairs.

Sketch of Proof The theorem has been shown in Lozano and Plastria (2009) for the
ordered Euclidean line location problem, but also holds for all distances derived
from norms: Again, we look at the regions in dual space in which the order of the
distances from the line to the existing points does not change, i.e., in which

d.Ha;b; vj / D d.Ha;b; vi /

does not hold for any j 6D i . These regions are hence bounded by the affine linear
sets
�
.a; b/ W wj jatvj C bj

ı.a/
D wi jatvi C bj

ı.a/

�
D f.a; b/ W wj jatvjCbj D wi jatviCbjg
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in dual space and may be interpreted as the weighted bisectors of the lines TH.vj /
and TH.vi /. Taking the intersection of these regions with the regions R.H�;H�/
of the proof of Theorem 7.4, we obtain quasiconcavity on the resulting (smaller)
cells. This yields that the extreme points of these new cells are a finite dominating
set. ut

This FDS allows an algorithm to solve the ordered line location problem in
O(n4), see Lozano and Plastria (2009) for the Euclidean case. The problem of
locating a hyperplane minimizing the Euclidean ordered median function has been
investigated in Kapelushnik (2008) where its equivalence to searching within the
levels of an arrangement is shown. The resulting algorithm runs in O(n2D) where its
complexity is reduced to O(nDCminfD�1;KC1g) if K D jfj D 1; : : : ; n W �j 6D 0gj.

A special case concerns the k-centrum line location problem, in which the sum of
distances from the line to the k most distant points is minimized. It is also an ordered
median problem and has been treated in Lozano et al. (2010). The methodology
is similar to the approach of the general ordered median problem and exploits
quasiconcavity of the objective function in the cells mentioned above. For smooth
norms, it is shown that the resulting finite dominating set consists of lines either
passing through two existing points or being at equal weighted distance from three
of them. Based on this, an O(.kC log n/n3) algorithm is proposed for computing all
t-centrum lines for 1 � t � k. For unweighted points, Kapelushnik (2008) suggests
an algorithm that finds a k-centrum line in the plane in time O (n lognC nk).

7.3.7 Some Extensions of Line and Hyperplane Location
Problems

7.3.7.1 Obnoxious Line and Hyperplane Location

Instead of minimizing the distances to the existing points, one may also consider
an obnoxious problem in which the new facility should be as far away from the
existing points as possible. A rather general approach for obnoxious line location is
presented in Lozano et al. (2013) in which a weighted ordered median function is
maximized. More precisely, the problem treated is the following: Given a connected
polygonal set S in the plane, the goal is to find a line which intersects S and
maximizes the sum of ordered weighted Euclidean distances to the existing points.
For such problems, the authors are again able to derive a finite dominating set which
yields an O(n4) algorithm for the general Euclidean anti-ordered median case, and
an O(n2) algorithm for the case of the Euclidean anti-median line. The case of
locating an obnoxious plane (i.e., finding the widest empty slab through a set of
existing points V ) has been considered in Díaz-Bánez et al. (2006a). Also here, a
finite dominating set could be identified leading to an algorithm in time O(n3).
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7.3.7.2 Locating p Lines or Hyperplanes

As in point facility location it is also possible to study the problem of locating p
lines or hyperplanes H1; : : : ;HP . In this setting, every existing point is served by
its closest line. We may either minimize the sum of distances

f1.H1; : : : ;Hp/ D
nX

jD1
wj min

qD1;:::;p d.Hq; vj / (7.15)

or the maximum distance

fmax.H1; : : : ;Hp/ D max
jD1;:::;nwj min

qD1;:::;p d.Hq; vj / (7.16)

from the existing points to their closest lines. Minimizing the sum of distances
is called p-minsum-hyperplane location problem and minimizing the maximum
distance to a set of p hyperplanes is called p-minmax-hyperplane location problem.
Locating p lines has important applications in statistics with latent classes, and also
provides an alternative approach for clustering, called projective clustering (see,
e.g., Har-Peled and Varadarajan 2002; Deshpande et al. 2006).

Both problems are known to be NP-hard for most reasonable distance mea-
sures (see Megiddo and Tamir 1982). However, since each of the p hyperplanes
H1; : : : ;Hp to be located is a minsum (or minmax) hyperplane for the set of points

Vq D fv 2 fv1; : : : ; vng W d.Hq; v/ � d.Hq0 ; v/ for all q0 D 1; : : : ; pg

the results on the finite dominating sets of Theorems 7.4 and 7.7 still hold:

Theorem 7.9 Given p 2 N and a set of existing points V .

• If n � D then there exists an optimal solution to the p-minsum-hyperplane
location problem in which each hyperplane passes throughD existing points.

• If n � D C 1 then there exists an optimal solution to the p-minmax-hyperplane
location problem in which each of hyperplane is at maximum distance fromDC1
existing points.

Hence, enumeration approaches based on such an FDS are possible, however,
the number of candidates to be enumerated is of order O(nD). Recently, such an
enumeration approach for the p-minsum line location problem has been enhanced
by computing lower bounds and using them to discard elements from the FDS, see
Schieweck (2013). The idea is to cluster the demand points and find a line which
minimizes the sum of distances to the resulting demand regions. This problem is not
easier than the original problem, but since the number of demand regions is much
smaller than n it can be solved quicker.

Based on the FDS, another approach is possible: The problem may be trans-
formed to a p-median or p-center problem on a bipartite graph with O(jFDSj) nodes.
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The two node sets of the graph are given by the existing pointsV and by the potential
hyperplanes in the FDS. Every node v from V is connected to every node H from
the FDS where the edge .v;H/ is weighted by the distance, the node v has from the
hyperplaneH . The goal is to serve all customers in V by installing p new locations
in the FDS.

Finally, the problem of finding p lines in the plane is studied in Bertsimas and
Shioda (2007) where it is formulated as an integer program. Binary variables xj;q
determine to which of the q D 1; : : : ; p lines the existing point vj is assigned.
Applying their basic formulation to the linear program (7.9)–(7.14) of Sect. 7.3.5
gives

minimize
nX

jD1
wj dj

subject to dj � vTj aq C bq �M.1� xj;q/ for j D 1; : : : ; n; q D 1; : : : ; p
dj � �vTj aq � bq �M.1� xj;q/ for j D 1; : : : ; n; q D 1; : : : ; p
pX

qD1
xj;q D 1 for j D 1; : : : ; n

xj;q 2 f0; 1g for j D 1; : : : ; n; q D 1; : : : ; p
dj � 0 for j D 1; : : : ; n
aDq D 1 for q D 1; : : : ; p
bq; a

i
q 2 R for i D 1; : : : ;D � 1; q D 1; : : : ; p:

Solving the integer program in its basic form is not possible in reasonable time; in
Bertsimas and Shioda (2007) clustering algorithms are performed in a preprocessing
step. The above integer program can also be used for solving the minmax version of
the problem, if

P
is replaced by max in its objective function.

7.3.7.3 Restricted Line Location

Line location problems in which the line is not allowed to pass through a specified
set R � R2 can be tackled by looking at the dual space and transforming
the restriction to a forbidden set there. Since the problem is convex for vertical
distances, techniques from location theory can be used, e.g., the boundary theorem
saying that there exists a solution on the boundary of the restricted set whenever the
restriction is not redundant (see Hamacher and Nickel 1995). The results may be
generalized to block norms or to arbitrary norms, see Schöbel (1999b).

In some statistical applications it is preferable to restrict the slope of the line
(or the norm of a) as done in types of RLAD approaches (Wang et al. 2006). Such



7 Location of Dimensional Facilities in a Continuous Space 155

restrictions on the parameters of the hyperplane can again be treated and solved in
dual space, see Krempasky (2012).

Another type of restriction is to force a subset of points of V to lie on, above
or below the hyperplane. Also for such problems, finite dominating sets have
been derived, see Schöbel (2003) for hyperplane location problems in which the
hyperplane is forced to pass through a subset of points and Plastria and Carrizosa
(2012) for the more general case of requiring a specified subset of points below or
above the hyperplane.

7.3.7.4 Line Location with Polyhedra as Existing Facilities

There are also a few approaches considering the location of lines when the existing
facilities are connected sets or polyhedra in R2. The minmax problem is equivalent
to finding the thinnest strip transversal, i.e., a strip of minimal width which intersects
each of the existing polyhedra. For m polyhedra with a total of n vertices, Robert
(1991) and Robert and Toussaint (1994) solve the Euclidean problem by computing
the upper and the lower envelope of the dual representation of the existing sets
resulting in an O(n logn) approach in the unweighted case and in an O(n2 logn)
approach in the weighted case. For the minsum problem, the algorithm works by
sweeping the dual arrangement and takes O(mn logm) time.

7.3.7.5 Line Location in RD

Locating a line in RD turns out to be a difficult problem since all of the structure
of line and hyperplane location problems gets lost. In Brimberg et al. (2002, 2003)
some special cases are investigated for the case D D 3, such as locating a vertical
line, or locating a line where the distance measure is given as the lengths of
horizontal paths. If these lengths are measured with the rectangular distance, the
problem can be reduced to two planar line location problems with vertical distance.
For the general case of locating a minsum line in R3, global optimization methods
such as Big-Cube-Small-Cube (Schöbel and Scholz 2010) have been successfully
used, see Blanquero et al. (2011). The case of locating a minmax line in RD is
known in computational geometry as smallest enclosing cylinder problem. It has
been mainly researched in R3 (Schömer et al. 2000; Chan 2000).

7.4 Locating Circles and Spheres

We now turn our attention to the location of hyperspheres. Again, we have given
a set of existing points V � RD with positive weights wj > 0; j D 1; : : : ; n.
The hypersphere location problem is to find the center point and the radius of a
hypersphere S which minimizes the distances from its surface to the points in V .
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The problem is interesting not only for Euclidean circles and spheres but also for
all unit balls derived from a norm. In this section we consider such hypersphere
location problems for different types of norms and different objective functions.

Note that circle location deals with finding a circle in R2 minimizing the
distances from its circumference to a set of points in the plane. For circle location,
more and stronger results are known than for general hypersphere location; it will
hence be treated separately where appropriate.

7.4.1 Applications

Hyperspheres and circles are mathematical objects which are well-known for
hundreds of years. The Rhind Mathematical Papyrus, written around 1650 BC by
Egyptian mathematicians, already contains a method for approximating the surface
area of a circle, see Robins and Shute (1987). The problem of fitting a circle or a
sphere to a set of data points has also been mentioned in the fourth century BC by
notes of Aristotle on the earth’s sphericity, see Dicks (1985).

Also nowadays, the location of circles and spheres has applications in different
fields. The Euclidean version of the problem is of major interest in measurement
science, where it is used as a model for the out-of-roundness problem which occurs
in quality control and consists of deciding whether or not the roundness of a
manufactured part is in the normal range (see, e.g., Farago and Curtis 1994; Ventura
and Yeralan 1989; Yeralan and Ventura 1988). To this end, measurements are taken
along the boundary of the manufactured part. In order to evaluate the roundness of
the part, a circle is searched which fits the measurements. Mathematical models for
different variants of the out-of-roundness problem are studied for instance in Le and
Lee (1991), Swanson et al. (1995), and Sun (2009).

Circle and hypersphere location problems have also applications in other dis-
ciplines, e.g., in particle physics (Moura and Kitney 1992; Crawford 1983) when
fitting a circular trajectory to a large number of electrically charged particles
within uniform magnetic fields, or in archeology where minmax circles are used to
estimate the diameter of an ancient shard (Chernov and Sapirstein 2008). In Suzuki
(2005), the construction of ring roads is mentioned as an application. Many further
applications are collected in Nievergelt (2010). They include

• the analysis of the design and layout of structures in archeology,
• the analysis of megalithic monuments in history,
• the identification of the shape of planetary surfaces in astronomy,
• computer graphics and vision,
• calibration of microwave devices in electrical engineering,
• measurement of the efficiency of turbines in mechanical engineering,
• monitoring of deformations in structural engineering, or
• the identification of particles in accelerators in particle physics.
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There is also a relation to equity problems (see Gluchshenko 2008; Drezner
and Drezner 2007) of point facility location and to a problem in computational
geometry which is to find an annulus of smallest width. These relations are specified
in Sect. 7.4.4.1.

In statistics, the problem is also of interest. As Nievergelt (2002) points out,
many attempts have been made of transferring total least squares algorithms from
hyperplane location problems to hypersphere location problems (e.g., Kasa 1976;
Moura and Kitney 1992; Crawford 1983; Rorres and Romano 1997; Späth 1997,
1998; Coope 1993; Gander et al. 1994; Nievergelt 2004).

7.4.2 Distances Between Points and Hyperspheres

Let d be a distance derived from some norm k � k, i.e., d.x; y/ D ky � xk. A
circle or a sphere with respect to the norm k � k is given by its center point x D
.x1; : : : ; xD/ 2 RD and its radius r > 0:

Sx;r D fy 2 RD W d.x; y/ D rg:

The distance between a sphere S D Sx;r and a point v 2 RD is defined as

d.S; v/ D min
y2S d.y; v/

and can be computed as

d.Sx;r ; v/ D jd.x; v/ � r j:

The following properties of the distance can easily be shown.

Lemma 7.5 (Körner et al. 2012; Körner 2011) Given a distance d derived from
a norm, and a point v 2 RD, the following hold:

• d.Sx;r ; v/ is convex and piecewise linear in r ,
• d.Sx;r ; v/ is locally convex in .x; r/ if v is a point outside the sphere, and
• d.Sx;r ; v/ is concave in .x; r/ if v is inside the sphere.

Before analyzing minsum or minmax circles or hyperspheres, let us remark that
even the special case with only n D 3 existing points in the plane (D D 2)
is a surprisingly interesting problem. Within a wider context it has recently been
studied in Alonso et al. (2012a,b). Here, the circumcircle of a set of three points is
investigated (which is the optimal minmax or minsum circle for the three points).
Dependent on the norm considered, such a circumcircle need not exist, and need
not be unique. Among other results on covering problems, the work focuses on a
complete description of possible locations of the center points of such circumcircles.
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7.4.3 The Minsum Hypersphere Location Problem

We start with the minsum hypersphere location problem. Given a distance d derived
from a norm, the goal is to find a hypersphere S D Sx;r which minimizes

f1.Sx;r / D
nX

jD1
wj d.Sx;r ; vj / D

nX

jD1
wj jd.x; vj /� r j: (7.17)

The location of a Euclidean circle in the plane has been defined and treated in
Drezner et al. (2002). This has then been generalized to the location of a norm-circle
in the plane in Brimberg et al. (2009b), and later to the location of a hypersphere with
respect to any norm in RD (Körner et al. 2012). The Euclidean case in dimension d
has been also extensively analyzed in Nievergelt (2010).

We start by presenting some general properties of minsum hypersphere location
problems. In contrast to hyperplanes, it is not obvious in which cases a minsum
hypersphere exists, since a hypersphere can degenerate to a point (for r D 0) and to
a hyperplane (for r !1). The following results are known.

Lemma 7.6 (Brimberg et al. 2011a; Körner et al. 2012)

• No hypersphere with r D 0 can be a minsum hypersphere.
• For any smooth norm there exist instances for which no minsum hypersphere

exists.
• For any elliptic norm and any block norm a minsum hypersphere exists for all

instances with n � D C 1.

Since no optimal solution degenerates to a point, we need not bother with
existence results if we restrict r to an upper bound and solve the problem then.

Let us now discuss the halving property. To this end, we define the set of points
outside, on, and inside the hypersphere

S>x;r WD fj 2 f1; : : : ; ng W d.x; vj / > rg
S<x;r WD fj 2 f1; : : : ; ng W d.x; vj / < rg
SD
x;r WD fj 2 f1; : : : ; ng W d.x; vj / D rg

and let

W >
x;r WD

X

j2S>x;r
wj ; W

D
x;r WD

X

j2SD

x;r

wj ; W
<
x;r WD

X

j2S<x;r
wj :

As before, let W DPn
jD1 wj be the sum of all weights.
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Theorem 7.10 (Halving Property for Minsum Hyperspheres) (Brimberg et al.
2011a; Körner et al. 2012) Let Sx;r be a minsum hypersphere w.r.t to any distance
derived from a norm. Then

W >
x;r �

W

2
and W <

x;r �
W

2
(7.18)

Sketch of Proof If we increase the radius from r to r C � the distance to points in
S>x;r decreases by �, and the distance to points in S<x;r increases by �. This means,
if W >

x;r > W
2

we can improve the objective function by increasing the radius.
(Analogously, if W <

x;r >
W
2

we can improve the objective function by reducing
the radius.) ut

While the halving property can be nicely generalized, this is unfortunately
not true for the determination of a finite dominating set. The generalization of
Theorem 7.4 would be that there always exists an optimal Euclidean circle passing
through three of the existing points. However, this turned out to be wrong, even in
the unweighted case (see Fig. 7.1 for a counter-example). For most distances it is
not even guaranteed that there exists an optimal circle passing through two points.
The only incidence property that can be shown is the following.

Lemma 7.7 Let d be any distance derived from a norm. Then there exists a minsum
hypersphere w.r.t d which passes through at least one point v 2 V .

Sketch of Proof Let Sx;r be a hypersphere. Fix its center point x and assume
without loss of generality that the existing points are ordered such that d.x; v1/ �
d.x; v2/ � : : : � d.x; vn/. Then the objective function f 0.r/ WD f1.Sx;r / in (7.17)
is piecewise linear in r on the intervals Ij WD fr W d.x; vj / � r � d.x; vjC1g,
j D 1; : : : ; n� 1, and hence takes a minimum at a boundary point, i.e., there exists
an optimal radius r D d.x; vj / for some vj 2 V . ut

The proof uses that the radius of an optimal circle is the median of the distances
d.x; v1/; : : : ; d.x; vn/ which was already recognized in Drezner et al. (2002).

Not much more can be said in the general case. The only (again, weak) property
into this direction we are aware of is the following:

Lemma 7.8 (Körner et al. 2012) Let S D Sx;r be a minsum hypersphere with
radius r < 1. Then S intersects the convex hull of the existing points in at least
two points, i.e., jS \ conv.V /j � 2.

Furthermore, if jS \ conv.V /j <1, then S \ conv.V / � V .

7.4.3.1 Location of a Euclidean Minsum Circle

For the Euclidean distance and the planar case D D 2 it is possible to strengthen
the incidence property of Corollary 7.7.
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Theorem 7.11 (Brimberg et al. 2009b) Let d be the Euclidean distance, and
consider the planar case, i.e., let D D 2. Then there exists a minsum circle which
passes through two points of V .

The result has been shown by looking at the second derivatives of the objective
function (in an appropriately defined neighborhood) which reveal that a circle
passing through exactly one or none of the existing points cannot be a local
minimum.

An algorithmic consequence of Theorem 7.11 is that there exists an optimal
circle with center point x being on a bisector of two of the existing points, hence
a line search along the bisectors is possible. Using Theorem 7.10 a large amount
of bisectors may be excluded beforehand. Figure 7.5 shows the Euclidean bisectors
for five existing facilities where the relevant parts (which contain center points of
circles having the halving property) are marked in bold.

Another approach was followed in Drezner and Brimberg (2014): Here the
unweighted case is shown to be an ordered median point location problem with
weights � D .�1; : : : ;�1; 1; : : : ; 1/ with equal number of �1’s and 1’s if n is even,
and with weights � D .�1; : : : ;�1; 0; 1; : : : ; 1/ with equal number of �1’s and 1’s
if n is odd. The resulting ordered median point location problem was then solved
using the Big-Triangle-Small-Triangle method (Drezner and Suzuki 2004) with the
d.c. bounding technique proposed in Brimberg and Nickel (2009).

B12 B14 B24

B25

B35

B45

B23
B13

B34

B15

v3

v4

v5

v2v1

Fig. 7.5 The Euclidean bisectors for five existing points. The notation Bij indicates that the
corresponding line is the bisector for points vi and vj . The parts of the bisectors which may contain
a center point of a minsum circle are marked in bold
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7.4.3.2 Location of Minsum Circles and Hyperspheres with Block Norms

If d is derived from a block norm, a finite dominating set can be constructed for
the center point of the minsum circle. To this end, graph all fundamental directions
fe1; : : : ; eGg � R2 of the block norm through any of the existing points v 2 V and
add the bisectors for all pairs of existing points in V . The intersection points of these
lines are a finite dominating set which can be tested within O(n3) time, see Körner
(2011) and Brimberg et al. (2011a).

Using that the block norm of a point y is given as

kyk D minf
GX

gD1
˛g W y D

GX

gD1
˛geg; ˛g � 0 for g D 1; : : : ; Gg

the problem can in the case of block norms alternatively be formulated as the
following linear program with nG C 2n C D C 1 variables, see Brimberg et al.
(2011a) for the planar case and Körner et al. (2012) for the case of hyperspheres.

minimize
nX

jD1
wj
�

zC
j C z�

j

�

subject to
GX

gD1
˛g;j D r C zC

j � z�
j for j D 1; : : : ; n

GX

gD1
˛g;j eg D x � vj for j D 1; : : : ; n

zC
j ; z

�
j � 0 for j D 1; : : : ; n

˛g;j � 0 for g D 1; : : : ; G; j D 1; : : : ; n
r � 0
x 2 RD:

7.4.4 The Minmax Hypersphere Location Problem

We now turn our attention to the location of a minmax hypersphere, i.e., we look for
a hypersphere which minimizes the maximum weighted distance from its surface to
the set V of existing points. Given a distance d derived from a norm, the goal hence
is to find a hypersphere S D Sx;r which minimizes

fmax.Sx;r / D maxnjD1wj d.Sx;r ; vj / D
nX

jD1
wj jd.x; vj /� r j: (7.19)
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Note that the problem of locating a Euclidean minmax circle in the plane is older
than the corresponding Euclidean minsum circle problem; a finite dominating set
has already been identified in Rivlin (1979). Its rectangular version is due to
Gluchshenko et al. (2009). In RD the Euclidean minmax hypersphere location
problem has been analyzed mainly in the Euclidean case, see Nievergelt (2002).

7.4.4.1 Relation to Minimal Covering Annulus Problem and Equity
Problem

The problem of locating a minmax circle has a nice geometric interpretation. For
equally weighted points it may be interpreted as finding an annulus of minimal width
covering all existing points. This problem has been studied in computational geom-
etry, hence results on minmax circle location have been obtained independently in
location theory and in computational geometry.

In location science the minmax hypersphere location problem has an interesting
application as a point location problem. Namely, the (unweighted) center point x of
an optimal hypersphere Sx;r minimizes the difference

max
jD1;:::;n d.x; vj /� min

jD1;:::;n d.x; vj /;

i.e., it minimizes the range to the set V . We conclude that minmax hypersphere
location problems can be interpreted as ordered median point location problems.
Therefore, the point x may be interpreted as a fair location for a service facility as
used in equity problems, see Gluchshenko (2008) for further results.

7.4.4.2 Location of a Euclidean Minmax Circle

Let us start with the Euclidean case in dimension D D 2: In this case, the problem
has been discussed extensively in the literature, mainly in computational geometry
under the name of finding an annulus of smallest width. In contrast to the Euclidean
minsum circle problem, where an FDS could not be found, the following result
shows that an FDS for the (Euclidean) minmax hypersphere exists.

Theorem 7.12 (FDS for the Euclidean Minmax Circle) (e.g., Rivlin 1979; Brim-
berg et al. 2009a) Let D D 2 and let C be a minmax circle with finite radius. Let
h WD maxjD1;:::;n wj d.C; vj /. Then there exist four points having distance h to the
circle C , two of them inside the circle and two of them outside the circle.

The theorem was shown for the unweighted case independently in many papers,
among others in Rivlin (1979), Ebara et al. (1989), García-López et al. (1998) and
it was generalized to the weighted case in Brimberg et al. (2009a). The result can be
interpreted in different ways:
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• In the geometric interpretation, the result means that the annulus of minimal
width covering all points has two points on its inner circumference and two points
on its outer circumference (Rivlin 1979).

• It also shows that the center point of a minimax circle is either a vertex of the
(nearest neighbor) Voronoi diagram or of the farthest neighbor Voronoi diagram
or lies at an intersection point of both diagrams (Le and Lee 1991; García-López
et al. 1998).

For the unweighted problem, Ebara et al. (1989) use this result and present
an enumeration algorithm with runtime in O(n2). If the points in V are given in
an angular order, García-López et al. (1998) present an algorithm which runs in
O(n logn) and which can even be improved to O(n) if the points in V are the vertices
of a convex polygon. This is in particular helpful for solving the out-of-roundness
problem (see Sect. 7.4.1), since the measurements are taken along the manufactured
part in angular order in this case. A gradient search heuristic is provided in Drezner
et al. (2002) and global optimization methods were used in Drezner and Drezner
(2007) who use the Big-Triangle-Small-Triangle method (based on Drezner and
Suzuki 2004) for its solution. Randomized and approximation algorithms are also
possible, see Agarwal et al. (2004, 1999).

More references on the computation of Euclidean minmax circles can be found
in García-López et al. (1998) and in Brimberg et al. (2009a).

7.4.4.3 Location of a Minmax Circle with Rectangular Distance

Gluchshenko (2008) and Gluchshenko et al. (2009) consider the minimal annulus
problem for the rectangular distance. This means, the circle to be located is a
diamond, and the distances from the given points to the circle are measured in the
rectangular norm. The following is an important result.

Theorem 7.13 (FDS for the Rectangular Minmax Circle) (Gluchshenko et al.
2009) There exists a minmax circle whose center point is a center point of a smallest
enclosing square.

This means the set of all center points of smallest enclosing squares (which can
be determined easily) is an FDS. Based on this, Gluchshenko et al. (2009) develop
an optimal O(n logn) algorithm for finding a minmax circle with respect to the
rectangular norm.

Recently, the problem in which the annulus may also be rotated has been
considered in Mukherjee et al. (2013) where an O(n2 logn) algorithm has been
proposed.
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7.4.4.4 Location of a Euclidean Minmax Hypersphere

The problem of finding a minmax hypersphere in dimensionD � 3 was considered
in García-López et al. (1998). The authors give necessary and sufficient conditions
for a point to be the center point of a locally minimal hypersphere with respect
to fmax. Independently, also Nievergelt (2002) considers the problem of locating
a hypersphere in RD with Euclidean distance. Analogously to his approach for
minmax hyperplanes, he interprets the problem as the location of two concentric
hyperspheres with minimal distance which enclose the set V of existing points. This
results in a generalization of Theorem 7.12 to higher dimensions.

Theorem 7.14 (FDS for the Euclidean Minmax Hypersphere) (Nievergelt 2002)
There exists a Euclidean minmax hypersphere S which is rigidly supported by the
point set V , i.e., there does not exist any other pair of concentric hyperspheres
enclosing all points of V and passing through the same points of V as S .

Based on this property, Nievergelt (2002) derives a finite algorithm finding a
minmax hypersphere with respect to the Euclidean distance. A linear time .1C �/
factor approximation algorithm for finding a Euclidean minmax hypersphere is
given in Chan (2000).

7.4.5 Some Extensions of Circle Location Problems

7.4.5.1 Minimizing the Sum of Squared Distances

An earlier variant of the hypersphere location problem minimizes the sum of
squared distances of the existing points to the circle, i.e., it considers

f 2
2 .Sx;r / D

nX

jD1
wj
�
d.Sx;r ; vj /

�2

as objective function. In Drezner et al. (2002) it is shown that the least squares
objective is equivalent to minimizing the variance of the distances. The problem is
(like the minsum and minmax problem) non-convex; heuristic solution approaches
are suggested. In Drezner and Drezner (2007) the Big-Triangle-Small-Triangle
global optimization algorithm is successfully applied.

Minimizing the sum of squared distances from the points in V to a circle has
been also considered within statistics in Kasa (1976), Crawford (1983), Moura and
Kitney (1992), Coope (1993), Gander et al. (1994), Rorres and Romano (1997),
Späth (1997, 1998), and Nievergelt (2004).
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7.4.5.2 Locating Euclidean Concentric Circles

In a recent paper, Drezner and Brimberg (2014) introduce the following interesting
extension of the circle location problem: They look for p concentric circles with
different radii r1; : : : ; rp which minimize the distances to a given set of points. In
their paper they assume a partition of V into sets V1; : : : ; Vp and require that each
point in Vi is served by the circle with radius ri . This means the variables to be
determined are the center point x 2 R2 and the radii r1; : : : ; rp of the p circles. The
model is considered for the least squares objective function, the minsum, and the
minmax objective function. Using that

d.Sx;rj ; vj / D jd.x; vj /� r j

the objective functions which are considered are given as

f 2
2 .x; r1; : : : ; rp/ D

pX

qD1

X

vj2Vq
wj
�
d.x; vj / � r

�2

f1.x; r1; : : : ; rp/ D
pX

qD1

X

vj2Vq
wj jd.x; vj /� r j

fmax.x; r1; : : : ; rp/ D max
qD1;:::;p max

vj 2Vq
wj jd.x; vj /� r j:

Drezner and Brimberg (2014) solve the problem by global optimization methods,
using a reformulation of the circle location problem as an ordered median point
location problem (see the location of a Euclidean minsum circle in Sect. 7.4.3) and
applying the Big-Triangle-Small-Triangle method (Drezner and Suzuki 2004).

7.4.5.3 Location of a Circle with Fixed Radius

The location of a circle with fixed radius is considered in Brimberg et al. (2009a). In
this case, it can be shown that considering every triple of points separately yields an
optimal solution, i.e., a finite dominating set can be derived by solving

�
n

3

�
smaller

optimization problems.

7.4.5.4 Generalized Circle Location: Locating the Unit Ball of One Norm
Measuring Distances with Respect to Another Norm

The circle location problem treated so far is to translate and scale a circle S D fx 2
R2 W kxk � 1g (derived from norm k�k) in such a way that the distances to the set V
are minimized, where the distances are measured with respect to the same norm k�k.
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Fig. 7.6 Locating a unit ball of norm k1 with respect to another norm k2. Left: The unit circle of
the maximum-norm is to be located, distances are measured w.r.t the rectangular norm. Right: The
Euclidean circle is to be located, distances are measured w.r.t the maximum norm

In Körner et al. (2009, 2011) this problem is studied for two different norms under
the name generalized circle location.

More precisely, given two norms k1 and k2 and a set of points V in the plane
with positive weights wj > 0, the goal of generalized circle location is to locate and
scale the unit ball of norm k1 such that the sum of weighted distances between its
circumference and the given points is minimized, where distances are measured by
the other norm k2. Figure 7.6 shows two possible situations. In the left part of the
figure, the new facility is the scaled and translated unit circle of the k1 WD k � kmax

norm and the distances to the four given points are measured by the k2 WD k � k1
norm. In the right part, k1 WD k � k2 and k2 WD k � kmax.

In Körner et al. (2011), properties of minsum generalized circle location are
investigated, and it is shown that not much of the properties for minsum circle
location still hold. There is neither an easy formula for computing the distance
between a point and such a generalized circle, nor does any of the incidence criteria
hold. In fact, there are examples in which no optimal circle passes through any of
the existing points. However, if both norms k1 and k2 are block norms, a finite
dominating set can still be identified (see Körner et al. 2009). The problem of
locating a general circle is interesting for many special cases, e.g. if a box should be
located. Such cases have been studied in Brimberg et al. (2011b).

7.5 Locating Other Types of Dimensional Facilities

7.5.1 Locating Line Segments

The line segment location problem looks for a line segment with specified length
which minimizes the distances to the set V of existing points.
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Location of line segments has been considered in Imai et al. (1992), Agarwal
et al. (1993), Efrat and Sharir (1996) for the Euclidean minmax problem, and in
Schöbel (1997) for the minsum problem with vertical distances. In both the cases it
is possible to determine a finite dominating set; the latter case can be transformed to
a restricted line location problem.

Recently, locating line segments received new interest within the following
problem: A line segment and a point facility are to be located simultaneously. In
this setting, the line segment can be used to speed up traveling in the plane in which
a new point facility should be built. The problem has been treated in the plane,
using rectangular distances in Espejo and Rodríguez-Chía (2011, 2012) where a
characterization of optimal solutions was used to derive an algorithm. This could be
improved in Díaz-Bánez et al. (2013) to an O(n3) approach. These approaches are
based on a finite dominating set which can be obtained by reduction of the location
problem to a finite number of simpler optimization problems.

7.5.1.1 The Widest Empty 1-Corner Corridor in the Plane

An empty corridor in the plane is an open region bounded by two parallel polygonal
chains that does not contain any of the existing points V D fv1; : : : ; vng, and that
partitions the existing points into two non-empty parts. This can be interpreted as an
obnoxious dimensional location problem: locate a polygonal chain maximizing the
minimum distance to the existing facilities. Empty corridors have been of interest in
computational geometry (see e.g., Janardan and Preparata 1996). An empty corridor
is called a 1-corner empty corridor if each of the two bounding polygonal chains has
exactly one corner point. The problem in which the angle at the corner point is given
and fixed has been studied in Cheng (1996). Recently, Díaz-Bánez et al. (2006b)
considered the problem of locating a widest 1-corner corridor using techniques of
facility location: they were able to derive a finite dominating set consisting of locally
widest 1-corner corridors among which a solution may be chosen. Their approach
needs O(n4 logn) time. It was further improved to O(n3 log2 n) time in Das et al.
(2009).

7.5.1.2 Two-Dimensional Facilities

Covering problems are the most common problems in which the location of full-
dimensional facilities is considered. There exist, e.g., many papers about covering
points by a circle (i.e., locating one point x such that all given points are in a given
threshold distance from x), by a set of circles, or even by a set of aligned circles
(occurring when the center points of the circles to be located are forced to lie on
a common straight line), or circles satisfying other restrictions. Covering problems
are not reviewed here, we refer to Plastria (2001) or to Chap. 5.

However, also the location of a two-dimensional facility X such that the minsum
or minmax objective function is minimized, has been considered in the literature. If
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there exists a location for X such that all existing points are covered, this location
is clearly an optimal solution with objective value zero both for the minsum and for
the minmax problem. If it is not possible to cover all points, the minsum and the
minmax problem usually have different solutions.

A paper dealing with the location of a two-dimensional facility is Brimberg and
Wesolowsky (2000) where the rectangular distance is considered and special cases
could be transformed to classical point location problems. In the context of facility
layout the location of a rectangular office with minsum and minmax objective
function has been studied in Savas et al. (2002), Kelachankuttu et al. (2007) and
Sarkar et al. (2007). In these papers, already existing offices are treated as barriers.
Various problem variations for the location of an axis-parallel rectangle (with fixed
circumference, with fixed area, with fixed aspect ratio, or with fixed shape and size)
have been considered in Brimberg et al. (2011b). For most cases, a finite dominating
set could be derived.

The location of a two-dimensional ball

Bx D fy 2 R2 W d.x; y/ � rg

with given and fixed radius r has been considered in Brimberg et al. (2013a) both
for the minsum and the minmax objective function. Note that the distance between
Bx and v

d.Bx; v/ D min
y2Bx

d.y; v/

is measured as the closest distance to any point in B , and not only to points on its
circumference Sx;r . This means that

d.Bx; v/ D
�

0 if v 2 Bx
d.Sx;r ; v/ otherwise.

Hence, Lemma 7.5 yields that d.Bx; v/ is a convex function and consequently, the
resulting optimization problems are much easier to solve than the circle location
problems of Sects. 7.4.3 and 7.4.4. We remark that the location of a full-dimensional
ball has the following interesting interpretation as a point location problem with
partial coverage:

Assume that we are looking for a new facility x 2 R2 for which we know that
little or no service cost (or inconvenience) is associated with existing points that are
within an acceptable travel distance r from x. Thus, costs will be associated only
to those existing points that are further away from the facility than this threshold
distance r . If we assume that these costs are proportional to the distance in excess
of r , the resulting problem is equivalent to the location of a ball with radius r , and its
center point is the optimal location x we are looking for. This has been pointed out
in Brimberg et al. (2013a) where the behavior of the optimal solution with respect
to the threshold distance r is studied.
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Line location with the partial coverage objective function is equivalent to locating
a strip of given width and has recently been considered in Brimberg et al. (2013b).

7.5.1.3 A General Approach Based on dc-Programming

Blanquero et al. (2009) deal with the location of a variety of dimensional facilities
such as segments, arcs of circumferences, arbitrary convex sets, their complements,
or their boundaries. The idea is to fix the shape of the dimensional facility and to
look for a shift vector and an angle of rotation. The objective they follow is very
general, including most objective functions used in location theory, and allows also
to model obnoxious or semi-obnoxious location problems as follows: The set of
existing facilities is split into a subset V C for which the new facility is attractive
and a subset V � for which the new facility has negative effects. The distance from
the new facility to an existing point should be small when the point is in V C and
large when it is in V �. In order to combine the distances within the same set V C
and V � Blanquero et al. (2009) propose to evaluate the norm (or the gauge) of the
resulting single distances.

Using that the Euclidean distance d.S; v/ between a point and a set can be written
as difference of convex functions, Blanquero et al. (2009) solve the model by d.c.-
programming methods, outer approximation and branch and bound.

7.6 Conclusions

For the location of dimensional facilities we can draw the following conclusions.

• The location of a one-dimensional facility (i.e., a point) and a two-dimensional
facility of convex shape with respect to a norm are convex problems if distances
are measured by norms.

• In contrast, the location of a one-dimensional facility with respect to a norm is
a non-convex problem which usually has many locally optimal solutions. Only
the vertical distance leads to convex hyperplane location problems (if also the
objective function g is convex).

• However, many of the investigated problems of locating a one-dimensional
facility are piecewise quasiconcave on a cell structure in dual space. This leads to
a finite dominating set. Another possibility for deriving an FDS is via Helly-type
theorems.

• When distances are measured w.r.t a block norm, problems are often piecewise
linear and can hence be solved by linear programming methods.

• The halving property holds when the problem is linear with respect to one of its
variables.

The main properties pointed out in this chapter are summarized in Table 7.2.
They have the following algorithmic consequences.
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Table 7.2 Summary of properties for some of the considered location problems

Problem FDS Halving LP

Minsum hyperplane with d D dver Yes Yes Yes

Minsum hyperplane with norm Yes Yes No

Minsum hyperplane with block norm Yes Yes Yes

Minsum hyperplane with gauges No (Yes) No

Minmax hyperplane with norm Yes No No

Minmax hyperplane with block norm Yes No Yes

Minmax hyperplane with gauges Yes No No

Ordered minsum hyperplane with norm Yes Yes No

Minsum line in R3 No No No

Line may not pass through a polyhedral set Yes No No

Minsum/minmax p-line with norm Yes No No

Minsum hypersphere with norm No Yes No

Minsum hypersphere with block norm Yes Yes Yes

Minmax hypersphere with Euclidean norm Yes No No

Minmax circle with rectangular norm Yes No Yes

The FDS property gives the straightforward possibility of enumerating the
candidate set. Also for the location of p facilities the FDS property is still helpful,
although the number of candidates increases to O(jFDSjp). As demonstrated for the
p-minsum line location problem in Sect. 7.3.7, an FDS also allows to transfer the
problem of locating p facilities to a p-location problem on a bipartite graph with
O(jFDSj) nodes. It is ongoing work to test such approaches numerically.

Enumeration may be enhanced by the halving property which can be used
to directly discard candidates. Such discarding tests are also useful in other
approaches, even if no FDS is known, since the halving property allows to discard
whole regions when searching for an optimal solution. An example is the search
along bisectors which can be reduced to the relevant parts in the Euclidean minsum
circle location problem. Also in geometric branch & bound approaches such as Big-
Square-Small-Square (Plastria 1992), Big-Triangle-Small-Triangle (Drezner and
Suzuki 2004), or Big-Cube-Small-Cube (Schöbel and Scholz 2010), discarding tests
motivated by the halving property may be interesting.

Using linear programming methods is an efficient way of solving facility location
problems, in particular if the number of variables needed for the linear program
is not too large. This is the case for block norms with not too many fundamental
directions.

While many questions in the location of lines and hyperplanes seem to be solved,
there are still questions remaining in the location of hyperspheres. These concern,
on one hand, general properties about the location of hyperspheres with other than
the minsum objective function and with arbitrary norms or gauges. On the other
hand, there are also many special cases waiting to be investigated, in particular if
the sphere is defined with respect to another norm as the distance function.
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Concerning the location of new types of dimensional structures, researchers
should look for shapes which are of interest for other disciplines or for applications.
Similarly, identifying additional restrictions and particularities arising in applica-
tions in operations research, statistics, and computational geometry and including
them in the models is a future challenge.

Acknowledgements I want to thank Robert Schieweck for providing useful hints on line and
hyperplane location problems.
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Chapter 8
Facility Location Under Uncertainty

Isabel Correia and Francisco Saldanha da Gama

Abstract In this chapter, we cover some essential knowledge on facility location
under uncertainty. We put a major emphasis on modeling aspects related with
discrete facility location problems. Different modeling frameworks are discussed.
In particular, we distinguish between robust optimization, stochastic programming
and chance-constrained models. We also discuss relevant aspects such as solution
techniques, multi-stage stochastic programming models, scenario generation, and
extensions of basic problems.

Keywords Chance constraints • Robust optimization • Stochastic programming

8.1 Introduction

Many facility location problems involve strategic decisions that must hold for
some considerable time. During this time, changes may occur in the underlying
conditions. For instance, we may observe an unexpected disruption in the network
due to some failure, or we may realize that the values of some parameters (e.g.,
demand levels) vary in an unpredictable manner. In such cases, it may be desirable
to account for uncertainty in advance. This can be accomplished by embedding
uncertainty in the models, leading to solutions that somehow anticipate it.

The review papers by Louveaux (1993) and Snyder (2006) show that much work
has been done within this topic. The different sources of uncertainty we may observe
in a facility location problem have led to the development of different research
branches. One of them regards unexpected disruptions in the network structures
(e.g., in the facilities or in the transportation channels) and is addressed in detail
in Chap. 24. Another important research branch concerns congestion models. In
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this case, the customers’ requests for service have a probabilistic behavior and
a facility or equipment may be busy when a new request arrives. This is the
topic addressed in Chap. 17. In the current chapter, we focus on aspects emerging
from uncertainty associated with the parameters of a facility location problem. We
show how uncertainty can be embedded in the models built for supporting the
decision making process. For illustrative purposes, we consider several well-known
facility location problems. We focus on discrete models. This is motivated by the
practical relevance that such models have acquired in the recent decades due to
many successful applications of facility location theory to areas such as logistics,
transportation and routing (see Chap. 1).

In the following sections we assume that the reader is familiar with basic
concepts from robust and stochastic optimization. Important references in these
fields include Birge and Louveaux (2011) and Shapiro et al. (2009) (for stochastic
programming) and Kouvelis and Yu (1997) and Ben-Tal et al. (2009) (for robust
optimization).

The remainder of this chapter is organized as follows. In the next section, we
discuss general aspects related with uncertainty. In Sect. 8.3, we address robust
facility location problems. In Sect. 8.4, we focus on stochastic programming models.
Section 8.5 is devoted to chance-constrained problems. In Sect. 8.6 we discuss some
challenges and give suggestions for further reading. The chapter ends with a short
conclusion.

8.2 Uncertainty Issues

Basic information underlying a facility location problem includes demand levels,
travel time or cost for supplying the customers, location of the customers, presence
or absence of the customers, and price for the commodities. Uncertainty may occur
in one or several of these parameters.

One crucial aspect when dealing with uncertainty regards its representation.
First, uncertain parameters may be discrete or continuous. Second, if probabilistic
information is available, the uncertain parameters can be represented through
random variables. In this case, using the well-known characterization proposed by
Rosenhead et al. (1972), we say that we are making a decision under risk and we can
resort to stochastic programming models and methods for dealing with the problem.
If this is not the case, we are making a decision under uncertainty and a robustness
measure is usually considered for evaluating the performance of the system. It is
important to note that the existence of a probabilistic description for the uncertainty
does not prevent the use of some robustness measures, as it will be detailed in the
next section.
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We call “scenario” a complete realization of all the uncertain parameters. This
notion is independent of whether or not probabilistic information is available.
Nevertheless, if uncertain parameters can be represented by random variables, some
probability can be associated with each scenario. Depending on the problem, we
may have a finite or infinite number of scenarios. As it will be discussed later, this
fact has impact on the models and techniques that can be used.

One important feature that influences the type of model to be considered,
regards the attitude of the decision maker towards risk. Two attitudes are typically
considered: risk neutral and risk averse. In the first case, the decision maker does
not take risk into account when making a decision and a linear function is a
correct representation of the utility associated with the decision maker. When a
probability can be associated with each scenario, a risk neutral decision maker looks
for the decision which minimizes the expected cost (or maximizes the expected
return or utility). A risk averse decision maker can be associated with a concave
utility function (when utility is measured on the vertical axis and monetary value
is measured on the horizontal axis). In this case, the decision maker wants to
avoid unnecessary risk and the expected value of the future assets is no longer an
appropriate objective. Such decision maker may look, for instance, for the solution
minimizing the maximum cost across all scenarios.

Finally, in some classes of problems, there is another aspect that influences the
mathematical model to be considered: the identification of the ex ante and ex post
decisions. In the first case, we have the here-and-now decisions, i.e., the decisions
that must be implemented before uncertainty is revealed; in the second case, we
have the decisions to be implemented after uncertainty is disclosed. The latter set
of decisions is often used as a reaction to the values observed for the uncertain
parameters. In a facility location problem, the location of the facilities is often an
ex ante decision. This is a consequence of the strategic nature of such decisions
in many problems, which imposes their fully implementation before uncertainty is
revealed. Regarding the allocation or distribution decisions, they will depend on the
specific problem addressed whether they will be ex ante or ex post decisions. In the
following sections we address both situations.

8.3 Robust Facility Location Problems

We start by assuming that uncertainty is appropriately captured by a finite set of
scenarios. As mentioned above, each scenario fully determines the value of all the
uncertain parameters. If no probabilistic information is available, one possibility for
measuring the performance of a system is to use a robustness measure. Two classical
objectives are often considered: minmax cost and minmax regret.

For illustrative purposes, we consider a well-known facility location problem:
the p-median problem. In this problem, we have a set of demand nodes, J , each
of which to be served by one out of p new facilities to be located. The potential
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locations for the facilities coincide with the locations of the demand nodes. In its
discrete version, the p-median problem can be formulated as follows:

Minimize
X

i2J

X

j2J
dj aijxij (8.1)

subject to
X

i2J
xij D 1; j 2 J (8.2)

xij � xii; i 2 J; j 2 J (8.3)
X

i2J
xii D p (8.4)

xij 2 f0; 1g; i 2 J; j 2 J: (8.5)

In this formulation, aij represents the distance or travel time between demand nodes
i and j (i; j 2 J ) and dj is the demand or weight of node j (j 2 J ); xij is a binary
variable equal to 1 if node j 2 J is allocated to node i 2 J and 0 otherwise; xii D 1
indicates that a facility is located at i . The goal is to minimize the total weighted
distance or travel time.

In a p-median problem, uncertainty can occur in the demands (or weights) or
in the distances (or travel times). Denote by ˝ the finite set of scenarios and by
! 2 ˝ one particular scenario (that fully determines the uncertain parameters).
Suppose that the location of the facilities is an ex ante decision and the allocation
of the customers to the operating facilities is an ex post decision. In order to capture
uncertainty, we need to consider binary location variables yi indicating whether a
facility is located at i 2 J , and scenario-indexed binary allocation variables xij!

indicating whether demand node j 2 J is allocated to facility i 2 J in scenario
! 2 ˝ . The minmax p-median problem can be formulated as follows:

Minimize v (8.6)

subject to
X

i2J

X

j2J
dj!aij!xij! � v; ! 2 ˝ (8.7)

X

i2J
xij! D 1; j 2 J; ! 2 ˝ (8.8)

xij! � yi ; i 2 J; j 2 J; ! 2 ˝ (8.9)
X

i2J
yi D p (8.10)

xij! 2 f0; 1g; i 2 J; j 2 J; ! 2 ˝ (8.11)

yi 2 f0; 1g; i 2 J: (8.12)
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In this model, dj! represents the demand of node j 2 J under scenario ! 2 ˝ ,
and aij! represents the distance (or travel time) between nodes i 2 J and j 2 J
under scenario ! 2 ˝ . The minmax objective arises from the combination of (8.6)
and (8.7).

The solution provided by the previous model tends to be overly conservative. It
reflects a complete aversion of the decision maker towards risk. In fact, by planning
for the worst case scenario (the maximum weighted distance occurring across all
scenarios), the decision maker may be planning for a scenario which turns out to
be very unlikely. A better compromise can be achieved by considering the minmax
regret1 criterion, in which the decision maker chooses the decision that minimizes
the maximum regret across all scenarios. The corresponding model is obtained by
replacing (8.7) with

X

i2J

X

j2J
dj!aij!xij! � v�

! � v; ! 2 ˝; (8.13)

where v�
! is the optimal value of problem (8.1)–(8.5) solved for scenario ! 2 ˝ .

Serra and Marianov (1998) consider the above minmax regret model after scaling
the demands. In particular, for each scenario, they divide each demand by the total
demand under that scenario. The authors also note the well-known fact that when
the optimal objective function differs significantly across the different scenarios, the
relative regret is a more appropriate robustness measure (see, for instance, Kouvelis
and Yu 1997). In this case, (8.13) should be replaced by

P
i2J

P
j2J dj!aij!xij! � v�

!

v�
!

� v; ! 2 ˝: (8.14)

For this problem, the same authors propose a heuristic approach.
A different problem is addressed by Serra et al. (1996). They consider a firm that

wishes to locate p facilities in a competitive environment. The goal is to maximize
the minimum market captured in a region where competitors are already operating.
The criterion considered corresponds to the “maximization” version of the minmax
“cost” criterion discussed above. Uncertainty is assumed for the demand and for the
location of the competitors. Again, a heuristic approach is proposed for tackling the
problem.

If the allocation of customers to facilities is also an ex ante decision, the models
above can be easily adapted. In this case, the scenario index should be removed
from the allocation variables, i.e., the allocation variables become those introduced
in model (8.1)–(8.5). Furthermore, the location variables yi are no longer necessary,
as variables xii (i 2 J ) can play their role.

1In each scenario, the regret of a solution is the difference between the cost of the solution if the
scenario occurs and the optimal cost that can be achieved under that scenario (see Kouvelis and Yu
1997 for further details).
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The above models work with a finite set of scenarios. In practice, however, this is
not always a correct representation for the uncertainty. In many situations, an uncer-
tain parameter can lie in some infinite set. A popular way of capturing uncertainty
in these cases is via intervals. In the general context of robust optimization, two
types of uncertainty sets are often considered: box and ellipsoidal uncertainty sets
(see Ben-Tal et al. 2009, for further details). In the first case, uncertainty is defined
by a set of linear constraints; in the second case, quadratic expressions involving
the uncertain parameters are used. We illustrate the use of box uncertainty sets
considering the uncapacitated facility location problem (UFLP), whose well-known
formulation is the following:

Minimize
X

i2I
fiyi C

X

i2I

X

j2J
cijdj xij (8.15)

subject to
X

i2I
xij D 1; j 2 J (8.16)

xij � yi ; i 2 I; j 2 J (8.17)

yi 2 f0; 1g; i 2 I (8.18)

xij � 0; i 2 I; j 2 J: (8.19)

In this model, I denotes the set of potential locations for the facilities, J is the set
of customers, fi represents the setup cost for facility i 2 I , cij corresponds to the
unitary cost for supplying the demand of customer j 2 J from facility i 2 I and
dj gives the demand of customer j 2 J . The binary variable yi indicates whether
a facility is installed at i 2 I , and the continuous variable xij represents the fraction
of the demand of customer j 2 J that is supplied from facility i 2 I .

We consider now a common source of uncertainty in a facility location problem:
the demand. Under box uncertainty, each demand level, dj (j 2 J ), lies in an
interval Bj D Œd j � ��j ; d j C ��j � with 0 � � � 1. The parameter � measures
the uncertainty “magnitude”; dj denotes a reference value for the demand of
customer j 2 J , and is commonly referred to as the nominal value for the unknown
parameter. Finally,�j is a scaling factor.

A particular case of box uncertainty that we consider for illustrative purposes
arises when �j D dj (j 2 J ), which leads to the intervals Bj D Œd j .1 �
�/; d j .1C �/� (j 2 J ). Given these intervals, we can formulate the so-called robust
counterpart of model (8.15)–(8.19). Considering an auxiliary variable v, we can
rewrite the objective function of the problem as

Minimize v; (8.20)
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and the following constraint is added to the problem:

X

i2I
fiyi C

X

i2I

X

j2J
cijdj xij � v: (8.21)

By considering an augmented constraint for (8.21), namely

X

i2I
fiyi C max

dj2Bj ; j2J

8
<

:
X

i2I

X

j2J
cijdj xij

9
=

; � v; (8.22)

the robust counterpart of (8.21) becomes

X

i2I
fiyi C

X

i2I

X

j2J
cij

h
dj .1C �/

i
xij � v: (8.23)

The robust counterpart of (8.15)–(8.19) consists of minimizing (8.20) subject
to (8.16)–(8.19), and (8.23).

A drawback of box uncertainty is that it comprises the possibility of having all
the uncertain parameters taking simultaneously their worst values. This is often
not realistic. Accordingly, other type of uncertainty sets may be more appropriate,
leading to less conservative solutions. Ellipsoidal uncertainty arises as an alternative
in such cases. Baron et al. (2011) study the use of box and ellipsoidal uncertainty
in a facility location problem with a time varying uncertain demand. The location
of the facilities and their operating capacity are ex ante decisions that should hold
for the entire planning horizon, during which the demands must be satisfied. The
goal is to maximize the overall profit. Nikoofal and Sadjadi (2010) avoid the most
conservative solutions arising from considering box uncertainty by imposing a
maximum total scaled variation for the uncertainty parameters. The authors address
a p-median problem with interval uncertainty associated with the distances (or
travel times). In particular, for each pair .i; j /, i; j 2 J , they assume that aij can take
any value within an interval Œaij; aij� previously defined. Additionally, the choices for
the values aij are restricted by the relation

P
i;j2J; i<j .aij�aij/.aij�aij/ � L, where

L denotes a maximum level previously imposed for the total scaled variation. This
type of relation avoids the situation in which all (or many) parameters take their
extreme values simultaneously.

In all problems discussed above, no probabilities were associated with the
scenarios. However, in some situations, a probability �! can, in fact, be associated
with each scenario ! 2 ˝ . A well-known robustness measure in this case, is
the expected cost, which is equivalent to the expected regret (see Snyder 2006).
Current et al. (1997) study a facility location problem consisting of locating a set
of p facilities here-and-now, together with the possibility of locating an extra set
of facilities during a planning horizon previously defined. The number of facilities
to locate during the planning horizon is an outcome of the problem. The authors
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compare the solutions obtained using the minmax regret and the expected regret
criteria.

When probabilities can be associated with the scenarios, an alternative robustness
measure proposed by Snyder and Daskin (2006) is “˛-robustness”. The idea is to
look for a solution minimizing the expected cost/distance but such that the relative
regret in each scenario is less or equal than ˛. In the case of the p-median problem,
assuming ex ante location decisions and ex post allocation of customers to the
operating facilities, we obtain the following model:

Minimize
X

!2˝

X

i2J

X

j2J
�!dj!aij!xij! (8.24)

subject to (8.8)–(8.12)
X

i2J

X

j2J
dj!aij!xij! � .1C ˛/v�

!; ! 2 ˝: (8.25)

As pointed out by Snyder and Daskin (2006), this model generalizes the well-
known models proposed by Weaver and Church (1983) and Mirchandani et al.
(1985). Snyder and Daskin (2006) also apply these ideas to the UFLP. They analyze
the complexity of both problems (the ˛-robustness p-median problem and the ˛-
robustness UFLP) and develop Lagrangian relaxation based approaches in order to
compute lower and upper bounds for the problems. The final gaps are closed using
branch-and-bound procedures.

All the robustness measures discussed and illustrated above involve all scenarios.
When the number of scenarios is too high, the large-scale models obtained may
become intractable. In this case, restricting the scenario set may be unavoidable.
This was done by Daskin et al. (1997) that introduced the ˛-reliable minmax regret
p-median problem. The authors seek to minimize the maximum regret over a subset
of scenarios. This subset is referred to as the reliability set. It is built from the
original set in such a way that the total probability associated with its scenarios is at
least some pre-specified value ˛. As pointed out by Baron et al. (2011), this idea has
a purpose similar to the use of ellipsoid uncertainty: the exclusion of low-probability
(typically extreme) scenarios. An extension of the above robustness measure was
introduced by Chen et al. (2006) who introduced the ˛-reliable mean-excess regret.
This measure weights the maximum regret over the reliability set and the conditional
expectation of the regret over the scenarios not included in the reliability set.

A different robustness concept was introduced by Carrizosa and Nickel (2003)
within the context of continuous facility location, although the concept can be
extended to network or discrete problems. In that paper, nominal values are assumed
to have been estimated for the (uncertain) weights of a set of nodes. A maximum
value is preset for the weighted distance between a single facility to be located and
the demand nodes. The robustness of a location is then defined as the minimum
deviation of the vector of weights with respect to the nominal vector that turns that
location an infeasible solution. The goal of the problem is to find the most robust
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location. This yields a non-linear fractional model that the authors tackle by existing
methods and by ad-hoc procedures they propose in the paper.

One final aspect worth mentioning in this section regards the relevance of using
a model like the ones described above, instead of a “simplified” deterministic
model. When probabilities can be associated with the scenarios, we can measure
this relevance by using the expected value of perfect information (EVPI). The EVPI
indicates how much the decision maker would be willing to pay for getting perfect
information. Suppose we have an expected cost minimization problem. In this case,
the EVPI is obtained by computing the difference between the weighted sum of
the optimal values for all scenarios (using the probabilities as weights) and the
minimum expected cost. The reader should refer to Kouvelis and Yu (1997) for
further details.

8.4 Stochastic Facility Location Problems

A facility location problem under uncertainty, can often be casted within a stochastic
programming modeling framework if uncertainty can be described by some proba-
bility distribution. In this case, we say that we are dealing with a stochastic facility
location problem.

We start by considering the UFLP (8.15)–(8.19). In practice, several parameters
in this model may be uncertain. This is the case of the distribution costs and of
the demands. Let us assume that uncertainty can be measured probabilistically. In
particular, denote by � the random vector containing all the random parameters
(e.g., � D �

.cij/i2I; j2J ; .dj /j2J
�
). Furthermore, suppose that we know the joint

probability distribution of � . Assuming ex ante location decisions, the model to
be adopted will depend on the ex post decisions, namely on the moment in time
where allocation or distribution decisions are to be implemented. If we have ex
post allocation decisions, the following stochastic uncapacitated facility location
problem with recourse can be considered:

Minimize
X

i2I
fiyi CQ.y/ (8.26)

subject to yi 2 f0; 1g; i 2 I; (8.27)

with Q.y/ D E� ŒQ.y; �/�, andQ.y; �/ denoting the optimal value of the following
problem:

Minimize
X

i2I

X

j2J
cijdj xij (8.28)
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subject to
X

i2I
xij D 1; j 2 J (8.29)

xij � yi ; i 2 I; j 2 J (8.30)

xij � 0; i 2 I; j 2 J: (8.31)

Model (8.28)–(8.31) is defined for every realization, �, of � , i.e., for every
realization of costs and demands. Accordingly, the allocation decisions xij (i 2 I ,
j 2 J ), which do not appear in the first-stage problem, can change with different
realizations of the random vector. For this reason, they are referred to as recourse
decisions. Regarding the variables associated with the location of the facilities, yi ,
they correspond to ex ante (first-stage) decisions and thus, they must hold for all
possible realizations of the random variables. The expectation defining the recourse
function Q.y/, implicitly conveys a neutral attitude of the decision maker towards
risk. Later in this section, we discuss another possible attitude and the corresponding
consequences from a modeling point of view. It is also important to emphasize that
constraints (8.30) and (8.31) together assure that at least one facility is installed.
Finally, it should be noted that we are dealing with a problem that has relatively
complete recourse, i.e., for every first-stage feasible solution, yi (i 2 I ) there is at
least one second-stage feasible completion (solution), xij (i 2 I , j 2 J ) for every
possible realization of the random quantities.

If we have a finite set of scenarios, say ˝ , we can go farther with the above
model. In order to do so, we consider scenario-indexed parameters and variables.
Denote by cij! the cost for supplying customer j 2 J from facility i 2 I under
scenario ! 2 ˝ , and let dj! be the demand of customer j 2 J under scenario
! 2 ˝ . If xij! is the fraction of the demand of customer j 2 J satisfied from
facility i 2 I under scenario ! 2 ˝ , then we can consider the following extensive
form of the deterministic equivalent:

Minimize
X

i2I
fiyi C

X

!2˝
�!

0

@
X

i2I

X

j2J
cij!dj!xij!

1

A (8.32)

subject to (8.28)
X

i2I
xij! D 1; j 2 J; ! 2 ˝ (8.33)

xij! � yi ; i 2 I; j 2 J; ! 2 ˝ (8.34)

xij! � 0; i 2 I; j 2 J; ! 2 ˝: (8.35)
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In the above model, the non-anticipativity principle2 is implicitly considered: each
first-stage decision variable has the same value for all scenarios.

So far, no capacities have been considered for the facilities. When they exist,
several adjustments are required. Denote by qi the capacity of a facility established
at i 2 I . A model for the capacitated stochastic facility location problem is obtained
if we replace (8.30) with

X

j2J
dj xij � qiyi ; i 2 I: (8.36)

With the inclusion of these constraints, it may happen that for some first-stage
feasible solution, no feasible completion exists in the second stage for one or
several realizations of the random vector, i.e., the problem no longer has relatively
complete recourse. This feasibility issue adds an extra difficulty to this stochastic
programming problem. Infeasibility in the second stage is often an indication of an
undesirable first-stage solution. A natural way for addressing this issue is to penalize
the non-satisfied demand, which makes sense from a practical point of view. In fact,
such penalties correspond, for instance, to costs associated with opportunity losses.
Denote by  j the demand of customer j 2 J which is not supplied and denote by
	j the corresponding unitary penalty cost. Note that  j is also a random variable as
it depends on the occurring realization of the random vector� . We can still consider
the first stage problem (8.26)–(8.27). However, the second stage problem becomes
the following:

Minimize
X

i2I

X

j2J
cijdj xij C

X

j2J
	j j (8.37)

subject to (8.31), (8.36)

dj
X

i2I
xij C  j D dj ; j 2 J (8.38)

 j � 0; j 2 J: (8.39)

Again, if a finite set of scenarios exists, we can consider scenario-indexed recourse
variables and parameters, and we can write the deterministic equivalent in its
extensive form.

In the capacitated model just described, capacities are exogenous. Louveaux
(1986) considers a stochastic facility location problem with endogenous capacities.
In particular, capacity decisions are ex ante decisions, i.e., the capacities of the
facilities must be decided in advance before uncertainty is disclosed. A unitary cost
gi is considered for the capacity to be installed at location i 2 I . Additionally,

2A decision should depend only on the information available at the time it is made (see Rockafellar
and Wets 1991).
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the author considers the existence of variable production costs at the facilities as
well as revenues associated with demand satisfaction. Denote by rj the unitary
revenue obtained from customer j 2 J . Additionally, assume that cij (i 2 I ,
j 2 J ) includes the production costs. A new decision variable zi (i 2 I ) must
be considered, representing the capacity to be installed at location i 2 I . Now, it
may not be rewarding to satisfy all the demand; the trade-off between revenues and
costs will decide the best service level for each customer. The capacitated model
formulated above, can be easily adapted to the new conditions, leading to the model
proposed by Louveaux (1986):

Minimize
X

i2I
fiyi C

X

i2I
gi zi C Q.y; z/ (8.40)

subject to (8.27)

zi � 0; i 2 I; (8.41)

with Q.y; z/ D E� ŒQ.y; z; �/�, and Q.y; z; �/ denoting the optimal value of the
following problem:

Minimize
X

i2I

X

j2J

�
cij � rj

�
dj xij (8.42)

subject to
X

i2I
xij � 1; j 2 J (8.43)

(8.30), (8.31)
X

j2J
dj xij � zi ; i 2 I: (8.44)

Louveaux and Peeters (1992) consider a finite set of scenarios for this problem
and propose a dual-based procedure for the extensive form of the deterministic
equivalent.

A different type of models emerge when the distribution decisions (represented
by x-variables) become first-stage decisions. In this case, penalties are paid in the
second stage for excess and shortage inventory. In addition to the notation already
presented, we denote by �j the excess inventory of customer j 2 J and by �j
the corresponding unitary cost. Assuming deterministic distribution costs (as they
are associated with an ex ante decision), we can formulate the stochastic facility
location problem as follows:

Minimize
X

i2I
fiyi C

X

i2I

X

j2J
cijxij C Q.x/ (8.45)

subject to (8.27), (8.30), (8.31),
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with Q.x/ D E� ŒQ.x; �/�, andQ.x; �/ denoting the optimal value of the following
problem:

Minimize
X

j2J
�j �j C

X

j2J
	j j (8.46)

subject to dj
X

i2I
xij C  j � �j D dj ; j 2 J (8.47)

 j ; �j � 0; j 2 J: (8.48)

Capacities can be easily included in the above model leading to the so-called
stochastic transportation-location problem which has been investigated by several
authors (e.g., França and Luna 1982; Holmberg and Tuy 1999).

So far in this section, we have assumed that the allocation and distribution
decisions are made simultaneously, either after or before uncertainty is disclosed.
In some problems, these decisions can be made separately. We now consider the
situation in which the allocation of the customers to the facilities is a here-and-
now decision but the quantities to ship from the facilities to the customers are to
be decided after uncertainty is revealed. This situation is motivated, for instance,
by logistics applications, when a contract has to be previously signed, determining
a priori the distribution channels but leaving the distribution decisions dependent
on the observed values of the stochastic parameters. Such case can also occur
in companies providing some service and that need to define a priori groups of
customers that will be allocated to some server or facility. In this case, we need to
explicitly consider allocation decision variables. In particular, we denote by wij the
binary variable equal to 1 if customer j 2 J is allocated to facility i 2 I and 0
otherwise. The single-allocation version of the problem was introduced by Laporte
et al. (1994) and has the following formulation:

Minimize
X

i2I
fiyi C

X

i2I

X

j2J
bijwij CQ.w/ (8.49)

subject to wij � yi ; i 2 I; j 2 J (8.50)
X

i2I
wij � 1; j 2 J (8.51)

yi ;wij 2 f0; 1g; i 2 I; j 2 J; (8.52)

with Q.w/ D E� ŒQ.w; �/�, andQ.w; �/ denoting the optimal value of the following
problem:

Minimize
X

i2I

X

j2J

�
cij � rj

�
dj xij (8.53)

subject to xij � wij; i 2 I; j 2 J (8.54)
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X

j2J
dj xij � qi ; i 2 I (8.55)

xij � 0; i 2 I; j 2 J: (8.56)

In the above model, bij is a fixed cost for allocating customer j 2 J to facility
i 2 I . The other notation was already introduced before. Note that in this problem,
facilities are capacitated. Laporte et al. (1994) consider a finite set of scenarios and
solve the extensive form of the deterministic equivalent using the integer L-shaped
method previously proposed by Laporte and Louveaux (1993).

In line with the idea of allocating the customers before uncertainty is disclosed,
Albareda-Sambola et al. (2011) consider Bernoulli demands, which represent a
possible request for some service. This is an example of a problem in which the
presence or absence of customers is itself a source of uncertainty. The problem,
which we revisit below, is important to show that finding a deterministic equivalent
is not always straightforward (or even possible) as the models above could indicate.

In the problem studied by Albareda-Sambola et al. (2011), there is a limited
capacity for the facilities in terms of the number of customers that can be served.
In particular, for each facility i 2 I , there is a maximum number of customers, qi ,
that can be served from the facility. Due to the uncertainty in the demand, it makes
sense to allocate (a priori) to some facility more customers than the service capacity.
In the end, it may turn out that a facility has a number of requests for service
above its capacity. In this case, outsourcing is considered and the corresponding
costs incurred. An important assumption in many logistics systems that the authors
also consider is that, for each facility i 2 I , there should be a minimum number
of customers `i allocated to it to justify its establishment. The problem can be
conceptually formulated as follows.

Minimize
X

i2I
fiyi C E� ŒService costC Outsourcing cost� (8.57)

subject to
X

i2I
xij D 1; j 2 J (8.58)

xij � yi ; i 2 I; j 2 J (8.59)

`iyi �
X

j2J
xij; i 2 I (8.60)

yi ; xij 2 f0; 1g; i 2 I; j 2 J: (8.61)

Denote by �j the demand of customer j 2 J that is assumed to follow a Bernoulli
distribution with parameter pj . For each first-stage solution, denote by zi the
number of customers assigned to facility i 2 I (i.e., zi DP

j2J xij) and denote by
�i the random variable representing the number of customers that request the service
(referred to as demand customers) among those assigned to facility i 2 I (i.e.,
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�i DPj2J �j xij). Note that the probability distribution of �i is quite involved as it
depends on the actual values of xij (j 2 J ). Denote by Px.�i D s/ the probability
that �i is equal to s (s D 0; : : : ; zi ).

Albareda-Sambola et al. (2011), consider two possible outsourcing actions. We
use one of them to illustrate the difficulties that may arise in formulating a determin-
istic equivalent. In particular, we consider the so-called customer outsourcing. In
this case, when the number of customers allocated to some facility i 2 I requesting
the service (demand customers) exceeds qi , �i � qi customers have to be served
directly from an external source. A FIFO policy is assumed for deciding which
customers to serve from the facility and which ones to outsource. The cost for
supplying each outsourced costumer is denoted by gi and depends on the facility
to which the customer was originally assigned. Denote by Pi .s/ the conditional
probability of serving a demand customer assigned to facility i 2 I given that the
total number of demand customers assigned to facility i 2 I is s (i.e., �i D s). We
have

Pi .s/ D minfqi ; sg
s

D
(
1 if s � qi
qi=s otherwise

(8.62)

Due to the fact that the expected value is additive, the recourse function can be
written as the sum of the expected service cost plus the expected outsourcing cost.
These terms can be computed as follows:

E�.service cost/ D
X

i2I

ziX

sD0
Px.�i D s/ � E.Service costj�i D s/

D
X

i2I

ziX

sD0

2

4Px.�i D s/
X

j2J
P.�j D 1j�i D s/Pi .s/cijxij

3

5 ;

(8.63)

E� .Outsourcing cost/ D
X

i2I

ziX

sD0
Px.�i D s/ � E� .outsourcing costj�i D s/

D
X

i2I
gi

0

@
ziX

sDqiC1
Px.�i D s/.s � qi /

1

A : (8.64)

A close look into the above expressions reveals that even for tiny instances, a
deterministic equivalent formulated from these expressions becomes intractable. In
fact, the number of scenarios is huge even for a small number of customers (note
that a scenario is defined not only by the set of customers which request the service
but also by the order of the requests when calling for service). Nevertheless, for the
homogeneous case, i.e., pj D p, j 2 J , it is possible to go farther and derive a
tractable deterministic equivalent, as we show next.
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When all the customers have the same probability of requesting the service, then
�i follows a binomial distribution with parameters zi and p. Thus, Px.�i D s/ D�zi
s

�
ps.1 � p/zi�s , s D 0; : : : ; zi . We denote by �tps the probability that a binomial

random variable with parameters t and p takes the value s. In the homogeneous
case, it is straightforward to show that P.�j D 1j�i D s/ D s=t and consequently
(taking also (8.62) into account) that P.�j D 1j�i D s/Pi .s/ D minfqi ; sg=t , which
does not depend on x. Accordingly, the service cost (8.63) can be written as

X

i2I

X

j2J

 
cijxij

ziX

sD0
�zips

minfqi ; sg
t

!
:

A deterministic equivalent can now be obtained by considering discretized location
and allocation variables accounting for the number of customers allocated to a
facility. In particular, define yti as a binary variable equal to 1 is a facility is located
at i 2 I with t customers allocated to it (t D `i ; : : : ; jJ j) and 0 otherwise. Define,
also, xtij as a binary variable equal to 1 if customer j 2 J is allocated to facility i 2 I
which has t customers allocated to it (t D `i ; : : : ; jJ j). Finally, we can formulate a
deterministic equivalent problem:

Minimize
X

i2I

jJ jX

tD`i
yti gi

2

4
tX

sDqiC1
�tps.s � qi /

3

5

C
X

i2I

X

j2J

0

@cij

jJ jX

tD`i
xtij

"
tX

sD0
�tps

minfqi ; sg
t

#1

A (8.65)

subject to
X

i2I

jJ jX

tD`i
xtij D 1; j 2 J (8.66)

X

j2J
xtij D tyti ; i 2 I; t D `i ; : : : ; jJ j (8.67)

jJ jX

tD`i
yti � 1; i 2 I (8.68)

yti 2 f0; 1g; i 2 I; t D `i ; : : : ; jJ j (8.69)

xtij 2 f0; 1g; i 2 I; j 2 J; t D `i ; : : : ; jJ j: (8.70)

Albareda-Sambola et al. (2011) show that using a general solver, instances of the
problem with a realistic size can be solved within an acceptable CPU time using
the model above. The authors also explore the advantages of the homogenous case
for the alternative outsourcing action they consider. The reader should refer to their
paper for further details.
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Recently, Hinojosa et al. (2014) considered a problem with location decisions
made at a tactical or operational level, i.e., location decisions are ex post decisions.
The multi-product problem considered in this paper arises in the context of logistics
systems. Like in some of the above problems, the available distribution channels
correspond to a decision made before demand is known and result from some
contract or option. Furthermore, due to the limited capacity at the facilities, the
distribution channels contracted in advance may turn out to be insufficient for
covering the demand that occurs. In this case, a penalty is incurred (corresponding,
e.g., to a “last minute” and thus more expensive contract, to an outsourcing action,
or simply to an opportunity loss cost). The location decisions correspond to the
“activation” of existing equipments or facilities from where the commodities will
be shipped to the customers. Accordingly, this becomes a decision that can be
made only after demand is revealed. The authors formulate the extensive form of
the deterministic equivalent and solve it for instances with a realistic size using a
general solver.

In all of the above models, the recourse function is the expected value of the
second-stage problem. As mentioned before, this conveys a neutral attitude of the
decision maker towards risk. Location decisions are often strategic and involve
significant investments. Accordingly, a risk-averse attitude towards risk cannot be
disregarded as a possibility to be considered. One way of capturing such attitude
consists of applying a Markowicz type of approach in which the recourse function
is expanded to include a variability measure. Taking, as an example, model (8.26)–
(8.31) this consists of defining

Q.y/ D E� ŒQ.y; �/� � �Var� ŒQ.y; �/� : (8.71)

Such a modeling framework in facility location is far from new (see Jucker and
Carlson 1976). Nevertheless, this type of approach has a clear disadvantage: it often
results in a non-linear large-scale mixed-integer model. Different possibilities for
overcoming this drawback are discussed by Louveaux (1993).

Stochastic discrete facility location problems have attracted much attention in
the recent years. Some papers not mentioned so far include those by Ravi and Sinha
(2006), Lin (2009), Wang et al. (2011) and Kiya and Davoudpour (2012).

In the context of logistics with particular emphasis to logistics network design,
we can also observe an increasing attention paid to stochastic facility location
problems (see Chap. 16 for further details). We can refer, among others, to Aghezzaf
(2005), Listeş and Dekker (2005), Mo and Harrison (2005), Romauch and Hartl
(2005), Pan and Nagi (2010), Fonseca et al. (2010), and Nickel et al. (2012).

Recently, Alumur et al. (2012) explored the possibility of using a robustness
measure within a stochastic programming modeling framework. The authors apply
the idea to a hub location problem. Uncertainty is associated with two sets of
parameters. In both cases, uncertainty can be captured by a finite set of scenarios.
For one set of parameters, probabilistic information is assumed to be known which
is not the case for the other set. The authors propose a so-called robust-stochastic
model: for each scenario associated with the parameters that have no probabilistic
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information associated to them, a stochastic program is formulated, capturing the
uncertainty associated with the other set of parameters (those for which probabilistic
information exists). Then, a minmax regret formulation is proposed for the overall
problem. The reader should refer to the paper for further details.

As in the preceding section, when using a stochastic programming approach, it
is important to evaluate its relevance compared to a more simplified deterministic
approach. Although no robust measure exists for asserting such relevance, two
measures are often used to give an indication of such relevance: the EVPI and
the value of the stochastic solution (VSS). The EVPI is computed as described in
Sect. 8.3. To obtain it, we have to solve the distributional problem (i.e., to find the
optimal value for each scenario). In many cases this is cumbersome, namely when
the number of scenarios is high or even infinity. The VSS emerges as an alternative
and can be obtained in two steps: (i) the expected value problem is solved. This is
the deterministic problem obtained when the random variables are replaced by their
expectation; (ii) the stochastic problem is considered and the difference between
its optimal value and the value of the solution obtained in (i) is computed. This
difference gives the VSS (the reader should refer to Birge and Louveaux 2011 for
further details).

8.5 Chance-Constrained Facility Location Problems

One important class of optimization problems under uncertainty includes chance-
constrained problems. The idea is that one or several constraints of the problem are
not required to always hold. Instead, the decision maker is satisfied if they hold with
some given probability. This type of constraints may be of relevance when dealing
with reliability issues.

In the particular case of a facility location problem, if demand is uncertain but
still the decision maker wants to plan for satisfying all the demand whatever it
may turn out to be, the resulting solution may call for an operational capacity
much above the demand level that turns out being observed. In such situation, one
alternative is to plan for assuring a certain service level, i.e., assuring that with some
pre-specified probability, the overall demand does not exceed the capacity of the
operating facilities.

In order to exemplify these modeling capability, we consider the classical single-
source capacitated facility location problem. Assume that fixed costs are associated
with the location of the facilities and also with the allocation of customers to the
facilities. Additionally, assume that facility i 2 I has capacity qi , and that demands
dj (j 2 J ) are stochastic. We can formulate a capacitated facility location problem
with minimum service level as follows:

Minimize
X

i2I
fiyi C

X

i2I

X

j2J
cijxij (8.72)
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subject to (8.16)–(8.18)

P

2

4
X

j2J
dj xij � qiyi

3

5 � ˛i ; i 2 I (8.73)

xij 2 f0; 1g; i 2 I; j 2 J: (8.74)

In this model, ˛i is the minimum probability of having the demand assigned to
facility i 2 I not exceeding the capacity of the facility. Typically, high values are
assumed for ˛i (e.g., 0:90 or 0:95).

One important feature in a model like the one above, is the possibility of obtain-
ing a deterministic equivalent formulation with the probabilistic constraints being
replaced by deterministic ones. Unfortunately, this is not always a straightforward
task. One successful example for the problem above is due to Lin (2009). The author
considers independent demands following a Poisson or a Gaussian distribution. For
illustrative purposes, we detail the procedure in the former case.

If the demands dj are independent and follow a Poisson distribution P.�j /,
j 2 J , then the total demand assigned to facility i 2 I , i.e.,

P
j2J dj xij follows

a Poisson distribution P.	i / with 	i D P
j2J �j xij. Accordingly, (8.73) becomes

equivalent to

qi yiX

`D0
e�	i 	

`
i

`Š
� ˛i ; i 2 I (8.75)

which, in turn, has a deterministic equivalent of the form

X

j2J
�j xij � �iyi ; i 2 I: (8.76)

In this model, �i D E Œ� �, where � is a random variable following a Poisson
distribution with an expectation that is equal to the largest value assuring that
P.� � qi / � ˛i . As detailed by Lin (2009), the value �i can be easily obtained by a
search method in which the mean of� is changed untilP.� � qi / is approximately
equal to ˛i (i 2 I ). After replacing the probabilistic constraints (8.73) by (8.76)
the resulting problem becomes a single-source capacitated facility location problem
that can be tackled by any of the available methods for such problem. Lin (2009)
also explores the possibility of having independent demands following a Gaussian
distribution. In this case, the deterministic equivalent of the probabilistic constraints
yields a non-convex feasible region. The author proposes a relaxation for the
problem that is then embedded into a heuristic approach.

A well-known facility location problem with chance constraints is the covering-
location problem proposed by ReVelle and Hogan (1989). The authors assume that
a server may be busy when a customer requests to be served. Let us denote by �
the probability that this occurs. In a discrete covering-location problem, we have
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a set of potential locations for the facilities (see Chap. 5). A customer is said to
be covered if a facility is established within a maximum distance or travel time
specified in advance. Accordingly, for each customer, we can find the subset of
potential locations for the facilities which cover the customer. The goal is to cover all
the demand minimizing the number of facilities installed. The “classical” covering
constraints are

X

i2Ij
yi � 1; j 2 J; (8.77)

where Ij denotes the set of locations covering customer j 2 J . The probabilistic
version of these constraints is the following:

P ŒAt least one location is available for serving customer j � �˛; j 2 J: (8.78)

These constraints have as a deterministic equivalent,

X

i2Ij
yi � ˇ; (8.79)

with ˇ D dln.1 � ˛/= ln�e. In fact, the probability that no location among those
covering customer j 2 J is available to serve the customer immediately is given by

�
P
i2Ij

yi . Thus, the probability that at least one location covering customer j 2 J
can serve it immediately is given by 1� �

P
i2Ij

yi which, together with (8.78) leads
to the deterministic equivalent just presented.

8.6 Challenges and Further Reading

Despite all the existing work on facility location problems under uncertainty, many
challenges still exist. In this section, we provide the reader with some notes on
relevant issues not discussed in the previous pages, and we give suggestions for
further reading.

8.6.1 Multi-Stage Stochastic Programming Models

In all the stochastic facility location problems discussed above, it was assumed that
there is a single moment for uncertainty to be revealed. However, in many situations,
this is not the case. Instead, we may observe uncertainty being progressively
revealed in more than one occasion. When this happens, the two-stage stochastic
programming modeling framework discussed in Sect. 8.4 is no longer appropriate,



8 Facility Location Under Uncertainty 197

and a multi-stage setting is required. Nickel et al. (2012) address one such case by
considering a multi-period facility location problem with service level and invest-
ment decisions. The demand as well as the rates of return for the investments are
uncertain. Uncertainty is captured via a scenario tree. In addition to minimizing the
overall cost, the problem seeks to minimize the downside risk.3 The deterministic
equivalent problem is formulated in its extensive form and solved using a general
solver. Other works addressing multi-stage stochastic facility location problems
include the one by Hernández et al. (2012) which considers a multi-period problem
with stochastic demands. The problem consists of determining the locations and
dimensions of a preset number of new jails in Chile and determine when and where
to expand the existing capacity. The goal is to minimize the total expected costs
of the system. A large-scale model is obtained and solved approximately using a
heuristic combining branch-and-fix coordination (Alonso-Ayuso et al. 2003) and
branch-and-bound. Albareda-Sambola et al. (2013), propose a so-called fix-and-
relax coordination approximation procedure for tackling a multi-period facility
location problem with uncertainty in the costs and in the customers’ requests for
service.

Taking the previous works into account, one might think that a stochastic
multi-period facility location problem necessarily leads to a multi-stage stochastic
programming problem. However, this is not true. In some cases, the strategic
multi-period decisions can be seen as first-stage decisions in a two-stage stochastic
programming modeling framework. For instance, we may decide here-and-now how
the location of the facilities will occur during the entire planning horizon. In the
second stage problem, the operational decisions will be made, which can adapt to
the different realizations of the uncertainty. Works exploring this possibility include
those by Ahmed and Garcia (2004) and Aghezzaf (2005).

8.6.2 Solution Methods

Most facility location problems under uncertainty are NP-hard since they generalize
well-known NP-hard problems. In particular, this is true for the discrete problems
that have been discussed in this chapter. In these cases, either the size of an instance
to be solved is such that the resulting model is manageable by a general solver or
one must resort to techniques from combinatorial optimization, such as heuristics
and relaxation-based approaches.

Regarding robust facility location problems, the minmax structure often con-
sidered makes them harder to solve than the corresponding minsum deterministic
problems. The reader can refer to Snyder (2006) for a deeper discussion on this
issue. That paper presents a sketch of the procedure typically followed for tackling
minmax regret problems. Although some general procedures have been proposed

3Measure of how much the return on investment is below a target initially imposed.
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for minmax problems (e.g., Mausser and Laguna (1998), for minmax regret linear
problems with interval uncertainty) in most cases, specially tailored procedures,
exact or approximate, must be developed for efficiently tackling the problems.
Analytic results and polynomial time algorithms have also been proposed but only
for problems with some underlying structure, such as a network.

As far as stochastic discrete facility location problems are concerned, again, they
are often difficult to solve to optimality. Even when the number of scenarios is finite
and an extensive form of the deterministic equivalent can be obtained, we often end
up with a large-scale mixed-integer linear programming problem not manageable
by a general solver. In this case, specific approaches, exact or heuristic, have to be
developed for tackling the problems. Laporte et al. (1994) make use of the integer
L-shaped method proposed by Laporte and Louveaux (1993) for solving a two-stage
stochastic facility location problem with first-stage binary variables. In the context
of logistics systems, Alonso-Ayuso et al. (2003) introduce the so-called branch-
and-fix coordination scheme, which they consider for solving a stochastic facility
location problem. The technique proposed can be used for solving general two-stage
stochastic programming problems with binary first-stage variables and both binary
and continuous variables in the second stage.

A general approach for multi-stage stochastic mixed-integer linear programming
problems was proposed by Escudero et al. (2009, 2010). In those papers, the branch-
and-fix coordination scheme proposed by Alonso-Ayuso et al. (2003) was extended
in order to solve multi-stage problems with integer variables. As mentioned above,
Hernández et al. (2012) embed such approach within a heuristic procedure.

When exact approaches fail to solve the problems, we must resort to approximate
procedures. One particular difficulty in stochastic programming arises when the
number of scenarios is too large or even infinite. In this case, one possibility is
to use a sampling approach. The sample average approximation approach (SAA)
introduced by Kleywegt et al. (2001) is one such example which has become
quite popular. Applications of this approach to stochastic facility location were
proposed by Kiya and Davoudpour (2012), Romauch and Hartl (2005) and Santoso
et al. (2005). Sampling approaches have also been proposed for general chance-
constrained problems by Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009).
The application to facility location problems is still to be explored.

Other algorithms for stochastic programming problems include the generation
of cutting planes introduced by Guan et al. (2009) for multi-stage problems, and
the dual decomposition based approaches developed by Carrøe and Schultz (1999)
and Escudero et al. (2012). To the best of our knowledge, the first type of approach
was never applied to stochastic facility location. However, there are several papers
proposing dual decomposition based algorithms for problems that include location
decisions, namely those by Schütz et al. (2008, 2009). The latter work combines dual
decomposition with SAA. In this type of method, the non-anticipativity constraints
are explicitly considered in the model and dualized, which allows a scenario-
decoupling for the relaxed problem.
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8.6.3 Scenario Generation

In this chapter it has often been assumed that uncertainty can be represented by a set
of scenarios. In particular, it has been assumed that each scenario fully determines
all the uncertain parameters. In practice, defining the scenarios is itself a relevant
problem.

In some situations, scenarios are associated with driving forces (e.g., the political
conditions in a specific region, economic trends or some technological develop-
ments) which, in turn, influence the input of the model that supports the decision
making process. In this case, it is up to the decision maker to understand these
driving forces and the way they influence the input of the model. This understanding
leads to a complete definition of the scenarios. The reader should refer to Kouvelis
and Yu (1997) for a deeper discussion on this matter.

In other situations, namely in the context of stochastic programming, scenario
generation may be important either to instantiate large deterministic equivalent
models or to restrict the set of scenarios in a sampling approach used within a
solution procedure. The reader should refer to Dupačová et al. (2003), Høyland and
Wallace (2001), Di Domenica et al. (2007) and the references therein for further
details.

In the case of facility location problems, a short discussion on scenario generation
is presented by Kouvelis and Yu (1997) who discuss the issue in the context of a
network with uncertain node weights. Assuming a small set of possible values for
the demand of each node, one possibility is to take as a scenario each element of the
cartesian product of the sets for all nodes. Nevertheless, this is strongly discouraged
since the number of scenarios easily leads to intractable models. Instead, the
authors highlight that in many location problems the driving forces mentioned
above are the key element inducing uncertainty and thus should be identified and
taken into account. Typically, these forces induce high correlation between different
parameters. If a small number of such factors is identified, the number of scenarios
associated with them should be manageable.

8.6.4 Other Notes

One important research topic in facility location under uncertainty regards location-
inventory problems. These are problems in which location decisions are combined
with inventory management: uncertainty can hardly be disregarded in a realistic
modeling framework. This type of problems that was introduced by Daskin et al.
(2002) and extended by Snyder et al. (2007) is of great relevance in complex systems
such as those arising in logistics. The reader should refer to Chap. 16 for further
details.
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Another area with great potential is stochastic location-routing. One such
problem was solved by Albareda-Sambola et al. (2007). This is a complex and
challenging topic.

Finally, this chapter could not come to an end before a brief reference to
continuous and network facility location problems under uncertainty. We did not
focus on this type of problems although some significant work has been done and
much progress achieved. The reader can refer to Snyder (2006) for a review of the
fundamental literature addressing these problems. Some recent works on network
facility location under uncertainty include those by Conde (2007), Berman and
Drezner (2008), Berman and Wang (2010), Sonmez and Lim (2012), Lim and
Sonmez (2013), López-de-los-Mozos et al. (2013), Lu (2013), and Lu and Sheu
(2013). Recent references on continuous problems include Blanquero et al. (2011)
and Drezner et al. (2012).

8.7 Conclusions

In this chapter we have covered several essential aspects related with discrete
facility location under uncertainty. Despite the extensive work reported, the existing
literature can still be considered scarce in comparison with the literature devoted
to deterministic models. However the relevance of facility location in areas where
uncertainty if often unavoidable, such as logistics, routing and transportation, has
led to an increased interest in the topic addressed in this chapter. In order to better
support many decision making processes, it is important to embed uncertainty in the
optimization models and, by doing so, to obtain solutions which can anticipate it.
The existing literature shows that despite the advances we have observed, dealing
with uncertainty in facility location problems remains a challenging and promising
research field.
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Chapter 9
Location Problems with Multiple Criteria

Stefan Nickel, Justo Puerto, and Antonio M. Rodríguez-Chía

Abstract This chapter analyzes multicriteria continuous, network, and discrete
location problems. In the continuous framework, we provide a complete description
of the set of weak Pareto, Pareto, and strict Pareto locations for a generalQ-criteria
location problem based on the characterization of three criteria problems. In the
network case, the set of Pareto locations is characterized for general networks as
well as for tree networks using the concavity and convexity properties of the distance
function on the edges. In the discrete setting, the entire set of Pareto locations
is characterized using rational generating functions of integer points in polytopes.
Moreover, we describe algorithms to obtain the solutions sets (the different Pareto
locations) using the above characterizations. We also include a detailed complexity
analysis. A number of references has been cited throughout the chapter to avoid the
inclusion of unnecessary technical details and also to be useful for a deeper analysis.

Keywords Level curves • Networks • Pareto locations • Pareto-optimal •
Rational functions • Tree networks

9.1 Introduction

Very often, locational decisions involve the investment of a significant amount of
money. It will be therefore very probable that a locational decision is made by a
group ofQ decision makers (DM). In turn, it is very likely that each DM will choose
a median function to evaluate the quality of a new location, but the weights assigned
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to clients may differ a lot. The same scenario occurs if one location for different
types of goods has to be found.

Multicriteria analysis of location problems has received considerable attention
within the scope of continuous, network, and discrete models in the last years. For
an overview of general methods as well as for a more bibliographic overview of
the related location literature the reader is referred to Ehrgott (2005) and Nickel
et al. (2005a). Presently, there are several problems that are accepted as classical
ones: the point-objective problem (see, e.g., Wendell and Hurter 1973; Hansen et al.
1980; Carrizosa et al. 1993), the continuous multicriteria min-sum facility location
problem (see, e.g., Hamacher and Nickel 1996; Puerto and Fernández 1999), the
network multicriteria median location problem (see, for instance, Hamacher et al.
1999; Wendell et al. 1977) and the multicriteria discrete location problem (see, e.g.,
Fernández and Puerto 2003), among others.

In contrast to problems with only one objective, we do not have a natural ordering
in higher dimensional objective spaces. Therefore, in multicriteria optimization one
has to decide which concept of “optimality” to choose.

The goal in a multicriteria location problem is to optimize simultaneously a set
of objective functions (f 1; : : : ; f Q). Therefore, the formulation of the problem is:

v � min
x2X�Rd

.f 1.x/; : : : ; f Q.x//; (9.1)

where v � min stands for vectorial optimization. Observe that we get points in a
Q-dimensional objective space where we do not have the canonical order of R

anymore. Accordingly, for this type of problems, different concepts of solution have
been proposed in the literature (the reader is referred to Ehrgott (2005) as a general
reference in multicriteria optimization). A point x 2 Rd is called a Pareto location
(or Pareto-optimal) if there exists no y 2 Rd such that f q.y/ � f q.x/ 8q 2
Q WD f1; : : : ;Qg and f p.y/ < f p.x/ for some p 2 Q. We denote the set of
Pareto solutions by X �

Par

�
f 1; : : : ; f Q

�
or simply by X �

Par if this is possible without
causing confusion. If f q.x/ � f q.x0/ 8 q 2 Q and 9q 2 Q W f q.x/ < f q.x0/
we say that x dominates x0 in the decision space and f .x/ dominates f .x0/ in the
objective space.

Alternative solution concepts are weak Pareto-optimality and strict Pareto-opti-
mality. A point x 2 Rd is called a weak Pareto location (or weakly Pareto-optimal)
if there exists no y 2 Rd , such that f q.y/ < f q.x/ 8 q 2 Q : We denote the
set of weak Pareto solutions by X �

w�Par

�
f 1; : : : ; f Q

�
or simply by X �

w�Par if this
is possible without causing confusion. A point x 2 Rd is called a strict Pareto
location (or strictly Pareto-optimal) if there exists no y 2 Rd , y ¤ x, such that
f q.y/ � f q.x/8 q 2 Q :Analogously, the set of strict Pareto solutions is denoted
by X �

s�Par

�
f 1; : : : ; f Q

�
, or simply by X �

s�Par if this is possible without causing
confusion. Note that X �

s�Par � X �
Par � X �

w�Par and in case we are considering
strictly convex functions these three sets coincide. Finally, we recall that Warburton
(1983) proved the connectedness of the set X �

Par when the functions are convex.
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In our proofs we use the concept of level sets. For a function f W Rd ! R the
level set for a value � 2 R is given by L�.f; �/ WD fx 2 Rd W f .x/ � �g (the
strict level set is L<.f; �/ WD fx 2 Rd W f .x/ < �g) and the level curve for a value
� 2 R is given by LD.f; �/ WD fx 2 Rd W f .x/ D �g: For a function f i.�/ we use
the notation

X �.f i / WD arg min
x2Rd

f i .x/:

For two points x and y we denote the segment defined by x and y as xy.
In this chapter we focus on some fundamental results in the continuous,

network and discrete cases. We will describe in some detail a complete geometric
characterization for the planar 1-facility case, an optimal time algorithm for the
1-facility network problem as well as the computation of the entire set of Pareto-
optimal solutions of the discrete multicriteria p-median problem. Although we are
concentrating on the median case we will give some outlook to extensions.

9.2 1-Facility Planar/Continuous Location Problems

In this section we study Problem (9.1) where f 1.�/; : : : ; f Q.�/ are convex, inf-
compact functions, defined in R2, which represent different criteria or scenarios.
Recall that a real function f .�/ is said to be inf-compact if its lower level sets
fx 2 Rd W f .x/ � �g are compact for any � 2 R. The next result states a
useful characterization of the different solution sets defined in the previous section
using level sets and level curves which will be used later.

Theorem 9.1 The following characterizations hold :

x 2X �
w�Par

�
f 1; : : : ; f Q

�,
Q\

qD1
L<.f

q; f q.x// D ; (9.2)

x 2X �
Par

�
f 1; : : : ; f Q

�,
Q\

qD1
L�.f q; f q.x// D

Q\

qD1
LD.f q; f q.x//

(9.3)

x 2X �
s�Par

�
f 1; : : : ; f Q

�,
Q\

qD1
L�.f q; f q.x// D fxg: (9.4)
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Proof If x 62 X �
w�Par

�
f 1; : : : ; f Q

�
, there exists z 2 R2 such that f q.z/ < f q.x/

for each q 2 Q, that means,

z 2
Q\

qD1
L<.f

q; f q.x//:

Hence, we obtain that

Q\

qD1
L<.f

q; f q.x// ¤ ;:

Since the implications above can be reversed the proof is concluded. The
remaining results can be proved analogously. �
Remark 9.1 For the case Q D 2 the previous result states that the set
X �

w�Par.f
1; f 2/ coincides with tangential cusps between the level curves of

functions f 1.�/ and f 2.�/ union with X �.f 1/[X �.f 2/ (see Example 9.1).

Corollary 9.1 If f 1; : : : ; f Q are strictly convex functions then

X �
w�Par.f

1; : : : ; f Q/ DX �
Par

�
f 1; : : : ; f Q

� D X �
s�Par

�
f 1; : : : ; f Q

�
:

Example 9.1 (See Fig. 9.1) Let us consider the points a1 D .0; 0/, a2 D .8; 3/,
a3 D .�3; 5/ and the functions f 1.x/ D kx�a1k1, f 2.x/ D kx�a2k1, f 3.x/ D
kx � a3k1. By Theorem 9.1, X �

w�Par.f
1; f 2/ is the rectilinear thick path joining a1

and a2 and X �
w�Par.f

1; f 3/ is the dark rectangle with a1 and a3 as opposite vertices.

In what follows, since we are dealing with general convex, inf-compact func-
tions, we will focus on providing information about the geometrical structure of
X �

w�Par.f
1; f 2; f 3/. This characterization will allow us to obtain a geometrical

description of X �
Par

�
f 1; f 2; f 3

�
and X �

s�Par

�
f 1; f 2; f 3

�
in the next section for an

important family of functions. Actually, we will characterizeX �
w�Par.f

1; f 2; f 3/ as
a kind of hull delimited by the chains of bicriteria solutions of any pair of functions
f p , f q p; q D 1; 2; 3. This result enables us to obtain the set X �

w�Par

�
f 1; : : : ; f Q

�

by union of three-criteria solution sets already characterized. In order to do that, let

C1.RC
0 ;R

2/ WD
n
' j ' W RC

0 ! R2; ' continuous; lim
t!1 k'.t/k2 D1

o
;

where kxk2 is the Euclidean norm of the point x. C1.RC
0 ;R

2/ is the set of
continuous curves, which map the set of non-negative numbers RC

0 WD Œ0;1/ into
the two-dimensional space R2 and whose image '.RC

0 / is unbounded in R2. These
curves are introduced to characterize the geometrical locus of the points surrounded
by weak-Pareto and Pareto chains.
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a1

a2

a3

X ∗
w−Par(f

1 f3)

X ∗
w−Par(f

1 f 2)

Fig. 9.1 Illustration of Example 9.1

For a set S � R2 we define the enclosure of S by

encl .S/ WD ˚
x 2 R2 W 9 " > 0 with B.x; "/ \ S D ; ; 9 t' 2 Œ0;1/with

'.t'/ 2 S for all' 2 C1.RC
0 ;R

2/with'.0/ D x � ;

where B.x; "/ D fy 2 R2 W ky � xk2 � "g. Note that S \ encl .S/ D ;.
Informally, encl .S/ contains all the points which are surrounded by S , but do not
belong themselves to S .

We denote the union of the bicriteria chains of weak-Pareto solutions by

X
gen

w�Par

�
f 1; f 2; f 3

� WD
2[

pD1

3[

qDpC1
X �

w�Par .f
p; f q/:

We use “gen” since this set will generate the set X �
w�Par

�
f 1; f 2; f 3

�
. The next

theorem provides useful geometric information to build X �
w�Par

�
f 1; f 2; f 3

�
. Its

proof can be found in Rodríguez-Chía and Puerto (2002).

Theorem 9.2

X �
w�Par.f

1; f 2; f 3/ D encl
�
X gen

w�Par

�
f 1; f 2; f 3

�� [X gen
w�Par

�
f 1; f 2; f 3

�
:



210 S. Nickel et al.

Remark 9.2 It is worth noting that the region encl
�
X

gen
w�Par

�
f 1; f 2; f 3

��
is well-

defined because the set X gen
w�Par

�
f 1; f 2; f 3

�
is connected (see Warburton 1983).

As an illustration of the above result we present the following example.

Example 9.2 Let us consider three points a1 D .0; 0/, a2 D .3;�1/ and a3 D
.3; 3/, and the functions f 1.�/, f 2.�/ and f 3.�/ such that,

L�.f 1; 1/ D
�
.x1; x2/ W x

2
1

4
C x22

9
� 1

�

L�.f 2; 1/ D ˚
.x1; x2/ W .x1 � 3/2 C .x2 C 1/2 � 1

�

L�.f 3; 1/ D
�
.x1; x2/ W .x1 � 3/

2

9
C .x2 � 3/2

4
� 1

�
:

We can see that these three functions are convex functions. Therefore by the previ-
ous result we obtain the geometrical characterization of the set X �

w�Par.f
1; f 2; f 3/;

this set is the shadowed region in Fig. 9.2.

Now we are in the right position to show the main result about the geometrical
structure of X �

w�Par.f
1; : : : ; f Q/.

Fig. 9.2 Illustration of
Example 9.2

a1

a2

a3

X ∗
w−Par(f

1 f 3)

X ∗
w−Par(f

1 f 2)

X ∗
w−Par(f

2 f 3)

X ∗
w−Par(f

1 f2 f3)
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Theorem 9.3

X �
w�Par.f

1; : : : ; f Q/ D
[

p;q;r2Q
p<q<r

X �
w�Par.f

p; f q; f r/:

Proof By Theorem 9.1, x 2 X �
w�Par.f

1; : : : ; f Q/ if and only if
\

q2Q
L<.f

q;

f q.x// D ;. Furthermore, by Helly’s theorem (see Rockafellar 1970), this
intersection is empty if and only if there exist p; q; r 2 Q .p < q < r/ such
thatL<.f p; f p.x//\L<.f q; f q.x//\L<.f r ; f r .x// D ; and this is equivalent
to x 2X �

w�Par.f
p; f q; f r /. Since in any case we have that

[

p;q;r2Q
p<q<r

X �
w�Par.f

p; f q; f r / �X �
w�Par.f

1; : : : ; f Q/;

the result follows. �
Remark 9.3 This result extends previous characterizations in the literature:

– Taking f i .x/ D kx�aikwith ai 2 R2 for i D 1; : : : ;Q and k�k being a strictly
convex norm or a norm derived from a scalar product, we get Proposition 1.3,
Theorem 4.3 and Corollary 4.1 in Durier and Michelot (1986). The set of weakly
efficient locations is the convex hull of the points ai with i D 1; : : : ;Q. In
Example 9.3, we illustrate this result.

– Taking f i .x/ D kx � aik with ai 2 R2 for i D 1; : : : ;Q and k � k being
a polyhedral gauge we get Theorem 6.1 in Durier (1990), where the set of
weakly efficient locations is the union of elementary convex sets, (see Durier
and Michelot 1985 for a definition). In Example 9.4, we illustrate this result.

– Taking f i .x/ D maxj2M wijkx � ajk with aj 2 R2, wij > 0 for i D 1; : : : ;Q,
j 2 M WD f1; : : : ; mg and k � k being the `1-norm, we get Theorem 6.1
in Hamacher and Nickel (1996), where the set of weakly efficient locations is
the union of the sets of weakly efficient locations for all pairs of functions. In
Example 9.5, we illustrate the use of this result.

Example 9.3 (See Fig. 9.3) Let us consider the points a1 D .0; 0/, a2 D .5;�10/,
a3 D .10; 0/ and the functions f i .x/ D kx � aik2 for i D 1; 2; 3. By Theorem 9.2,
X �

w�Par.f
1; f 2; f 3/ is the dark region, which in this case is the convex hull of a1,

a2 and a3.

Example 9.4 (See Fig. 9.4) Let us consider the points a1 D .0; 0/, a2 D .8; 3/,
a3 D .�3; 5/ and the functions f 1.x/ D kx � a1k1, f 2.x/ D kx � a2k1 and
f 3.x/ D kx � a3k1. By Theorem 9.1, X �

w�Par.f
1; f 2/ is the thick path joining a1

and a2, X �
w�Par.f

2; f 3/ is the thick path joining a2 and a3, and X �
w�Par.f

1; f 3/

is the dark rectangle with a1 and a3 as opposite extreme points. Therefore, by
Theorem 9.2, X �

w�Par.f
1; f 2; f 3/ is the dark region surrounded by the union of
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a1

a2

a3

X ∗
w−Par(f

1 f2 f3)

Fig. 9.3 Illustration of Example 9.3

a1

a2

a3

X ∗
w−Par(f

1 f3)

X ∗
w−Par(f

1 f 2)

X ∗
w−Par(f

2 f3)

X ∗
w−Par(f

1 f 2 f 3)

Fig. 9.4 Illustration of Example 9.4

the three previous sets. Note that this region is the union of two full dimensional
elementary convex sets.

Example 9.5 (See Fig. 9.5) Let us consider the points a1 D .4; 16/, a2 D .10; 5/,
a3 D .25; 12/ and the functions f i .x/ D kx � aik1 for i D 1; 2; 3. By Theo-
rem 9.1, X �

w�Par.f
1; f 2/ D R1, X �

w�Par.f
1; f 3/ D R2 [ R4, X �

w�Par.f
2; f 3/ D

R3 [ R4. By Theorem 9.2, X �
w�Par.f

1; f 2; f 3/ D R1 [ R2 [ R3 [ R4. Note
that in this example X �

w�Par.f
1; f 2; f 3/ D X �

w�Par.f
1; f 2/ [X �

w�Par.f
1; f 3/ [

X �
w�Par.f

2; f 3/.
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Fig. 9.5 Illustration of
Example 9.5

a1

a2

a3
R4R1

R2

R3

9.2.1 Polyhedral Planar Minisum Location Problems

Consider a set of demand points A WD fa1; : : : ; aM g � R2. Let Bi � R2, for i 2
M WD f1; 2; : : : ;M g, be a compact, convex set containing the origin in its interior.
The gauge with respect to Bi is defined as i W R2 ! R; i .x/ WD inffr > 0 W x 2
rBi g. Taking this definition into account, the planar minisum location problem is

min
x2R2

MX

iD1
wi i .x � ai /;

where wi is a nonnegative weight associated with the demand point ai (i 2M ).
In this section we study the particular case where the functions f 1; : : : ; f Q

are minisum location objective functions and the distances are measured with
polyhedral gauges, i.e., the unit balls associated with these gauges are convex
polytopes. This type of objective function is not strictly convex and for this reason,
the three solutions sets (Pareto, weak Pareto and strict Pareto locations) do not
coincide. Therefore, in this section we focus on the characterization of the Pareto
locations and how it can be extended to the remaining solution sets.

The polar setBo
i ofBi is given byBo

i WD fp 2 R2 W hp; xi � 18x 2 Bi g and the
normal cone toBi at x is given byN.Bi ; x/ WD fp 2 R2 W hp; y�xi � 08y 2 Bi g,
where h�; �i denotes the scalar product. In case of polyhedral gauges (i.e., Bi is a
polytope), the set of extreme points of Bi is denoted by Ext.Bi / WD fei1; : : : ; eiGi g .
The maximal number of extreme points is denoted by Gmax WD maxfGi W i 2M g.
We define fundamental directions d i1 ; : : : ; d

i
Gi

as the half-lines determined by 0 and
ei1; : : : ; e

i
Gi

(see Fig. 9.6).
Let � D .pi /i2M be a family of elements of R2 such that pi 2 Bo

i for each
i 2M and let C� D T

i2M .ai C N.Bo
i ; pi //. According to Durier and Michelot
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p1 +N(B0 p1)

p2 +N(B0 p2)

(0, 0)
(0, 0)

d1

d2

d3

d4

e1

e2

e3

e4

B
B0

p1

p2

Fig. 9.6 Illustration of the unit ball for the `1-norm, its dual ball and two normal cones of this dual
ball

a1

a2

(a1+N(B0 p1)) ∩ (a2+N(B0 p2))

Fig. 9.7 Illustration of an elementary convex set for the `1-norm

(1985), a nonempty convex set C is called an elementary convex set if there exists
a family � such that C� D C. If the unit balls are polytopes, then we can obtain
the elementary convex sets as intersections of cones generated by fundamental
directions of these balls pointed at each demand point (for details, see Durier and
Michelot 1985). The two-dimensional elementary convex sets are called cells. Let
C denote to the set of these cells. Therefore each cell is a polyhedron whose vertices
are the intersection points, which we denote by IP . Finally, in the case of R2 there
exists an upper bound on the number of cells which isO..MGmax/

2/ (see Durier and
Michelot 1985).

In Fig. 9.7 we show an elementary convex set for the `1-norm for two points
a1, a2. In this example the dual norm is the `1-norm where its unit ball B0 has
the extreme points f.1; 1/; .�1; 1/; .�1�; 1/; .1;�1/g. The normal cones to B0 at
p1 D .1;�1/ and p2 D .�1; 1/ are given byN.B0; p1/ D cone..1; 0/; .0;�1// and
N.B0; p2/ D cone..�1; 0/; .0; 1//, respectively, where cone stands for the conical
hull of its argument. Thus, the elementary convex set C� with � D .p1; p2/ is the
rectangle defined by a1 and a2 with sides parallel to the coordinates axes.
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9.2.1.1 Bicriteria Case

In this section we restrict ourselves to the bicriteria case, which, as will be seen later,
is the basis for solving theQ-criteria case. To this end, we are looking for the Pareto
solutions of the vector optimization problem in R2,

min
x2R2

 
f 1.x/ WD

MX

iD1
w1i i .x � ai /; f 2.x/ WD

MX

iD1
w2i i .x � ai /

!
;

where the weights wqi are non negative (i D 1; : : : ;M ; q D 1; 2). The following
theorem provides a geometric characterization of the set X �

Par.

Theorem 9.4 X �
Par

�
f 1; f 2

�
is a connected chain from X �.f 1/ to X �.f 2/

consisting of faces or vertices of cells, or complete cells.

Proof First, we note that X �.f q/ ¤ ; for q D 1; 2 (see Puerto and Fernández
2000). Moreover, X �

Par \ X �.f q/ ¤ ; for q D 1; 2. Therefore, we know that
X �

Par ¤ ;, so we can choose x 2 X �
Par. There exists at least one cell C 2 C with

x 2 C. We can assume without loss of generality that C is bounded. We also note
that the functions f 1 and f 2 are linear within each cell (see Rodríguez-Chía et al.
2000). Given a set A, in what follows, conv(A), bd(A) and int(A) will denote the
convex hull, the boundary and the interior of the set A, respectively. Hence three
cases may occur:

Case 1: x 2 int.C/. Since x 2 X �
Par we obtain

2\

qD1
L�.f q; f q.x// D

2\

qD1
LD.f q; f q.x//

and by linearity of the median problem in each cell we have

2\

qD1
L�.f q; f q.y// D

2\

qD1
LD.f q; f q.y// 8 y 2 C

which means y 2 X �
Par 8 y 2 C, hence C �X �

Par.
Case 2: x 2 ab WD conv.fa; bg/ � bd.C/ and a; b 2 Ext.C/. We can choose
y 2 int.C/ and two cases can occur:

Case 2.1: y 2 X �
Par. Hence we can continue as in Case 1.

Case 2.2: y … X �
Par. Therefore using the linearity we first obtain

2\

qD1
L�.f q; f q.z// ¤

2\

qD1
LD.f q; f q.z// 8 z 2 int.C/:
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Second, since x 2X �
Par, we have

2\

qD1
L�.f q; f q.z// D

2\

qD1
LD.f q; f q.z// 8 z 2 ab:

Hence, we have that C 6�X �
Par and ab �X �

Par.

Case 3: x 2 Ext.C/. We can choose y 2 int.C/ and two cases can occur

Case 3.1: If y 2 X �
Par, we can continue as in Case 1.

Case 3.2: If y … X �
Par, we choose z1; z2 2 Ext.C/ such that xz1; xz2 are

faces of C,

– If z1 or z2 are in X �
Par, we can continue as in Case 2.

– If z1 and z2 are not in X �
Par, then using the linearity in the same way as

before we obtain that .C n fxg/\X �
Par D ;.

Hence, we conclude that the set of Pareto solutions consists of complete cells,
complete faces, and vertices of these cells. Since we know that the set X �

Par is
connected, the proof is completed. �

In the following we develop an algorithm to solve the bicriteria planar minisum
location problem. The idea of this algorithm is to start in a vertex x of the cell
structure which belongs to X �

Par, say x 2 X �
1;2 WD arg minx2X �.f 1/ f

2.x/ (set of
optimal lexicographical locations, see Nickel 1995). Then, using the connectivity of
X �

Par, the algorithm proceeds by moving from vertex x to another Pareto-optimal
vertex y of the cell structure which is connected with the previous one by an
elementary convex set. This procedure is repeated until the end of the chain reaches
X �
2;1 WD arg minx2X �.f 2/ f

1.x/.
Let C be a cell and y, x and z three vertices of C enumerated counterclockwise

(see Fig. 9.8). By the linearity of the level sets in each cell we can distinguish the
following disjoint situations, if x 2X �

Par :

(S1) C �X �
Par , i.e., C is contained in the chain.

(S2) xy and xz are candidates for X �
Par and int.C / 6�X �

Par.
(S3) xy is candidate for X �

Par and xz is not contained in X �
Par.

(S4) xz is candidate for X �
Par and xy is not contained in X �

Par.
(S5) Neither xy nor xz are contained in X �

Par.

We denote by sit.C; x/ the situations (S1–S4 or S5) in which the cell C is
classified according to the extreme point x of C. The following lemma, whose proof
is based on an exhaustive case analysis of the different relative positions of x within
C, can be found in Weissler (1999). It states when a given segment belongs to the
Pareto-set in terms of the sit.�; �/ function.

Lemma 9.1 Let C1; : : : ;CPx be the cells containing the intersection point x ,
considered in counterclockwise order, and y1; : : : ; yPx the intersection points
adjacent to x , considered in counterclockwise order (see Fig. 9.9). If x 2 X �

Par
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Cy

z

x

Fig. 9.8 Illustration to y; x; z 2 Ext.C/ in counterclockwise order

x

y1

y2

y3

y4
y5

y6

C1C2

C3

C4

C5

C6

Fig. 9.9 Illustration to Lemma 9.1 with Px D 6

and i 2 f1; : : : ; Pxg, then the following holds (assume that i C 1 D 1 whenever
i D Px):

xyiC1 �X �
Par ()

8
ˆ̂<

ˆ̂:

sit.Ci ; x/ D S1
or sit.CiC1; x/ D S1
or

�
sit.Ci ; x/ 2 fS2; S3g

sit.CiC1; x/ 2 fS2; S4g
�

9
>>=

>>;

These results validate the following algorithm for finding X �
Par

�
f 1; f 2

�
.
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Algorithm 9.1 Step 1. Compute the planar graph generated by the cells and the
two sets of lexicographical locations X �

1;2 ; X
�
2;1 .

Step 2. If X �
1;2 \X �

2;1 ¤ ; then set X �
Par WD conv.X �

1;2/ (trivial case X �.f 1/\
X �.f 2/ ¤ ;). Otherwise set X �

Par WD X �
1;2[X �

2;1 (non trivial case X �.f 1/\
X �.f 2/ D ;)

Step 3. Choose x 2X �
1;2 \IP .

Step 4. Scan the list of cells adjacent to x until we get situation S1 for a cell C
or two consecutive cells, C, C, in situations C2 fS2; S3g and C 2 fS2; S4g,
respectively.

Step 5. If situation A occurs then X �
Par WD X �

Par [ C (we have found a bounded
cell.) Otherwise X �

Par WD X �
Par [ xy where y is a vertex of C defined in situations

S2 and S4 (we have found a bounded face.)
Step 6. Let C be the last scanned cell. Choose y 2 IP \C and, such that, y is

connected to x. If y 2X �
2;1 stop. Otherwise, set x WD y and go to Step 4.

Output: X �
Par

�
f 1; f 2

�
. �

Edelsbrunner (1987) proved that the computation of a planar graph induced by
n lines in the plane can be done in O.n2/ time. This implies that in the case of
the minisum location problem the computation of the planar graph generated by the
fundamental direction lines is doable in O.M2G2

max/ time.
The evaluation of the minisum location function needs O.M log.Gmax// for

one point, therefore we obtain O.M3G2
max log .Gmax// time for the computation

of lexicographic solutions. At the end, the complexity for computing the chain is
O.M3G2

max log .Gmax//, since we have to consider at mostO.M2G2
max/ cells and the

determination of sit. : ; : / can be done in O.M log.Gmax// time. Hence, the overall
complexity is O.M3G2

max log .Gmax//. Notice that the polynomial complexity of
this algorithm allows an efficient computation of the solution set.

Example 9.6 Consider a three-criteria median problem with nine existing facilities
A D fa1; : : : ; a9g (see Fig. 9.10). The coordinates ai D .xi ; yi / of the existing
facilities are given by the set: f.�3; 0/; .3; 0/; .0;�4/; .11;�6/; .17;�6/; .14;�2/;
.11; 2/; .17; 2/; .14; 6/g, and the weights wq; q D 1; 2; 3 are given by
w1 D .2; 2; 1; 0; 0; 0; 0; 0; 0/, w2 D .0; 0; 0; 2; 2; 1; 0; 0; 0/ and w3 D
.0; 0; 0; 0; 0; 0; 2; 2; 1/.

The optimal solutions of the location problems associated with the median
functions f 1, f 2 and f 3 with f q DPM

iD1 wqi k x � ai k1, q D 1; 2; 3, are unique
and given by X �

1 D f.0; 0/g, X �
2 D f.14;�6/g and X �

3 D f.14; 2/g, respectively,
all of them with the (optimal) objective value 16. The bicriteria chains (consisting
of cells and edges with respect to the fundamental directions drawn in Fig. 9.10) are
given by

X �

Par

�
f 1; f 3

� D .0; 0/.3; 0/ [ conv.f.3; 0/; .3; 2/; .11; 2/; .11; 0/g/[ .11; 2/.14; 2/;

X �

Par

�
f 2; f 3

� D .14; 2/.14;�6/;
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a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗
1

X ∗
3

X ∗
2

Fig. 9.10 Illustration to Example 9.6

X �

Par

�
f 1; f 2

� D .0; 0/.3; 0/ [ .3; 0/.3;�2/ [
conv.f.3;�2/; .3;�4/; .11;�4/; .11;�2/g/[
.11;�4/.14;�4/ [ .14;�4/.14;�6/:

9.2.1.2 Three-Criteria Case

In this section we consider the three-criteria case and develop an efficient algorithm
for computing X �

Par

�
f 1; f 2; f 3

�
using the results for the bicriteria case. In

particular, we obtain a characterization of the Pareto solution set for the three criteria
case using the region surrounded by the chains of bicriteria Pareto solutions. We
denote the union of the bicriteria chains including the one-criterion solutions by

X
gen

Par

�
f 1; f 2; f 3

� WD
3[

qD1
X �.f q/ [

2[

qD1

3[

pDqC1
X �

Par .f
p; f q/:

We use “gen” since this set will generate the set X �
Par

�
f 1; f 2; f 3

�
(see

Fig. 9.11).
The next lemma provides useful geometric information to build

X �
Par

�
f 1; f 2; f 3

�
. For a set A, let cl.A/ denote the topological closure of A.
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X ∗
1

X ∗
2

X ∗
3

X ∗
Par f 1, f 2

X ∗
Par f 1, f 3

X ∗
Par f 2, f 3

encl X gen
Par f 1, f 2, f 3

Fig. 9.11 The enclosure of X gen
Par

�
f 1; f 2; f 3

�

Lemma 9.2 The following inclusion of sets holds:

cl
�
encl

�
X

gen
Par

�
f 1; f 2; f 3

��� �X �
s�Par

�
f 1; f 2; f 3

�
:

The interested reader is referred to Nickel et al. (2005b) for a detailed proof of this
result.

Remark 9.4 Since X �
Par

�
f i ; f j

� D X �
w�Par

�
f i ; f j

�
for any i; j 2 f1; 2; 3g, we

have that:

encl
�
X

gen
Par

�
f 1; f 2; f 3

�� D encl
�
X

gen
w�Par

�
f 1; f 2; f 3

��
:

Finally we obtain the following theorem which provides a subset as well as a
superset of X �

Par

�
f 1; f 2; f 3

�
.

Theorem 9.5 The following inclusions of sets hold:

encl
�
X

gen
Par

�
f 1; f 2; f 3

�� � X �
Par

�
f 1; f 2; f 3

�

� X
gen

Par

�
f 1; f 2; f 3

� [ encl
�
X

gen
Par

�
f 1; f 2; f 3

��

D X �
w�Par

�
f 1; f 2; f 3

�
:

Proof Using Lemma 9.2 and Theorem 9.2 we have the following chain of inclusions
that proves the thesis of the theorem.

encl
�
X

gen
Par

�
f 1; f 2; f 3

�� � X �
s�Par

�
f 1; f 2; f 3

�

� X �
Par

�
f 1; f 2; f 3

� �X �
w�Par

�
f 1; f 2; f 3

�

� X
gen

Par

�
f 1; f 2; f 3

� [ encl
�
X

gen
Par

�
f 1; f 2; f 3

��
: �
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Now it remains to consider the Pareto-optimality of the set X gen
Par

�
f 1; f 2; f 3

�

with respect to the three objective functions f 1; f 2; f 3. For a cell C 2 C we define
the collapsing and the remaining part of C with respect to Q-criteria optimality by

colQ.C / WD
˚
x 2 C W x …X �

Par

�
f 1; : : : ; f Q

��

remQ.C / WD
˚
x 2 C W x 2X �

Par

�
f 1; : : : ; f Q

��
:

Summing up the preceding results we get a complete geometric characteriza-
tion of the set of Pareto solutions for the three criteria case. For each cell C ,
colQ.C / P[ remQ.C / D C and, as shown by Nickel et al. (2005b), determining both
sets can be done with the gradients of the objective functions with a complexity of
O.Q logQ/.

Theorem 9.6 The set of Pareto solutions satisfies:

X �

Par

�
f 1; f 2; f 3

� D �
X gen

Par

�
f 1; f 2; f 3

� [ encl
�
X gen

Par

�
f 1; f 2; f 3

�� �

n fx 2 R2 W 9C 2 C ; C �X gen
Par

�
f 1; f 2; f 3

�
; x 2 col3.C /g:

Proof Let y 2 X �
Par

�
f 1; f 2; f 3

�
. Then we have, by Theorem 9.5, that y 2

X
gen

Par

�
f 1; f 2; f 3

� [ encl
�
X

gen
Par

�
f 1; f 2; f 3

��
: Moreover for C 2 C with y 2 C

we have y 2 rem3.C /, i. e., y … col3.C /. This implies

y 2 �X gen
Par

�
f 1; f 2; f 3

�[ encl
�
X

gen
Par

�
f 1; f 2; f 3

���

n fx 2 R2 W 9C 2 C ; C �X
gen

Par

�
f 1; f 2; f 3

�
; x 2 col3.C /g:

We distinguish the following cases :

Case 1: y 2 encl
�
X

gen
Par

�
f 1; f 2; f 3

��
. Then y 2 X �

Par

�
f 1; f 2; f 3

�
by Theo-

rem 9.5.
Case 2 : y 2 X

gen
Par

�
f 1; f 2; f 3

�
.

Case 2.1 : 9C 2 C ; C �X
gen

Par

�
f 1; f 2; f 3

�
with y 2 C

) y … col3.C / ) y 2 rem3.C / ) y 2 X �
Par

�
f 1; f 2; f 3

�
.

Case 2.2 : 6 9C 2 C ; C �X
gen

Par

�
f 1; f 2; f 3

�
with y 2 C

) L�.f p; f p.y//\L�.f q; f q.y//Dfyg for some p; q 2 f1; 2; 3g; p < q
) T3

qD1 L�.f q; f q.y// D fyg ) y 2 X �
s�Par

�
f 1; f 2; f 3

� �
X �

Par

�
f 1; f 2; f 3

�
:�

In the case of median functions the gradients rf q.x/; q 2 f1; 2; 3g; (in
those points where they are well-defined) can be computed in O.M log.Gmax//

time (analogous to the evaluation of the function). Therefore, we can test in
O.M log.Gmax// time if a cell C 2 C ; C � X

gen
Par

�
f 1; f 2; f 3

�
collapses. We
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a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗
1

X ∗
3

X ∗
2

Fig. 9.12 Illustration of X gen
Par

�
f 1; f 2; f 3

�
and X �

Par

�
f 1; f 2; f 3

�
for the problem introduced in

Example 9.6

obtain the following algorithm for the three-criteria median problem with time
complexityO.M3G2

max log.Gmax// (see Nickel et al. 2005b for more details).

Algorithm 9.2 Step 1. Compute the subdivision of the plane generated C , the
family of elementary convex sets. Compute X �

w�Par

�
f 1; f 2

�
, X �

w�Par

�
f 1; f 3

�
,

X �
w�Par

�
f 2; f 3

�
using Algorithm 9.1.

Step 2. Set X
gen

Par

�
f 1; f 2; f 3

� WD X �
w�Par

�
f 1; f 2

� [ X �
w�Par

�
f 1; f 3

� [
X �

w�Par

�
f 2; f 3

�
andX �

Par

�
f 1; f 2; f 3

�WDX gen
Par

�
f 1; f 2; f 3

�[encl
�
X

gen
Par

�
f 1;

f 2; f 3
��

.
Step 3. For any C 2 C with C � X

gen
Par

�
f 1; f 2; f 3

�
compute col3.C / and set

X �
Par

�
f 1; f 2; f 3

� WD X �
Par

�
f 1; f 2; f 3

� n col3.C /.
Output: X �

Par

�
f 1; f 2; f 3

�
. �

Figure 9.12 illustrates the preceding results using the data introduced in Exam-
ple 9.6. The dashed path joining X �

1 and X �
3 in the picture represents the set

X �
w�Par

�
f 1; f 3

�
after removing the col3.C /. In the same way, the path joining X �

1

and X �
2 represents the set X �

w�Par

�
f 1; f 2

�
after removing the col3.C /. Finally, the

dotted segment joining X �
2 and X �

3 is X �
w�Par

�
f 2; f 3

�
(in this case there are not

cells to be collapsed).

9.2.1.3 Case Where Q > 3

In this section we consider the general Q-Criteria case (Q > 3). We prove that
the Pareto solution set can be obtained from the Pareto solution sets of all the three
criteria problems. This construction requires the removal of the dominated points
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from the union of all the three criteria Pareto solution sets. The reader may notice
that all this process reduces to obtaining the bicriteria Pareto chains as proved in
Theorem 9.6.

Theorem 9.7 The following inclusions hold:

I.
[

p;q;r2Q
p<q<r

cl
�
encl

�
X

gen
Par .f

p; f q; f r/
�� � X �

Par.f
1; : : : ; f Q/.

II. X �
Par

�
f 1; : : : ; f Q

�

�
[

p;q;r2Q
p<q<r

X
gen

Par .f
p; f q; f r / [

[

p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q; f r /
�

DX �
w�Par

�
f 1; : : : ; f Q

�
.

Proof (I) Let x 2 S
p;q;r2Q
p<q<r

cl
�
encl

�
X

gen
Par .f

p; f q; f r /
��

. This is equivalent to

x 2 cl
�
encl

�
X

gen
Par .f

p; f q; f r /
��

for some p; q; r 2 Q; p < q < r:

Then, by Lemma 9.2, x 2 X �
s�Par .f

p; f q; f r / for some p; q; r 2
Q; p < q < r . Applying characterization (9.4), this is equivalent to
L�.f p; f p.x// \ L�.f q; f q.x// \ L�.f r ; f r .x// D fxg for some
p; q; r 2 Q; p < q < r and since x 2 L�.f q; f q.x// for all q 2 Q

it follows that
TQ
qD1 L�.f q; f q.x// D fxg. Finally, again by (9.4),

x 2X �
s�Par

�
f 1; : : : ; f Q

�
, which implies that x 2X �

Par

�
f 1; : : : ; f Q

�
.

(II) Let x 2 X �
Par

�
f 1; : : : ; f Q

�
then x 2 X �

w�Par

�
f 1; : : : ; f Q

�
and, by (9.2), this

is equivalent to
TQ
qD1 L<.f q; f q.x// D ;. By Helly’s theorem, there exists

p; q; r 2 Q; p < q < r , such that, L<.f p; f p.x// \ L<.f q; f q.x// \
L<.f

r ; f r.x// D ;. By characterization (9.2), this is equivalent to x 2
X �

w�Par .f
p; f q; f r / for some p; q; r 2 Q; p < q < r and, by Theorem 3.2 in

Rodríguez-Chía and Puerto (2002), this implies that x 2X
gen

Par .f
p; f q; f r /[

encl
�
X

gen
Par .f

p; f q; f r /
�

for some p; q; r 2 Q; p < q < r . Finally, this can
be equivalently written as

x 2
[

p;q;r2Q
p<q<r

X
gen

Par .f
p; f q; f r / [

[

p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q; f r /
�
:

�
In the Q-criteria case the crucial region is now given by the cells C 2 C with

C �
[

p;q;r2Q
p<q<r

X
gen

Par .f
p; f q; f r / n

[

p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q; f r /
�

D
[

p;q2Q
p<q

X �
w�Par .f

p; f q/ n
[

p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q; f r /
�
:
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Similar to the situation in the previous section one can test whether the cell C 2 C
collapses with respect to f 1; : : : ; f Q by comparing the gradients of the objective
functions in int.C /. Finally we obtain the following theorem, which can be proven
using the same reasoning as in the three-criteria case (see proof of Theorem 9.6).

Theorem 9.8

X �

Par

�
f 1; : : : ; f Q

� D
0

@ S
p;q;r2Q
p<q<r

X
gen

Par .f
p; f q; f r/ [ S

p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q; f r /
�
1

A

n
8
<

:x 2 R2 W 9C 2 C ; C � S
p;q2Q
p<q

X �

w�Par .f
p; f q/ nS

p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q; f r /
�
; x 2 colQ.C/

9
=

;

For the Q-criteria median problem we obtain the following algorithm.

Algorithm 9.3 Step 1. Compute the subdivision of the plane generated C , the
family of elementary convex sets. Compute X �

w�Par .f
p; f q/; p; q 2 Q; p < q;

using Algorithm 9.1.
Step 2. Set for any p, q and r with p < q < r

X
gen

Par .f
p; f q; f r /WDX �

w�Par .f
p; f q/ [X �

w�Par .f
p; f r/ [X �

w�Par .f
q; f r /;

and

X �
Par

�
f 1; : : : ; f Q

�WD
[

p;q;r2Q
p<q<r

X
gen

Par .f
p; f q; f r / [

[

p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q; f r /
�
:

Step 3. For every cell C � S
p;q2Q
p<q

X �
w�Par .f

p; f q/ n S
p;q;r2Q
p<q<r

encl
�
X

gen
Par .f

p; f q;

f r // compute colQ.C / and set X �
Par

�
f 1; : : : ; f Q

� WD X �
Par

�
f 1; : : : ; f Q

� n
colQ.C /.

Output: X �
Par

�
f 1; : : : ; f Q

�
. �

The complexity of Algorithm 9.3 can be determined as follows. For each
cell C , colQ.C / can be computed in O.Q log.Q// time. Algorithm 9.3 needs
to solve O.Q3/ three-criteria problems which dominates all other elementary
operations of the algorithm. Each one of them has the same complexity as the
two-criteria problem. Thus, the overall complexity is O.M3G2

maxQ
3.logGmax/ C

M2G2
maxQ logQ/ D O.M3G2

maxQ
3.logGmax/.

We would like to conclude this section pointing that the multi-facility versions
of the problems analyzed in this section have been hardly studied in the literature,
although an exception is the paper by Nickel (1997).



9 Location Problems with Multiple Criteria 225

9.3 Network Location Problems

9.3.1 1-Facility Median Problems

9.3.1.1 Pareto Locations in General Networks

Let G D .V;E/ be a connected graph with node set V D fv1; : : : ; vng and edge
set E D fe1; : : : ; emg. Each edge e 2 E has a positive length `.e/, and is assumed
to be rectifiable. Let P.G/ denote the continuum set of points on edges of G. We
denote a point x 2 e D fu; vg as a pair x D .e; t/, where t (0 � t � 1) gives
the relative distance of x from node u along edge e. For the sake of readability, we
identify P.G/ with G and P.e/ with e for e 2 E . We also define .e; .t1; t2// WD
fx D .e; t/ W t 2 .t1; t2/g; .e; Œt1; t2�/, .e; .t1; t2�/, and .e; Œt1; t2// are used in an
analogous way.

We denote by d.x; y/ the length of the shortest path connecting two points
x; y 2 G. Let vi 2 V and x D .fvr ; vsg; t/ 2 G. The distance from vi to x
entering the edge fvr ; vsg through vr (vs) is given asDC

i .x/ D d.vr ; x/Cd.vr ; vi /
(D�

i .x/ D d.vs; x/ C d.vs; vi /). Hence, the length of a shortest path from vi
to x is given by Di.x/ D minfDC

i .x/; D
�
i .x/g. As d.vr ; x/ D t � `.e/ and

d.vs; x/ D .1� t/ � `.e/, the functionsDC
i .x/ andD�

i .x/ are linear in x andDi.x/

is piecewise linear and concave in x (cf. Drezner 1995). The distance from vi to a
facility located at x is finally defined as d.vi ; x/ D Di.x/ D minfDC

i .x/;D
�
i .x/g.

We consider the objective function f .x/ D .f 1.x/; : : : ; f Q.x//, where each
f q.x/, q 2 Q, is a median function defined as:

f q.x/ D
X

vi2V
wqi d.vi ; x/ :

More formally, we assign a vector of weights

wi D

0

B@
w1i
:::

wQi

1

CA 6D 0 to every vertex vi 2 V; with wqi � 0; q 2 Q WD f1; : : : ;Qg:

The quality of a point x 2 P.G/ in this multicriteria setting is defined by

f .x/ WD

0
B@
f 1.x/
:::

f Q.x/

1
CA WD

0
B@

P
vi2V w1i d.x; vi /

:::P
vi2V wQi d.x; vi /

1
CA
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in the undirected case and

f .x/ WD

0
B@
f 1.x/
:::

f Q.x/

1
CA WD

0
B@

P
vi2V w1i .d.x; vi /C d.vi ; x//

:::P
vi2V wQi .d.x; vi /C d.vi ; x//

1
CA

in the directed case.
Let S � P.G/ andW � RQ. We defineWpar D ff .x/ 2 W W �f .y/ 2 W such

that f .y/ dominates f .x/ in the objective space} and X �
par WD fx 2 S W f .x/ 2

Wparg. If S D P.G/ we simply write X �
par . A point x 2 X �

par.S/ is called a Pareto
location with respect to S, and the elements of X �

par.V / are called Pareto nodes or
Pareto vertices.

Computing X �
par.V / can simply be done by pairwise comparison of the nodes.

For X �
par we first have to check if a multicriteria version of Hakimi’s node domi-

nance result holds (Hakimi 1964). For the directed case we even have X �
par.V / D

X �
par. The proof relies on the concavity of the distance functions among the edges

and also on the fact that in the directed case we have no choice on which side to
exit or enter an edge. This implies that the objective function is strictly concave and
therefore the nodes always dominate the edges. For the technical details and the
proofs the reader is referred to Hamacher et al. (1999). In the case of undirected
networks, this aspect is slightly more complicated as shown in the next example
(Fig. 9.13).

Example 9.7 Consider the following network N D .G; `/ with n D 6 nodes and a
distance matrixD D .dij/i;jD1;:::;6 given by

D D

0
BBBBBBB@

0 1 1 4 3 2

1 0 2 3 4 1

1 2 0 3 2 3

4 3 3 0 5 2

3 4 2 5 0 3

2 1 3 2 3 0

1
CCCCCCCA

:

Fig. 9.13 Network of Example 9.7
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Assume that the weight vectors are

w1 D
 
1

2

!
; w2 D

 
2

1

!
; w3 D

 
1

2

!
; w4 D

 
2

2

!
; w5 D

 
2

2

!
; w6 D

 
2

1

!
:

Using this information we get

v1 v2 v3 v4 v5 v6

f .�/ �21
19

� �
19
21

� �
21
17

� �
27
29

� �
29
27

� �
17
21

�

By pairwise comparison we get

X �
par.V / D fv3g [ fv6g DX � �f 1.V /

� [X � �f 2.V /
�
:

Now we look at the points on the edges and get (by using concavity in the objective
functions):

• v3 dominates all points on the edges fv3; v5g; fv3; v4g; fv3; v1g
• v6 dominates all points on the edges fv6; v2g; fv6; v5g; fv6; v4g
• v2 dominates all points on the edge fv2; v4g
• v1 dominates all points on the edge fv1; v5g
We also observe that no vertex can dominate a point with both objective functions
smaller than 21. The only edge left is now fv1; v2g (Fig. 9.14).
We see that

I. For all points x 2 P .fv1; v2g/ with x 6D v1; x 6D v2 we have f 1.x/ < 21;

f 2.x/ < 21.
II. No point on fv1; v2g dominates another point on fv1; v2g

)X �
par D fv3g [ fv6g [ .fv1; v2g; .0; 1// :

Fig. 9.14 Objective
functions on the edge fv1; v2g
in Example 9.7

19

20

21

22

19

20

21

22

10

f 2

f 1
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We conclude that we have no node dominance and that even on edges with
endnodes not in X �

par.V / we can find elements of X �
par.

Since we do not have node dominance in the undirected case, we have to
explicitly solve a multicriteria global optimization problem. First we will identify
local Pareto locations with respect to an edge e D fvi ; vj g for all edges of the
network. In a second step we will compare all local Pareto locations to get X �

par .
Due to the limited space and a possible overload of technicalities, we will describe
the main ideas which allow the reader to understand the final algorithm. For the
technical details and the proofs the reader is referred to Hamacher et al. (1999).

9.3.1.2 Bi-criteria Case

We will first deal with the bi-criteria case, since here we can derive a geometrical
solution method. The main property of the objective functions we are using is the
concavity on an edge e D fvi ; vj g. In addition we have also piecewise linearity
but this is not really needed. Suppose that f .vi / > f .vj / or f .vj / > f .vi /. In
the first situation we say that vj dominates vi and in the latter vi dominates vj .
Both situations do not allow any location on the edge, which is not dominated by an
endnode due to concavity.

Now assume that for an edge e D fvi ; vj g with vi and vj not dominating each
other one of the functions f 1 or f 2 is constant. It is easy to see that this is only
the case if f .vi / D f .vj /. If for an edge e only one of the objective functions
is constant then X �

par.e/ D fvi g [ fvj g. If both objective functions are constant
then X �

par.e/ D
�fvi ; vj g; Œ0; 1�

�
. Again this is due to the concavity of the objective

functions and can be seen in Fig. 9.15.
Now we have only one situation left (the most typical one), where the endnodes

do not dominate each other and none of the two objective functions is constant.
Without loss of generality we can assume f 1.vi / > f 1.vj / and f 2.vi / < f 2.vj /

(otherwise exchange the roles of vi and vj ). The behaviour of the objective functions
can be seen in Fig. 9.16. First, both objectives functions are increasing (maybe for
a small or zero interval only) and all points are dominated by the left endnode.

Fig. 9.15 Concavity on an
edge with one objective
function constant
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Fig. 9.16 Derivation of t 1

and t 2

0 1t1 t2

f 1

f 2

Only after the first objective function is already decreasing and smaller than the
left endnode value, the endnode cannot dominate the points of the edge. The same
argument can be applied by starting from the right endnode. More formally we can
define

t1 WD maxft 2 Œ0; 1� W f 1.vi / D f 1
��fvi ; vj g; t

��g

and

t2 WD minft 2 Œ0; 1� W f 2.vj / D f 2
��fvi ; vj g; t

��g

Then

X �
par.e/ D fvig [ fvj g [

�fvi ; vj g;
�
t1; t2

��
:

Overall we have that for each e 2 E in .G; `/, X �
par.e/ is a (possibly empty)

single subedge of e plus one or both endnodes. Now we can combine these results
to get an efficient algorithm for determining X �

par.e/.

Algorithm 9.4 (Computation of X �
par.e/)

Input: edge e D fvi ; vj g 2 E , undirected network .G; l/, distance matrix D

Step 1. IF vi dominates vj then X �
par.e/ WD fvig, go to Step 7

Step 2. IF vj dominates vi then X �
par.e/ WD fvj g, go to Step 7

Step 3. IF f .vi / D f .vj / then

A. IF f
��fvi ; vj g; 12

�� D f .vi / then X �
par.e/ WD P.fvi ; vj g/, go to Step 7

B. IF f
��fvi ; vj g; 12

�� 6D f .vi / then X �
par.e/ WD fvi g [ fvj g, go to Step 7

Step 4. IF f 1.vi / < f
1.vj / and f 2.vi / > f

2.vj / then exchange vi and vj
Step 5. Compute t1 and t2 as defined above
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Step 6. IF t1 < t2

THEN X �
par.e/ WD fvig [ fvj g [

�fvi ; vj g; .t1; t2/
�

ELSE X �
par.e/ WD fvig [ fvj g

Output: X �
par.e/

To analyze the complexity of this algorithm, we need the following definition: A
point x D �fvi ; vj g; t

�
, t 2 Œ0; 1� on one edge e D fvi ; vj g is called a bottleneck

point for f q if there exists a vertex vk with wqk > 0, such that

d.vk; x/ D d.vk; vi /C d.vi ; x/ D d.vk; vj /C d.vj ; x/:

LetBij denote the set of bottleneck points on the edge fvi ; vj g. Note that jBijj � jV j:
If D is given, the only non constant operation in Algorithm 9.4 is the com-

putation of t1 and t2. To plot f q we have to determine the breakpoints of f q

which is piecewise linear on an edge. Since these breakpoints correspond to the
bottleneck points on this edge we have to compute Bij for e D fvi ; vj g. This
can be done in O .jV j log jV j/ (see Hansen et al. 1991). Then t1 and t2 can be
determined by exploring the sorted list of bottleneck points two times. The total
complexity for finding X �

par.e/ is O .jV j log jV j/ and the total complexity for
finding

S
e2E X �

par.e/ is O .jEjjV j log jV j/ (Fig. 9.17).

Example 9.8 Consider the network in Fig. 9.17 with distance matrix

D D

0

BB@

0 1 2 2

1 0 2 1

2 2 0 1

2 1 1 0

1

CCA :

Fig. 9.17 Network of
Example 9.8

v1 v2

v3 v4

1

1

1

2

1
3

2
1

2
1

2
2



9 Location Problems with Multiple Criteria 231

We first compute

v1 v2 v3 v4

f 1 10 7 8 6

f 2 7 8 9 9

and obtain X �
par.V / D fv1; v2; v4g. Now we have to determine the set X �

par.e/ for
every e 2 E:

• e D fv1; v2g. v1 and v2 do not dominate each other and f 1; f 2 are not constant,
i.e., we need to plot f 1; f 2 and therefore we have to find B12

B12 D
�
b112 D

�
fv1; v2g; 1

2

	�

f 1
�
b112
� D 9:5 and f 2

�
b112
� D 8:5

So the objective function can be drawn as shown in Figs. 9.18 and 9.19.

t1 D max
˚
t 2 Œ0; 1� W f 1.v1/ D f 1 .fv1; v2g; t/

� D 0

t2 D min
˚
t 2 Œ0; 1� W f 2.v2/ D f 2 .fv1; v2g; t/

� D 1

3

.in Œ0;
1

2
�; f 2.x/ 	 7C 3t; 7C 3t D 8, t D 1

3
/

X �
par.e/ D fv1g [ fv2g [

�
fv1; v2g;

�
0;
1

3
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8
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f 1

Fig. 9.18 Computing X �

par.fv1; v2g/
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8

9

10

11

8

9

10

11

0 11
2

1
4

3
4

4
5

f 2

f 1 t2 t1

Fig. 9.19 Computing X �

par.fv1; v3g/

• e D fv2; v4g: f 1.v2/ D 7 > f 1.v4/ D 6 and f 2.v2/ D 8 < f 2.v4/ D 9 and
B24 D ; ) t1 D 0; t2 D 1)X �

par.e/ D P.e/:
• e D fv3; v4g. v4 dominates v3) X �

par.e/ D fv4g.

• e D fv1; v3g: B13 D

8
ˆ̂<

ˆ̂:

0

BB@fv1; v3g„ ƒ‚ …
b113

; 1
4

1

CCA ;

0

BB@fv1; v3g„ ƒ‚ …
b213

; 3
4

1

CCA

9
>>=

>>;

f
�
b113
� D

 
11:5

8:5

!
; f

�
b213
� D

 
10:5

9:5

!

t1 D 4

5
; t2 D 1

2

X �
par.e/ D fv1g [ fv3g

In a second step we have to compare all local Pareto locations X �
par.e/; e 2 E

to get X �
par . With two objective functions we can map everything to the objective

space where dominance can easily be computed. In the case of median objective
functions on a network, we know that f 1 and f 2 are piecewise linear with the same
potential breakpoints. This leads to the following mapping in the .z1; z2/-space (or
objective space) as shown in Fig. 9.20. Essentially, this plot shows all pairs .z1; z2/ of
the objective function values f1.x/ and f2.x/ for all points x on the edge. Again we
would like to skip the technical details and proofs and refer the reader to Hamacher
et al. (1999).
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8

t1 t2

f 1

f 2

5

6

7

8

6 7 8 9 z1

z2

par(e)\ ({vi}∪{v j})

Fig. 9.20 Mapping X �

par.e/ to the objective space

w1

w2

w3

w4

Fig. 9.21 w1 is dominating w2 and w3

In the objective space, a point w dominates all other points in w C R2Cnf0g WD˚
wC y W y 2 R2Cnf0g

�
(see Fig. 9.21).

In order to obtain X �
par we draw IM.f / which is defined as the set of all images

of X �
par.e/ for e 2 E in the objective space. The lower envelope for a set P of

points in R2 is defined as

[˚
.x; y/ 2 P W y � y0 for all .x; y0/ 2 P � :

Algorithm 9.5 (Combining the Local Pareto Locations)

Input: X �
par.e/ for all e 2 E

Step 1. Let z1max WD max
˚
f 1.x/ W x 2Se2E X �

par.e/
�

Step 2. Build IM.f / DSe2E f
�
X �

par.e/
�

Step 3. For each connected component l in IM.f /, let .z1l ; z2l / be the right-most
point (largest z1 value) and add to IM.f / the horizontal segment going from
.z1l ; z2l / to .z1max; z2l /:
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X ∗
par

lower
envelope

Fig. 9.22 Using the lower envelope to delete dominated solutions

Step 4. Compute the lower envelope L of IM.f /, which is the lower envelope of
O.jEjjV j/ line segments.

Step 5. Eliminate every horizontal line segment of L, except its left-most point.
Step 6. Set X �

par WD f �1.L/:

Output: X �
par

In order to get the same result from the dominance relation we have to add an
artificial line segment and delete it from the solution (see Fig. 9.22).

Steps 1 and 3 are necessary to modify IM.f / such that we can get X �
par

form the lower envelope. These steps as well as Step 2 can be done in linear
time. Step 4 can be done in a naive way in O

�jEj2jV j2� or in optimal time of
O .jEjjV j log .max .jEjjV j/// by an algorithm of Hershberger (1989). Since Step
5 can be done in linear time the complexity of Step 4 determines the overall
complexity. For easier handling of the segments, note that we may use instead
of an open subedge

�fvi ; vj g; .t1; t2/
�

the closed subedge
�fvi ; vj g; Œt1; t2�

�
. After

applying the algorithm we then have to test if we deleted a point directly above the
left-most point.

Example 9.9 (Example 9.8 cont.) We first draw IM.f / and add the horizontal line
segments. Finally, we get X �

par D P .fv2; v4g/[
�fv1; v2g;


0; 1

3

��
(Fig. 9.23).

9.3.1.3 Q-Criteria Case

We will now briefly explain how this approach generalizes to the Q-criteria case.
Also in this situation we easily see that if for an edge e D fvi ; vj g one endnode
dominates the other one, there are no Pareto locations in the interior of e. From now
on assume that neither vi dominates vj nor vj dominates vi . Let Q1 and Q2 be a
partition of Q, such that f q.vi / � f q.vj / for all q 2 Q1 and f q.vi / < f q.vj /

for all q 2 Q2. Of course, Q1 6D ;; Q1 \Q2 D ; and Q1 [Q2 D Q. Also in case
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Fig. 9.23 Computing X �

par
for Example 9.8
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6 7 8 9 10
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v2

v3
v4

v2

of constant functions we get a similar result as in the bi-criteria case. Accordingly,
assume that f .vi / ¤ f .vj / for an edge e D fvi ; vj g and let

t1.f q/ WD max
˚
t 2 Œ0; 1� W f q.vi / D f q

�
.fvi ; vj g; t/

��
for q 2 Q1

and

t2.f q/ WD min
˚
t 2 Œ0; 1� W f q.vj / D f q

�
.fvi ; vj g; t/

��
for q 2 Q2:

Then (see Hamacher et al. 1999 for the details)

X �
par.e/ D fvig [ fvj g [

�
fvi ; vj g;

�
min
q2Q1

˚
t1.f q/

�
; max
q2Q2

˚
t2.f q/

�		
:

For comparing the local Pareto locations, the mapping to the objective space
becomes rather involved especially when we have to compute lower envelopes.

In order to compareX �
par.e/ for all e 2 E pairwise, we use the following iterative

procedure: Let
�fvj ; vlg; Œtr ; trC1�

�
be a subedge of X �

par.el /; el D fvj ; vlg (to have
closed subedges we neglect the vertices and handle first only the Pareto parts in the
interior) where .tr ; trC1/ are assumed to not include any further bottleneck points
of el (if this is not true we subdivide the subedge further). This leads to

f q
�
.fvj ; vlg; t/

� D bqr Cmq
r t for all q 2 Q; t 2 Œtr ; trC1�;

i.e., all f q are affine linear on
�fvj ; vlg; Œtr ; trC1�

�
: Take now a closed linear

subedge from another edge ek D fvk; vmg, then we get
�fvk; vmg; Œsp; spC1�

� �
X �

par.ek/. This leads to

f q ..fvk; vmg; s// D bqp Cmq
ps for all q 2 Q; s 2 Œsp; spC1�;
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If we apply the definition of a Pareto location to these two subedges, we get that
a point

�fvj ; vlg; t
�
; t 2 Œtr ; trC1� is dominated by some point .fvk; vmg; s/ ; s 2

Œsp; spC1�

, bqp Cmq
ps � bqr Cmq

r t for all q 2 Q;

where at least one inequality is strict. Now we define the polyhedron

F WD
n
.s; t/ W mq

r t �mq
ps � bqp � bqr ; 8q 2 Q

o
\ �Œsp; spC1� � Œtr ; trC1�

�
:

We have two cases: If F D ;, then
�fvj ; vlg; Œtr ; trC1�

�
contains no point which is

dominated by a point from
�fvk; vmg; Œsp; spC1�

�
. Otherwise, F 6D ; is taken as a

feasible solution of the two 2-variable linear programs

LB D minft W .s; t/ 2 F g; UB D maxft W .s; t/ 2 F g:

Let sLB and sUB be the optimal values for s corresponding to LB and UB,
respectively. Now we still have to check if one inequality is strict: If bqp Cmq

psLB D
b
q
rCmq

rLB and bqpCmq
psUB D bqrCmq

rUB for all q 2 Q, then there is no dominance.
Otherwise X �

par.el / WD X �
par.el / n

�fvj ; vlg; ŒLB; UB�/
�
: Note that this procedure

works also if tr D trC1 or sp D spC1 (in this case, we are testing a single point).

Algorithm 9.6 (Combining Local Pareto Location in the Q-Criteria Case)

Input: Network as in Algorithm 9.4

Step 1. Determine X �
par.e/ for all e 2 E and set X �

par WD
S
e2E X �

par.e/

Step 2. Compare all vi and all edges, where all f q; q 2 Q are constant

Step 3. For all Pareto linear subedges do a pairwise comparison as described
above and reduce X �

par accordingly.

Output: X �
par

The complexity of this algorithm is O.jEj2jV j2Q/.

9.3.1.4 Multicriteria Median Problems on a Tree

Many difficult problems on general networks become easier to solve if the under-
lying graph has a tree structure. We will show that this is also true for multicriteria
problems. We relate our results with the research that has previously been done on
trees and end up with a generalization of Goldman’s algorithm (see Goldman 1971).
The major concept which makes the analysis easier on trees is convexity. We first
introduce this concept based on Dearing et al. (1976).
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Let N D .T; `/ be a tree network, with T D .V;E/. For two points a; b 2 P.T /
we define the line segment LŒa; b� between a and b as

LŒa; b� WD fx 2 P.T / W d.a; x/C d.x; b/ D d.a; b/g ;

which contains all points on the unique path between a and b. A subset C � P.T /
is called convex, if and only if for all a; b 2 C , LŒa; b� � C .

Now let C � P.T / be convex and let h W P.T /! R be a real valued function.
This function h is called convex on C , if and only if for all a; b 2 C ,

h.x�/ � �h.a/C .1� �/h.b/ ; 8� 2 Œ0; 1� ;

where x� is uniquely defined by

d.x�; b/ D �d.a; b/ and d.x�; a/ D .1 � �/d.a; b/ : (9.5)

A function is called convex on T if it is convex onC D P.T /. Note that it is possible
to define convexity also on general networks. Then one can show that d.x; c/ for
c 2 P.T / fixed is convex if and only if the underlying graph is a tree. Median and
Center objective functions are convex functions on a tree (see Dearing et al. 1976).

Now let L.a; b/ WD LŒa; b�nfa; bg, L.a; b� WD LŒa; b�nfag and LŒa; b/ WD
LŒa; b�nfbg. We have now the following important property (a proof can be found
in Hamacher et al. 1999).

Theorem 9.9 Let a; b 2 P.T / and h WD .h1; : : : ; hQ/ be a vector of Q objective
functions, with hq convex on T , for all q 2 Q D f1; : : : ;Qg. Then the following
holds:

fa; bg �X �
par if and only if LŒa; b� �X �

par :

For T D .V;E/ and V 0 � V let

W.V 0/ WD

0

BBB@

w1.V 0/
w2.V 0/
:::

wQ.V 0/

1

CCCA ;

where wq.V 0/ WDPvi2V 0 wqi , 8q 2 Q.

Proposition 9.1 Let T be partitioned in such a way that T D T1 [ T2 [ feg (and
T1\T2 D ;). ThenW.V.T1// dominatesW.V.T2// if and only if for all x 2 P.T1/
there exists some y 2 P.T2/ which dominates x.

Now we can state a multicriteria version of Goldman’s dominance algorithm
(see Goldman 1971). We start with a subtree containing only one leaf of the tree
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(check for dominance) and enlarge this subtree until we get a Pareto location using
the criterion established in Proposition 9.1. This procedure is then repeated for all
leaves and we end up with a subtree of all Pareto locations by using Theorem 9.9.

Algorithm 9.7 (Solving Q-Criteria Median Problems on a Tree)

Input: T D .V;E/, with length function ` and node weight vectors wq , q 2 Q.

Step 0. Set W WD W.V /
Step 1. Choose a leaf vk of T , which was not yet considered and give it the status

“considered”.
Step 2. IF V D fvkg

Set X �
par.f .V // WD X �

par.f .T // WD fvkg and go to Step 6
Step 3. Let vl be the only node adjacent to vk

IF .w1k : : :w
Q

k /
T < 1

2
W

THEN
• wql WD wql C wqk ; q D 1; : : : ;Q
• T WD T n fvkg

Step 4. IF there are any leaves left in T give them status “not considered”
and go to Step 1

Step 5. Set X �
par.f .V // WD V.T /, X �

par.f .T // WD T
Step 6. STOP

Output: X �
par.f .V // and X �

par.f .T //

The complexity of this algorithm is O.QjV j/. To illustrate the algorithm consider
the following example:

Example 9.10 Consider the tree depicted in Fig. 9.24. We solve the following
instance of a three-criteria median problem. Let l.e/ WD 1, 8e 2 E . The weights of
the nodes are given in the following table:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

w1 14 6 8 4 1 2 1 3 2 2 7

w2 11 3 3 24 5 2 2 3 2 2 5

w3 16 2 1 1 2 3 3 1 6 4 21

ThereforeW D
0

@
50

62

60

1

A and 1
2
W D

0

@
25

31

30

1

A.

The adjacency structure of the tree is also given in Fig. 9.24. Now we check every
leaf till there is none left with status “not considered”.



9 Location Problems with Multiple Criteria 239

Fig. 9.24 Tree of
Example 9.10. The bold
edges and nodes indicate the
set of Pareto locations
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v3 v4
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v10

v11

• Take v1: w1 D
0

@
14

11

16

1

A dominates W
2
D
0

@
25

31

30

1

A.

Therefore w2 WD
0

@
6C 14
3C 11
2C 16

1

A D
0

@
20

14

18

1

A.

By following the algorithm we delete v8, v7, v6, v5 and v4. The actual value of w3 is0

@
13

32

4

1

A.

• Take v3: w3 D
0

@
13

32

4

1

A does not dominate W
2

.

• Take v11: w11 D
0

@
7

5

21

1

A dominates W
2

. Therefore w9 WD
0

@
9

7

27

1

A.

• Take v10: w10 D
0

@
2

2

4

1

A dominates W
2

. Therefore w9 WD
0

@
11

9

31

1

A.

• Take v9: w9 D
0

@
11

9

31

1

A does not dominate W
2

.
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Since we delete after every domination step the corresponding node from the tree
according to Algorithm 9.7 and no leaf with status not considered is left we end up
with

X �
par D LŒv9; v3� :

9.3.2 Other Multicriteria Location Problems on Networks

In the previous two subsections we presented optimal time algorithms for one
facility median problems when looking for Pareto locations. We chose these two
problems because the reader gets some insight into the needed properties. In
addition, the simplification on trees caused by the uniqueness of paths can be seen.
In the recent survey Nickel et al. (2005a) an overview on other location problems
can be found. In Hamacher et al. (2002) an extension to 1-facility center problems
as well as to positive and negative weight vectors on the nodes is developed.
Those ideas have been further extended to problems with criteria dependent lengths
in Skriver et al. (2004). A unified framework for multicriteria ordered median
functions can be found in Nickel and Puerto (2005). In Colebrook and Sicilia
(2007b) the location of undesirable facilities on multicriteria networks is looked
at by using convex combinations of two objective functions. Some complexity
analysis for the cent-dian location problem has been developed by Colebrook and
Sicilia (2007a). Most approaches to the (in general NP-hard) multi-facility case are
treated as discrete location problems (see Sect. 9.4). Only recently Kalcsics et al.
(2014) started looking into polynomial cases of multi-facility multicriteria location
problems on networks.

9.4 Discrete Location Problems

The previous sections show that planar and network multicriteria location problems
have been widely developed from a methodological point of view so that important
structural results and algorithms are known to determine solution sets. On the
contrary, multicriteria analysis of discrete location problems has attracted less
attention. In spite of that, several authors have dealt with problems and applications
of multicriteria decision analysis in this field. An annotated bibliography with
many references up to 2005 can be found in Nickel et al. (2005a). In general,
very few papers focus in the complete determination of the whole set of Pareto-
optimal solutions. Nevertheless, there are some exceptions, such as the paper by
Ross and Soland (1980) that gives a theoretical characterization but does not exploit
its algorithmic possibilities, as well as the work by Fernández and Puerto (2003)
that addresses the computation of the entire set of Pareto-optimal solutions of the
multiobjective uncapacitated plant location problem.
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Nowadays, Multi-Objective Combinatorial Optimization (MOCO) (see Ehrgott
and Gandibleux 2000; Ulungu and Teghem 1994) provides an adequate framework
to tackle various types of discrete multicriteria problems as, for instance, the
p-Median Problem (p-MP). Within this emergent research area, several methods
are known to handle different problems. It is worth noting that most of MOCO
problems are NP-hard and intractable (see Ehrgott and Gandibleux 2000, for
further details). Even in most of the cases where the single objective problem
is polynomially solvable the multiobjective version becomes NP-hard. This is
the case of spanning tree problems and min-cost flow problems, among others.
In the case of the p-MP, the single objective version is already NP-hard. This
ensures that the multiobjective formulation is not solvable in polynomial time unless
P=NP. In this context, when time and efficiency become a real issue, different
alternatives can be used to approximate the Pareto-optimal set. One of them is
the use of general-purpose MOCO heuristics (Gandibleux et al. 2000). Another
possibility is the design of “ad hoc” methods based on one of the following
strategies: (1) computing supported non-dominated solutions; and (2) performing
partial enumerations of the solutions space. Obviously, the second strategy does not
guarantee the non-dominated character of all the generated solutions although the
reduction in computation time can be remarkable.

The aim of this section is to present methods to obtain the Pareto-optimal set for
the multiobjectivep-median problem (p-MP). In all cases, our approach to solve the
multicriteria p-MP takes advantage of the problem’s structure. The first method is
exact and it determines the whole set of Pareto-optimal solutions based on new tools
borrowed from the theory of short rational generating functions. The second method
is an “ad hoc” approximate method that generates supported Pareto locations.

9.4.1 Model and Notation

Let I D f1; : : : ;M g and J D f1; : : : ; N g respectively denote the sets of indices
for demand points and for plants, and Q D f1; : : : ;Qg denote the set of indices
for the considered criteria. For each criterion q 2 Q, let .cqij/i2I;j2J 2 Q

M�N be
the allocation costs of demand points to plants. The multicriteria p-median location
problem is:

v-Minimize

0

@
MX

iD1

NX

jD1
c1ijxij; : : : ;

MX

iD1

NX

jD1
c
q
ijxij

1

A (9.6)

subject to
NX

jD1
xij D 1; i 2 I; (9.7)

xij � yj ; i 2 I; j 2 J; (9.8)
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NX

jD1
yj D p; (9.9)

xij 2 f0; 1g; yj 2 f0; 1g; i 2 I; j 2 J: (9.10)

As it is usual, v-min stands for vector minimum of the considered objective
functions. Here variable yj takes the value 1 if plant j is open and 0 otherwise. The
binary variable xij is 1 if the demand point i is assigned to plant j and 0 otherwise.
Constraints (9.7), together with integrality conditions on the x variables, ensure
that each demand point is assigned to exactly one plant, while constraints (9.8)
guarantee that no demand point is assigned to a non-open plant. Finally, constraint
(9.9) ensures that exactly p plants are opened.

Recall that in the single criterion case the integrality conditions on the x variables
need not be explicitly stated. The reason is that when the xij represent the proportion
of demand of client i satisfied by plant j (i.e. 0 � xij � 1), there exists an optimal
solution with xij D 0; 1, i 2 I , j 2 J This property is not necessarily true when
multiple criteria are considered because, in general, there might be undominated
solutions with non-integer values and even non-supported undominated integer
solutions.

9.4.2 Determining the Entire Set of Pareto-Optimal Solutions

In order to characterize the set of Pareto locations of the p-MP we shall use
rational generating functions. Short rational generating functions were used by
Barvinok (1994) as a tool to develop an algorithm for counting the number of integer
points inside convex polytopes, based on the previous geometrical paper by Brion
(1988). The main idea is to encode those integer points in a rational function of
as many variables as the dimension of the space where the polytope is defined.
Let P � RnC be a given convex bounded polyhedron. Its integer points may be
expressed in a formal sum f.P; z/ DP˛ z˛ with ˛ D .˛1; : : : ; ˛n/ 2 P \Zn, where
z˛ D z˛11 � � � z˛nn Barvinok’s goal was to represent that formal sum of monomials in
the multivariate polynomial ring ZŒz1; : : : ; zn�, as a “short” sum of rational functions
with the same variables. Actually, Barvinok (1994) developed a polynomial-time
algorithm when the dimension, n, is fixed, to compute those functions. A clear
example is the polytope P D Œ0; T � � R with T 2 N: the long expression of
the generating function of the integer points inside P is f.P; z/ D PT

iD0 zi , and it
is easy to see that its representation as sum of rational functions is the well known
formula .1 � zTC1/=.1 � z/.

The above approach, apart from counting lattice points, has been used to develop
some algorithms to solve integer programming problems exactly. Specifically,
De Loera et al. (2004, 2005), and Woods and Yoshida (2005) presented different
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methods to solve this family of problems using Barvinok’s rational function of the
polytope defined by the feasible set of the given problem.

First of all, for the sake of readability, we recall some results on short rational
functions for polytopes that shall be later used in our presentation. For further details
the interested reader is referred to Barvinok (1994), Barvinok and Woods (2003).

Let P D fx 2 Rn W Ax � b; x � 0g be a rational polytope in Rn. The main idea
of Barvinok’s Theory was to encode the integer points inside a rational polytope in
a “long” sum of monomials:

f.P; z/ D
X

˛2P\Zn

z˛;

where z˛ D z˛11 � � � z˛nn , and then to re-encode, in polynomial-time for fixed
dimension, these integer points in a “short” sum of rational functions in the form

f.P I z/ D
X

i2I
"i

zui

nY

jD1
.1 � zvij /

;

where I is a polynomial-size indexing set, "i 2 f1;�1g, and ui ; vij 2 Z
n for all i

and j (Theorem 5.4 in Barvinok and Woods 2003).
It is well-known that enumerating the entire set of Pareto-optimal solutions of

general multiobjective integer linear problems is #P-hard even in fixed dimension
(see, e.g., Ehrgott and Gandibleux 2002 and Chinchuluun and Pardalos 2007).
Therefore listing these solutions, in general, is hopeless. Nevertheless, one can try to
represent these sets in polynomial time using a different strategy by simply encoding
their elements in an efficient way. This strategy has been recently applied by Blanco
and Puerto (2012). In that paper, it is proved that using short generating functions
of rational polytopes, one can encode the whole set of Pareto-optimal solutions of
MOILP in polynomial time, fixing only the dimension of the space of variables. As
an application of this result we can state the following theorem.

Theorem 9.10 Assume that the number of facilitiesM and plantsN is fixed. Then,
in polynomial time, we can encode the entire set of Pareto-optimal solutions for
(9.6)–(9.10) in a short sum of rational functions.

Proof Apply Theorem 1 in Blanco and Puerto (2012) to the polytope of Problem
(9.6)–(9.10). �

The combination of Theorem 9.10 and Theorem 7 in De Loera et al. (2009)
results in the following theorem.

Theorem 9.11 Assume M and N are constant. There exists a polynomial-delay
polynomial-space procedure to enumerate the entire set of Pareto-optimal solutions
of (9.6)–(9.10).
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This construction can be implemented for problems of small to medium size
dimension using the open source software barvinok, see Verdoolaege (2008).

9.4.3 Determining Supported Pareto-Optimal Solutions

In some situations it suffices to generate the set of supported Pareto-optimal points.
It is well-known that the set of supported Pareto-optimal solutions to a problem can
be obtained by solving the scalarized problem for all possible values of the scalar
weights in the standard Q-dimensional simplex 
Q D f� 2 R

Q W PQ
qD1 �q D

1; �q � 0; 8q D 1; : : : ;Qg:
In order to describe how to obtain these solutions in Problem (9.6)–(9.10) we

need to introduce some additional notation. We denote by B any feasible basis of
the linear relaxation of Problem (9.6)–(9.10); and by N all the columns that are not
in B . Also, abusing notation, as usual in linear programming, we shall refer to the
indices determining the basis B (N ) in the variables and the objective function by
.x; y/B (.x; y/N ) and cB (cN ), respectively.

For any � 2 
Q, we shall denote by c.�/ D .cij.�//ij, where cij.�/ DPQ
qD1 �qc

q
ij .

For each feasible basis B , consider the subdivision of the space 
Q induced by
the hyperplanes:

�qc
q
BB

�1N � �qcq
N
D 0; q 2 Q:

Next, let �QB 2 
Q be a parameter such that it belongs to the rela-
tive interior of one of the elements in the above subdivision and satisfies
cB.�

Q/B�1N � cN .�Q/ � 0. This choice of �Q ensures that the problem:

Minimize
MX

iD1

NX

jD1
cij.�

Q
B /xij (9.11)

subject to
NX

jD1
xij D 1; i 2 I; (9.12)

xij � yj ; i 2 I; j 2 J; (9.13)

NX

jD1
yj D p; (9.14)

xij � 0; yj � 0; i 2 I; j 2 J I (9.15)
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will identify supported Pareto-optimal solutions of the linear relaxation of Prob-
lem (9.6)–(9.10). However, these Pareto-optimal solutions may result in fractional
location variables since Problem (9.11)–(9.14) is a scalarization of the continuous
version of our original multiobjective location problem. To avoid this inconvenience
we shall solve the binary version of (9.11)–(9.14), namely

Minimize
MX

iD1

NX

jD1
cij.�B/xij (9.16)

subject to
NX

jD1
xij D 1; i 2 I; (9.17)

xij � yj ; i 2 I; j 2 J; (9.18)

NX

jD1
yj D p; (9.19)

xij 2 f0; 1g; yj 2 f0; 1g; i 2 I; j 2 J: (9.20)

Any optimal binary solution of (9.16)–(9.20) gives a supported Pareto-optimal
solution of our original multiobjective location problem. Repeating the above
process for all feasible basis of Problem (9.6)–(9.10) will result in a set of supported
Pareto-optimal solutions for the problem.

9.5 Conclusions

In this chapter we have presented and analyzed some of the most important models
of multicriteria location problems considering three different decision spaces:
continuous, networks and discrete. This material provides a general overview of
the state-of-the-art of the field as well as a number of references that can be used by
the interested readers to go for a further analysis of the topic. Emphasis was put on
an efficient (if possible) description of the whole set of Pareto locations.

Acknowledgements The authors were partially supported by projects FQM-5849 (Junta de
AndalucíanFEDER), Fundación Séneca, grant number 08716/PI/08, the Interuniversity Attraction
Poles Programme initiated by the Belgian Science Policy Office and MTM2010-19576-C02-01/02
(Ministry of Economy and CompetitivenessnFEDER, Spain).



246 S. Nickel et al.

References

Barvinok A (1994) A polynomial time algorithm for counting integral points in polyhedra when
the dimension is fixed. Math Oper Res 19:769–779

Barvinok A, Woods K (2003) Short rational generating functions for lattice point problems. J Am
Math Soc 16:957–979

Blanco V, Puerto J (2012) A new complexity result on multiobjective linear integer programming
using short rational generating functions. Optim Lett 6:537–543

Brion M (1988) Points entiers dans les polyèdres convexes. Ann Sci Ecole Norm S Sér 4 21:653–
663

Carrizosa E, Conde E, Fernández FR, Puerto J (1993) Efficiency in Euclidean constrained location
problems. Oper Res Lett 14:291–295

Chinchuluun A, Pardalos PM (2007) A survey of recent developments in multiobjective optimiza-
tion. Ann Oper Res 154:29–50

Colebrook M, Sicilia J (2007a) A polynomial algorithm for the multicriteria cent-dian location
problem. Eur J Oper Res 179:1008–1024

Colebrook M, Sicilia J (2007b) Undesirable facility location problems on multicriteria networks.
Comput Oper Res 34:1491–1514

De Loera JA, Haws D, Hemmecke R, Huggins P, Sturmfels B, Yoshida R (2004) Short rational
functions for toric algebra and applications. J Symb Comput 38:959–973

De Loera JA, Haws D, Hemmecke R, Huggins P, Yoshida R (2005) A computational study of
integer programming algorithms based on Barvinok’s rational functions. Discrete Optim 2:135–
144

De Loera JA, Hemmecke R, Köppe M (2009) Pareto optima of multicriteria integer linear
programs. INFORMS J Comput 21:39–48

Dearing P, Francis R, Lowe T (1976) Convex location problems on tree networks. Oper Res
24:628–642

Drezner Z (1995) Facility location. A survey of applications and methods. Springer, New York
Durier R (1990) On Pareto optima, the Fermat–Weber problem, and polyhedral gauges. Math

Program 47:65–79
Durier R, Michelot C (1985) Geometrical properties of the Fermat-Weber problem. Eur J Oper

Res 20:332–343
Durier R, Michelot C (1986) Sets of efficient points in a normed space. J Math Anal Appl 117:506–

528
Edelsbrunner H (1987) Algorithms in combinatorial geometry. Springer, New York
Ehrgott M (2005) Multicriteria optimization. Springer, Heidelberg
Ehrgott M, Gandibleux X (2000) A survey and annotated bibliography of multiobjective combina-

torial optimization. OR Spectrum 22:425–460
Ehrgott M, Gandibleux X (2002) Multiple criteria optimization. State of the art annotated

bibliographic surveys. Kluwer, Boston
Fernández E, Puerto J (2003) Multiobjective solution of the uncapacitated plant location problem.

Eur J Oper Res 145:509–529
Gandibleux X, Jaszkiewicz A, Freville A, Slowinski RE (2000) Special issue ‘multiple objective

metaheuristics’. J Heuristics 6:291–431
Goldman A (1971) Optimal center location in simple networks. Transp Sci 5:212–221
Hakimi S (1964) Optimum location of switching centers and the absolute centers and medians of

a graph. Oper Res 12:450–459
Hamacher H, Nickel S (1996) Multicriteria planar location problems. Eur J Oper Res 94:66–86
Hamacher HW, Labbé M, Nickel S (1999) Multicriteria network location problems with sum

objectives. Networks 33:79–92
Hamacher HW, Labbé M, Nickel S, Skriver AJ (2002) Multicriteria semi-obnoxious network

location problems (MSNLP) with sum and center objectives. Ann Oper Res 110:33–53



9 Location Problems with Multiple Criteria 247

Hansen P, Perreur J, Thisse J (1980) Location theory, dominance and convexity: some further
results. Oper Res 28:1241–1250

Hansen P, Labbé M, Thisse JF (1991) From the median to the generalized center. RAIRO 25:73–86
Hershberger J (1989) Finding the upper envelope of n line segments in o(n logn) time. Inf Process

Lett 33:169–174
Kalcsics, J., Nickel, S., Puerto, J. and Rodríguez-Chía, A. M. (2014), Several 2-facility location

problems on networks with equity objectives. NETWORKS. doi:10.1002/net.21568
Nickel S (1995) Discretization of planar location problems. Ph.D. dissertation, Fachbereich

Mathematik, University of Kaiserslautern
Nickel S (1997) Bicriteria and restricted 2-facility weber problems. Math Method Oper Res

45:167–195
Nickel S, Puerto J (2005) Location theory: a unified approach. Springer, Berlin/Heildelberg
Nickel S, Puerto J, Rodríguez-Chía AM (2005a) MCDM location problems. In: Figueira JA, Greco

S, Ehrogott M (eds) Multiple criteria decision analysis: state of the art surveys. International
series in operations research & management science, vol 78. Springer, New York, pp 761–787

Nickel S, Puerto J, Rodríguez-Chía AM, Weissler A (2005b) Multicriteria planar ordered median
problems. J Optim Theory Appl 126:657–683

Puerto J, Fernández F (1999) Multicriteria minisum facility location problem. J Multi-Criteria
Decis Anal 8:268–280

Puerto J, Fernández F (2000) Geometrical properties of the symmetrical single facility location
problem. J Nonlinear Convex A 1:321–342

Rockafellar R (1970) Convex analysis. Princeton University Press, Princeton
Rodríguez-Chía A, Puerto J (2002) Geometrical description of the weakly efficient solution set for

multicriteria location problems. Ann Oper Res 111:179–194
Rodríguez-Chía A, Nickel S, Puerto J, Fernández F (2000) A flexible approach to location

problems. Math Method Oper Res 51:69–89
Ross GT, Soland RM (1980) A multicriteria approach to the location of public facilities. Eur J

Oper Res 4:307–321
Skriver AJ, Andersen KA, Holmberg K (2004) Bicriteria network location (BNL) problems with

criteria dependent lengths and minisum objectives. Eur J Oper Res 156:541–549
Ulungu E, Teghem J (1994) Multi-objective combinatorial optimization problems: a survey. J

Multi-Criteria Decis Anal 3:83–104
Verdoolaege S (2008) Software barvinok. http://freecode.com/projects/barvinok
Warburton A (1983) Quasiconcave vector maximization: connectedness of the sets of pareto-

optimal and weak pareto-optimal alternatives. J Optim Theory Appl 40:537–557
Weissler A (1999) General bisectors and their application in planar location theory. Shaker, Aachen
Wendell R, Hurter AJ (1973) Location theory, dominance and convexity. Oper Res 21:314–320
Wendell R, Hurter A, Lowe T (1977) Efficient points in location problems. AIIE Trans 9:238–246
Woods K, Yoshida R (2005) Short rational generating functions and their applications to integer

programming. SIAG/OPT Views News 16:15–19

http://freecode.com/projects/barvinok


Chapter 10
Ordered Median Location Problems

Justo Puerto and Antonio M. Rodríguez-Chía

Abstract This chapter analyzes the ordered median location problem in three
different frameworks: continuous, discrete and networks; where some classical but
also new results have been collected. For each solution space we study general
properties that lead to resolution algorithms. In the continuous case, we present two
solution approaches for the planar case with polyhedral norms (the most intuitive
case) and a novel approach applicable for the general case based on a hierarchy
of semidefinite programs that can approximate up to any degree of accuracy the
solution of any ordered median problem in finite dimension spaces with polyhedral
or `p-norms. We also cover the problems on networks deriving finite dominating
sets for some particular classes of � parameters and showing the impossibility of
finding a FDS with polynomial cardinality for general lambdas in the multifacility
case. Finally, we present a covering based formulation for the capacitated discrete
ordered median problem with binary assignment which is rather promising in terms
of gap and CPU time for solving this family of problems.

Keywords Finite dominating set • Mixed integer linear programming • Ordered
median function

10.1 Introduction

The Ordered Median location problem, see Nickel and Puerto (2005), has been
recognized as a powerful tool from a modeling point of view within the field of
Location Analysis. Actually, this problem provides a common framework for most
of the classical location problems (median, center, k-centrum, centdian, trimmed-
mean, among others) as well as for others which have not been studied before. As an
illustrative example, in the well-known case of logistics supply chain networks,
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this modeling tool allows to distinguish the roles played by the different parties
in the network inducing new type of distribution patterns, see Kalcsics et al.
(2010a,b). This type of formulation incorporates flexibility through rank dependent
compensation factors, and it allows one to model that the driving force in a
distribution problem is shared by its different parties.

The goal of the ordered median location problem is to minimize the
ordered weighted average of the distances or transportation costs, between the
clients/demand points and the server, once we have applied rank dependent
compensation factors on them. These rank dependent weights allow, for instance,
to compensate unfair situations. Indeed, if a solution places a set of facilities so that
the accessibility cost of a demand point at j is in the s-th position in the ordered
sequence of cost between each client and its corresponding server and the cost of
a demand point at j 0 is in the t-th position with s < t , the model tries to favor j
with respect to j 0 by assigning weights �s � �t . (Note that these weights do not
penalize site j 0 but instead they compensate site j because these lambdas reduce
the dispersion of the costs.) In order to incorporate this ordinal information in the
overall transportation cost, the objective function applies a correction factor to the
transportation cost for each demand point (to reach the facility) which is dependent
on the position of that cost relative to similar costs from other demand points. For
example, a different penalty might be applied if the transportation cost of a demand
point at j was the 5th-most expensive cost rather than the 2nd-most expensive, see
Boland et al. (2006), Marín et al. (2009), Nickel and Puerto (2005), Puerto and
Fernández (2000), Rodríguez-Chía et al. (2000). It is even possible to neglect some
costs by assigning a zero penalty. This adds a “sorting”-problem to the underlying
location problem, making formulation and solution more challenging.

This type of objective function has been extensively studied and successfully
applied in a variety of problems within the literature of Location Analysis. Puerto
and Fernández (2000) and Papini and Puerto (2004) characterize the structure of
optimal solutions sets. Rodríguez-Chía et al. (2000, 2010), Blanco et al. (2013,
2014a), Espejo et al. (2009), Nickel et al. (2005), Drezner (2007) and Drezner
and Nickel (2009a,b), among others, develop algorithms for different continuous
ordered median location problems. In addition, there are nowadays some successful
approaches available when the framework space is either discrete (see Boland et al.
2006; Domínguez-Marín et al. 2005; Espejo et al. 2009; Marín et al. 2009, 2010;
Puerto et al. 2011, 2013, 2014) or a network (see Berman et al. 2009; Kalcsics et al.
2003, 2002; Nickel and Puerto 1999; Puerto and Tamir 2005; Puerto and Rodríguez-
Chía 2005).

The aim of this chapter is to introduce the reader into the field of ordered median
location providing some modeling tools and properties. These elements will allow
to formulate and solve location problems in different solution spaces (continuous,
networks and discrete settings) using this unifying tool. To achieve this goal, in
the next section we formally introduce the family of ordered median functions
(OMf). Sections 10.3.2, 10.4 and 10.5 are devoted to analyze the ordered median
location problem in three different frameworks: continuous, networks and discrete,
respectively. The chapter ends with some concluding remarks.
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10.2 The Ordered Median Function

As mentioned above, the structure of Ordered Median Functions involves a nonlin-
earity in the form of an ordering operation that introduces a degree of complication
but at the same time gives an extra freedom which allows a lot of flexibility in
modeling. In this section, we will review interesting properties of these functions in
a first step to understand their behavior and then, we shall give a characterization of
this objective function.

We start defining the ordered median function. This function is a weighted
average of ordered elements. For any x 2 R

n denote xord D .x.1/; : : : ; x.n// where
x.1/ � x.2/ � : : : x.n/. We consider the function:

sortn W Rn �! R
n

x �! xord:
(10.1)

Definition 10.1 The function f� W R
n �! R is an ordered median function, for

short f� 2 OMf.n/, if f�.x/ D h�; sortn.x/i for some � D .�1; : : : ; �n/ 2 R
n,

where h; i denotes the usual scalar product in R
n.

It is clear that ordered median functions are nonlinear. Whereas the nonlinearity
is induced by the sorting. One of the consequences of this sorting is that the pseudo-
linear representation given in Definition 10.1 is pointwise defined. Nevertheless,
one can identify its linearity domains. (See Puerto and Fernández 2000; Nickel
and Puerto 2005; Rodríguez-Chía et al. 2000.) The identification of these regions
provides us with a subdivision of the framework space where in each of its cells
the function is linear. Obviously, the topology of these regions depends on the
space and on the lambda vector. A detailed discussion can be found in Puerto
and Fernández (2000). As mentioned in Sect. 10.1, different choices of lambda
lead also to different functions within the same family: � D .1=n; : : : ; 1=n/

is the mean average, � D .0; : : : ; 0; 1/ is the center, � D .˛; : : : ; ˛; ˛; 1/

is the ˛-centdian, ˛ 2 Œ0; 1�, � D .0; : : : ; 0; 1; k: : :; 1/ is the k-centrum or
� D .˛; 0; : : : ; 0; 1 � ˛/ is Hurwicz’s criterion, see Chaps. 1, 2 and 4 for further
details.

These functions are not new and some operators related to them have been
developed by other authors independently. This is the case of the ordered weighted
operators (OWA) studied by Yager (1988) to aggregate semantic preferences in
the context of artificial intelligence; as well as SAND functions (isotone and
sublinear functions) introduced by Francis et al. (2000) to study aggregation errors
in multifacility location models.

First, we recall some simple properties and remarks concerning ordered median
functions. Most of them are natural questions that appear when a family of functions
is considered. Partial answers are summarized in the following proposition.
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Proposition 10.1 Let f�.x/; f	.x/ 2 OMf.n/.

I. f�.x/ is a continuous function.
II. f�.x/ is a symmetric function, i.e. for any x 2 R

n f�.x/ D f�.sortn.x//.
III. f�.x/ is a convex function iff �1 � : : : � �n.
IV. If c1 and c2 are constants, then the function c1f�.x/C c2f	.x/ 2 OMf.n/.
V. If ff�r .x/g is a set of ordered median functions that pointwise converges to a

function f , then f 2 OMf.n/.
VI. If ff�r .x/g is a set of ordered median functions, all bounded above in each

point x of Rn, then the pointwise maximum (or sup) function defined at each
point x is not in general an OMf .

VII. Let p < n � 1 and xp D .x1; : : : ; xp/, xnp D .xpC1; : : : ; xr /. If f�.x/ 2
OMf.n/ then f�p .xp/C f�np .xnp/ � f�.x/.

VIII. Every ordered median function OMf.n/ is a difference of two positively
homogeneous convex functions and has a representation

f�.x/ D
nX

iD1
�1'i .x/;

where 'r.x/ D min
˚

maxfxi1 ; xi2 ; : : : ; xir gji1 < i2 < : : : < ir and
i1; i2; : : : ; ir 2 f1; : : : ; ng

�
:

Proof The proof of (1) can be found in Rosenbaum (1950). The proof of (3) and (8)
are in Grzybowski et al. (2011). The proofs of items (2) and (4) are straightforward
and therefore are omitted. A proof of (5) and counterexamples for (6) and (7) are
given in Nickel and Puerto (2005, Examples 1.1 and 1.2). �

In order to continue the analysis of the ordered median function we need to
introduce some notation that will be used in the following. Let P.1 : : : n/ be the
set of all the permutations of the first n natural numbers,

P.1 : : : n/ D f� W � is a permutation of 1; : : : ; ng: (10.2)

We write � D .�.1/; : : : ; �.n//.
The next result, that we include for the sake of completeness, is well-known and

its proof can be found in the book by Hardy et al. (1952).

Lemma 10.1 Let x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ be two vectors in R
n.

Suppose that x � y, then xord D .x.1/; : : : ; x.n// � yord D .y.1/; : : : ; y.n//.
To understand the nature of the OMf we need a precise characterization. This

will be done in the following two results using the concepts of symmetry and
sublinearity.

Theorem 10.1 A function f defined over RnC is continuous, symmetric and linear
over fx W 0 � x1 � : : : � xng if and only if f 2 OMf.n/.



10 Ordered Median Location Problems 253

Proof Since f is linear over X� WD fx � 0 W 0 � x1 � : : : � xng, there exists
� D .�1; : : : ; �n/ such that for any x 2 X� f .x/ D h�; xi. Now, let us consider
any y 62 X�. There exists a permutation � 2 P.1 : : : n/ such that y� 2 X�. By
the symmetry property it holds f .y/ D f .y�/. Moreover, for y� we have f .y�/ D
h�; y�i: Hence, we get that for any x 2 R

n

f .x/ D h�; xordi:

Finally, the converse is trivially true. �
There are particular instances of the � vector that make their analysis interesting.

One of them is the convex case, i.e., �1 � : : : � �n, where we can obtain a
characterization without the explicit knowledge of a linearity region.

Theorem 10.2 Given � D .�1; : : : ; �n/ with �1 � �2 � : : : � �n; and �� D
.��.1/; : : : ; ��.n// with � 2 P.1 : : : n/, a symmetric function f defined over Rn is
the support function of the set S� D convf�� W � 2 P.1 : : : n/g if and only if f is
the convex ordered median function

f�.x/ D
nX

iD1
�ix.i/: (10.3)

Proof Let us assume that f is symmetric and the support function of S�. Then,

f .x/ D sup
s2S�
hs; xi D sup

�2P.1:::n/

h��; xi D sup
�2P.1:::n/

h�; x� i D
nX

iD1
�ix.i/:

Conversely, it suffices to apply Theorem 368 in Hardy et al. (1952) to (10.3). �
Convexity is an important property within the scope of continuous optimization.

Thus, it is crucial to know the conditions that ensure this property. Nevertheless, in
the context of discrete optimization convexity cannot even be defined. Nevertheless,
in this case submodularity plays a similar role. (The interested reader is referred to
the chapter of the Handbook Discrete Optimization by McCormick (2005).) In the
following, we also prove a submodularity property of the convex ordered median
function, Puerto and Tamir (2005).

Let x D .xi /, y D .yi /, be vectors in R
n. Define the meet of x; y to be the vector

x
V
y D .minfxi ; yi g/, and the join of x; y by x

W
y D .maxfxi ; yi g/. The meet

and join operations define a lattice on R
n.

Theorem 10.3 (Submodularity Theorem) Given � D .�1; : : : ; �n/, satisfying
0 � �1 � �2 � : : : � �n, f�.x/ is submodular over the lattice defined by the
above meet and join operations, i.e.,

f�.x
_
y/C f�.x

^
y/ � f�.x/C f�.y/; 8x; y 2 R

n:
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10.3 The Continuous Ordered Median Problem

This section is devoted to the analysis of the Ordered Median Location Problem
in a continuous framework. For the ease of understanding, we have divided this
section in two main parts. In the first one, we restrict ourselves to the polyhedral
gauges emphasizing the planar case. In this setting one can derive nice geometrical
properties that help to capture the main elements of the problem, namely its
linearity domains, ordered regions and intuitive algorithms for obtaining the optimal
solutions. Second, we address the general case where we shall apply a new global
optimization technique that allows us to handle and solve a wide range of ordered
median location problems.

10.3.1 The Single Facility Polyhedral Ordered Median
Location Problem

Consider a set of demand points A D fa1; a2; : : : ; ang � R
n (representing existing

facilities or clients) and two sets of non negative scalars w D .w1; : : : ;wn/ and
� D .�1; : : : ; �n/. The element wi is the weight assigned to the existing facility ai
and it represents the importance of this demand point. The elements of � allow us
to choose between different kinds of objective functions. We also consider a gauge
.�/ W Rn �! R to measure distances. Recall that any gauge is defined by the
Minkowski functional of a compact, convex set with the zero in its interior (see
Nickel and Puerto 2005).

The ordered median problem is given by:

min
x2Rn F .x/ D h�; sortn...x � a1/; : : : ; .x � an///i: (10.4)

Note that the problem is well-defined even if ties occur. In that case any order of the
tied positions gives the same value.

Example 10.1 Consider two demand points a1 D .0; 0/ and a2 D .10; 5/,�1 D 100
and �2 D 1 with `1-norm and w1 D w2 D 1. We obtain only two optimal solutions
to problem (10.4), lying in each demand point. Observe that a linear representation
of the objective function is regionwise defined and that the objective function is not
convex since we have a nonconvex optimal solution set. See Fig. 10.1.

F.a1/ D 100 � 0C 1 � 15 D 15
F.a2/ D 100 � 0C 1 � 15 D 15

F.
1

2
.a1 C a2// D 100 � 7:5C 1 � 7:5 D 757:5
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a1

a2

O12 O21

B(a1, a2)

Fig. 10.1 Illustration to Example 10.1

In this section, for the sake of presentation, we restrict ourselves to study the
particular case where the distances are measured with polyhedral gauges, i.e., the
unit balls associated with these gauges are convex polytopes. For this reason we
will assume in this subsection that B � R

n is a bounded polytope whose interior
contains the zero and we denote the set of extreme points of B by Ext.B/ D feg W
g D 1; : : : ; Gg. The polar set B0 of B is given by B0 D fx 2 R

n W hx; pi �
1 8p 2 Bg: In the polyhedral case, B0 is also a polytope, see Ward and Wendell
(1985) and Durier and Michelot (1985). The normal cone to B at x is given by
N.B; x/ WD fp 2 R

n W hp; y � xi � 0 8 y 2 Bg and the boundary of B is
denoted by bd.B/ .

In what follows, we recall some geometrical properties of the planar formulation
of problem (10.4) which give us specific insights into the considered model. In this
case we define fundamental directions as the halflines defined by 0 and the extreme
points of B . Let � D .pi /iD1;:::;n be a family of elements of R2 such that pi 2 B0

for each i 2 f1; : : : ; ng and let C� D Tn
iD1.ai C N.Bo; pi //. A nonempty convex

set C is called an elementary convex set (e.c.s.) if there exists a family � such that
C� D C.

It should be noted that if the unit balls are polytopes we can obtain the elementary
convex sets as intersections of cones generated by fundamental directions of these
balls pointed at each demand point. Therefore each elementary convex set is a
polyhedron whose vertices are called intersection points (see Fig. 10.1). Finally, we
recall that in the planar case an upper bound of the number of elementary convex
sets is O.n2G2/ where G is the number of extreme points of B (see Durier and
Michelot (1985) for further details).

Although the objective function of problem (10.4) may look like the one of the
Weber problem we do not have a unified linear representation of such a function in
the whole space. From the definition of the objective function, it is easy to see, that
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the representation may change every time .x�ai /�.x�aj / becomes 0 for some
i; j 2 f1; : : : ; ng with i ¤ j . Next, we analyze the sets where the representation of
the objective function as a weighted sum stays unchanged.

Definition 10.2 The set B.ai ; aj / consisting of points fx W wi .x � ai / D
wj .x � aj /; i ¤ j g is called bisector of ai and aj with respect to  .

As an illustration of Definition 10.2 one can see in Fig. 10.1 the bisector line for
the points a1 and a2 with the `1-norm. The set of bisectors builds a subdivision of
the plane (very similar to the well-known order-k Voronoi diagrams, see the book
Okabe et al. 1992). The cells of this subdivision will be called from now on ordered
regions. We formally introduce this concept.

Definition 10.3 Given a permutation � 2 P.1; : : : ; n/, the ordered region O� is
the following set

O� D fx 2 R
2 W w�1.x � a�1/ � : : : � w�n.x � a�n/g:

Observe that these regions need not be convex sets, see Fig. 10.1. The ordered
regions play a very important role in the algorithmic approach developed for solving
the problem. Moreover, under the above hypothesis the overall number of ordered
regions in the planar case is O.n4G2/, see Rodríguez-Chía et al. (2000) for further
details. The importance of these regions is that the ordered median function has
a unique linear representation within the intersection of any ordered region with
any elementary convex set. The sets resulting of these intersections are called
generalized elementary convex sets and it is known that the entire set of optimal
solutions of problem (10.4) always coincides with some generalized elementary
convex sets, see Puerto and Fernández (2000) for further details.

Although the set of optimal solutions of problem (10.4) always coincides with
a generalized elementary convex set, the large number of these regions and their
intricate geometry requires some kind of good generation and enumeration schemes
to derive an algorithm. This approach is possible in the plane for polyhedral
gauges. One can easily derive an appealing geometrical algorithm to solve these
problems in the plane. Compute the subdivision of the plane induced by the lines
defining the fundamental directions of the gauges and the bisectors. Observe that
this construction can be efficiently performed using any algorithm to generate
subdivisions induced by arrangements of hyperplanes, see Edelsbrunner (1987).
The complexity of computing the ordered regions and its number isO.n4G2/. Next,
one needs to evaluate the objective function in each vertex of the subdivision. Each
evaluation can be done in O.nG log nG/. This results in an algorithm that solves the
problem in the plane with a complexity ofO.n5G3 log nG/.

In what follows we present an alternative, intuitive solution approach for the
polyhedral version of the ordered median problem that consists in a enumerative
algorithm that solves a linear program per visited ordered region. In order to do that,
we first obtain some interesting properties of the following linear program whereO�
is an ordered region defined by the permutation � :
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minimize
Pn

iD1 �iz�i
subject to wi he0g; x � ai i � zi ; eog 2 Bo; i D 1; 2; : : : ; n

z�i � z�iC1
i D 1; 2; : : : ; n � 1

; (P� )

where e0g are the extreme points of B0.

Lemma 10.2 Let X� be an optimal solution of P� .

(i) If X� 2 O� thenX� is also an optimal solution to the ordered median problem
constrained to O� .

(ii) If X� 2 O� 0 ¤ O� then the optimal solution of the ordered median problem
constrained to O� 0 is better than the optimal solution of the ordered median
problem constrained to O� .

Proof (i) At an optimal point X� in O� we have

wi heogi ; X� � ai i D zi ; i D 1; 2; : : : ; n ; for some gi ;

which means that zi D wi .X� � ai / and the result follows.
(ii) At an optimal point X� of P� in O� 0 we have

heog; X� � ai i < zi for all g

for at least one i . This means that we can decrease the objective function by
moving fromO� to O� 0 and the result follows. �

Based on Lemma 10.2 we develop a another algorithm for this problem. For each
ordered region we solve the problem as a linear program which geometrically means
either finding the locally best solution in this ordered region or finding out that this
region does not contain the global optimum by Lemma 10.2. In the former case
two situations may occur. First, if the solution lies in the interior of the considered
region (in R

n) then we move to a different one not yet processed and secondly, if
the solution is on the boundary we do a local search in the neighborhood regions
where this point belongs to. It is worth noting that to accomplish this search a list
L containing the already visited neighborhood regions is used in the algorithm.
Besides, it is also important to realize that neither Step 2 nor Step 5 need to explicitly
construct the corresponding ordered region. It suffices to evaluate and to sort the
distances to the demand points. In addition, this algorithm can be improved in the
interesting, important case where �1 � : : : � �n. In this situation the objective
function is globally convex and this fact can be exploited to reduce the enumeration
of the entire list of ordered regions. Indeed, if one optimal solution of any Problem
P� is interior to the ordered region O� or this solution cannot be improved in
adjacent regions then by global convexity this implies that it is the global minimum.
Otherwise, one can follow a descent iterative scheme moving from one region to
another one not previously visited. The above arguments justify the validity of the
following algorithm.
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Algorithm 10.1 Step 1. Choose xo as an appropriate starting point. Initialize
L WD ;, y� D xo.

Step 2. Consider O�o which y� belong to, where �o determines the order.
Step 3. Solve the linear program P�0 . Let u0 D .x01 ; x

0
2 ; z

0
� / be an optimal

solution. If x0 D .x01 ; x
0
2/ 62 O�o then let O�o be such that x0 2 O�o and go

to Step 3.
Step 4. Let yo D .x01 ; x02/.
Step 5. If yo belongs to the interior of O�o then set y� D y0 and go to Step 8.
Step 6. If F.yo/ ¤ F.y�/ then L WD f�0g
Step 7. If there exist i and j verifying .yo�a�oi / D .yo�a�oj / with i < j such

that .�o1 ; : : : ; �
o
j ; : : : ; �

o
i ; : : : ; �

o
n / 62 L then do

(a) y� WD yo, �o WD .�o1 ; �o2 ; : : : ; �oj ; : : : ; �oi ; : : : ; �on /
(b) L WD L [ f�og
(c) go to Step 3

else go to Step 8 (Optimum found)
Step 8. Output y�

The above algorithm is efficient in the sense that it is polynomially bounded
in fixed dimension. Once the dimension of the problem is fixed, its complexity is
dominated by the complexity of solving a linear program for each ordered region.
Since the number of ordered regions is polynomially bounded, Algorithm 10.1 is
polynomial.

The nice geometry of the problem in the plane allows us to derive the two above
algorithms. Nevertheless, this geometry in higher dimension is rather intricate and
the above approach, based on building ordered regions, is very difficult since no
efficient algorithm for computing bisectors is available in dimension greater than 2.

In spite of that, we will present an alternative algorithm for solving the single
facility ordered median problem in any dimension d . To this for, we shall introduce
a valid MILP model that provides the optimal solution of the problem. Indeed,
consider the following set of binary variables

zij WD
8
<

:

1 if the distance induced by facility i
goes in sorted position j

0 otherwise.

and the continuous variable

�j D distance between a facility and its server in the j -th position in the ordered

sequence of distances between each facility and its corresponding server.
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In order to minimize the ordered median function for a given set of nonnegative
lambda parameters �1; : : : ; �n, we define the following problem.

minimize
nX

jD1
�j �j (10.5)

subject to .1 � zij/M C �j � wi he0g; x � ai i; for eog 2 Bo; i; j D 1; 2; : : : ; n
(10.6)

nX

iD1
zij D 1; for j D 1; : : : ; n (10.7)

nX

jD1
zij D 1; for i D 1; : : : ; n (10.8)

�j � �jC1; for j D 1; : : : ; n � 1 (10.9)

�j � 0; for j D 1; : : : ; n (10.10)

zij 2 f0; 1g; for i; j D 1; : : : ; n (10.11)

x 2 R
d : (10.12)

Constraints (10.7) and (10.8) define a permutation by placing at each position
a single distance to a facility and each distance to a facility at a single sorted
position. Constraints (10.6) relate distance values with the values placed in a
sorted sequence. Constraint (10.9) imposes that the sorted values are ordered non-
increasingly. Finally, (10.10)–(10.12) define the range of variables of the model.

The above approach solves efficiently the problem in any dimension provided
that the gauges used to measure distances are polyhedral since problem (10.5)–
(10.12) is a MILP that can be handled with any of the nowadays available MIP
solvers.

We would like to conclude this section with some comments on several exten-
sions of the considered problem. On the one hand, the multicriteria planar version
of the above problem was analyzed in Nickel et al. (2005). On the other hand,
the planar case of the ordered median problem using a `p-norm was also studied
by Drezner and Nickel (2009a,b) where techniques of global optimization were
used for solving it. In addition, Espejo et al. (2009), Rodríguez-Chía et al. (2010)
proposed an adaptation of the Weiszfeld algorithm for the convex version of this
problem, i.e., 0 � �1 � : : : � �n. Finally, we would like to mention some
references that consider the multifacility version of particular classes of ordered
median problems. These references can be seen as a starting point to dig into this
challenging topic. The interested reader is referred to Blanco et al. (2014b), Ben-
Israel and Iyigun (2010), Brimberg et al. (2000), Schöbel and Scholz (2010) for
different approaches to the continuous multifacility location problem.
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10.3.2 Generalized Continuous Ordered Median Location
Problems

This section extends the analysis presented above, in Sect. 10.3.1, to the case of non-
polyhedral norms and any dimension d . In doing that we shall cast that problem
within the more general paradigm of polynomial programming. This approach
allows us to apply powerful tools borrowed from the theory of global optimization to
solve our original problem, see Blanco et al. (2013). This section contains advanced
material which is self-contained. For this reason those non specialized readers not
interested in global optimization techniques may decide to skip it without losing
continuity with the remaining sections of this chapter.

We are given a set A D fa1; : : : ; ang � R
d endowed with an `� -norm (here `�

stands for the norm kxk� D
�Pd

iD1 jxi j�
�1=�

, for all x 2 R
d ); and a feasible domain

K WD fx 2 R
d W gj .x/ � 0; j D 1; : : : ; `g � R

d , assumed to be a closed semi-
algebraic set, i.e. a set defined by a finite number of polynomial inequalities, where
each gj .x/ 2 RŒx� is a polynomial, being RŒx� the ring of real polynomials in
.x1; : : : ; xd /. Since we are interested in solving location problems we shall assume
without loss of generality that we wish to solve the problem in a bounded domain so
that K is compact. The goal is to find a point x� 2 K minimizing some globalizing
function of the distances to the setA. Here, we consider that the globalizing function
is rather general and that it is given as an ordered weighted average of polynomials
(the reader may observe that the same approach also extends to rational functions,
Blanco et al. 2013).

Some well-known examples, that are formulated in the above terms, are the
following (see, e.g., Blanquero and Carrizosa 2009; Drezner 2007; Espejo et al.
2009; López-de-los-Mozos et al. 2008 or Nickel and Puerto 2005) : f .u1; : : : ; un/ DPn

i<j jui � uj j, is the absolute deviation or envy criterion, f .u1; : : : ; un/ DPn
iD1.ui�1=n

Pn
jD1 uj /2, is the variance function, f .u1; : : : ; un/ DPn

jD1 wj =u2j ,
where wj are scalar weights, is the obnoxious facility criterion and f .u1; : : : ; un/ DPn

jD1 bj =.1Chj juj j�/, with bj and hj appropriate weights, is the Huff competitive
location objective function.

The main feature and what distinguishes location problems from other general
purpose optimization problems, is that the dependence of the decision variables
is given through the norms to the demand points in A, i.e. kx � aik� . In this
section, we consider a generalized version of the ordered continuous single facility
location problems over closed semi-algebraic feasible sets, i.e., the Ordered Median
of Polynomial Functions problem:

�� WD minimize f
mX

jD1
�j Qf.j /.x/ W x 2 K g; (OMPF)
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where:

• �j 2 R j D 1; : : : ; m are modeling weights.
• fj .u/ W Rn 7! R, with fj .u/ 2 RŒu1; : : : ; un� (the ring of real polynomials in
.u1; : : : ; un/), x 2 K for all j D 1; : : : ; m. We shall define the dependence of
fj to the decision variable x 2 R

d via u D .u1; : : : ; un/, where ui W Rd 7! R,
ui .x/ WD kx � aik� , i D 1; : : : ; n. Therefore, the j -th component of the ordered
median objective function of our problems reads as:

Qfj .x/ W Rd 7! R

x 7! Qfj .x/ WD fj .kx � a1k� ; : : : ; kx � ank� /:

In the classical ordered median problem these functions correspond with
the distances from the demand points to the service facility, i.e. fj .kx �
a1k� ; : : : ; kx � ank� / D kx � aj k� ; thus, in our application to the ordered
median problem we will always assume to have m D n and functions Qfj .x/ WD
kx � aj kj� .

• K WD fx 2 R
d W gj .x/ � 0; j D 1; : : : ; `g � R

d satisfies Archimedean
property. (See Lasserre 2009 for a detail discussion on the Archimedean property
and its implications in real algebraic geometry and global optimization. In
our setting this property is essentially equivalent to assume compact feasible
regions.)

• � WD r=s, r; s 2 N, r � s and gcd.r; s/ D 1.

First of all, since K is compact there exist M 0 > 0 such that kxk2 � M 0 for all
x 2 K. Then, we observe that any feasible solution of OMPF satisfies kx � aik2 �
M 0 C kaik2 � M 0 C max1�i�n kaik2 WD M: Then, since all norms are equivalent
in R

d , there exists  > 0 such that kxk2� =kxk2 �  , for all x 2 R
d . Hence,

kx � aik2� � M DW NM . This bound will allow us to derive the constraints (10.21)
of our reformulation of Problem OMPF. These constraints ensure that the feasible
region is bounded which in our framework is sufficient to imply compactness. For
this reason, we will call them from now on compactness constraints.

Next, our goal is to cast the above problem within the framework of polynomial
optimization. Associated with the above minimization problem we introduce an
equivalent formulation that will be useful to apply the moment tools to solve the
ordered median problem. For each i D 1; : : : ; m, j D 1; : : : ; m consider the
following family of decision variables for each x 2 K

wij D
�
1 if Qfi .x/ D Qf.j /.x/,
0 otherwise.

:

However, we observe that `� -norms are not, in general, polynomials. To avoid this
inconvenience, we introduce the following auxiliary problem. Observe that this
formulation embeds the original problem in a higher dimensional space to represent
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the piecewise polynomials that appear in OMPF as polynomials in the new set of
variables.

�� D minimize
mX

jD1
�j

mX

iD1
fi .u/wij WD p�.x; u; v;w/ (10.13)

subject to
mX

jD1
wij D 1; for i D 1; : : : ; m; (10.14)

mX

iD1
wij D 1; for j D 1; : : : ; m; (10.15)

mX

iD1
wijfi .u/ �

mX

iD1
wijC1fi .u/; j D 1; : : : ; m � 1; (10.16)

w2ij � wij D 0; for i; j D 1; : : : ; m; (10.17)

v2sk` D .x` � ak`/2r ; k D 1; : : : ; n; ` D 1; : : : ; d; (10.18)

urk D .
dX

`D1
vk`/

s; k D 1; : : : ; n; (10.19)

mX

jD1
w2ij � 1; i D 1; : : : ; m; (10.20)

dX

jD1
v2ij � NM2�; i D 1; : : : ; n; (10.21)

wij 2 R; 8 i; j D 1; : : : ; m; (10.22)

vk` � 0; uk � 0; k D 1; : : : ; n; ` D 1; : : : ; d; (10.23)

x 2 K: (10.24)

By means of the w variables, the objective function (10.13) is the ordered
weighted sum of the fi polynomials which can be written as the polynomial p�.
The first set of constraints (10.14) ensures that for each x, Qfi .x/ is sorted in a unique
position. The second set (10.15) ensures that the j th position is only assigned to one
polynomial function. The next constraints (10.16) state that f.1/.u/ � � � � � f.m/.u/.
Constraints (10.17) are added to assure that wij 2 f0; 1g. Next, the two families of
constraints (10.18) and (10.19) set urk as the correct value of kak � xk� (recall that
� D r=s). The last set of constraints (10.20) and (10.21) ensure that Archimedean
property holds for the new feasible region K of the above auxiliary problem. (Note
that this last set of constraints are redundant but it is convenient to add them for a
better description of the feasible set.)



10 Ordered Median Location Problems 263

We also observe that the above problem simplifies for those cases where r is even.
In these cases, we can replace the constraints (10.18) by the simplest constraints

vsk` D .xk � ak`/r ; 8 k; `:

This reformulation reduces the degree of the polynomials defining the feasible set.
We illustrate the above formulation with a standard model in location analysis:

the k-centrum problem in the plane.

Example 10.2 Let us assume that we are given a set of demand points A D
fa1; : : : ; ang � R

2, where ai D .ai1; ai2/, for i D 1; : : : ; n. We wish to model
the k-centrum (k < n) with `3-distance, i.e. r D 3 and s D 1, with respect to the
demand points in A and a feasible region defined by a set K. It is clear that in this
case d D 2, m D n and each function Qfi .x/ WD kx � aik3; i D 1; : : : ; n.

According to the model above this problem can be formulated as follows:

minimize
nX

jDn�kC1

nX

iD1
uiwij

subject to
nX

iD1
wij D 1; for j D 1; : : : ; n;

nX

iD1
wij D 1; for j D 1; : : : ; n;

nX

iD1
wijui �

nX

iD1
wijC1ui ; j D 1; : : : ; n � 1

w2ij � wij D 0; for i; j D 1; : : : ; n;
v2k` D .x` � ak`/6; k D 1; : : : ; n; ` D 1; : : : ; 2;
u3k D .

dX

`D1
vk`/; k D 1; : : : ; n;

nX

jD1
w2ij � 1; i D 1; : : : ; n;

2X

jD1
v2ij � NM6; i D 1; : : : ; n;

wij 2 R; 8 i; j D 1; : : : ; m;
vk` � 0; uk � 0; k D 1; : : : ; n; ` D 1; : : : ; d;
x 2 K:

Next, we get a result that shows the equivalence between the above polynomial
optimization formulation and our location problem (OMPF).
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Theorem 10.4 Let x be a feasible solution of (OMPF) then there exists a solution
.x; u; v;w/ for (10.13)–(10.24) such that their objective values are equal. Con-
versely, if .x; u; v;w/ is a feasible solution for (10.13)–(10.24) then there exists
a solution .x/ for (OMPF) having the same objective value. In particular �� D ��.
Moreover, if K � R

d satisfies Archimedean property then K � R
dCm2Cn.dC1/ also

satisfies Archimedean property.

The interested reader is referred to Blanco et al. (2013, Theorem 4) for a detailed
proof.

Now, we can prove a convergence result that allows us to solve, up to any degree
of accuracy, the above class of problems. In order to proceed further we need to
introduce some additional material related to the Theory of Moments, Lasserre
(2009).

Recall that by RŒx� we denote the ring of real polynomials in the variables x D
.x1; : : : ; xd /, for d 2 N (d � 1), and by RŒx�r � RŒx� the space of polynomials
of degree at most r 2 N (here N denotes the set of non-negative integers). We also
denote by B D fx˛ W ˛ 2 N

d g a canonical basis of monomials for RŒx�, where
x˛ D x

˛1
1 � � �x˛dd , for any ˛ 2 N

d . Note that Br D fx˛ 2 B W Pd
iD1 ˛i � rg is a

basis for RŒx�r .
For any sequence indexed in the canonical monomial basis B, y D .y˛/˛2Nd �

R, let Ly W RŒx�! R be the linear functional defined, for any f DP˛2Nd f˛ x˛ 2
RŒx�, as Ly.f / WDP˛2Nd f˛ y˛ .

The moment matrix Mr .y/ of order r associated with y, has its rows and columns
indexed by .x˛/ and Mr .y/.˛; ˇ/ WD Ly.x

˛Cˇ/ D y˛Cˇ , for j˛j; jˇj � r (here
jaj stands for the sum of the coordinates of a 2 N

d ).
For g 2 RŒx� .D P

2Nd gx ), the localizing matrix Mr .gy/ of order r associ-
ated with y and g, has its rows and columns indexed by .x˛/ and Mr .gy/.˛; ˇ/ WD
Ly.x

˛Cˇg.x// DP gyC˛Cˇ , for j˛j; jˇj � r .

Let y D .y˛/ be a real sequence indexed in the monomial basis .xˇuvıw�/ of
RŒx; u; v;w� (with ˛ D .ˇ; ; ı; �/ 2 N

d � N
n � N

nd � N
m2).

Let h0.x; u; v;w/ WD p�.x; u; v;w/, and denote �j WD d.deggj /=2e and �j WD
d.deghj /=2e, where fg1; : : : ; g`g, and fh1; : : : ; h3mCm2Cn.dC3/g are, respectively,
the polynomial constraints that define K and K n K in (10.13)–(10.24). For r �
r0 WD maxfmaxkD1;:::;` �k; maxjD0;:::;3mCm2Cn.dC3/ �j g, we introduce the hierarchy
of semidefinite programs:

minimizey Ly.p�/

subject to Mr .y/ 
 0;
Mr��k .gk; y/ 
 0; k D 1; : : : ; `;
Mr��j .hj ; y/ 
 0; j D 1; : : : ; 3mCm2 C n.d C 3/;

(Qr )

with optimal value denoted min Qr .
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Theorem 10.5 Let K � R
dCm2Cn.dC1/ be the feasible domain of Problem (10.13)–

(10.24). Then, with the notation above:

(a) min Qr " �� as r !1.
(b) Let yr be an optimal solution of the SDP relaxation (Qr ). If

rank Mr .yr / D rank Mr�r0.yr / D t

then min Qr D �� and one may extract t points .x�.k/; u�.k/; v�.k/;
w�.k//tkD1 � K, all global minimizers of problem (OMPF).

Proof The convergence of the semidefinite relaxation Qr follows from a result by
Jibetean and de Klerk (2006, Theorem 9) that it is applied here to the polynomial
function in (10.13) and the closed semi-algebraic set K. The second assertion on
the rank condition, for extracting optimal solutions, follows from applying Lasserre
(2009, Theorem 5.7) to the SDP relaxation Qr . �

We also observe that one can exploit the block diagonal structure of the
problem (10.13)–(10.21) since the only monomials that appear in that formulation
are of the form x˛uˇi

Qm
jD1 v

j
ij for all i D 1; : : : ; m. Hence, a result similar to

Theorem 12 in Blanco et al. (2013) about a sparse reformulation also holds for this
problem.

Tables 10.1 and 10.2 present some computational results obtained applying the
above technique for different planar ordered median problems. Programs were
coded in MATLAB R2010b and executed in a PC with an Intel Core i7 processor
at 2 � 2:93GHz and 8 GB of RAM. The semidefinite programs were solved
by calling SDPT3 4.0, Kim-Chuan et al. (2006). We report the CPU times for
computing solutions as well as the gap, �obj, with respect to upper bounds obtained
with the battery of functions in optimset of MATLAB, which only provide
approximations on the exact solutions (optimality cannot be certified). In order to
compute the accuracy of an obtained solution, we use the following measure for the
error (see Blanco et al. 2013):

�obj D jthe optimal value of the SDP � foptj
maxf1; foptg ; (10.25)

where fopt is the approximated optimal value obtained with the functions in
optimset. The interested reader is referred to Blanco et al. (2013, Section 5)
for further details and computational results using the tools in this section applied
to location problems.
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10.4 The Ordered Median Problem on Networks

Let N D .G; `/ denote a network with underlying graph G D .V;E/, with node
set V D fv1; : : : ; vng and edge set E D fe1; : : : ; emg. We restrict ourselves to
undirected graphs. Therefore, we write every edge e 2 E as fi; j g; vi ; vj 2 V .

Each edge e 2 E is associated with a positive length by means of the function
` W E ! RC. By d.vi ; vj /, we denote the length of the shortest path between vi
and vj measured by `. Through w W V ! RC [ f0g, every vertex is assigned a non
negative weight.

A point x on an edge e D fi; j g is defined as a pair x D .e; t/; t 2 Œ0; 1�, with

d.vk; x/ WD d.x; vk/ WD minfd.vk; vi /C t`.e/; d.vk; vj /C .1� t/`.e/g: (10.26)

The set of all the points of a network .G; `/ is denoted by P.G/. It should be
noted that this set also contains the nodes V .

10.4.1 The Single Facility Ordered Median Problem

In this section we deal with the simplest version of the ordered median problem on
networks where just a single location is placed. In order to do that, we consider the
following notation. Let

d.x/ WD .w1d.v1; x/; : : : ;wnd.vn; x//

and

d�.x/ WD .w.1/d.v.1/; x/; : : : ;w.n/d.v.n/; x//

a permutation of the elements of d.x/, verifying

w.1/d.v.1/; x/ � w.2/d.v.2/; x/ � : : : � w.n/d.v.n/; x/:

For the sake of simplicity, let d.i/.x/ WD w.i/d.v.i/; x/.
The ordered median problem on N is defined as

f�.d.x// WD
nX

iD1
�id.i/.x/ with � D .�1; : : : ; �n/ � 0 ; (10.27)

and

M.�/ WD min
x2P.G/ f�.d.x//: (10.28)
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In this section we state the fundamental properties of Problem (10.28). We
will present a localization result which generalizes the well-known results by
Hakimi on finite dominating sets for the center and median problems on networks
(Hakimi 1964) and gives some insight in the connection between median and center
problems.

For all vi ; vj 2 V; i ¤ j define

EQij WD fx 2 P.G/ W wi d.vi ; x/ D wj d.vj ; x/g (10.29)

and let EQ WD SfEQij W i; j with i ¤ j g.
The points in EQ are called equilibria points of N . Two points a; b 2 EQ are

called consecutive, if there is no other c 2 EQ on the shortest path between a
and b. The points in EQ establish a partition on N with the property that for two
consecutive elements a; b 2 EQ the permutation which gives the order of the vector
d�.x/ is the same for all x 2 Œa; b�.

Now we will give a finite dominating set (FDS) for the optimal locations of
Problem (10.28), see Nickel and Puerto (1999) for further details.

Theorem 10.6 An optimal solution for Problem (10.28) can always be found in the
set Cand WD EQ [ V .

Proof Starting from the original graph G, build a set of new graphs G1; : : : ; GK
by inserting all points of EQ as new nodes. Now every subgraph Gi is defined by
either

I. Two consecutive elements of EQ on an edge or
II. An element vi 2 V nEQ and the adjacent elements of EQ

and the corresponding edges. In this situation for every subgraphGi the permutation
of d�.x/ is constant (by definition of EQ). Therefore for all x 2 P.Gi / we have

nX

iD1
�id.i/.x/ D

nX

iD1
�iw�.i/d.v�.i/; x/ ;

where � 2 P.1; : : : ; n/, and P.1; : : : ; n/ is defined as the set of all permutations of
f1; : : : ; ng. Therefore we can replace the objective by a classical median-objective.
Now we can apply Hakimi’s node dominance result in every Gi and the result
follows. �

Theorem 10.6 also gives rise to some geometrical subdivision of the network
N . Like indicated in the proof of Theorem 10.6 we can assign to every subgraph
Gi ; i D 1; : : : ; k a n-tuple giving in the i -th position the i -th nearest vertex to all
points in Gi . As an example we have in Fig. 10.2 a graph with three nodes and all
weights wi and all lengths are 1.

This partition can be seen as a kind of higher order Voronoi diagram of N quite
related to the Voronoi partition of networks introduced in Hakimi et al. (1992).
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Fig. 10.2 A three-node
network with EQ D
fEQ12;EQ13;EQ23; v1; v2; v3g
and the geometrical
subdivision

v1

v2 v3

EQ12

EQ23

EQ13

1
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2
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Fig. 10.3 The network used
in Example 10.3
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For algorithmic purposes one should note that the set EQ can be computed by
intersection of all distance functions, see (10.26) on all edges. Since a distance
function has maximally one breakpoint on every edge we can use a line sweep
technique to determine EQ on one edge in O..n C k/ logn/, where k � n2 is the
number of intersection points. Therefore we can compute EQ for the whole network
in O.m.n C k/ logn/ time. Of course, this is a worst-case bound and the set of
candidates can be further reduced by some domination arguments: Take for two
candidates x, y the corresponding weighted (and sorted) distance vectors d�.x/,
d�.y/. If d�.x/ is in every component strictly smaller than d�.y/ then there is
no positive � with which f�.d.y// � f�.d.x//. This domination argument can
be integrated in any line sweep technique reducing, in most cases, the number of
candidates.

Example 10.3 Consider the network given in Fig. 10.3 with w1 D w2 D w5 D 1

and w3 D w4 D w6 D 2. Table 10.3 lists the set EQ, where the labels of the rows
EQij indicate that i , j are the vertices under consideration and the columns indicate
the edge e D fr; sg. The entry in the table gives for a point x D .e; t/ the value of t
(if t is not unique an interval of values is shown).

Now we only have to evaluate the objective function with a given set of �-values
for EQ and determine the optima. Table 10.4 gives the solutions for some specific
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Table 10.3 List of the set EQ for Example 10.3

f1; 2g f1; 3g f1; 4g f2; 3g f2; 4g f2; 5g f3; 5g f3; 6g f4; 5g f5; 6g
EQ12

1
2

2
3

5
6

2
3

1
2

EQ13
2
3

4
9

2
3

1
2

EQ14 1 2
3

0 0 8
9

8
9

1
6

EQ15
5
6

1
2

1
6

1
6

1
2

EQ16 1 1 8
9

8
9

0 5
6

EQ23
1
3

2
3

2
3

1
2

EQ24
2
3

2
3

1
2

EQ25 Œ 3
4
; 1� 1 1

2
0 0 1

4

EQ26
2
3

8
9

1
3

1
6

EQ34
1
4

1
6

1
3

5
6

1
4

EQ35
1
6

1
9

1
3

1
3

1 1

EQ36 Œ 5
6
; 1� 1 1

3
5
6

1
2

0

EQ45
1
2

1
3

1
3

1
9

1
3

EQ46 0 0 0 1
2

Œ 2
3
; 1� Œ 2

3
; 1� 1 0

EQ56
1
2

2
3

1
9

2
3

Table 10.4 Solutions for some specific choices for � in Example 10.3

Obj. function Corresponding � Set of optimal solutions Obj. value

Center � D .0; 0; 0; 0; 0; 1/ EQ23
46, EQ35

46, EQ56
34 5

2-Centra � D .0; 0; 0; 0; 1
2
; 1
2
/ ŒEQ23

35;EQ23
56�; ŒEQ35

36;EQ35
14�,

ŒEQ56
14;EQ56

13�

5

3-Centra � D .0; 0; 0; 1
3
; 1
3
; 1
3
/ EQ23

26
40
9

Median � D .1; 1; 1; 1; 1; 1/ EQ23
16 D v3 18

Cent-dian � D .
O�
6
;

O�
6
;

O�
6
;

O�
6
;

O�
6
; 6�5O�

6
/ EQ56

34, 0 � O� � 36
43

, v3 otherwise � 17
12

O� C 5,

�5O�C 8

Noname � D .1; 1; 0; 0; 1; 1/ EQ23
14, EQ56

12 13

choices for �. To describe the solution set we use the notation EQij
kl to denote the

part of EQkl which lies on the edge fi; j g.
Kalcsics et al. (2002) gives an FDS for the single facility ordered median problem

with general node weights (the w-weights can be negative). Moreover, for the case
of a directed network with non-negative w-weights, they prove that there is always
an optimal solution in V .

10.4.2 The p-Facility Ordered Median Problem

In this section we deal with the multi-facility extension of the ordered median
problem. The p-facility ordered median problem consists of finding a set
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Xp D fx1; : : : ; xpg that minimizes the following objective function

minimizeXp

nX

iD1
�id.i/.Xp/; (10.30)

where d.v;Xp/ WD miniD1;:::;p d.v; xi / with v 2 V ; d.Xp/ WD .w1d.v1; Xp/; : : : ;
wnd.vn;Xp// and d�.Xp/ WD .w.1/d.v.1/; Xp/; : : : ;w.n/d.v.n/; Xp// a permutation
of the elements of d.Xp/, verifying:

w.1/d.v.1/; Xp/ � : : : � w.n/d.v.n/; Xp/:

The main result of this section establishes a generalization of the well-known
theorem of Hakimi which states that always exists an optimal solution in V .

Theorem 10.7 If �1 � �2 � : : : � �n then Problem (10.30) has always an optimal
solution X�

p contained in V .

Proof Since by hypothesis �1 � �2 � : : : � �n we have that

f�.d.Xp// D
nX

iD1
�id.i/.Xp/ D minimizef

nX

iD1
�id�.i/.Xp/ W � 2 ˘.f1; : : : ; ng/g:

Assume that Xp 6� V .
Then there must exist xi 2 Xp with xi 62 V . Let e D fv;wg be the edge

containing xi and `.e/ its length. Denote by Xp.s/ D Xp n fxi g [ fx.s/g where
x.s/ is the point on e with d.v; x.s// D s, s 2 Œ0; l.e/�.

The function g defined as g.s/ D Pn
iD1 �id.i/.Xp.s// is concave for all s 2

Œ0; `.e/� because it is the composition of a concave and a linear function, i.e.

g.s/ D min
�2˘.f1;:::;ng/

(
nX

iD1
�id�.i/.Xp.s//

)

and each

d�.j /.Xp.s// D minfd.v�.j /; x1/; : : : ;minfd.v�.j /; a/C s; d.v�.j /; b/
C`.e/� sg; : : : ; d.v�.j /; xn/g

is concave.
Hence, g.s/ D F.Xp.s// � minfF.Xp.0//; F.Xp.`.e//g and the new solution

set Xp.s/ contains instead of xi one vertex of V .
Repeating this scheme a finite number of times the result follows. �
In the previous section we proved that the set V [ EQ always contains the set of

optimal solutions of the problem (independent of the structure of �). It might seem
natural to expect that the same result holds for the p-facility case as it happens for
the p-center problem. However, Example 10.4 shows that this property fails to be
true.
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This easy example shows the limit for the set Cand D V [EQ to be a FDS (finite
dominating set) for the multifacility extension of our model. In the literature we
can find some characterizations of FDS for particular cases of the p-facility ordered
median problem. For instance, Kalcsics et al. (2003) studies the multifacility ordered
median problem where the �-weights are defined as:

a D �1 D : : : D �k ¤ �kC1 D : : : D �n D b;

for a fixed k, such that, 1 � k < n. They prove that the set Y , defined by (10.31), is
a FDS for this problem.

However, none of these papers deals with the general case of the multifacility
ordered median problem. In fact, these papers impose very restrictive hypotheses
such that their respective results can not be extended further. In the following section
we characterize a FDS for the general 2-facility ordered median problem.

10.4.2.1 A Finite Set of Candidates for the Two Facility Case

In this section we identify a finite set of candidates to be optimal solutions of the
2-facility ordered median problem. In order to consider the set of equilibrium points
as a finite set we will assume that EQ only contains the equilibrium points that are
isolated and the extreme points of the subedges in equilibrium, see Rodríguez-Chía
et al. (2005) for further details.

Theorem 10.8 Consider the following sets:

R D fr W r D wi d.vi ; y/; vi 2 V; y 2 V [ EQg;
Y.r/ D fy 2 P.G/ W wi d.vi ; y/ D r; vi 2 V g with r 2 R;
Y D

[

r2R
Y.r/; (10.31)

T D fX2 D .x1; x2/ 2 P.G/ � P.G/ W 9vr ; vs served by x1 and vr 0 ; vs0 served by x2; such

that wrd.vr ; x1/D wr 0d.vr 0 ; x2/ and wsd.vs; x1/D ws0d.vs0 ; x2/: Moreover, if wr D wr 0

and ws D ws0 , then the slopes of the functions d.vr ; �/ and d.vs ; �/, in the edge that

x1 belongs to, must have the same signs at x1 and the slopes of the functions d.vr 0 ; �/
and d.vs0 ; �/, in the edge that x2 belongs to, must have different signs at x2 g:

F D ..EQ [ V / � Y /[ T � P.G/ � P.G/: (10.32)

The set F is a finite set of candidates to be optimal solutions of the 2-facility ordered
median problem in the network N .
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Remark 10.1 The structure of the set F is different from previous FDS which
appeared in the literature. Indeed, the set F is itself a set of candidates for optimal
solutions because it is a set of pairs of points. That means that we do not have to
choose the elements of this set by pairs to enumerate the whole set of candidates.
The candidate solutions may be either a pair of points belonging to .EQ [ V / � Y
or a pair belonging to T , but they never can be one point of Y and another point of
any pair in T .

The following examples show that the set F can not be shrunk because even in
easy cases on the real line all the points are needed. The first example shows a graph
where the optimal solution X2 D .x1; x2/ verifies that x1 is an equilibrium point
and x2 is not an equilibrium point which belongs to Y.r/ n .EQ [ V / for a given r .
In the second example the optimal solution X2 D .x1; x2/ belongs to the set T .

Example 10.4 Let N D .G; `/ be a network with underlying graph G D .V;E/

where V D fv1; v2; v3; v4g and E D ff1; 2g; f2; 3g; f3; 4gg. The length function is
given by `.f1; 2g/ D 3, `.f2; 3g/ D 20, `.f3; 4g/ D 6. The w-weights are all equal
to one and the �-weights are �1 D 0:1; �2 D 0:2; �3 D 0:4; �4 D 0:3, see Fig. 10.4.

It should be noted that this example can not have optimal solutions on the edge
f2; 3g because any point of this edge is dominated by v2 or v3. In addition, using the
symmetry of the problem we have omitted the evaluation of some of the elements
of Y .

In Fig. 10.4 we represent the nodes (dots), the equilibrium points (ticks) and
elements of Y (small ticks). Notice that in this case there are no pairs in T .

In this example the optimal solution is given by x1 D p.f1; 2g; 1:5/ and x2 D
p.f3; 4g; 1:5/ (see Table 10.5). It is easy to check that x1 is an equilibrium point
between v1 and v2, and x2 2 Y.1:5/. It is worth noting that the radius 1.5 is given
by the distance from the equilibrium point, p.f1; 2g; 1:5/, generated by v1 and v2 to
any of these nodes.

Example 10.5 Let N D .G; `/ be a network with underlying graph G D .V;E/

where V D fv1; v2; v3; v4; v5g and E D ff1; 2g; f2; 3g; f3; 4g; f4; 5gg. The length
function is given by `.f1; 2g/ D 5; `.f2; 3g/ D 20; `.f3; 4g/ D 5:1; `.f4; 5g/ D 1.

| |
6203

| |

v1 v2 v3 v4

Fig. 10.4 Illustration of Example 10.4

Table 10.5 Evaluation of the candidate pairs of Example 10.4

Candidate pair X2 Value Candidate pair X2 Value

p.f1; 2g; 0/; p.f3; 4g; 0/ 3 p.f1; 2g; 1:5/; p.f3; 4g; 0/ 2:7

p.f1; 2g; 0/; p.f3; 4g; 1:5/ 2:85 p.f1; 2g; 1:5/; p.f3; 4g; 1:5/ 2:4

p.f1; 2g; 0/; p.f3; 4g; 3/ 2:7 p.f1; 2g; 1:5/; p.f3; 4g; 3/ 2:55



10 Ordered Median Location Problems 275

| | |
5 20 5.1 1

| | | | | |
v1 v2 v3 v4 v5

Fig. 10.5 Illustration of Example 10.5

Table 10.6 Evaluation of the candidate pairs of Example 10.5

Candidate pair X2 Value Candidate pair X2 Value

p.f1; 2g; 0/; p.f3; 4g; 0/ 11:81 p.f1; 2g; 2:05/; p.f3; 4g; 3:05/ 8:455

p.f1; 2g; 0/; p.f3; 4g; 2:55/ 11:6 p.f1; 2g; 2:45/; p.f3; 4g; 2:55/ 9:005

p.f1; 2g; 0/; p.f3; 4g; 3:05/ 10:6 p.f1; 2g; 2:5/; p.f3; 4g; 0/ 14:31

p.f1; 2g; 0/; p.f4; 5g; 0/ 10:61 p.f1; 2g; 2:5/; p.f3; 4g; 2:5/ 9:06

p.f1; 2g; 0/; p.f4; 5g; 0:5/ 11:66 p.f1; 2g; 2:5/; p.f3; 4g; 2:55/ 8:955

p.f1; 2g; 0/; p.f4; 5g; 1/ 11:71 p.f1; 2g; 2:5/; p.f3; 4g; 2:6/ 8:95

p.f1; 2g; 0:5/; p.f4; 5g; 0:5/ 11:16 p.f1; 2g; 2:5/; p.f3; 4g; 3:05/ 8:905

p.f1; 2g; 1/; p.f4; 5g; 0/ 10:61 p.f1; 2g; 2:5/; p.f3; 4g; 3:6/ 8:96

p.f1; 2g; 1/; p.f4; 5g; 1/ 11:71 p.f1; 2g; 2:5/; p.f4; 5g; 0/ 9:11

p.f1; 2g; 1:45/; p.f3; 4g; 2:55/ 10:005 p.f1; 2g; 2:5/; p.f4; 5g; 0:5/ 9:16

p.f1; 2g; 1:95/; p.f3; 4g; 3:05/ 8:455 p.f1; 2g; 2:5/; p.f4; 5g; 1/ 10:21

p.f1; 2g; 2/; p.f3; 4g; 3:1/ 8:41

The w-weights are all equal to one and the �-weights are �1 D 0; �2 D 1; �3 D
0; �4 D 1; �5 D 1:1, see Fig. 10.5.

In Fig. 10.5, we use the same notation as in Fig. 10.4 and pairs of T are
represented by .?/. By domination and symmetry arguments not all the candidates
are necessary and therefore, they are not depicted.

In this example the optimal solution is given by x1 D p.f1; 2g; 2/ and x2 D
p.f3; 4g; 3:1/ (see Table 10.6). Therefore the optimal pair .x1; x2/ belongs to the
set T . Indeed, d.v1; x1/ D d.v4; x2/ and d.v2; x1/ D d.v5; x2/ and the slopes of
d.v1; �/; d.v2; �/ in the edge f1; 2g at x1 are 1;�1 respectively; and the slopes of
d.v4; �/; d.v5; �/ in the edge f3; 4g at x2 are �1;�1 respectively.

Once we have proved that F is an essential set to describe the set of optimal
solutions of the 2-facility ordered median problem we want to know its cardinality.

Proposition 10.2 The cardinality of F is O.m3n6/.

Proof In each edge there are at most two equilibrium points associated with each
pair of nodes. Thus jEQj D O.mn2/ and jRj D O.mn3/. The maximum degree of a
node vi 2 V is m (the star network) so jY.r/j D O.mn/ with r 2 R. Thus, jY j D
O.m2n4/. On the second hand, on each edge, each pair of nodes may determine
an element of a pair in T . Therefore, the set T has a cardinality O..n2m/2/. In
conclusion jF j D O.m3n6 Cm2n4/ D O.m3n6/. �

It is worth noting that F is an actual set of finite elements to be optimal solutions
of problem (10.30). The difference with previous approaches is that this set is not a
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set of candidates for each individual facility but it is the set of candidate pairs to be
optimal solutions.

10.4.2.2 A Discouraging Result for the p-Facility Case

It is well-known that FDS of polynomial size exist for the classical p-median,
p-center, p-centdian and p-k-centrum problems (see Hooker et al. 1991; Kalcsics
et al. 2003). In addition, our previous section has shown a finite set of candidates
to be optimal solutions of the 2-facility ordered median problem in a network.
However, despite the similarity existing between those problems and the general
p-facility ordered median problem, these results can not be extended to our model.

The reason for this is the following. For the 1-facility ordered median problem
we have that the set of candidates to be optimal solutions is EQ, that means, the
equilibrium points (see Nickel and Puerto 1999). For the 2-facility ordered median
problem we have obtained that the set of candidates to be optimal solutions is EQ�
Y [T , that means, the points generated by the distances between each node and each
equilibrium point and the set T. It should be noted that in this case we have added
these points because there may exist ties which do not allow to move the service
facility improving the objective function. In the 3-facility ordered median problem,
the previous candidate set is not enough because if x1 2 EQ and x2 2 Y n EQ, the
distances between each node and x2 don’t have to be included in the set of radius,
R. Therefore, it may occur that there exists a tie between two nodes and the service
facilities x2 and x3 respectively, so that there is no movement of the facilities at x2
and x3 which improves the objective function (see Example 10.6).

Example 10.6 Let N D .G; `/ be a network with underlying graph G D .V;E/

where V D fv1; v2; v3; v4; v5; v6g andE D ff1; 2g; f2; 3g; f3; 4g; f4; 5g; f5; 6gg.The
length function is given by `.f1; 2g/ D 3; `.f2; 3g/ D 50; `.f3; 4g/D 6; `.f4; 5g/ D
50; `.f5; 6g/ D 10. The w-weights are all equal to one and the �-modeling weights
are �1 D 0:1; �2 D 0:2; �3 D 0:4; �4 D 0:3; �5 D 0:6; �6 D 0:55, see Fig. 10.6 (in
this figure we use the same notation used in Fig. 10.4).

In this example the optimal solution is given by x1 D p.f1; 2g; 1:5/, x2 D
p.f3; 4g; 1:5/ and x3 D p.f4; 5g; 4:5/ (see Table 10.7). It can be seen that x1 is
an equilibrium point, x2 2 Y.1:5/ and x3 neither belongs to Y nor is a component
of a pair of T .

This example illustrates that in order to obtain the optimal solution for the
3-facility problem new points have to be added. Our conjecture is that these points

|||
3 50 6 50 10

| | |||
v1 v2 v3 v4 v5 v6

Fig. 10.6 Illustration of Example 10.6
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can be generated using recursively the construction of the set of radii but now
regarding the distances from the points in �2.F / WD fx2 W .x1; x2/ 2 F g, that
is, the points in P.G/ which correspond to the second candidate of any pair in F ,
and the node set:

R1 D fr W r D wi d.vi ; y/; vi 2 V; y 2 �2.F /g;
Y1.r/ D fy W y 2 P.G/;wi d.vi ; y/ D r; vi 2 V g;
Y1 D

[

r2R1
Y1.r/:

The same situation occurs in the p-facility case, so that in general this construc-
tion must be repeated p-times in order to obtain a finite candidate set to be optimal
solutions for that problem. Therefore the structure of the candidate set defined in
the previous section depends on the number of facilities to be located. Actually,
Puerto and Rodríguez-Chía (2005) prove that there is no polynomial size FDS for
the general ordered p-median problem even on path networks. The proof consists
of building a family of O.nn/ problems on the same graph with different solutions
(each solution contains at least one point not included in the remaining), n being the
number of nodes.

10.5 The Capacitated Discrete Ordered Median Problem

In this section our goal is to introduce the family of discrete ordered median location
problems. As we have seen in previous sections, the main feature of these models
is their flexibility to generalize the most popular objective functions studied in the
location analysis literature and to allow modeling a wide variety of new problems
appearing in logistics and manufacturing.

The uncapacitated version of the discrete ordered median location models has
been analyzed in several papers, Boland et al. (2006), Nickel (2001), Nickel and
Puerto (2005), Marín et al. (2009, 2010), Puerto et al. (2011, 2013), and different
formulations and algorithms to solve medium sized problems have been developed.
Recently, these models were extended to deal with capacities in Kalcsics et al.
(2010a,b). However, although the approach in the initial papers leads to satisfactory
results concerning motivations, applications and interpretations the solution times
of larger problem instances need further improvements.

The goal of this section is to present, first, an intuitive formulation of the
problem based on three-indexed variables, see Boland et al. (2006); and second,
a formulation which makes use of the coverage ideas in Marín et al. (2009,
2010), applied to the capacitated version of the Discrete Ordered Median Problem,
CDOMP, with binary assignment, see Puerto (2008), Puerto et al. (2011, 2013).
To perform this task, first we introduce the Capacitated Discrete Ordered Median
Problem formally and give these two mathematical programming formulations.
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Then, the last part of this section is devoted to test the efficiency of the last approach
by providing some preliminary numerical experiments.

10.5.1 A Three-Index Formulation

In order to introduce this formulation let A denote the given set of n sites and
identify these with the integers 1; : : : ; n, i.e., A D f1; : : : ; ng. We assume without
loss of generality that the set of candidate sites for new facilities is identical to the
set of clients. Let C D .cij/i;jD1;:::;n be the given non-negative n � n cost matrix,
where cij denotes the cost of satisfying the demand of client i from a facility located
at site j . Let p � n be the number of facilities to be located. Each client i has a
demand ai that must be served and each server j has an upper bound bj on the
capacity that it can fulfill. We assume further that assignment is binary, that is, the
demand of each client must be served by a unique server.

A solution to the location problem is given by a set of p sites; we use X � A,
with jX j D p, to denote a solution. Then, the problem consists of finding the set
of sites X with jX j D p, which can supply the overall demand at a minimum cost
with respect to the ordered median objective function.

A natural way to attack the formulation of the discrete ordered median problem
is to use variables that keep track of the order of the transportation costs from each
client and its server. This approach gives rise to a formulation with three-index
variables, one for the order and the remaining two indices, for the client-server
allocation. In order to formulate this model we consider a set of �-weights, where �i
can be seen as a correction factor to the ith-position with i D 1; : : : ; n. In addition,
we define the following set of variables:

xkij D
8
<

:

1; if client i is supplied by server j and is the k-th
cheapest cost allocation

0; otherwise,
8i; j; k D 1; : : : ; n;

yj D
�
1; if the server at j is open
0; otherwise,

8j D 1; : : : ; n:

Hence, the formulation of the model is:

minimize
nX

iD1

nX

jD1

nX

kD1
�kcijx

k
ij (10.33)

subject to
nX

jD1

nX

kD1
xkij D 1; 8i D 1; : : : ; n (10.34)
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nX

iD1

nX

jD1
xkij D 1; 8k D 1; : : : ; n (10.35)

nX

iD1

nX

kD1
aix

k
ij � bj yj ; 8j D 1; : : : ; n; (10.36)

nX

jD1
yj D p; (10.37)

nX

iD1

nX

jD1
cijx

k
ij �

nX

iD1

nX

jD1
cijx

kC1
ij ; 8k D 1; : : : ; n � 1; (10.38)

xkij 2 f0; 1g; 8i; j; k D 1; : : : ; n; (10.39)

yj 2 f0; 1g; 8j D 1; : : : ; n: (10.40)

The objective function accounts for the weighted sum of the transportation cost
using the lambda parameters. Constraints (10.34) ensure that each origin site i is
allocated exactly to one server j . Constraints (10.35) guarantee that any position
in the sorted vector of client-server costs is allocated to just one pair. Constraints
(10.36) are the capacities constraint and also ensure that one origin may be allocated
to a specific server only if it is open. Constraint (10.37) fixes the number of facilities
to be located. Finally, constraints (10.38) ensure that the transportation cost assigned
to the k-position is smaller than the one assigned to the .k C 1/-position.

10.5.2 A Covering Formulation and Some Properties

In this subsection, we introduce a formulation for the binary assignment capacitated
discrete ordered median problem based on covering variables. This formulation was
first presented in Puerto (2008).

We first defineG as the number of different non-zero elements of the cost matrix
C . Hence, we can order the different values of C in non-decreasing sequence:
c.0/ WD 0 < c.1/ < c.2/ < � � � < c.G/ WD max1�i;j�nfcijg:

Given a feasible solution, we can use this ordering to perform the sorting process
of the allocation costs. This can be done by the following variables (j D 1; : : : ; n

and k D 1; : : : ; G):

ujk WD
(
1; if the j -th smallest allocation cost is at least c.k/,

0; otherwise.
(10.41)

With respect to this definition the j -th smallest cost element is equal to c.k/ if
and only if ujk D 1 and uj;kC1 D 0. Therefore, we can reformulate the objective
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function of the CDOMP (i.e. the capacitated ordered median problem), using the
variables ujk, as

Pn
jD1

PG
kD1 �j � .c.k/ � c.k�1// � ujk:

First of all, we need to impose the following group of sorting constraints on the
ujk-variables: ujC1;k � ujk j D 1; : : : ; n�1I k D 1; : : : ; G : To guarantee that
exactly p servers will be opened among the n possibilities, we consider constraint
(10.37) defined in the previous formulation.

Then, we need to ensure that demand is covered and capacity is satisfied. For
these reasons we introduce the variables xij:

xij D
�
1; if the client i is allocated to server j
0; otherwise

(10.42)

(binary allocation) and constraints
Pn

jD1 xij D 1; i D 1; : : : ; n (each client is just
assigned to one server) and

Pn
iD1 aixij � bj yj ; j D 1; : : : ; n (all the demand and

capacity requirements must be satisfied and clients can only be assigned to servers
which are open).

In addition, the relationship that links the variables u and x is:
Pn

jD1 ujk DPn
iD1

P
j Wcij�c.k/ xij: The meaning being clear. The number of allocations with a

cost at least c.k/ must be equal to the number of servers that support demand from
facilities at a cost greater than or equal to c.k/.

Summing up all these constraints and the objective function, the CDOMP can be
formulated as

minimize
nX

jD1

GX

kD1
�j .c.k/ � c.k�1//ujk (10.43)

subject to
nX

jD1
xij D 1; 8i D 1; : : : ; n (10.44)

nX

iD1
ai xij � bj yj ; 8j D 1; : : : ; n (10.45)

xij � yj 8i; j D 1; : : : ; n (10.46)

nX

jD1
yj D p (10.47)

nX

jD1
ujk D

nX

iD1

X

jD1:::;n
cij�c.k/

xij; 8k D 1; : : : ; G (10.48)

ujC1k � ujk; 8j D 1; : : : ; n � 1I k D 1; : : : ; G (10.49)

ujk 2 f0; 1g; 8j D 1; : : : ; nI k D 1; : : : ; G (10.50)

xij; yj 2 f0; 1g; 8i; j D 1; : : : ; n: (10.51)
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Since the proposed formulation containsO.nG/ binary variables andO.nG/ con-
straints, fast solution times for larger problem instances, using standard software-
tools, are very unlikely.

First of all, the following proposition states that we can relax the yj variables to
be continuous and the solution will not change.

Proposition 10.3 (CDOMP) admits a formulation with yj 2 Œ0; 1� and for each
optimal solution of the relaxed problem one can obtain an optimal solution of the
original problem.

Proof Use (10.46) and (10.47) to ensure that any fractional y solution can be
modified to be binary and feasible without increasing the objective value. �

The above formulation admits some valid inequalities that, at times, reinforce the
linear relaxation improving the lower bound and reducing the computation time to
solve the problem. In the following, we list three families of them.

The first one are the natural inequalities ujk � ujkC1; j D 1; : : : ; n; k D
1; : : : ; G � 1: They come from the fact that the rows of the u-matrix are sorted. We
have observed in our experiments that these constraints are not always satisfied by
the optimal solution of the linear relaxation and thus they are useful in improving the
formulation. This family of inequalities were introduced in Marín et al. (2009) for
tightening the formulation of the Uncapacitated Discrete Ordered Median Problem.

Our next set of inequalities state that the number of assignments done by the
x-variables at a cost at least c.j / for clients in S cannot exceed the number of
ones in the last jS j D r rows of the j -th column of the u-matrix. Then, if there
are r allocations of demand points in S at a costs at least c.j /, since the columns
in the u-matrix are ordered in non-decreasing sequence, we get the following:P

i2S
P

kWcik�c.j / xik � Pn
iDn�rC1 uij; 8 S � f1; : : : ; ng; jS j D r; r D

1; : : : ; n; j D 1; : : : ; G: Note that there are an exponential number of inequalities in
this family.

Another set of valid inequalities are those stating that either client i is allocated
at a cost at least c.k/ or there must exist an open server j such that the allocation
cost of client i is smaller than c.k/. This results in:

P
j Wcij�c.k/ xij CPj Wcij<c.k/

yj �
1; i D 1; : : : ; n:

Finally, the set of valid inequalities xij � yj 8i D 1; : : : ; n; j D 1; : : : ; n, that
reinforce the idea that the clients can only be assigned to servers which are open,
also provide very good results from the computational point of view.

The rest of this section presents some computational results for this formulation
of the capacitated discrete ordered problem. We restrict ourselves to consider just the
second formulation, because although the first one is very intuitive and good to have
a better understanding of the problem, its running times are much bigger than those
obtained by the second one. (See e.g. Puerto (2008).) In order to test the performance
of the considered formulation, we report on an experimental design that consists of
the following factors: (1) Size of the problem: The number of sites, n, determines
the dimensions of the cost matrix and the � vectors. Moreover, it is an upper bound
of the number of suppliers .p/ to be located. We consider five different levels of
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n D 10; 20; 30; 40; 60. (2) Number of suppliers: p is the second factor
with three levels for each choice of n: p D bn=5c C 1; bn=2c; 4 � bn=5c. (3)
Type of problem: Each �-vector is associated with a different objective function.
Its levels are designed depending on the value of n as follows: (a) �-vector
corresponding to the p-median problem, i.e. � D .1; : : : ; 1/ 2 R

n; (b) �-vector
corresponding to the p-center problem, i.e. � D .0; : : : ; 0; 1/ 2 R

n; (c) �-vector
corresponding with the bn=4c-centrum problems; and (d) �-vector corresponding to
the .k1; k2/-trimmed mean problem, i.e. � D .0; : : : ; 0; 1; : : : ; 1; 0; : : : ; 0/ 2 R

n

where k1 D b0:2nc, k2 D b0:2nc. (4) Demand of facilities: Each demand is
considered integer and uniformly drawn from Œ10; 20�. (5) Capacity of suppliers: We
consider that the capacities are uniformly discrete random variables in the interval
Œ1:1

Pn
iD1 ai=p; 1:4

Pn
iD1 ai =p�. This choice ensures feasibility of the considered

problems. (6) Transportation cost: We assume free self service and integer costs.
The values cij, i ¤ j , are drawn uniformly in Œ0; 200�.

We solve five instances for each possible combination of levels and we report
the average and maximum: running time, gap at the root node and number of nodes
in the branch-and-bound tree for this formulation. All computational studies were
performed on a PC with a Genuine Intel(R) CPU U4100 with two processors at
1.30 GHz and 4 GB of RAM. To solve the different instances of the problems
we used XPRESS-IVE solver version 7.5, with a code implemented in XPRESS-
MOSEL version 3.4.2.

The information of our computational test is reported in Table 10.8 that sum-
marizes the results for the four considered problems types. The organization of the
table is the following: columns show the results for the different sizes of n and p. A
superindex in some values of p states the number of instances for the corresponding
combination of n and p exceeding the CPU time limit (1 h). Each block of rows
reports the results of the instances based on the formulation (10.43)–(10.51).

Within each block of rows we report on the GAP at the root node (average -
Ag- and maximum -Mg-), CPU-time to solve the integer problems (average -At-
and maximum -Mt-) and number of NODES in the branch-and-bound tree (average
-An- and maximum -Mn-).

We observe, from the results in Table 10.8 that we could solve most of the
instances, even medium sized n D 60, within 1 h of CPU time. This fact shows a
good performance of the formulation. In addition, it is worth noting that the quality
of the lower bounds provided by this formulation depends on the type of problem.
In general, the lower bounds are rather poor for larger values of p relative to n. On
the other hand, for small to medium values of p relative to n the performance of
the lower bounds are good for median and trimmed mean problems, reasonable for
k-centrum (less than 50%) and poor for the center problem. These results show that
there is room for further investigation on the polyhedral structure of this formulation
in order to develop valid inequalities that could be integrated in a Branch & Cut
algorithm to solve faster, larger problem sizes.

In conclusion, the formulation of the CDOMP based on covering, (10.43)–
(10.51), is a promising approach. Moreover, it can be also strengthen with known



284 J. Puerto and A.M. Rodríguez-Chía

T
ab

le
10

.8
N

um
er

ic
al

re
su

lt
s

ob
ta

in
ed

w
it

h
th

e
co

ve
ri

ng
fo

rm
ul

at
io

n
fo

r
th

e
m

ed
ia

n,
ce

nt
er

,k
-c

en
tr

um
an

d
T

ri
m

m
ed

-m
ea

n
pr

ob
le

m
s

M
ed

ia
n

n
10

20
30

40
60

p
3

5
8

5
10

16
7

15
24

9
20

32
13

3
0
2

4
8
2

A
t

0.
6

4.
3

2.
5

5.
6

11
.1

31
.4

41
.4

44
.8

23
38

.7
11

6.
2

71
8.

4
21

3.
9

1,
93

9.
3

2,
09

2.
6

M
t

1.
7

9.
9

4.
5

12
.3

20
.2

66
.6

10
2

13
5.

9
59

.6
63

.5
19

8.
3

2,
64

4.
6

42
7.

6
3,

60
0.

8
3,

60
0.

4

A
n

47
10

.2
51

.6
12

.2
19

1
1,

55
7.

8
34

4
1,

05
5.

8
60

7.
4

12
4.

4
2,

35
7

31
,5

12
.6

71
6.

4
23

,5
86

.4
42

,0
81

.6

M
n

23
1

31
12

7
39

45
1

4,
07

7
76

7
4,

86
5

16
47

48
5

4,
22

1
12

9,
91

7
1,

84
8

46
,5

23
91

,3
24

A
g

2.
3

21
.2

77
.3

6
15

.3
83

.6
6.

7
23

.3
71

.8
5.

2
25

.3
76

.4
7.

7
27

76
.9

M
g

4.
1

41
.2

89
.8

8.
7

25
.3

92
.1

10
.1

43
.3

77
.7

7.
6

35
.8

91
.9

10
.8

35
.3

88

C
en

te
r

n
10

20
30

40
60

p
3

5
8

5
10

16
7

1
5
1

2
4
2

9
20

3
2
2

1
3
1

3
0
1

4
8
3

A
t

13
.7

9.
4

2.
4

47
.3

19
.8

23
6.

3
90

.1
87

4.
6

1,
78

6.
9

33
8.

9
26

0.
2

2,
16

2.
7

1,
97

7.
3

1,
41

6.
2

2,
57

8.
6

M
t

16
.7

13
.9

4.
3

81
.4

34
.4

62
9.

9
13

0.
6

3,
59

9.
7

3,
59

9.
3

56
8

71
3

3,
60

0
3,

59
9.

9
3,

60
0

3,
60

0.
4

A
n

17
.4

39
1

65
60

5.
6

1,
55

8
21

,8
04

68
5.

8
51

,1
62

.4
82

,2
92

.4
3,

05
2.

4
7,

54
9

68
,8

45
.4

16
,7

41
.2

22
,0

36
.8

41
,2

83
.6

M
n

37
92

5
12

3
1,

18
9

3,
46

7
47

,5
42

1,
39

1
21

14
05

16
7,

38
6

4,
46

5
25

,2
27

10
5,

73
4

43
,4

11
40

,8
91

64
,0

23

A
g

74
.2

78
.8

94
.7

69
.2

80
.9

96
.9

70
.1

80
.9

97
.5

70
.6

81
.6

97
.6

71
.5

85
.4

97
.6

M
g

77
.6

83
.2

97
.6

74
.5

83
.3

99
76

.3
85

.9
99

.2
72

82
.9

98
.3

72
.9

99
.4

98
.6



10 Ordered Median Location Problems 285

k-
C

en
tr

um

n
10

20
30

40
60

p
3

5
8

5
10

16
7

15
24

9
20

3
2
3

13
30

4
8
1

A
t

10
.8

6.
1

5.
3

14
.1

33
.2

57
.7

74
.6

84
.6

92
1.

2
17

3
44

2.
2

2,
33

6.
9

67
6.

1
1,

15
5.

4
2,

22
2

M
t

18
.5

10
.6

9.
2

22
.7

11
5.

3
19

1.
7

16
2

20
9.

2
3,

01
2.

1
39

4.
9

1,
05

1.
8

3,
60

0
81

4.
2

2,
26

5
3,

59
9.

7

A
n

20
.6

10
1.

4
32

.2
14

0.
6

1,
93

3.
8

3,
52

7.
2

1,
66

2.
2

3,
55

2.
8

44
,9

45
2,

56
3.

4
14

,9
41

.6
71

,8
92

.6
5,

66
3.

4
24

,1
09

.4
29

,0
05

.6

M
n

81
48

7
12

7
49

3
8,

04
7

12
,7

69
5,

62
3

9,
62

6
17

,1
46

9
7,

74
5

40
,2

69
12

5,
59

6
11

,2
27

52
,3

39
46

,2
95

A
g

28
37

60
.2

26
.6

46
.2

74
.5

29
.3

42
.1

86
.2

30
.3

42
.6

87
.8

30
.3

39
.7

79
.2

M
g

37
.9

70
.3

84
.2

28
.9

58
.8

92
.3

33
.3

48
.3

91
.9

37
.8

52
.1

92
32

.2
48

.2
88

.2

T
ri

m
m

ea
n

n
10

20
30

40
60

p
3

5
8

5
10

16
7

15
24

9
20

32
13

30
48

A
t

6.
8

0.
9

1
5.

1
7

17
.6

22
.9

31
.5

4.
8

24
.5

84
.3

36
.8

79
17

9.
9

33
9

M
t

12
.6

2.
4

2.
9

11
.9

11
.9

34
.2

51
.6

46
7.

5
48

.3
29

6.
9

97
.3

19
5.

4
25

2.
8

52
0.

5

A
n

2.
6

1
3.

4
38

.2
14

7.
6

89
0.

6
10

8
56

1
6.

2
9

4,
48

7.
6

99
8.

2
22

5
2,

54
0.

6
6,

10
0.

2

M
n

8
1

13
18

7
33

5
2,

23
5

40
6

1,
19

1
27

29
19

,8
03

3,
22

3
75

3
3,

80
6

11
,2

59

A
g

26
.8

25
0

25
.2

29
.3

0
26

.6
36

.1
0

26
.1

31
.7

0
25

.5
37

0

M
g

33
.2

25
0

26
.2

42
.3

0
28

.2
48

.3
0

29
.7

39
.1

0
26

.5
43

.5
0



286 J. Puerto and A.M. Rodríguez-Chía

valid inequalities, as for instance in Puerto et al. (2011), leading to solve larger
problem sizes of capacitated discrete ordered median problems.

10.6 Conclusions

This chapter provides an overview of the ordered median function and its corre-
sponding Ordered Median Location Problem as a powerful tool from a modeling
point of view within the area of Location Analysis. We have included some of their
most important insights considering three different framework spaces: continuous,
networks and discrete. Our goal has been to structure this chapter as an useful tool
for those readers that wish to start the study of the ordered functions and their related
ordered median location problems. Moreover, the extensive list of references that
have been included may result, for expert readers, an interesting source of literature
to carry out a deeper study of this topic.
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the discrete ordered median problem. Ann Oper Res 136:145–173

Drezner Z (2007) A general global optimization approach for solving location problems in the
plane. J Global Optim 37:305–319

Drezner Z, Nickel S (2009a) Constructing a DC decomposition for ordered median problems. J
Global Optim 45:187–201



10 Ordered Median Location Problems 287

Drezner Z, Nickel S (2009b) Solving the ordered one-median problem in the plane. Eur J Oper Res
195:46–61

Durier R, Michelot C (1985) Geometrical properties of the Fermat–Weber problem. Eur J Oper
Res 20:332–343

Edelsbrunner H (1987) Algorithms in combinatorial geometry. Springer, New York
Espejo I, Marín A, Puerto J, Rodríguez-Chía AM (2009) A comparison of formulations and

solution methods for the minimum-envy location problem. Comput Oper Res 36:1966–1981
Espejo I, Rodríguez-Chía AM, Valero C (2009) Convex ordered median problem with lp-norms.

Comput Oper Res 36:2250–2262
Francis R, Lowe T, Tamir A (2000) Aggregation error bounds for a class of location models. Oper

Res 48:294–307
Grzybowski J, Nickel S, Pallaschke D, Urbański R (2011) Ordered median functions and
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Chapter 11
Multi-Period Facility Location

Stefan Nickel and Francisco Saldanha da Gama

Abstract In this chapter, we cover basic aspects related with facility location
problems involving time dependent parameters. The emphasis is put on problems
defined over a multi-period finite planning horizon. A brief overview of continuous
and network problems is presented. Nevertheless, most of the chapter focus on
a discrete setting. Basic modeling aspects and solution techniques are discussed.
Additionally, some features of practical relevance are considered. The value of the
multi-period solution is introduced as a measure for the relevance of considering
a multi-period modeling framework instead of a static one. Current challenges and
future trends on the topic are discussed.

Keywords Discrete models • Multi-period facility location • Value of the multi-
period solution

11.1 Introduction

Facility location decisions are usually made taking into account the values of some
parameters, such as the setup costs for the facilities and the demand levels. If
variations are predictable for such values, it may be desirable to plan in advance for
future adjustments in the location of facilities and in other related decisions (e.g.,
shipment decisions). In this case, locating a set of facilities becomes a question not
only of “where” but also of “when”. A new dimension is introduced in the decision
space: the time. This is the topic of the current chapter.
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In order to capture predictable variations in the parameters of a facility location
problem, we often have to consider a dynamic or time-dependent model. From a
practical point of view, this type of model can be quite relevant because it allows for
embedding other decisions, such as those related with (1) inventory management,
(2) opening new facilities and removing existing ones, and (3) adjustment of the
operating capacities (which, from a cost point of view is often better than opening
new facilities). Even when the underlying parameters do not induce a dynamic
model, some other conditions may do so. For instance, if a budget constraint exists
say, per year, for installing new facilities, then locating the facilities over time may
be unavoidable.

When facility location decisions are to be made over time, it is important to define
the planning horizon beforehand. This is the time frame for which the decision
maker wishes to plan. Only a few papers have investigated facility location problems
over an infinite planning horizon. In this case, a static or a finite-horizon decision is
usually sought that is “the best” for an infinitely long planning horizon. Some works
in this direction include Chand (1988) and Daskin et al. (1992). Nevertheless, in
most cases, decision makers assume a finite planning horizon (see the recent review
paper by Arabani and Zanjirani Farahani 2012). This is the case we consider in this
chapter.

When working with dynamic models, we can make a distinction between
continuous and discrete-time models. In the first case, there are no specific moments
for implementing the decisions; the best timing for performing changes in the
system is itself a decision to make. Some works exploring this feature include
Drezner and Wesolowsky (1991), Orda and Rom (1991), Puerto and Rodríguez-Chía
(1999), and Zanjirani Farahani et al. (2009). In our opinion, continuous-time facility
location problems are better addressed in the context of optimal control. Therefore,
in this chapter we do not focus on this type of problems. Instead, we consider a
discrete-time setting in which we have several moments in time for implementing
the decisions. These moments induce a partition of the planning horizon into several
time periods.

Facility location problems are often classified, according to the location space,
as being continuous, on a network, or discrete (Hamacher and Nickel 1998). In
recent years, due to successful applications of location theory to many areas, discrete
models have increasingly played a major role. For this reason, in this chapter, special
emphasis is given to this type of problems.

The remainder of the chapter is organized as follows: in Sects. 11.2 and 11.3 we
present a brief overview of continuous and network multi-period facility location
problems, respectively. In Sects. 11.4 and 11.5 we focus on discrete problems.
Section 11.6 is used for introducing the value of the multi-period solution. Finally,
in Sect. 11.7, we discuss some challenges and future trends on the topic.
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11.2 Continuous Problems

One of the best-known facility location problems is the Weber problem: given a
set of weighted nodes in the Euclidean plane, where to locate a single facility
minimizing the weighted sum of the distances to the points? A multi-period
extension of this problem was first proposed by Wesolowsky (1973). A finite
planning horizon T , divided into several time periods, is assumed. In each period
t 2 T , a set of weighted nodes Jt is considered. The goal is to find the optimal
location for the single facility in each period. When the facility changes from one
location to another (in consecutive periods), a relocation cost is paid. The conceptual
model proposed by Wesolowsky (1973) is the following:

Minimize
X

t2T

X

j2Jt
ctj.xt ; yt /C

jT jX

tD2
ft zt (11.1)

subject to zt D 0 if dt�1;t D 0; t 2 T nf1g (11.2)

zt 2 f0; 1g; t 2 T: (11.3)

In this model, ctj.xt ; yt / represents the present value of the cost for shipping from a
facility located at .xt ; yt / to demand point j 2 Jt in period t 2 T ; ft denotes the
cost for relocating the facility at the beginning of period t 2 T ; dt�1;t is the distance
by which the facility is moved at the beginning of period t 2 T nf1g. All the costs are
assumed to be forecasted in advance and therefore known to the model. For tackling
this problem, Wesolowsky (1973) proposed an incomplete dynamic programming
algorithm. The stages are associated with the time periods, the states correspond to a
set of possible locations for the facility and the decisions correspond to the possible
changes in the location of the facility. The relevance of this work arises from the
fact that it represents the first attempt to extend the Weber problem to a multi-period
setting. Nevertheless, the first work addressing the location and relocation of a single
facility in the plane over a multi-period finite planning horizon is due to Ballou
(1968). The goal is to maximize the total profit generated by a distribution system
involving factories, markets and the single warehouse to be located and relocated.
In that paper, a restricted set of potential locations for the warehouse was defined
considering the optimal location for the facility in the different periods. This set then
defined the states for all periods, and (incomplete) dynamic programming was then
applied. The method was later converted into an exact one by Sweeney and Tatham
(1976) who extended the restricted set just mentioned. In fact, a set of potential
locations for the warehouse can be found in each time period, thus ensuring that the
optimal solution of the problem is not lost when dynamic programming is applied.
It is worth noting that the methodologies proposed by Ballou (1968) and Sweeney
and Tatham (1976) can be applied to problems defined in a discrete setting.
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Drezner and Wesolowsky (1991), investigated a different type of problem. Like
in all of the above works, a single facility is considered, which can be relocated
over time as a reaction to predictable changes in the demand. The set J of demand
nodes is the same throughout the planning horizon. The demand of each node j 2
J , is represented by a continuous function of time wj .:/. A planning horizon T
divided into several time periods is assumed. The following optimization model can
be considered for each period t 2 T :

Ct D min
xt ;yt

8
<

:
X

j2J
Wjtdj .xt ; yt /

9
=

; : (11.4)

In this expression, .xt ; yt / denotes the coordinates of the facility in period t 2 T ;
Wjt D

R at
at�1

wj .�/d� ; at�1 and at are the lower and upper time limits for period t ,
respectively; dj .xt ; yt / denotes the distance between demand point j 2 J and point
.xt ; yt /. The cost for the entire planning horizon is given by

P
t2T Ct . Drezner and

Wesolowsky (1991) made use of the above model to solve a more general problem
which consists of making a decision about the division of the planning horizon into
time periods. In this case, the number of time periods and the “break points” are
decisions to make. This work was later extended by Zanjirani Farahani et al. (2009)
that included a cost for relocating the facility.

Scott (1971) studied a multi-facility, multi-period continuous location problem,
assuming a finite planning horizon T divided into several time periods, and a set of
demand nodes, J . In each time period, a single facility is to be located and must
remain operating until the end of the planning horizon. A sequence of jT j problems
can be considered. In particular, the following mathematical model holds for period
t 2 T (the coordinates .x� ; y� /, � D 1; : : : ; t � 1, were already determined):

Minimize
X

j2J

t�1X

�D1
uj�dj .x� ; y� /C

X

j2J
ujtdj .xt ; yt / (11.5)

subject to
tX

�D1
uj� D 1; j 2 J (11.6)

uj� 2 f0; 1g; � D 1; : : : ; t; j 2 J: (11.7)

In this model, .xt ; yt / are the coordinates (to be determined) of the facility to install
at the beginning of period t 2 T ; ujt is a binary variable equal to 1 if demand point
j 2 J is allocated to the facility installed in period t 2 T (such allocation can only
occur in periods t; : : : ; jT j), and 0 otherwise; dj .xt ; yt / is the Euclidean distance
between demand node j 2 J and the facility to be installed in period t 2 T . By
solving the full sequence of problems (one for each t 2 T ), a solution is obtained for
the multi-period problem. Nevertheless, using such a myopic procedure, optimality
cannot be guaranteed for the whole planning horizon.
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A multi-period extension of the planar p-median problem was proposed by
Drezner (1995) who considered a finite planning horizon divided into jT j D p time
periods. The set of demand nodes is denoted by J and demand changes over time.
The demand of node j 2 J is represented by a continuous function of time wj .:/. At
the beginning of each time period t 2 T , exactly one facility is to be installed. The
decision variables are the coordinates of the p locations for the facilities, .xt ; yt /,
t 2 T . The problem can be formulated as follows:

Minimize
X

t2T

X

j2J
Wjt min

�D1;:::;t
˚
dj .x� ; y� /

�
; (11.8)

where dj .xt ; yt /, t 2 T , represents the distance between demand node j 2 J and
the facility established at the beginning of period t 2 T ; Wjt D

R at
at�1

wj .�/d� ; at�1
and at are, respectively, the lower and upper time limits for period t . The function to
be minimized in (11.8) results from adding the costs for all periods. Drezner (1995)
proposed a specially tailored algorithm for the 2-facility problem and suggested the
use of a standard non-linear solver for the general case.

11.3 Network Problems

One of the earliest works on multi-period facility location problems on networks
is due to Cavalier and Sherali (1985). The problems under consideration consist of
progressively installing a set of facilities on a chain or on a tree considering a multi-
period finite planning horizon. In each period, at most one facility can be installed.
Demand occurs continuously on the edges, according to a uniform distribution.
Different strategies were analyzed for obtaining solutions to the problems.

Considering general networks, Mesa (1991) addressed several multi-period
facility location problems. Different concepts were introduced in that paper, such
as the vertex jT j-period p-median, the vertex multi-period .˛1; : : : ; ˛jT j/-median
and the absolute multi-period .˛1; : : : ; ˛jT j/-median. Among the different problems
studied, the absolute multi-period .˛1; : : : ; ˛jT j/-median problem was, at the time,
the one which was closer to what could be referred to as an extension of the
p-median problem to a multi-period setting. In that problem, ˛t points must be
located in each period t 2 T , satisfying

P
t2T ˛t D p. The author proved that the

initial infinite set of possible choices for facilities can be reduced to a discrete set
of nodes. This is due to the vertex-optimality property (Hakimi 1964, 1965), which
holds for this multi-period problem.

The extension of the network p-median problem to a multi-period setting was
proposed by Hakimi et al. (1999). Considering a time varying network, N D
.V;E; T /, with T representing the planning horizon, it is assumed that the weight of
each vertex vj 2 V and the length of each edge e 2 E are functions of time and are
invariant in each period. Assuming moving costs for the facilities, the multi-period,
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1-median problem on network N can be formulated as follows:

Minimize
X

t2T

0

@
X

j2V
wjtdt.vj ; xt /C g.t/dt .xt ; xtC1/

1

A : (11.9)

In this model, wjt denotes the weight of vertex vj 2 V in period t 2 T ; xt represents
the location of the median in period t 2 T (the exact location xt , is defined with
respect to the edge to which the median belongs and is given by its distance to the
closest end node of the edge); dt .vj ; xt / is the shortest path between vj and xt in
period t 2 T ; g.t/ is a function representing the unitary cost for relocating the
facility in the end of period t moving it from location xt in period t to location xtC1
in period t C 1 (t 2 T , xjT jC1 D xjT j). Hakimi et al. (1999) proved that the vertex-
optimality property holds for this problem. The above model and this result can be
easily extended to the p-facility case. The formulation is the following:

Minimize
X

t2T

0

@
X

j2V
wjtdt.vj ; Xt/C g.t/dt .Xt ; XtC1/

1

A : (11.10)

In this case, X1; : : : ; XjT j are the sets of locations for the p facilities during the
planning horizon with XjT jC1 D XjT j; dt .vj ; Xt/ D minfdt.vj ; xk/ j xk 2 Xtg;
dt.Xt ; X;tC1/ is defined by the total weight of a minimum weight perfect matching
in the complete bipartite graphGt.Xt ; XtC1/ defined as follows:Xt andXtC1 define
the partition; for every point x0 in Xt and for every point x00 in XtC1 the weight of
the edge .x0; x00/ is given by dt.x0; x00/. In (11.10), g.t/ denotes the unitary cost
for relocating a facility in (the end of) time period t 2 T . This problem is NP-hard
since it includes the static network p-median problem as a particular case. For this
reason, the authors developed a heuristic procedure.

One important class of facility location problems on networks are center
problems. The multi-period extension of the 1-center problem on a network was
proposed also by Hakimi et al. (1999). The model is the following (the notation is
the same presented above):

Minimize
x1;x2;:::;xjT jC1

X

t2T
max
j2V

˚
wjtdt.vj ; xt /C g.t/dt .xt ; xtC1/

�
: (11.11)

Again, XjT jC1 D XjT j. If the choice for xt is restricted to a finite number of points
in the network, the problem can be handled using a technique similar to the one
presented in the same paper for the multi-period p-median problem.

The existing literature reveals that for most of the multi-period extensions
proposed so far for well-known minsum facility location problems, the vertex-
optimality property holds. This reduces the location space to a discrete set.
Accordingly, models and techniques from integer programming and combinatorial
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optimization emerge as a possibility for tackling these problems. Multi-period
minmax facility location problems on networks have been scarcely investigated.

11.4 Discrete Problems

We start with one of the best-known discrete facility location problems, the p-
median problem (see Chap.2), which can be easily extended to a multi-period
setting. Consider a set J , of nodes, whose demand must be supplied during a finite
multi-period planning horizon, T . Let I � J be the set of nodes where the facilities
can be located and assume that p facilities have to be operating in each period.
The problem of deciding the best location for the facilities throughout the planning
horizon, minimizing the total cost for satisfying the demand can be formulated as
follows:

Minimize
X

t2T

X

i2I

X

j2J
cijtxijt (11.12)

subject to
X

i2I
xijt D 1; t 2 T; j 2 J (11.13)

X

j2J
xijt � jJ jxiit; t 2 T; i 2 I (11.14)

X

i2I
xiit D p; t 2 T (11.15)

xijt 2 f0; 1g; t 2 T; i 2 I; j 2 J: (11.16)

In this formulation, cijt represents the cost for allocating demand node j 2 J to
facility i 2 I in period t 2 T ; xijt is a binary variable equal to 1 if demand node
j 2 J is allocated to facility i 2 I in period t 2 T and 0 otherwise; xiit D 1

indicates that a facility is operating at i 2 I in period t 2 T (i is allocated to itself).
When I D J we have a multi-period p-median problem.

In order to progressively build models that are more relevant from a practical
point of view, we first note that the above problem still has little “multi-period
flavor” because it can be decoupled, leading to jT j single-period problems. Nev-
ertheless, this model is an excellent basis for what we present next. In fact, a more
interesting multi-period problem emerges if we include opening and closing costs
for the facilities. This was first done by Wesolowsky and Truscott (1975). The
extended problem can be formulated as follows:

Minimize
X

t2T

X

i2I

X

j2J
cijtxijt C

X

t2T

X

i2I
gitz

0
it C

X

t2T

X

i2I
hitz

00
it (11.17)

subject to (11.13)–(11.16)
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X

i2I
z0

it � mt ; t 2 T (11.18)

xiit � xii;t�1 C z00
i;t�1 � z0

it D 0; t 2 T n f1g; i 2 I (11.19)

z0
it; z

00
it 2 f0; 1g; t 2 T; i 2 I: (11.20)

In this model, facilities are assumed to be opened (closed) at the beginning (end) of
time periods; mt is the maximum number of facilities that can be opened in each
period t 2 T , whereas the binary variable z0

it (z00
it) is equal to 1 if a facility is opened

(closed) at i 2 I in period t 2 T and 0 otherwise; git and hit (i 2 I , t 2 T ) denote
the opening and closing costs, respectively. Wesolowsky and Truscott (1975) solve
the above problem using dynamic programming. However, the method can only
be used for instances with a small number of potential locations for the facilities
because the dimension of the state space is exponential in this number.

Galvão and Santibañez-Gonzalez (1992) do not consider closing decisions and
assume that the number of operating facilities does not have to be the same in all
periods. Their formulation can be obtained from the above model by ignoring the
variables and costs associated with closing the facilities and by replacing p with pt
in (11.15). For each period t 2 T , pt denotes the number of facilities to be operating
in that period. Furthermore, in their model constraints (11.18) are redundant (mt D
jI j, t 2 T ) and constraints (11.14) are disaggregated, yielding

xijt � xiit; t 2 T; i 2 I; j 2 J: (11.21)

Without closing decisions, constraints (11.19) can be written as

z0
it � xiit � xii;t�1; t 2 T nf1g; i 2 I: (11.22)

For this problem, Galvão and Santibañez-Gonzalez (1992) proposed two
Lagrangean relaxation based procedures for computing lower and upper bounds: in
the first one, constraints (11.13) and (11.22) are dualized; in the second, the choice
involves constraints (11.21) and (11.22).

In all of the problems presented so far in this section, facilities can be opened and
closed more than once during the planning horizon. However, in many applications
this is not realistic. In order to illustrate how this aspect can be captured, we consider
another well-known problem: the uncapacitated facility location problem (UFLP)
described in Chap. 3. Like for the p-median problem, the extension of the UFLP
to a multi-period setting is straightforward. Again we consider a finite multi-period
planning horizon, T . The set of potential locations for the facilities is denoted by
I D f1; : : : ; mg and the set of demand nodes by J D f1; : : : ; ng. Additionally, let
fit be the cost for operating facility i 2 I in period t 2 T , and cijt the cost for
satisfying all the demand of customer j 2 J in period t 2 T from facility i 2 I . A
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multi-period uncapacitated facility location problem is the following:

Minimize
X

t2T

X

i2I
fityit C

X

t2T

X

i2I

X

j2J
cijtxijt (11.23)

subject to
X

i2I
xijt D 1; t 2 T; j 2 J (11.24)

X

j2J
xijt � nyit; t 2 T; i 2 I (11.25)

xijt � 0; t 2 T; i 2 I; j 2 J (11.26)

yit 2 f0; 1g; t 2 T; i 2 I: (11.27)

In this formulation, xijt represents the fraction of the demand of customer j 2 J in
period t 2 T that is supplied by facility i 2 I ; yit is a binary variable equal to 1 if a
facility is operating at i 2 I in period t 2 T and 0 otherwise. Again, this problem
can be decomposed into jT j single-period problems. Nevertheless, it contains the
basic ingredients for building more interesting models. In fact, one extension of
this problem was proposed by Warszawski (1973), who included opening costs
for the facilities. These costs are incurred whenever a facility is opened (even if
the same facility has operated in some past period). Denoting by git the cost for
opening a facility at i 2 I in the beginning of period t 2 T , the model proposed
by Warszawski (1973) differs from (11.23)–(11.27) by considering the following
quadratic objective function:

X

t2T

X

i2I
gityit .1 � yi;t�1/C

X

t2T

X

i2I
fityit C

X

t2T

X

i2I

X

j2J
cijtxijt; (11.28)

with yi0 D 0, i 2 I . Warszawski (1973) considered dynamic programming for
solving instances with a small number of potential locations for the facilities, jI j,
and a local search heuristic for larger instances. Chardaire et al. (1996) studied
the same problem starting by disaggregating constraints (11.25). They developed
a Langragean relaxation based algorithm for computing lower and upper bounds. A
linearized model was also proposed and compared with the quadratic one in terms
of the quality of the lower bounds produced.

Another extension of model (11.23)–(11.27) was proposed by Canel and Khu-
mawala (1997) for locating facilities across different countries. They explicitly
considered binary decision variables zit indicating whether or not a new facility is
opened at i 2 I in period t 2 T . They proposed a profit maximization problem as
follows:

Maximize
X

t2T

X

i2I

X

j2J
rijtxijt �

X

t2T

X

i2I
fityit �

X

t2T

X

i2I
gitzit (11.29)

subject to (11.24); (11.26); (11.27)
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X

j2Pit

xijt � nityit; t 2 T; i 2 I (11.30)

zit � yit � yi;t�1; t 2 T; i 2 I (11.31)

zit 2 f0; 1g; t 2 T; i 2 I; (11.32)

with yi0 D 0, i 2 I . In this model, rijt represents the revenue obtained when
supplying all the demand of customer j 2 J in period t 2 T from facility i 2 I .
For each facility i 2 I there is a maximum number of customers, nit, it can supply
in period t 2 T . Furthermore, not all the facilities can supply all customers. In
particular, Pit represents the set of customers that can be served from facility i 2 I
in period t 2 T . As we will see below, constraints (11.30) had been proposed
before for another problem. Canel and Khumawala (1997) developed a branch-and-
bound procedure for this problem adapting the algorithm proposed by Khumawala
(1972), and Canel and Khumawala (2001) proposed a heuristic approach for the
same problem.

In all of the above problems, facilities can be opened and closed more than once
during the planning horizon. Dias et al. (2007) point out that these models ignore
the fact that re-opening a facility has in general a smaller cost than opening it for the
first time (for instance, land acquisition costs are incurred only once). They propose
a model taking this aspect into account. Additional decision variables are required
to distinguish whether a facility is being opened for the first time or is being re-
opened. A primal-dual heuristic is proposed for obtaining lower and upper bounds
for the problem. The gap is closed using a branch-and-bound procedure.

11.5 Modular Construction of Intrinsic Multi-Period Facility
Location Models

In many practical situations it is not acceptable to install and remove a facility,
say, in consecutive periods. This may make sense for seasonal facilities, such as
warehouses if, for instance, they can be rented for short time intervals. Nevertheless,
this cannot be assumed in general. Accordingly, the models presented in the
previous section may be short for capturing some real-world problems. Early,
researchers have noticed this fact and have considered models involving constraints
that impose a limit on the number of changes performed in each location during
the planning horizon. Often, such constraints state that once a facility is installed
(removed), it must remain opened (closed) until the end of the planning horizon.

We consider again the multi-period p-median problem, i.e., we assume that a
plan is to be made for locating exactly p facilities in a finite multi-period planning
horizon T . Let us assume that removing facilities is not allowed. One additional
feature that may be worth considering for this type of problem is the speed at which
p changes. The adequate model is the following (the notation was introduced in
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Sect. 11.4):

Minimize
X

t2T

X

i2I

X

j2J
cijtxijt (11.33)

subject to
X

i2J
xijt D 1; t 2 T; j 2 J (11.34)

X

j2J
xijt � nxiit; t 2 T; i 2 J (11.35)

X

i2J
xiit D pt ; t 2 T (11.36)

xiit � xii;t�1; t D 2; : : : ; jT j; i 2 J (11.37)

xijt � 0; t 2 T; i 2 J; j 2 J; (11.38)

where 1 � p1 � p2 � : : : � pjT j D p.
Constraints of type (11.37) were first proposed for a multi-period facility location

problem by Roodman and Schwarz (1975, 1977). The latter paper was pioneering
in the assumption that a set of facilities may be operating before the beginning
of the planning horizon. These are the facilities that can be removed. Therefore,
the possibility of adapting an existing system to predictable changes in some
parameters, becomes explicitly considered in the models. The set of locations I can
now be partitioned into two subsets: I c and I o. The former represents the facilities
that are operating before the beginning of the planning horizon; the latter represents
the set of locations for new facilities. A more comprehensive model for the multi-
period facility location problem emerges:

Minimize (11.23)

subject to (11.24)–(11.27)

yit � yi;t�1; t D 2; : : : ; jT j; i 2 I c (11.39)

yit � yi;t�1; t D 2; : : : ; jT j; i 2 I o: (11.40)

Roodman and Schwarz (1977) were also pioneering by considering a maximum
number of customers that can be served by each facility in each period and assumed
that not all facilities can serve all customers. These aspects are easily accommodated
in the above model if we replace (11.25) by (11.30). As mentioned before, the
latter constraints would be later considered by Canel and Khumawala (1997). The
research done by Roodman and Schwarz (1977) extends the work by the same
authors published 2 years before (Roodman and Schwarz 1975) in which a pure
phase-out problem had been considered.

The above models allow the removal of an existing facility before the beginning
of period 1with no costs imputed to the planning horizon. Imposing that the existing
facilities must operate in at least one period, can be easily done by setting yi1 D 1,
i 2 I c .
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Van Roy and Erlenkotter (1982) proposed a reformulation of model (11.23)–
(11.27), (11.39), and (11.40). Their idea, which can be extended to every multi-
period facility location problem, consists of considering binary decision variables
representing a change in a location instead of considering the traditional location
variables. In particular, for an existing facility i 2 I c , a new binary variable zit, can
be defined that is equal to 1 if the facility is removed at the end of period t (i.e., it
operates in periods 1; : : : ; t) and 0 otherwise. For facility i 2 I c , zi jT j D 1, indicates
that the facility is operating during the entire planning horizon. For a potential new
facility i 2 I o, the binary variable, zit, is equal to 1 if it is installed at the beginning
of period t (i.e., it operates in periods t; : : : ; jT j) and 0 otherwise. Using the new set
of variables, we obtain the following model:

Minimize
X

t2T

X

i2I
Fitzit C

X

t2T

X

i2I

X

j2J
cijtxijt (11.41)

subject to
X

i2I
xijt D 1; t 2 T; j 2 J (11.42)

xijt �
X

�2T it

zi� ; t 2 T; i 2 I; j 2 J (11.43)

xijt � 0; t 2 T; i 2 I; j 2 J (11.44)

zit 2 f0; 1g; t 2 T; i 2 I: (11.45)

In this model, Fit (i 2 I , t 2 T ) represents the total operation cost for facility i if
zit D 1, i.e., Fit D fi1 C : : : C fit for i 2 I c , t 2 T and Fit D fit C : : : C fi jT j
for i 2 I o, t 2 T . The set T it contains the periods in which it is possible to remove
(install) a facility at i 2 I c (i 2 I o) if we want to have it operating in period t 2 T .
More formally, T it D ft; : : : ; jT jg if i 2 I c and T it D f1; : : : ; tg if i 2 I o. It is
important to note that the aggregated costsFit can be easily extended to more general
situations, such as the one in which we have fixed setup and removal costs for the
facilities. In fact, suppose that a fixed cost git is incurred when removing (installing)
a facility i 2 I c (i 2 I o) in period t . We can simply set Fit D git C fi1 C : : :C fit

for i 2 I c , t 2 T and Fit D git C fit C : : :C fi jT j for i 2 I o, t 2 T .
The relation between the previous y-variables and the new z-variables is

straightforward:

zi jT j D yi jT j; i 2 I c
zit D yit � yi;tC1; t 2 f1; : : : ; jT j � 1g; i 2 I c
zi1 D yi1; i 2 I o
zit D yit � yi;t�1; t 2 f2; : : : ; jT jg; i 2 I o

Using these relations, it is straightforward to prove that model (11.23)–(11.27),
(11.39), and (11.40) is equivalent to model (11.41)–(11.45). The relevance of the
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latter arises from the fact that it is particularly suited for the application of a dual-
based heuristic, which is a popular method for obtaining sharp lower and upper
bounds for discrete facility location problems. This fact was explored by Van Roy
and Erlenkotter (1982). Multiplying constraints (11.43) by �1 the dual of the linear
relaxation of model (11.41)–(11.45) becomes:

Maximize
X

t2T

X

j2J
vjt (11.46)

subject to vjt � wijt � cijt; t 2 T; i 2 I; j 2 J (11.47)
X

j2J

X

�2Tit

wij� � Fit; t 2 T; i 2 I (11.48)

wijt � 0; t 2 T; i 2 I; j 2 J: (11.49)

In this model, vjt and wijt (t 2 T , i 2 I , j 2 J ) are the dual variables associated with
constraints (11.42) and (11.43), respectively (with the latter previously multiplied
by �1). The set Tit (i 2 I , t 2 T ) contains the operating periods for facility i if
a change (installation or removal) occurs in this location in period t . In particular,
Tit D f1; : : : ; tg if i 2 I c and Tit D ft; : : : ; jT jg if i 2 I o.

From (11.47) and (11.49) we may set

wijt D maxf0; vjt � cijtg; t 2 T; i 2 I; j 2 J;
which yields the following condensed dual:

Maximize (11.46)

subject to
X

j2J

X

�2Tit

maxf0; vjt � cijtg � Fit; t 2 T; i 2 I: (11.50)

The complementary slackness conditions for the linear relaxation of model
(11.41)–(11.45) are the following:

vjt

 
X

i2I
xijt � 1

!
D 0 t 2 T; j 2 J

wijt

0

@
X

�2T it

zi� � xijt

1

A D 0; t 2 T; i 2 I; j 2 J

xijt
�
vjt � cijt � wijt

� D 0; t 2 T; i 2 I; j 2 J
zitSit D 0; t 2 T; i 2 I;

where Sit represent the slack variables for constraints (11.50).
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Van Roy and Erlenkotter (1982) proposed a heuristic for the condensed dual
just presented. Starting from the trivial dual feasible solution defined by vjt D
mini2I fcijtg (t 2 T , j 2 J ) an ascent procedure is performed for increasing the
values of the dual variables vjt, thus increasing the value of the dual objective
function. When this procedure does not lead to further improvements, a primal
solution is constructed using the slackness conditions. Finally, a primal-dual
adjustment phase is performed in order to reduce the gap between the values of
the primal and dual objective functions. When no further gap reduction is achieved,
a branch-and-bound procedure is applied to complete the search for an optimal
solution for the problem. The reader should refer to Van Roy and Erlenkotter (1982)
for further details.

The procedure developed by Van Roy and Erlenkotter (1982) is quite efficient to
solve instances of moderate size. Nevertheless, this multi-period facility location
problem includes the UFLP as a special case and thus, it is NP-hard. For this
reason, Saldanha-da-Gama and Captivo (1998) proposed a two-phase heuristic
procedure for the problem. The first phase is a drop procedure which starts with
all facilities operating in all periods, and progressively removes operating periods
to the facilities. This is done while a reduction in the total cost is observed. Losing
feasibility is never allowed during the process. The second phase consists of a local
search procedure.

Although representing an important basis for describing real problems, the
above models still miss one important feature found in many applications: capacity
constraints. Denote by Qi the capacity of a facility located at i 2 I , and by djt

the demand of customer j 2 J in period t 2 T . A capacitated multi-period facility
location problem consists of minimizing (11.41) subject to (11.42), (11.44), (11.45),
and

X

j2J
djtxijt � Qi

X

�2T it

zi� ; t 2 T; i 2 I: (11.51)

This model was addressed by Saldanha da Gama (2002) who developed a dual-
based procedure for obtaining lower and upper bounds. The model was previously
enhanced with (11.43) and

X

t2T

X

i2I
Rkitzit � rk; k 2 K: (11.52)

By choosing appropriate values for Rkit and rk , these generic constraints can
accommodate every inequality involving the binary variables. This is important
because the linear relaxation of capacitated facility location problems can often
be strengthened through the inclusion of valid inequalities involving the location
variables. For instance, a set of constraints often used in (static) capacitated facility
location problems, state that the operational capacity must be at least equal to the
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total demand. In the multi-period case, these constraints are written as

X

i2I

0

@Qi

X

�2T it

zi�

1

A �
X

j2J
djt; t 2 T; (11.53)

which can be easily accommodated in (11.52).
For the linear relaxation of model (11.41)–(11.45), (11.51), and (11.52), Sal-

danha da Gama (2002) extended the dual-based procedure proposed by Van Roy and
Erlenkotter (1982), thus obtaining sharp lower and upper bounds for the problem.

The inclusion of capacity constraints is an important step towards building more
comprehensive multi-period facility location models. Nevertheless, the capacity
constraints (11.51) are rather restrictive when it comes to real applications, namely
those arising in logistics (see Chap. 16). By considering a fixed capacity in each
location, these constraints neglect the possibility of making future adjustments in
the capacity of the facilities, which is a feature quite relevant in practice. In fact, it is
often the case that adjusting the capacity of an existing facility is more advantageous
from a cost point of view than installing a new facility in some other location. One
attempt to overcome such restrictive representation for the capacities was made
by Van Roy and Erlenkotter (1982) who considered exogenous time-dependent
capacities Qit (i 2 I , t 2 T ). Nevertheless, this is still unsatisfactory from a
practical point of view because no connection is established between the capacities
in different periods.

The problem of planning for the capacity expansion of existing facilities was
very much in focus in the 1970s and in the 1980s (see, for instance, Erlenkotter
1981, and Lee and Luss 1987). However, at that time, the focus was put mainly on
the expansion of existing facilities. In many cases, the location of facilities was not
even a decision to make. Furthermore, many of these works considered continuous
adjustments in the capacities, which is often not adequate from a practical point of
view. In fact, if we think of production or sorting lines, we immediately realize that
changes in the capacities should be modular, or at least discrete.

One paper that clearly interconnects multi-period facility location decisions with
discrete capacity expansion is due to Shulman (1991). A set of facility types P
is considered, and in each location, facilities of different types can be progressively
established during the planning horizon, as a way of adjusting the operating capacity
of the system. In each period, at most one facility of each type can be installed in
each location but several facilities can be installed if they are of different types. For
each location i 2 I , a set Pi � P is assumed, corresponding to the set of facility
types that can be located at i . Denote by cijpt the cost for supplying all the demand
of customer j 2 J in period t 2 T from a facility operating at i 2 I that is of
type p 2 Pi . Let fipt be the cost for installing a facility of type p 2 Pi at i 2 I
in period t 2 T . Additionally, let Qp be the capacity of a facility of type p 2 P .
Finally, let nip0 denote the number of facilities of type p 2 Pi operating at location
i 2 I before the beginning of the planning horizon (i.e., the problem captures the
situation in which the system is not built from scratch but is to be adapted to future
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changes in demands). The demand of customer j 2 J in period t 2 T is again
denoted by djt. Two sets of decision variables were proposed by Shulman (1991):
xijpt, representing the fraction of the demand of customer j 2 J in period t 2 T that
is satisfied from a facility operating at i 2 I that is of type p 2 Pi , and yipt denoting
a binary variable that is equal to 1 if in period t 2 T a facility of type p 2 Pi is
installed at i 2 I and 0 otherwise. Assuming that the capacity expansions occur at
the beginning of the time periods, the problem can be formulated as follows:

Minimize
X

t2T

X

i2I

X

p2Pi
fiptyipt C

X

t2T

X

i2I

X

j2J

X

p2Pi
cijptxijpt (11.54)

subject to
X

i2I

X

p2Pi
xijpt D 1; t 2 T; j 2 J (11.55)

X

j2J
djtxijpt � nip0Qp C

tX

�D1
Qpyip� ; t 2 T; i 2 I; p 2 Pi

(11.56)

xijpt � 0 t 2 T; i 2 I; j 2 J; p 2 Pi (11.57)

yipt 2 f0; 1g; t 2 T; i 2 I; p 2 Pi : (11.58)

The values cijpt may include the transportation costs between facilities and
customers as well as handling costs at the facilities. Shulman (1991) proposed a
Lagrangean relaxation based procedure for obtaining lower and upper bounds for the
problem. Constraints (11.55) are dualized. The relaxed problem can be decomposed
into jI j problems, each of which to be solved exactly by dynamic programming.
However, the complexity of this algorithm is exponential in the number of facilities.
Therefore, it can only be used when jI j is small. Nevertheless, for the particular case
in which it is not possible to mix different facility types in the same location (i.e.,
jPi j D 1, i 2 I ), a polynomial algorithm for the relaxed problem was proposed in
the same paper.

The need for more comprehensive multi-period facility location models suited
for being applied to real-world problems has led to further important developments.
Hinojosa et al. (2000) proposed the first multi-period, multi-echelon, multi-product
capacitated discrete facility location problem, setting one important foundation for
the strong link that we observe nowadays between multi-period facility location
and logistics network design (see Chap. 16). Two facility echelons are considered in
that work: plants and warehouses. Location decisions are to be made for both. This
paper extends the models proposed by Roodman and Schwarz (1977) by considering
more than one facility echelon and multiple commodities. Existing facilities are
assumed to be operating before period 1 and can be removed during the planning
horizon. Additionally, a set of potential locations for establishing new facilities
during the planning horizon is considered. Once removed, a facility cannot be
opened again, and once installed, a facility must remain opened until the end of the
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planning horizon. Hinojosa et al. (2000) proposed a Lagrangean relaxation based
procedure in order to compute lower and upper bounds. The problem would be later
extended by Hinojosa et al. (2008) to include inventory decisions. The new model
proposed extends the reformulation proposed by Van Roy and Erlenkotter (1982)
(i.e., the decision variables represent the changes in the locations—installation of
new facilities and removal of existing ones—in the different periods of the planning
horizon). A Lagrangean relaxation based procedure was also proposed.

Canel et al. (2001) also investigated a system with two echelons: factories and
facilities (e.g., distribution centers). Unlike the problems investigated by Hinojosa
et al. (2000, 2008), location decisions are to be made only for the lower echelon.
Furthermore, facilities can be opened and closed more than once during the planning
horizon. Multiple commodities are considered as well as an important feature much
relevant is real logistic systems: the possibility of making direct shipments from the
upper echelon to the customers. The authors proposed an exact approach for the
problem based on branch-and-bound and dynamic programming.

Jena et al. (2012) investigated a multi-period capacitated facility location prob-
lem that in addition to the decisions about where to locate new facilities, consider
the possibility of relocating existing facilities or expanding the capacity of existing
ones. The authors also consider the possibility of temporarily closing facility parts.
The problem arises within the context of logging companies that wish to plan for
locating accommodation camps for their workers over some finite planning horizon.
The authors proposed several mixed integer linear programming formulations for
the problem that they compared in terms of the bounds provided by linear relaxation
and tested in instances that use data provided by a real company. They also
observed that the problem calls for a very specific cost structure associated with
capacity changes. This motivated a more recent work (Jena et al. 2014) in which a
general cost structure is associated with capacity changes. A mixed integer linear
programming modeling framework was then proposed and shown to generalize
two important special cases: facility closing and reopening and capacity expansion
and reduction. Alternative formulations were also proposed for these special cases
which were compared with the above general modeling framework in terms of the
linear relaxation bounds. A combination of the above mentioned cases can also
be accommodated in the general modeling framework proposed. In that work, the
general model was solved using an off-the-shelf solver. Computational tests were
performed using a large set of generated instances.

Albareda-Sambola et al. (2009) extended the model proposed by Roodman and
Schwarz (1977) for handling the so-called multi-period incremental service facility
location problem. In each time period, a minimum number of facilities is to be
established that should be kept operating until the end of the planning horizon. All
the customers must start being served in some period and remain served until the
end of the planning horizon. The problem is motivated by some practical problems
requiring a multi-period plan for progressively extending some service to the popu-
lation in some region. Accordingly, the service level is progressively increased over
time until all customers are being served. A Lagrangean relaxation based procedure
was proposed in that paper for obtaining lower and upper bounds. A particular
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case of this problem was addressed by Albareda-Sambola et al. (2010), assuming
that each customer requires service only in a subset of periods. Additionally, it
is possible not to fulfil the request in one or several of those periods but in this
case, a penalty cost is paid. Several mathematical programming formulations were
proposed for the problem, which were compared computationally.

A multi-period discrete facility location problem was also investigated by
Gourdin and Klopfenstein (2008). The problem is motivated within the context of
telecommunications network design and consists of planning for the location of
modular equipment over a finite planning horizon. Operating capacity constraints
are considered for the nodes and for the links. The goal is to progressively expand
the capacity of the equipment as well as the capacity of its links to the demand
nodes. In that paper, the mathematical programming model initially proposed for
the problem was enhanced via polyhedral analysis.

11.6 The Value of the Multi-Period Solution

Multi-period modeling frameworks like those proposed in the previous sections,
involve one extra dimension in the decision space: the time. Models tend to be large
and thus more difficult to tackle, even for instances of moderate size. Accordingly,
one may ask whether it is worth considering this extra dimension. In other words,
let us consider a situation in which it is possible to make a static decision even with
costs, demands (and possibly other parameters) varying over time. Is it still worth
considering a multi-period modeling framework? An answer to this question can be
given by the value of the multi-period solution, which is a concept first introduced
by Alumur et al. (2012) in the context of a multi-period reverse logistics network
design problem.

The value of the multi-period solution compares the optimal value of the multi-
period problem and the value of a solution found by solving a static counterpart.
A static counterpart is a problem that takes into account the information available
for the planning horizon and looks for a static (time invariant) solution. Given the
optimal solution to a static counterpart, one can consider again the original multi-
period problem and set such solution for all periods of the planning horizon. If, by
doing so, we obtain a feasible solution to the multi-period problem, the difference
between its value and the optimal value of the multi-period problem gives the value
of the multi-period solution. In general, several static counterparts can be associated
with a multi-period problem. Depending on the one that is considered, a different
static solution may be obtained. Accordingly, the value of the multi-period solution
may not be unique.

In a multi-period facility location problem, costs, demands, and possibly other
parameters are assumed to change over the planning horizon. A static counterpart
is a problem that looks for a static location for the facilities, i.e., that can be
implemented at the beginning of period 1 and remain unchanged until the end of the
planning horizon. One possibility for building a static counterpart is to somehow
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aggregate the information available for all periods. For instance, consider time
varying demands. If facilities are uncapacitated, then several possibilities emerge
for aggregating this information: (1) the demands can be averaged over the planning
horizon, or (2) a reference value can be determined (e.g., the maximum value
observed throughout the planning horizon). If additional constraints exist (e.g.,
capacity constraints) then, choosing a reference value may render the resulting static
solution infeasible in some periods. In this case, one possibility for building a static
counterpart is to define the (time invariant) demand of each customer according
to the maximum value observed across all periods. In any case, the adequate
aggregation of multi-period data is very much problem-dependent.

In order to clarify the above explanation, we consider problem (11.23)–(11.27),
(11.39), and (11.40). A static counterpart can be obtained simply by considering the
UFLP with operation costs fi , i 2 I , equal to the average of the values fit, t 2 T
and distribution costs cij, i 2 I , j 2 J , given by the average of the values cijt, t 2 T .

When the value of the multi-period solution is obtained by aggregating the data
for all periods we refer to it as a weak value of the multi-period solution. On the other
hand, we obtain a strong value of the multi-period solution when no aggregation is
performed in the data. This is a possibility in some cases, namely when we can add a
set of constraints to the problem stating that some or all decisions are to be the same
in all periods of the planning horizon. In the case of a multi-period facility location
problem, a static counterpart must define a static location, i.e., a solution in which
the location of the facilities is the same for all periods of the planning horizon.
Consider, for instance, problem (11.41), (11.42), (11.44), (11.45), and (11.51). A
static counterpart yielding a strong value of the multi-period solution is obtained by
setting

zit D 0 t D 1; : : : ; jT j � 1; i 2 I c;
zit D 0 t D 2; : : : ; jT j; i 2 I o:

These conditions simply impose that the status of each location does not change
during the planning horizon. Therefore, the set of operating facilities will be the
same across all periods.

To the best of our knowledge, the only paper within the context of facility
location, in which the relevance of using a multi-period modeling framework is
measured is the one by Alumur et al. (2012).

11.7 Conclusions

In this chapter, we have presented and discussed several essential aspects related
with multi-period facility location problems. The existing literature reveals that the
topic has achieved a significant level of maturity. From a modeling point of view, it
is now clear how to capture several features of practical relevance and how to tackle
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the resulting models. We discussed the weak and strong values of the multi-period
solution as measures for the relevance of using a multi-period modeling framework.

In recent years, much work has been developed on facility location problems
arising in the context of logistics systems (see, e.g., Melo et al. 2009). As it will
be discussed in Chap. 16, an adequate modeling framework can hardly neglect
the multi-period nature of such problems. Some papers within this context that
somehow extend some multi-period models discussed in the previous sections are
those by Melo et al. (2006) and Manzini and Gebennini (2008).

Another aspect of relevance in many applications regards the uncertain nature of
the data underlying the problems. Aghezzaf (2005) addressed a multi-period facility
location problem under uncertainty. A robust optimization modeling framework
was proposed. Recently, multi-period stochastic facility location problems were
addressed by Nickel et al. (2012) and Albareda-Sambola et al. (2013). These works
show that capturing uncertainty in multi-period facility location problems is still a
challenge.

Another challenging area in multi-period facility location concerns the location
of public facilities. One first work in this direction is due to Antunes and Peeters
(2001). Although static models for public facilities location have attracted much
attention in the past, the same does not happen with multi-period problems.

One class of problems which is still much unexplored, regards multi-criteria,
multi-period facility location problems. To the best of our knowledge only a few
papers exist within this context. Dias et al. (2008) proposed a memetic algorithm
for multi-period problems when it is possible to install and remove a facility
more than once during the planning horizon. Hugo and Pistikopoulos (2005) and
Melachrinoudis and Min (2007) study multi-criteria, multi-period facility location
problems in the context of logistics network design.

Most of the contents in this chapter are a basis for addressing more complex
real-world problems. In fact, several models presented in the previous sections
have already been extended to problems arising in other areas (see, for instance,
Chaps. 12, 15 and 16). Nevertheless, some challenges still exist. The research done
so far is scarce when it comes to some classes of multi-period facility location
problems, such as those just mentioned above. These are existing research directions
worth exploring in order to broaden the scope and knowledge on multi-period
facility location, making the topic an even stronger basis for being applied to real-
world systems.
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Chapter 12
Hub Location Problems

Ivan Contreras

Abstract Hub Location Problems (HLPs) lie at the heart of network design
planning in transportation and telecommunication systems. They are a challenging
class of optimization problems that focus on the location of hub facilities and on
the design of hub networks. This chapter overviews the key distinguishing features,
assumptions and properties commonly considered in HLPs. We highlight the role
location and network design decisions play in the formulation and solution of HLPs.
We also provide a concise overview of the main developments and most recent
trends in hub location research. We cover various topics such as hub network topolo-
gies, flow dependent discounted costs, capacitated models, uncertainty, dynamic and
multi-modal models, and competition and collaboration. We also include a summary
of the most successful integer programming formulations and efficient algorithms
that have been recently developed for the solution of HLPs.

Keywords Hub location • Hub networks • Integer programming

12.1 Introduction

Transportation, telecommunications and computer networks frequently employ
hub-and-spoke architectures to efficiently route flows between many origins and
destinations. Their key feature lies in the use of transshipment, consolidation, or
sorting points, called hub facilities, to connect a large number of origin/destination
(O/D) pairs by using a small number of links. Flows having the same origin but
different destinations are consolidated when routed to the hubs and then, combined
with other flows having different origins but the same destination. This helps reduce
setup costs, centralize commodity handling and sorting operations, and achieve
economies of scale on routing costs through the consolidation of flows. Broadly
speaking, Hub Location Problems (HLPs) consist of locating hub facilities and of
designing hub networks so as to optimize a cost-based (or service-based) objective.
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HLPs constitute a challenging class of NP-hard problems involving joint location
and network design decisions. Their main difficulty stems from the inherent
interrelation between two levels of the decision process. The first level considers
the selection of a set of nodes to locate hub facilities, whereas the second level
deals with the design of the hub network, by selecting the links to connect origins,
destinations and hubs, as well as the routing of flows through the network.

HLPs lie at the heart of network design planning in transportation and telecom-
munication systems. Application areas of HLPs in transportation are abundant.
These include express package delivery, air freight and passenger travel, postal
delivery, trucking, and rapid transit systems. Demand corresponds to commodities
(i.e. express packages, passengers, mail, goods) carried by vehicles (i.e. trucks,
trains, airplanes, vessels) moved on physical networks such as roads and railways or
through the air of water. Hub facilities correspond to sorting centers or transportation
terminals in which one or more transportation modes interact. Consolidation of
flows at hubs enable economies of scale on the transportation costs, not only on
the routing of flows between hubs, but also between O/D nodes and hubs.

Applications of HLPS in telecommunications arise in the design of various
distributed data networks, where demand corresponds to electronic data that are
routed over a variety of physical links (i.e. fiber optic links and co-axial cables)
or through the air (i.e. satellite channels and microwave links). Hub facilities are
hardware such as switches, concentrators, multiplexors, and routers. Economies of
scale in data transmission and network utilization, in combination with large set-up
costs for hub facilities and communication links, motivate the use of hub-and-spoke
architectures.

The study of HLPs began with the pioneering work of O’Kelly (1986a), for
continuous models, and O’Kelly (1986b, 1987), for discrete models, and has since
evolved into a rich research area. Over the last three decades hub location has been
studied by researchers around the globe from different disciplines such as location
science, geography, regional science, network optimization, transportation, telecom-
munications, and computer science. There exist several reviews and surveys on
HLPs, each one of them focusing on different aspects of these problems. The early
reviews dealing with HLPs, by O’Kelly and Miller (1994) and Campbell (1994a),
contain classification schemes for fundamental models and for the topological
structures applicable to hub networks. Klincewicz (1998) concentrate on the design
of hub networks in the context of telecommunication networks, and Bryan and
O’Kelly (1999) present a survey focused on air transportation networks. Campbell
et al. (2001) wrote a comprehensive survey of HLPs in which the location of hubs
is the key decision. Alumur and Kara (2008) provide a classification and review of
the growing literature on network hub location models before 2008. Campbell and
O’Kelly (2012) provide an insight into early motivations for analyzing HLPs and
highlight recent research directions. Zanjirani Farahani et al. (2013) review solution
methods and applications for several classes of HLPs.

This chapter focuses on the role location and network design decisions play in the
formulation and solution of HLPs. It overviews features and assumptions commonly
considered in discrete HLPs, providing insights on their modeling implications
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and consequences. We point out how these assumptions simplify network design
decisions, creating a first generation of HLPs that focuses mostly on the location and
allocation decisions. We also show how network decisions become more involved
when relaxing some of these assumptions.

We start with an introduction to the fundamentals of HLPs, including their
distinguishing features, assumptions, properties, as well as commonly used objec-
tives. A review of the most interesting and useful Mixed Integer Programming
(MIP) formulations for fundamental HLPs considering cost-based objectives is
then presented. We also highlight some of the main developments and most recent
trends in hub location. We would like to clarify that, due to space limitations,
this is not intended to be a comprehensive survey of all diverse topics associated
with hub location research, but rather our personal view-point on some of the
most interesting research on this filed. In particular, we include hub network
topologies, flow dependent discounted cost models, capacitated models, models
dealing with uncertainty, dynamic and multi-modal models, and competition and
collaboration. A summary of successful integer programming methods that have
given rise to efficient approximate and exact solution algorithms for solving HLPs
is also presented.

This chapter does not cover continuous HLPs or models in which locational
decisions are not present. The reader is referred to O’Kelly (1986a), O’Kelly
and Miller (1991), Aykin (1988), Campbell (1990, 2013), Saberi and Mahmassani
(2013), and references therein for continuous variants of HLPs, and to Klincewicz
(1998), Gendron et al. (1999), and Wieberneit (2008) for hub-and-spoke network
design models in which the set of hub facilities is given a priori. The reader is also
referred to Contreras and Fernández (2012) for a survey of other general network
design problems that also combine location and network design decisions.

12.2 Fundamentals

HLPs are closely related to classical Facility Location Problems (FLPs). As a result,
for several classical facility location problems such as p-median, uncapacitated
facility location, p-center, and covering problems, analogous HLPs have been
studied: p-hub median, uncapacitated hub location, p-hub center, and hub covering
problems. Due to their multiple applications, inside these classes of HLPs there
exist several variants that differ with respect to a number of assumptions like the
topological structure, the allocation pattern of O/D nodes to hubs, and capacity
constraints on the hub network, among others.

The key difference between FLPs and HLPs relies on the type of service demand
required by the users and on the function the facilities provide. In the case of
FLPs, service is given at (from) the facilities and flows thus originate at demand
nodes (facilities) and their destination are the facilities (demand nodes). Network
design and routing decisions are usually determined by the assignment pattern of
demand nodes to their allocated facilities. In HLPs, service demand is between
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O/D nodes and hub facilities are intermediate nodes in the O/D paths which act
as transshipment and consolidation points. When a hub serves as transshipment
(switching or sorting) point, it allows flows to be processed and redirected to
other hubs or O/D nodes with many fewer links than would be needed with
direct connections. As a consolidation (concentration or breakbulk) point, a hub
allows flows to be aggregated and disaggregated, creating economies of scale in the
transportation (or communication) cost between hubs and between O/D nodes and
hubs. The interaction of hub facilities and O/D nodes increases the complexity of
network design and routing decisions, since these are not necessarily determined by
the assignment pattern of O/D nodes to hubs.

Another difference between FLPs and HLPs is that, when dealing with uncapac-
itated hub location models, a single assignment pattern of non-hub nodes to hubs is
not necessarily an optimal allocation strategy. In most uncapacitated FLPs, once the
facility locations are known the flow (or allocation) cost is minimized by assigning
each demand node to its closest (or least costly) open facility. In the case of HLPs,
once the hub locations are known, the flow cost is minimized by finding the shortest
path on the network induced by the selected hubs for each O/D pair, resulting in a
multiple allocation pattern of O/D nodes to hubs. For this reason, both single and
multiple assignments versions of HLPs exist. In a hub location problem with single
assignments, O/D nodes must be assigned to exactly one hub facility. All demand
flows with the same origin (or destination) are thus routed via the same hub. In a
hub location problem with multiple assignments, each O/D node can be allocated
to more than one hub facility. Multiple assignment patterns simplify the routing
decisions and provide greater flexibility on hub networks, allowing lower flow cost
solutions. However, they can considerably increase the network design cost as a
larger number of links must be activated on the hub network.

12.2.1 Features, Assumptions and Properties

The key distinguishing features of HLPs can be summarized as follows: (i)
service demand is associated with flows between O/D pairs, (ii) hub facilities are
intermediate nodes in the O/D paths which act as transshipment or consolidation
points, (iii) there is a benefit (or requirement) of routing flows via hubs, (iv) there
is a cost-based (or service-based) objective that depends on the design of the hub
network (location of hubs and selection of links) and the routing of flows.

We can provide a description of a generic hub location problem as follows.
Consider a complete graph G D .N;E/, where N is the set of nodes representing
the origins and destinations of flows, and E is the set of edges. Let N be the set of
potential hub locations as well. For each node pair .i; j /, let Wij � 0 and dij � 0
denote the amount of flow to be routed and the distance, respectively, from the origin
i 2 N to the destination j 2 N . For each node i 2 N , fi is the fixed set-up cost
for locating a hub, whereas for each e 2 E , ge denotes the fixed set-up cost for
locating a hub arc. A hub arc e D .i; j / 2 E connects two different hub nodes
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i and j and has a per unit flow cost of ˛dij. The parameter ˛ .0 � ˛ � 1/ is
used as a discount factor to provide reduced unit flow costs on hub arcs to reflect
economies of scale resulting from consolidation of flows between hubs. The per unit
flow cost between O/D pairs is given by the length of the path between the origin
and destination nodes in the solution network. Each O/D path has a collection leg
from the origin node to the first hub, possibly a transfer leg between the first and the
last hubs, and a distribution leg from the last hub to the destination node. A generic
hub location problem consists of locating a set of hub facilities and a set of hub arcs,
and of determining the routing of flows through the hub network, with the objective
of minimizing the total set-up and flow cost.

Most of the hub location literature has focused on Hub Node Location Problems
(HNLPs), which consider the location of a set of hub facilities and the assignment
of O/D nodes to these facilities. Arc selection and routing decisions are usually
determined by the assumptions made on the cost structure and the assignment
pattern. The network induced by the solution of a HNLP consists of three types
of arcs: (i) hub arcs connecting two hubs, (ii) access arcs connecting non-hub
nodes and hubs, and (iii) direct arcs connecting two non-hub nodes. A more general
class of hub location models, known as Hub Arc Location Problems (HALPs), have
received less attention in the literature. HALPs consider the location of a set of hub
arcs, that induce a set of hub nodes, and the assignment of O/D nodes to these hub
arcs. In HALPs, the possibility of connecting two hub nodes with a fourth type of
arc arises. A bridge arc is an arc that connects two different hub nodes, without
benefiting from the reduced unit flow cost of a hub arc. HNLPs can be seen as
particular cases of HALPs in which additional conditions are imposed.

There are four common assumptions underlying most HLPs:

1. Flows have to be routed via a set of hubs.
2. Access arcs and bridge arcs have no set-up cost.
3. The discount factor ˛ is the same for all hub arcs and does not depend on the

amount of flow that is actually routed on each hub arc.
4. Distances dij satisfy the triangle inequality.

A consequence of Assumption 1 is that direct connections between O/D nodes
which are not hubs are not allowed and thus, O/D paths must include at least one
hub node. In most HNLPs an additional fifth assumption stating that the set-up cost
of hub arcs is equal to zero (i.e., ge D 0 for each e 2 E) is also considered. This
allows hubs to be interconnected at no extra cost and, together with Assumptions 3
and 4, an important resulting property in solution networks of HNLPs is that the set
of hub arcs define a complete subgraph on the set of hub nodes (i.e. hubs are fully
interconnected). As a consequence, hub arc selection decisions become trivial once
the location of hub nodes is known. Another important property, obtained when
combining all assumptions, is that paths between O/D pairs will contain at least one
and at most two hubs. However, it is important to note that whenever Assumption 4
is not satisfied, paths may contain more than two hubs and more than one hub arc.

The above properties simplify the network design decisions and characterize
the structure of O/D paths. In HNLPs, all O/D paths include either a single hub
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a b

Fig. 12.1 Solution network of a hub node location problem (a) and a hub arc location problem (b)

node and no hub arc, or two hub nodes and a single hub arc. Moreover, because of
Assumptions 2 and 4, each collection and distribution leg, if present, contains only
one access arc. O/D paths are thus of the form .i; k;m; j /, where .k;m/ 2 N � N
is the ordered pair of hubs to which i and j are allocated, respectively. Note that
these paths contain one, two or at most three arcs, depending on the number of
visited hubs and on the function of origins and destinations (i.e. hub or non-hub
nodes). For each O/D pair, the flow cost of routing Wij along the path .i; k;m; j /
is then given by Fijkm D Wij

�
�dik C ˛dkm C ıdmj

�
; where �; ˛, and ı represent

the collection, transfer and distribution costs along the path. To reflect economies of
scale between hubs, we assume that � < � and � < ı.

Figure 12.1a shows an example of a solution network of a HNLP in which
different structures on O/D paths arise (squares represent hub nodes and circles
represent non-hub nodes). The path .1; 2; 9; 10/ is a two-hub path formed by the
access arcs .1; 2/, .9; 10/ and the hub arc .2; 9/. The path .2; 2; 9; 6/ is also a two-
hub path but containing only the access arc .9; 6/ and the hub arc .2; 9/. The path
.3; 3; 9; 9/ is yet another two-hub path formed only by the hub arc .3; 9/. The path
.1; 2; 2; 8/ is a one-hub path containing only the access arcs .1; 2/ and .2; 8/. The
path .7; 8; 8; 8/ is also a one-hub path containing the single access arc .7; 8/.

In HALPs, hubs are not necessarily fully interconnected due to the set up cost
on the hub arcs or because additional conditions on the network topology are
imposed. This causes O/D paths to become more involved, since they may use more
than three arcs and visit more than two hub nodes. Similar to HNLPs, because of
Assumptions 2 and 4, each collection and distribution leg, if present, employs either
one access arc or one bridge arc. However, the transfer leg can now use several
bridge and hub arcs, depending on the particular assumptions considered on the
structure of O/D paths.

To simplify the routing decisions in HALPs, an additional assumption stating
that O/D paths contain at most one hub arc can be considered. This limits paths
to have at most three arcs, being the first and last ones either access or bridge
arcs and the intermediate arc, if it exists, a hub arc. As mentioned in Campbell
et al. (2005a), this assumption is used to increase service level in classical HLPs
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and is also consistent with practice. In air transportation, for example, it ensures
that a passenger will never have to change flights more than twice. In ground
transportation, it is convenient to restrict the number of hub facilities that each route
has to pass through so as to reduce handling and congestion at hubs and to provide
a form of performance guarantee. O/D paths are once more of the form .i; k;m; j /,
and thus, defining their flow cost as Fijkm.

Figure 12.1b shows an example of a solution network of a HALP in which
different structures on O/D paths arise (dashed lines represent bridge arcs). The
path .5; 8; 2; 3/ is a four-hub path formed by the bridge arcs .5; 8/, .2; 3/ and the
hub arc .8; 2/. The path .5; 8; 9; 10/ is a three-hub path containing the bridge arc
.5; 8/, the hub arc .8; 9/ and the access arc .9; 10/.

12.2.2 Supermodular Properties

We next show how a general class of HLPs can be stated as the minimization of
a real-valued supermodular set function. This fundamental property, which is also
known for other types of classical facility location problems (p-median, uncapac-
itated and capacitated facility location), can be exploited to develop mathematical
formulations and solution algorithms with worst case bounds.

This class of HLPs, referred to as Supermodular Hub Location Problems
(SHLPs), considers Assumptions 1–4 and the additional assumption that limits O/D
paths to contain at most one hub arc. SHLPs consist of locating a set of at most
q hub arcs (q � 1), that induce a set of at most p hub nodes (p � 2), and of
determining the routing of commodity flows through the hub network, with the
objective of minimizing the total set-up and flow cost. We can state SHLPs as the
following combinatorial problem. LetU D N [E be a finite set containing both the
set of nodesN and the set of edgesE ofG. For each non-empty subset .S;R/ � U ,
where S � E and R � N , define

c.S;R/ D
X

i2R

ci I g.S;R/ D
X

e2S

geI h.S;R/ D
X

i;j2N

hij.S/ D
X

i;j2N

min
.k;m/2S

Fijkm;

and

f .S;R/D c.S;R/Cg.S;R/Ch.S;R/D
X

i2R
ci C

X

e2S
ge C

X

i;j2N
min

.k;m/2S Fijkm;

(12.1)

and f .;/ D 0. For nonempty sets of hub nodes R � N and hub arcs S � E ,
c.S;R/ is the total set-up costs for setting hub nodes, g.S;R/ is the total set-up
cost of the hub arcs, and h.S;R/ is the total cost for routing the flows when the set
of hub arcs S is chosen. Thus, f .S;R/ is the objective function value associated
with the set of hub nodes R and the set of hub arcs S . Therefore, SHLPs can be
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stated as to find a set of arcs S � E of cardinality at most q .q � jEj/ and R of
cardinality at most p .p � jN j/ such that f .S;R/ is minimum, i.e.,

min
.S;R/�U ff .S;R/ W jS j � q; jRj � p; N.S/ D Rg ; (12.2)

where N.S/ D fi 2 N W .i; j / 2 S or .j; i/ 2 Sg is the set of nodes incident with
some edge in S . In order to deal only with feasible problems, we assume that p �
d q
2
e. When p � minfjN j; 2qg the maximum cardinality constraint on the number

of hub nodes becomes redundant. Similarly, if q � minfjEj; �p
2

�g the maximum
cardinality constraint on the number of hub arcs becomes redundant. A fundamental
property of f is that, for .S;R/ � .T;Q/ and e 2 EnT , adding e to T will decrease
f by no more than by adding e to S . A real-valued set function with such property
is called supermodular set function.

Proposition 12.1

a. h.S;R/ D P
i;j2N

hij.S;R/ is supermodular and nonincreasing.

b. f .S;R/ D c.S;R/C g.S;R/C h.S;R/ is supermodular.

Problem (12.2) can thus be stated as the minimization of a supermodular set
function, which is known to be in the class of NP -hard problems. We use SHLP to
describe any problem that can be formulated as (12.2). SHLPs are a quite general
class of HLPs and include several special cases which are of particular interest
such as p-hub median, uncapacitated hub location, and q-hub arc location. Other
classical facility location problems, such as the p-median or the uncapacitated
facility location problem, are also relevant special cases of SHLPs. However, we
note that not every HLP can be stated as problem (12.2). For instance, when a
single assignment pattern is imposed the flow cost associated with a given set of
hub arcs S is no longer h.S;R/, since all flow with the same origin (destination)
must be routed through the same collection (transfer) leg. That is, HLPs with single
assignments cannot be formulated as SHLPs. Moreover, even if multiple allocation
is allowed, the addition of capacity constraints also preclude the supermodularity
property when commodities cannot be splitted.

12.2.3 Objectives

Most of the hub location research has focused on HLPs that consider either a cost-
based or a service-based objective. Transportation applications tend to focus on the
flow transportation costs and travel times, whereas telecommunication applications
focus more on the set-up costs of the hub network. Analogously to facility location,
HLPs can be classified based on the type of objective they use.
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• p-Hub Median Problems assume that the number of hubs to locate is given as an
input of the problem. They consist of locating a set of p hub facilities with the
objective of minimizing the total flow cost for routing the flows through the hub
network.

• Hub Location Problems consider that the number of hubs to locate is not known
a priori, but a fixed set-up cost for each hub is considered. The objective is to
minimize the sum of hub fixed costs and of demand flow costs over the hub
network.

• p-Hub Center Problems are minmax problems that focus on the minimization of
a maximum service or cost measure between O/D pairs. Some of these measures
are: (i) the maximum flow cost (or travel time) of all O/D pairs, (ii) the maximum
flow cost (or travel time) of all arcs of the hub network, and (iii) the maximum
flow cost (or travel time) associated with an access arc.

• Hub Covering Problems impose a maximum threshold value on the service level
(travel time) and focus on the minimization of the set-up cost of the hub network.
They assume demand is covered if both origin and destination nodes are within
a specified distance of a hub node. They differ on their considered coverage
criteria. An O/D pair .i; j / is covered by hubs k and m if: (i) the length of the
path .i; k;m; j / is within a specified value, (ii) the length of each arc in the path
.i; k;m; j / does not exceed a specified value, or (iii) each of the access arcs meet
different specified values.

Both single and multiple assignment models, as well as uncapacitated and
capacitated models have been considered in the literature for most of these classical
objectives. We refer to Campbell (1994a), Campbell et al. (2001), and Alumur and
Kara (2008) for a detailed overview of these models.

HLPs considering more complex classes of objective functions have also been
studied. Costa et al. (2008) and Köksalan and Soylu (2010) consider HLPS with
multiple objectives. Puerto et al. (2011) introduce a general class of HLPs that
consider an ordered median function (see Chap. 10) for which the above mentioned
objectives (and others) are particular cases. O’Kelly (2012) considers objectives
related to the fuel burn and environmental impact in airline hub networks. Campbell
and O’Kelly (2012) review some recent HLPs that integrate both cost and service
objectives.

12.3 Formulating Hub Location Problems

One of the major modeling challenges in HLPs is that knowing the hub network
structure is not necessarily sufficient to evaluate the objective function. Formula-
tions must be able to model the path used for routing each flow to determine the
flow cost. Significant progress has been made toward the development of Mixed
Integer Programming (MIP) formulations for fundamental HLPs. These exploit
the structure of the solution network obtained when considering the modeling
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assumptions presented in Sect. 12.2.1. We next introduce the most important
families of MIP formulations for both single and multiple assignment variants
of p-hub median and hub location problems. These have been successfully used
in combination with sophisticated solution algorithms to obtain optimal solutions
for large-scale instances. They have also been extended to model more complex
variants of HLPs including additional features of real applications. We refer to
Campbell et al. (2007), Alumur and Kara (2009), Wagner (2008a), Ernst et al.
(2009), Yaman and Elloumi (2012), Hwang and Lee (2013), and Lowe and Sim
(2013) for formulations of p-hub center and hub covering problems.

12.3.1 Single Assignments

A natural way to formulate HLPs with single assignments is to consider them
as facility location problems with additional quadratic costs associated with the
interaction of hub facilities. For each pair i; k 2 N , we define location/allocation
variables zik, equal to one if node i is assigned to hub k and zero otherwise. When
i D k, variable zkk represents the establishment or not of a hub at node k. The
Uncapacitated Hub Location Problem with Single Assignments (UHLPSA) can be
stated as the following quadratic mixed integer program (O’Kelly 1987):

minimize
X

k2N
fkzkk C

X

i;k2N
.�Oi C ıDi/ dikzik C

X

i;j;k;m2N
˛Wijdkmzikzjm (12.3)

subject to
X

k2N
zik D 1 i 2 N (12.4)

zik � zkk i; k 2 N (12.5)

zik 2 f0; 1g i; k 2 N; (12.6)

where Oi D P
j2N Wij and Oi D P

j2N Wji . The first term of the objective
function represents the total set-up cost of the hub facilities, whereas the second
and third term are the flow cost on the access and hub arcs, respectively. Con-
straints (12.4) guarantee that every O/D node is assigned to exactly one hub, whereas
constraints (12.5) impose that they can only be assigned to open hubs. Note that
constraints (12.4)–(12.6) define the set of feasible solutions of the Uncapacitated
Facility Location Problem (see Chap. 3). However, objective (12.3) contains an
additional quadratic term associated with the inter-hub flow cost. Several linearized
formulations have been proposed to overcome this added difficulty of UHLPSAs.

An important family of formulations, referred to as path-based formulations, use
decision variables to characterize O/D paths visiting either one or two hub nodes.
We introduce binary routing variables xijkm, i; j; k;m 2 N , equal to 1 if and only if
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the flow originated at i and destination j transits via a first hub node k and a second
hub nodem. The UHLPSA can be stated as follows (Skorin-Kapov et al. 1997):

minimize
X

k2N
fkzkk C

X

i;j;k;m2N
Fijkmxijkm

subject to (12.4)–(12.6)
X

m2N
xijkm D zik i; j; k 2 N (12.7)

X

k2N
xijkm D zjm i; j;m 2 N (12.8)

xijkm � 0 i; j; k;m 2 N: (12.9)

Constraints (12.7) state that if node i is assigned to hub k then all the flow from
node i to any other node j must go through some other hub m. Constraints (12.8)
have a similar interpretation relative to the flow arriving to a node j assigned to hub
m from some node i . There is no need to explicitly state the integrality on the xijkm

variables because there always exists an optimal solution of (12.4)–(12.8) in which
all xijkm variables are integer. One of the attractive features of this formulation is that
it usually provides tight Linear Programming (LP) relaxation bounds, at the expense
of requiring O.n4/ variables and O.n3/ constraints. Saito et al. (2009) study the
polyhedral structure of the quadratic semi-assignment polytope, a relaxation of this
formulation, and provides strong valid inequalities to further improve its LP bound.

It is possible to project out the path-based variables xijkm to obtain a formulation
with fewer variables (see Labbé and Yaman 2004; Labbé et al. 2005). We define
continuous variables ykm, k;m 2 N , equal to the amount of flow routed on hub arc
.k;m/. The UHLPSA can be formulated as:

minimize
X

k2N
fkZk C

X

i;k2N
.�Oi C ıDi /dikzik C

X

k;m2N
˛dkmykm

subject to (12.4)–(12.6)

ykm�
X

.i;j /2K
Wij

�
zik C zjm � 1

�
k;m2N;K�N �N (12.10)

ykm � 0 k;m 2 N: (12.11)

For each arc .k;m/, constraints (12.10) and (12.11) imply

ykm D max
K�N�N

X

.i;j /2K
Wij

�
zik C zjm � 1

� D
X

.i;j /2Kkm

Wij
�
zik C zjm � 1

�
;

where Kkm is the set of all demands which are routed on hub arc .k;m/. This
formulation contains onlyO.n2/ variables but an exponential number of constraints.
Labbé and Yaman (2004) show that constraints (12.10) are a particular case of
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a more general class of facet defining inequalities which can be separated in
polynomial time.

Another important family of formulations, referred to as flow-based formula-
tions, use continuous variables to compute the amount of flow routed on a particular
arc originated at a given node. In the case of single assignments, we only need to
use one set of flow variables associated with the hub arcs. We thus define continuous
variables Yikm, i; j; k 2 N , equal to the amount of flow originated at node i and
passing through hub arc .k;m/. The UHLPSA can be formulated as follows (Ernst
and Krishnamoorthy 1996):

minimize
X

k2N
fkzkk C

X

i;k2N
.�Oi C ıDi /dikzik C

X

i;k;m2N
˛dkmYikm

subject to (12.4)–(12.6)
X

j2N
Wijzjk C

X

m2N
Yikm D

X

m2N
Yimk COi zik i; k 2 N (12.12)

Yikm � 0 i; k;m 2 N: (12.13)

Constraints (12.12) are the well-known flow conservation constraints for each
O/D node i at each (potential) hub node k, where the supply and demand at
each node is determined by the allocation pattern. The above formulation contains
O.n3/ variables and O.n2/ constraints and thus, fewer variables and constraints
as compared with the path-base formulation. However, it usually produces weaker
LP bounds. Contreras et al. (2010, 2013) present some families of extended cut-set
inequalities that can help improve the LP bounds.

12.3.2 Multiple Assignments

Given that in HLPs with multiple assignments O/D nodes can be connected to more
than one hub facility, we can exploit the properties on the structure of O/D paths
to obtain path-based formulations with less variables than the ones required for
single assignment models. In particular, it is known that every flow uses at most
one direction of a hub arc, the one with lower flow cost (Hamacher et al. 2004). We
thus define an undirected flow cost Fije for each e D .k;m/ 2 E and i; j 2 N
as Fije D minfFijkm; Fijmkg. We also define binary location variables Zi , i 2 N ,
equal to 1 if and only if a hub is located at node i . The Uncapacitated Hub Location
Problem with Multiple Assignments (UHLPMA) can be stated as follows (Hamacher
et al. 2004; Marín 2005a):

minimize
X

k2N
fkZk C

X

i;j2N

X

e2E
Fijexije

subject to
X

e2E
xije D 1 i; j 2 N (12.14)
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X

e2EWk2e
xije � zk i; j; k 2 N (12.15)

xije � 0 i; j; k 2 N (12.16)

Zi 2 f0; 1g i 2 N: (12.17)

Constraints (12.14) guarantee that there is a single path connecting the origin and
destination nodes of every commodity. Constraints (12.15) prohibit commodities
from being routed via a non-hub node. As in UHLPSA, there is no need to
explicitly state the integrality on the xije variables because there always exists an
optimal solution of (12.14)–(12.17) in which all xije variables are integer. This
formulation has O.n4/ variables and O.n3/ constraints and usually provides tight
LP bounds. Hamacher et al. (2004) and Marín (2005a) independently prove that
constraints (12.15) are indeed facet-defining inequalities. Marín (2005a) provide
other classes of inequalities associated with the set-packing polytope which also
define facets.

The number of routing variables xije can be further reduced by defining a set
of candidate hub arcs for each O/D pair (see Contreras et al. 2011b). This is done
by using the property that no flow will be routed through a hub arc containing two
different hubs whenever it is cheaper to route it through only one of them (Boland
et al. 2004; Marín 2005a).

In HLPs with multiple assignments it is also possible to completely eliminate
the undirected routing variables xije by exploiting the supermodular properties
presented in Sect. 12.2.2. We define binary hub arc location variables ye , e 2 E ,
equal to 1 if and only if a hub arc is located at e. For each i; j 2 N , we order the
elements of E by non-decreasing values of their coefficients Fije, and we denote
erk to the r-th element according to that ordering. That is, Fije1 � Fije2 � � � � �
Fije

jEj
k � FeijjEjC1

, where FeijjEjC1
D Fije� is the cost for the fictitious edge

e� such that .i/ Fe�k > maxe2E Fek, for all k 2 K; and .ii/
P

k2K Fe�k >

maxe2E.feCPk2K Fek/. This assumption guarantees that at least one hub variable
ye is at value one in any optimal solution. The UHLPMA can be stated as the
following MIP (see Contreras and Fernández 2014):

minimize
X

k2N
fkZk C

X

i;j2N
�ij

subject to �ij � Fijer C
X

e2E
.Fije � Fijer /

N ye r D 1; : : : ; jEj C 1; i; j 2 N
(12.18)

ye � zk e D .k;m/ 2 E (12.19)

ye � zm e D .k;m/ 2 E (12.20)

ye; zi 2 f0; 1g e 2 E; i 2 N; (12.21)
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where �ij are continuous decision variables used to evaluate the flow cost of O/D
pair .i; j /. This new formulation has O.n2/ variables and O.n4/ constraints. It is
interesting to note that, for the particular case of the p-hub median problem, the
above supermodular formulation coincides with the radius-based formulation of
García et al. (2012).

As in the case of single assignments, we can also use flow-based formulations
to model the UHLPMA. However, we now need additional flow variables for the
collection and distribution legs. We define continuous variables Xijm, i; j;m 2 N ,
equal to the amount of flow from hub m to destination j that originates at node i .
We also define continuous variablesZik, i; k 2 N equal to the amount of flow from
origin node i to hub k. Using these sets of decision variables, we can formulate the
UHLPMA as follows (Ernst and Krishnamoorthy 1998b):

minimize
X

k2N
fkZk C

X

i;k2N
�dikZik C

X

i;k;m2N
˛dkmYikm C

X

ijm

ıdjmXijm

subject to (12.17)–(12.13)
X

k2N
Zik D Oi i 2 N (12.22)

X

m

Xijm D Wij i; j 2 N (12.23)

Zik C
X

m2N
Yikm D

X

m2N
Yimk C

X

j

Xijm i; k 2 N (12.24)

Zik; Xijm � 0 i; j;m 2 N: (12.25)

Constraints (12.22) ensure that all flow from each origin is sent to a subset of
hubs. Constraints (12.23) forces the flow of each O/D pair to arrive at its destination.
Constraints (12.24) are the flow conservation constraints at hub facilities. The above
formulation contains O.n3/ variables and O.n2/ constraints. Boland et al. (2004)
presents some preprocessing procedures that can be used to reduce the number of
variables and constraints, and some valid inequalities to improve the LP bounds of
capacitated variants.

12.4 Main Developments and Recent Trends

Early hub location research focused mostly on a first generation of HLPs which
consider the assumptions introduced in Sect. 12.2.1. In this section we present
some research areas that have attracted most attention in the literature over the last
decade, leading to more realistic models that relax some of these assumptions and
incorporate additional features of real applications. We focus on six particular areas:
hub network topologies, flow dependent discounted costs, capacitated models,
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models dealing with uncertainty, dynamic and multi-modal models, and competition
and collaboration.

12.4.1 Hub Network Topologies

Full interconnection between hub nodes may be prohibitive in applications where
there is a considerable setup cost associated with the hub arcs (see O’Kelly and
Miller 1994; Klincewicz 1998). To overcome this difficulty, several models consid-
ering incomplete hub networks have been studied. HALPs, originally introduced
in Campbell et al. (2005a,b), relax the assumption of full interconnection between
hubs and consider the location of a set of hub arcs that may (or may not) require
a particular topological structure of their induced network. Some of these models
do not even require the hub arcs to define a single connected component. Alumur
et al. (2009) and Calık et al. (2009) study the design of incomplete hub networks
with single assignments in which no network structure other than connectivity is
imposed on the backbone network. Other works study models that do not consider
a complete backbone network but rather, a particular topological structure. Kim and
Tcha (1992), Contreras et al. (2009b, 2010) and Martins de Sá et al. (2013), study
the design of tree-star hub networks in which the hubs are connected by means of a
tree and the O/D nodes are assigned to exactly one hub. Labbé and Yaman (2008)
and Yaman (2008) consider the design of star-star networks in which hub nodes are
directly connected to a central node (i.e. star backbone network) and the O/D nodes
are assigned to exactly one hub node. Martins de Sá et al. (2015) study the problem
of designing a hub-line network in which hubs are connected by means of a line
and the aim is to minimize the total service time between pairs of nodes. Martins de
Sá et al. (2014) present and extension of this problem to the case in which multiple
hub-lines are to be located. Lee et al. (1993) and Contreras et al. (2013) focus on the
design of cycle-star networks in which the hubs are connected by means of a cycle.
Figure 12.2 shows some examples of different hub network structures.

Yaman (2009) studies the problem of designing a three-layer hub-and-spoke
network, where the top layer consists of a complete network connecting the central
hubs, and the second and third layers are unions of start networks connecting the
remaining hubs to central hubs and the O/D nodes to hubs, respectively. Yaman and
Elloumi (2012) consider the design of two-level start networks, while taking into
consideration the service quality in terms of the length of paths between pair of O/D
nodes. Adler and Smilowitz (2007) focus on the design of global three-layer hub
networks in which two types of hub facilities are considered, international gateways
and regional hubs. The backbone network associated with each hub-layer is assumed
to be complete.

Some papers focus on the design of more complex access networks that are
not longer determined by a single or multiple assignment pattern of O/D nodes to
hubs. Aykin (1994, 1995) and Sung and Jin (2001) present models that explicitly
consider direct connections between non-hub nodes (i.e. they relax Assumption 1).
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Fig. 12.2 Structure of a cycle-star (a), star-star (b), tree-star (c), and line-star (d) hub network

Klincewicz (1998) and Yaman et al. (2007) consider multi-stop access paths that
may visit more than one O/D nodes on the way to a hub node. Nagi and Salhi (1998),
Camargo et al. (2013), Rodríguez-Martín et al. (2014), and Rieck et al. (2014) study
problems in which collection and distribution tours have to be designed. Thomadsen
and Larsen (2007) and Saboury et al. (2013) describe HLPs in which both the
backbone and access networks are fully interconnected. Figure 12.3 shows some
examples of various access network structures.

12.4.2 Modeling Flow Costs

The assumption of flow-independent discounted costs (Assumption 3) is most
appropriate in applications where hub arcs are associated with faster transportation
modes. However, this can be an oversimplification in applications where the costs
represent the economies of scale due to the bundling of flows on the hub arcs.
For instance, this assumption could lead to solution networks where hub arcs send
considerable less flow than access arcs, yet the flow cost is only discounted on the
hub arcs. It may also happen that the amount of flow that is actually routed on each
hub arc is quite variable, yet the same discount factor is always applied. For these
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Fig. 12.3 Access network with direct connections (a), multi-stops (b), tours (c), and complete
subgraphs (d)

reasons, the use of flow-independent costs may not only miscalculate the overall
flow cost of the hub network, but could also erroneously select the optimal set of
hub nodes and the assignment pattern of O/D nodes to hubs.

Several authors have pointed out these anomalies and different hub location
models able to capture the flow-dependency of discounted costs have been proposed.
The first hub location model that explicitly accounts for scale economies by
allowing discount factors on hub arcs to be a function of flows was introduced
in O’Kelly and Bryan (1998). This model, referred to as FLOWLOC, uses a non-
linear cost function, in which costs increase at a decreasing rate as flows increase, to
compute the flow cost in each hub arc. For any amount of flow, the cost is assumed
to be always less than the linear cost associated with a constant discount factor. This
function is approximated with a piecewise linear function to obtain a linear integer
programming formulation for the problem. Bryan (1998) provides some extensions
of the FLOWLOC model that relax the assumption of full interconnection between
hubs, by using a minimum threshold value to activate a hub arc, and that incorporate
a flow-dependent cost function for both the hub and access arcs. Klincewicz (2002)
shows that, once the location of the hubs is known, the FLOWLOC model can be
reduced to a classical UFLP. Horner and O’Kelly (2001) present a different non-
linear flow cost function based on link performance functions commonly used in
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urban transportation planning. This function is used to model flow-dependent costs
in both hub and access arcs.

Racunica and Wynter (2005) study an extension of HLPs arising in the design of
intermodal transportation networks for freight rail. Their model uses another type
of non-linear concave function to model flow-dependent discounted costs only on
the transfer and distribution legs. Contrary to the FLOWLOC model, this function
is based on an efficiency threshold that considers that discounted flow costs should
be higher than the linear cost up to a threshold, and less costly thereafter.

Kimms (2006) introduces a different approach for modeling flow-dependent
discounted costs in all the arcs of the network, which is based on fixed-charge
cost functions commonly used in other network design problems. This function
consist of a fixed flow-independent set-up cost and of a variable flow-dependent
(or marginal) cost. This paper presents three different models: an uncapacitated
model, a capacitated model, and a multimodal model with different capacities for
each mode of transportation. Mirzaghafour (2013) consider a stepwise function to
model flow-dependent costs on both hub and access arcs. This type of functions are
commonly used to model the transportation cost in most vehicle routing problems
(see Laporte 2009).

12.4.3 Capacitated Models

Similar to FLPs, an important extension to HLPs is the incorporation of capacity
considerations when designing hub networks. However, in the case of HLPs the
capacity constraints may arise not only at the hub facilities but also at the arcs of the
network. Moreover, when considering capacitated models with multiple assignment
patterns, commodities may be split over several paths and thus, splittable and non-
splittable commodity variants arise. In the former case, commodities are allowed to
be split over several paths between their origins and destinations. However, in the
latter case the commodities cannot be split, meaning that each commodity will be
routed through the network from its origin to its destination through a unique path.
Note that a multiple assignment pattern that allows splitting is highly desirable when
minimizing the total flow cost. However, splitting commodities may not be feasible
in some applications.

Capacitated versions of HLPs with multiple assignments are studied by Campbell
(1994b), Ebery et al. (2000), and Boland et al. (2004), with capacity constraints on
the incoming or outgoing flow at the hubs. Bryan (1998) introduces a model in
which capacities are associated with the hub arcs rather than with the hub nodes.
Marín (2005b) studies a capacitated model in which commodities are splittable.
Rodríguez-Martín and Salazar-González (2008) study another model where com-
modities can be split into several routes. Capacity constraints are imposed on the
incoming flow of each hub, whether it originated from non-hub nodes or from hub
nodes. In addition, an upper limit is imposed on the flow traversing any link of the
network.
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Capacitated versions of HLPs with single assignment have also been studied by
Campbell (1994b), Ernst and Krishnamoorthy (1999), Labbé et al. (2005), Correia
et al. (2010), Contreras et al. (2009a), and Contreras et al. (2011d). All these models
only consider capacity constraints on the incoming or outgoing flow at the hub
nodes. Aykin (1994, 1995) have considered HLPs with capacity constraints on the
incoming flow at the hubs as well as on direct O/D links. Carello et al. (2004),
Yaman and Carello (2005) and Yaman (2008) have studied capacitated HLPs with
modular link capacities. They considered capacity constraints on the incoming and
outgoing flow at hubs.

All of the above mentioned capacitated models consider that both hub and
arc capacities are exogenous, i.e. capacity levels for potential hub nodes and hub
arcs are determined a priori. Given that capacities can have a determining impact
on locational and routing decisions, some researchers have started studying more
realistic capacitated models in which the amount of installed capacity is part of the
decision process. Correia et al. (2010) studied an extension of capacitated HLPs with
single assignment in which the hub capacity is a decision variable. Elhedhli and Wu
(2010) introduced a capacitated model in which hub capacity is also a decision
variable. Contreras et al. (2012) presented models with multiple assignments in
which the amount of capacity installed at the hubs is part of the decision process,
for both splittable and non-splittable commodity cases.

12.4.4 Uncertainty in Hub Location

The design of hub networks corresponds to long-term strategic decisions which
are typically made within an uncertain environment. That is, costs, demands,
distances, and other parameters may change after location and network design
decisions have been made. Nevertheless, most HLPs treat data as known and
deterministic. This can result in highly sub-optimal solutions given the inherent
uncertainty surrounding future conditions. Some researchers have thus started to
study how different uncertainty aspects can be taken into account when designing
hub networks.

Marianov and Serra (2003) is probably the first paper dealing with uncertainty,
focusing on stochasticity at the hub nodes by representing hub airports as M=D=c
queues and limiting through chance constraints the number of airplanes that can
queue at an airport. Sim et al. (2009) introduce the stochastic p-hub center problem
and employ a chance-constrained formulation to model the minimum service-level
requirement. This model takes into account the variability in travel times when
designing the hub network so that the maximum travel time through the network
is minimized.

Contreras et al. (2011a) study how the classical UHLPMA can be modeled as a
two-stage integer stochastic program with recourse in the presence of uncertainty
on demands and flow costs. In particular, three different stochastic versions are
introduced. The first considers the flow between O/D nodes to be stochastic. The
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second assumes that uncertainty is given by a single parameter equally influencing
the flow cost for all links of the network. The third considers the more general
case in which the uncertainty of transportation costs is independent for each link
of the network. the authors show that the first to variants are equivalent to their
associated expected value problem in which uncertain amount of flows and flow
costs are replaced with their expected value. However, this equivalence does not
hold for the third case. Alumur et al. (2012b) consider HLPs under uncertainty in
the set-up cost for the location of hubs and in the demand flows for both single
and multiple assignments models. The first class of models deals with uncertainty
on the set-up costs in the absence of a known probability distribution for these
random parameters. The authors propose the use of a minimax regret model in
which the objective is to minimize the worst-case regret over a finite set of scenarios.
The second class considers uncertainty on the demand flows and uses a two-stage
stochastic program with recourse. However, as shown in Contreras et al. (2011a)
these problems are equivalent to their associated expected value problem. The third
class considers uncertainty in both set-up costs and demand flows and are modeled
as two-stage minmax regret programs with recourse.

Demand uncertainty has also been studied in hub location from a congestion
perspective. When demand flows increase unexpectedly within a short time, they
are likely to congest the hub network. This causes an increase in the operational
cost of the network due to delays at hub facilities. Elhedhli and Hu (2005) present
a single allocation hub location model that considers hub congestion-related costs
as an exponential function of the hub flow. Camargo et al. (2009) propose the
multiple allocation analogue of the previous model. Elhedhli and Wu (2010) study
a different approach in which the hub network is modeled as a network of M=M=1
queues where each hub behaves as a single server with a given exponential service
rate determined by its capacity. The congestion cost is modeled using a Kleinrock
average delay function. Camargo and Miranda (2012) provide extensions to the
previous single allocation models by considering two different perspectives: a
network owner perspective in which the goal is to design a hub network with the
least congestion cost, and a user perspective in which the goal is to minimize the
maximum congestion effect.

An important uncertainty aspect neglected until very recently is the reliability of
hub networks. Kim and O’Kelly (2009) presents a reliable p-hub location problem
arising in the design of telecommunication networks. This problem considers
the reliability of O/D paths by taking into account the probability of successful
communication to deliver traffic without congestion or loss between O/D pairs. It
focuses on maximizing the total network flow that can be routed when incorporating
the reliability of O/D paths. An et al. (2011) and Aziz et al. (2014) study models
in which disruptions at hub nodes are taken into account when designing the hub
network. The proposed models mitigate the resulting hub unavailability by using
backup hubs and alternative routes for demand flows. The objective of this model
is to minimize the total expected flow cost considering both the regular and the
disruptive situation.
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12.4.5 Dynamic and Multi-modal Models

One common feature of real applications is the dynamic nature of the problem.
Parameters such as costs, demand, and resources often vary over the planning
horizon. From the location point of view this gives rise to different types of multi-
period, or dynamic problems. In this type of problems, not only a routing plan has to
be made, but the times at which facilities are opened or closed must be determined.

Campbell (1990) develops a continuous approximation model to locate trans-
portation terminals (hubs) for a general freight carrier serving an increasing demand
in a fixed region. It can be seen as a continuous dynamic hub location model in
which it is assumed that the O/D points are scattered randomly over the service
region. Contreras et al. (2011c) studies a dynamic model with multiple assignments
which includes strategic decisions related to the location, operation and closing
of hub facilities over time. It is assumed that the forecast demand between O/D
pairs is known with certainty but varies over the time horizon. Moreover, the
proposed model allows hubs to be opened and closed at different time periods to
provide a flexible hub network. Gelareh (2008) presents another multi-period hub
location model arising in the design of public transportation networks in which it
is relaxed the full interconnection assumption and thus, additional hub arc selection
are considered.

Another important feature in some applications is the presence of strategic
decisions related to the choice for mode of transportation. Most HLPs consider
only one mode of transportation is available and thus, only one type of hub
facility. However, global hub networks usually employ a mixture of air, ground
and water transportation modes. In a multi-modal hub network, each mode can be
characterized by its flow cost structure, modal connectivity, availability of transfer
points, and service time performance.

Racunica and Wynter (2005) address the design of hub networks for inter-modal
freight transport on dedicated or semi-dedicated freight rail lines which could make
use of shuttle trains on the hub arcs. Groothedde et al. (2005) develop a multi-modal
hub location model that focus on the design of a collaborative hub network for the
distribution of fast moving consumer goods using a combination of trucking and
inland barges. Ishfaq and Sox (2011) present a multiple allocation model to design
a rail-road inter-modal network. It considers the location of two different types
of hubs with different modal connectivity costs and the incorporation of service
time requirements. Meng and Wang (2011) study the design of an inter-modal
hub network for multi-type container transportation with multiple stakeholders: the
network planner, carriers, hub operations and inter-modal operators. The proposed
model incorporates the user equilibrium behavior of inter-modal operators in route
choice. Alumur et al. (2012a) introduce a more general hub network design problem
in which the full interconnection of hubs assumption is relaxed and hub arc
location decisions, that include the selection of the type of transportation mode, are
considered. This model incorporates set-up costs, transportation costs and service
levels when designing the multi-modal hub network. Alumur et al. (2012c) study
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a related hub covering problem to locate two types of hub nodes and hub arcs
associated with ground and air transportation. The model uses a cost-oriented
objective while ensuring time-definite deliveries.

12.4.6 Competition and Collaboration

Most HLPs studies assume that the decision maker is a monopolist firm in a
market and thus can capture all demand flow in the market, regardless of the
design of the hub network. As a result, location and network design decisions
are usually determined by the firm’s cost-based objective without taking into
account customer preferences. However, in practice many telecommunication and
transportation networks operate in a competitive environment where several firms
exist in a market and compete to provide service to customers. Customers must
determine which competing firm to use based on several criteria such as the travel
time and the costs charged. Competitive hub location models focus on the design
of hub networks so as to maximize the market share of competing firms. In these
models, customers (or demand flow) are captured from competitor’s hub networks
whenever the new hub network offers a reduction of the travel time or distance
needed by the customers to go from their origins to their destinations.

Most competitive hub location models use a sequential location approach, in
which an existing company (the leader) serves the demand flow in a region, and a
new company (the follower) wants to enter the market and will attempt to capture
the maximum possible demand and thus, maximize its market share. Marianov et al.
(1999) introduce competitive hub location models in which the follower wants to
locate a set of hub nodes so as to maximize the captured demand flow. In the first
proposed model it is assumed that demand is fully captured when the flow cost
does not exceed the current competitor’s cost. The second model considers a more
realistic version in which a stepwise linear function is used to model the proportion
of demand captured depending on the new flow cost as compared to the competitor’s
cost. In both models, at most one path is used to route flow between each O/D pair.
Wagner (2008b) points out that if the new company is assumed to capture demand
flow when its flow cost is equal to the current competitor’s cost, then the optimal
solution is always to locate a hub node in each location where the leader has one,
making the new company to capture all demand. Therefore, the author suggests
modifying the definition of the problem so that demand is captured by the follower
if and only if the new cost is strictly smaller than the competitor’s cost. Eiselt
and Marianov (2009) provide an extension to the models presented in Marianov
et al. (1999), in which each competitor can have more than one path between O/D
pairs. The proportion of flow that is captured on a particular path is modeled with
a gravity-like attraction function that does not only depend on the flow cost but
also on the travel time. Gelareh et al. (2010) present a competitive model arising
in liner shipping networks, where a new liner service provider wants to design a
hub network to maximize its market share, using an stepwise attraction function
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which depends on the service time and flow cost. This model allows O/D paths
to contain more than one hub arc or to have direct connections between origins
and destinations. Luer-Villagra and Marianov (2013) study a competitive model in
which an existing firm uses a hub network and charges its flow costs plus a fixed
additional percentage to their customers. A new company wants to enter into the
same market using an incomplete hub network and to determine prices so as to
maximize its profit, rather than its market share. The profit comes from the revenues
from captured flows, minus the a fixed and variable costs. Customer preferences on
selected firm and route are modeled using a logit model.

Using a game theoretic framework, Sasaki and Fukushima (2001) introduce a
continuous Stackelberg hub location model where a large company competes with
several medium-size companies to maximize its profit. The large company first
locates a new hub on a plane as a leader, and the other companies then locate
their new hubs. The authors use a nonlinear logit function to model the level of
captured customers and formulate the leader’s problem as a bilevel program and the
follower’s problems as lower level programs. Sasaki (2005) provides an extension
to the discrete case assuming there is a leader and only one follower. The proposed
model considers that companies cannot provide any service whose captured market
share does not reach to a threshold lower limit value. Sasaki et al. (2009) study a
more general model in which the full interconnection assumption is relaxed and a set
of hub arcs must be located. As in Sasaki (2005), two firms compete for customers
in a Stackelberg framework, where the leader firm locates hub arcs to maximize
its market share, knowing that the follower will later locate its own hub arcs to
maximize its market share.

Instead of considering a pure competitive environment, some studies have looked
at hub network alliances and mergers, as well as user cooperation employing a
game theoretic approach. In Skorin-Kapov (1998) a cooperative game theory is used
to analyze several cost allocation problems referred to as hub network games. In
particular, the flow routing cost is distributed among the hub network users with
possibly conflicting interests, but their cooperation is essential for the exploitation
of economies of scale on the routing of flows. Lin and Lee (2010) propose a non-
cooperative game theoretic model to study the competition hub network design
in an oligopolistic market with few dominant firms. In this model, each firm will
first observe the hub network and demand flows of other firms and will then
simultaneously determine its hub network, demand, and routing plan in order to
maximize its profits. The firms’ decisions jointly determine the market prices, which
include the reassessment and redesign of hub networks of all other firms. The
process of observation, design and reassessment will continue until a long-term
Cournot-Nash equilibrium is established.

Adler and Smilowitz (2007) present hub location models to analyze global
alliances and mergers in the airline industry under competition. In particular, the
authors develop a game theoretic approach in which merger and hub location
decisions are considered to evaluate hub networks under competition. The proposed
problems are modeled as games played among multiple airlines, consisting of
selecting the optimal hubs to develop, expand or remove in the newly merged hub
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network. Asgari et al. (2013) study a game theoretic hub network design model that
investigates the competition and cooperation amongst two major hub ports and the
shipping companies, with the objective of minimizing the shipping companies’ cost
and maximizing the hub ports’ revenue.

12.5 Solving Hub Location Problems

The interrelation of location and network design decisions make HLPs particularly
difficult to solve. A considerable effort has thus been made over the past two
decades to develop algorithms capable of obtaining high quality solutions of various
classes of HLPs, particularly when considering more realistic, large-scale instances.
Some of these algorithms are able to provide an estimation of the quality of the
obtained solutions and some them are able to prove that the obtained solution is
optimal. In this section, we point out recent papers describing the most effective
solution algorithms for various classes of HLPs. The interested reader is referred to
Alumur and Kara (2008) and Zanjirani Farahani et al. (2013) for a detailed survey
of approximate and exact algorithms for HLPs.

12.5.1 Complexity Results

Most HLPs are known to be NP-hard. However, very little research has been done to
analyze the complexity and polynomial-time approximability of particular classes
of HLPs. In the case of fundamental HLPs with single assignments, in which the
full interconnection assumption is used, even if the location of the hub nodes is
given the remaining subproblem is still NP-hard. This problem is known as the
quadratic semi-assignment problem or the single allocation problem (see Saito
et al. 2009; Sohn and Park 2000, and references therein). Sohn and Park (1997)
show that for the particular case of the uncapacitated p-hub median problem with
single assignments (UpHLPSA), whenp D 2 the problem can be polynomial solved
by reducing it to n.n � 1/=2 independent minimum cut problems. Sohn and Park
(2000) prove that the single allocation problem becomes NP-hard as soon as the
number of hubs is three and thus, the UpHLPSA is NP-hard for p � 3. Iwasa
et al. (2009) describe a deterministic 3-approximation algorithm and a randomized
2-approximation algorithm for the single allocation problem. Moreover, they pro-
vide a .5=4/-approximation algorithm for the particular case in which the number
of hubs is three.

When considering HLPs with incomplete hub networks, even if the location of
hubs and the assignment of O/D nodes to hubs is given, the subproblem associated
with the location of hub arcs remains challenging. For instance, when considering
tree-star topologies the design of a tree spanning the set of hub nodes is equivalent to
the so-called optimum communication spanning tree problem, known to be NP-hard
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(Contreras et al. 2010). In the case of cycle-star topologies, connecting the hub
nodes by means of a cycle is equivalent to the minimum flow cost Hamiltonian cycle
problem, known to be NP-hard (Contreras et al. 2013).

In the case of uncapacitated HLPs with multiple assignments, in which the
full interconnection assumption is used, once the location of the hubs is known
the allocation subproblem is equivalent to an all pairs shortest path problem and
thus, can be solved in polynomial time (Ernst and Krishnamoorthy 1998a). When
considering capacities on the hub nodes and commodities can be split, Contreras
et al. (2012) show that the allocation subproblem remains polynomially solvable as
it is equivalent to a classical transportation problem. However, when commodities
cannot be split the subproblem is equivalent to a generalized assignment problem
and thus becomes NP-hard.

Contreras and Fernández (2014) show that a general class of HLPs with multiple
assignments, known as supermodular hub location problems (Sect. 12.2.2), is NP-
hard. We recall that SHLPs include several special cases such as p-hub median,
uncapacitated hub location, and q-hub arc location. The authors also present worst-
case performance results for simple greedy and local improvement heuristics for
particular classes of SHLPs in which the objective functions are also non-increasing,
as in p-hub median and q-hub arc location problems.

Kara and Tansel (2003) show that hub set-covering problems with single
assignments are NP-hard. Kara and Tansel (2000) prove that the uncapac-
itated p-hub center problem with single assignments is also NP-hard for
p < n � 1. Ernst et al. (2009) show that the multiple assignments version of
this problem is also NP-hard. They also prove that the single allocation subproblem
with respect to a given set of hubs is already NP-hard, whereas for the multiple
assignment case is not. Liang (2013) considers the star p-hub center problem
and shows that is strongly NP-hard and that there is no .5=4 � �/-approximation
algorithm for it for any � > 0, unless P D NP. This paper also provides a 7=2-
approximation algorithm for this problem.

12.5.2 Heuristic Algorithms

A considerable amount of hub location research on heuristic algorithms has focused
on fundamental HLPs. To the best of our knowledge, the best heuristic for the
uncapacitated p-hub location problem with single assignments is the variable
neighborhood search algorithm of Ilić et al. (2010). It outperforms all previous
heuristics and it yields solutions for very large-scale instances with up to 1,000
nodes and p D 20 within reasonable CPU times. The best results for the UHLPSA
seem to be obtained using the memetic algorithm recently designed by Marić et al.
(2013). This heuristic has the best performance, especially on large instances with
up to 900 nodes. Contreras et al. (2011d) provide GRASP heuristics for capacitated
versions of this problem. Contreras et al. (2011b) design a GRASP heuristic for
the UHLPMA capable of obtaining high quality solutions for instances with up to
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500 nodes within reasonable CPU times. Meyer et al. (2009) present an ant colony
optimization algorithm for the p-hub center problem with single assignments which
is able to obtain high quality solutions for large-scale instances with up to 400 nodes.

Some researchers have recently focused on the development of efficient heuristic
algorithms for more realistic extensions of HLPs. Calık et al. (2009) describe a tabu
search to solve hub covering problems over incomplete hub networks. Köksalan and
Soylu (2010) study evolutionary algorithms for two bicriteria uncapacitated p-hub
location problems considering congestion-related costs. Contreras et al. (2013)
describe a GRASP algorithm for the design of incomplete hub networks with a
cycle-star topology. Saboury et al. (2013) present two hybrid heuristics to design
of hub networks with fully interconnected backbone and access networks. Martins
de Sá et al. (2014) propose an adaptive large neighborhood search and GRASP
algorithms to design hub networks with multiple hub lines.

12.5.3 Lower Bounding Procedures and Exact Algorithms

Dual ascent and dual adjustments techniques have been used to efficiently obtain the
LP bound of MIP formulations for various HLPs. Yoon and Current (2008) use dual
based heuristics to solve HLPs with additional arc selection decisions. Cánovas et al.
(2007) present a Branch-and-Bound (BB) algorithm based on dual techniques to
obtain optimal solutions to uncapacitated HLPs with multiple assignments. Meyer
et al. (2009) develop a two-phase exact algorithm for the p-hub center problem
with single assignments. In this algorithm the BB method presented in Ernst and
Krishnamoorthy (1998a) is used during the first phase to obtain a set of potential
optimal hub locations. This algorithm seems to be the best exact algorithm for hub
center problems, being able to solve to optimality large-scale instances with up to
400 nodes.

Lagrangean relaxation (LR) has been successfully used to obtain tight lower
and upper bounds on the value of the optimal solution of several classes of HLPs.
Pirkul and Schilling (1998) present efficient LR heuristics to approximately solve
uncapacitated HLPs with single assignments, whereas Yaman (2008), Contreras
et al. (2009a,b), and Elhedhli and Wu (2010) propose LR heuristics to solve various
capacitated HLPs. Exact BB methods based on LR have also been developed to
optimally solve HLPs. Marín (2005a) propose a relax-and-cut algorithm for the
UHLPMA, which adds violated facet-defining inequalities to a LR of the path-
based formulation presented in Sect. 12.3.2, to optimally solve instances with up
to 50 nodes. Contreras et al. (2011c) present an exact BB method, that uses a LR
of an extension of the path-based formulation presented in Sect. 12.3.2, to obtain
optimal solutions for uncapacitated dynamic hub location problems with up to 100
nodes and ten time periods.

Benders decomposition (BD) is another successful method used to optimally
solve several classes of HLPs. Camargo et al. (2009) use a BD algorithm to solve
large-scale instances of the challenging flow-dependent cost (FLOWLOC) model.
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Contreras et al. (2011b) describe an exact algorithm for the UHLPMA which applies
an enhanced BD to the path-based formulation presented in Sect. 12.3.2, to obtain
optimal solutions for large-scale instances with up to 500 nodes. Contreras et al.
(2012) provide an extension of the previous BD to solve multi-capacity HLPs with
multiple assignments, with splittable and non-splittable commodities, for instances
with up to 300 nodes. Contreras et al. (2011a) develops a Monte–Carlo simulation-
based algorithm that integrates a BD to solve uncapacitated HLPs having stochastic
flow costs. Camargo et al. (2013) describe a BD algorithm to solve hub location-
routing problems, in which additional routing decisions to serve O/D nodes are
considered. This algorithm can solve instances with up to 100 nodes. Several BD
algorithms have also been implemented for HLPs with congestion costs for both
multiple (Camargo et al. 2009) and single (Camargo et al. 2011; Camargo and
Miranda 2012) assignments versions, HALPs with particular topological structures
such as tree-start networks (Martins de Sá et al. 2013) and hub-line networks
(Martins de Sá et al. 2015, 2014), HLPs arising in public transportation networks
(Gelareh and Nickel 2011), and liner shipping applications (Gelareh and Nickel
2011; Gelareh and Pisinger 2011).

Branch-and-cut (BC) methods have also been developed to optimally solve
various HLPs. Labbé et al. (2005) develop a BC algorithm based on the two-index
formulation presented in Sect. 12.3.1 for various classes of capacitated HLPs with
single assignments. This method is able to solve to optimality instances with up to
50 nodes. García et al. (2012) presents a BC algorithm for the uncapacitated p-hub
median problem with multiple assignments. This algorithm uses an extension of
the two-index formulation presented in Sect. 12.3.2 and is able to optimally solve
large-scale instances with up to 200 nodes with very large values of p. Contreras
and Fernández (2014) also introduce a BC algorithm based on the two-index
formulation for the general class of supermodular hub location problems presented
in Sect. 12.2.2. This method is able to solve q-hub arc location problems with up
to 125 nodes. Contreras et al. (2010) and Contreras et al. (2013) use an adaptation
of the flow-based formulation introduced in Sect. 12.3.1 to develop BC algorithms
to solve HLPs with tree-star and cycle-star topologies, respectively. Contreras et al.
(2013) is able to solve to optimality instances with up to 100 nodes. Catanzaro
et al. (2011) study a incomplete hub network design problem with additional graph
partitioning and routing decisions. Rodríguez-Martín et al. (2014) introduce a BC
algorithm for a hub location-routing problem, which is able to solve instances with
up to 50 nodes.

Column generation (CG) is the method that has received the least attention in the
hub location literature. Thomadsen and Larsen (2007) presents a branch-and-price
method for solving a HLP with fully interconnected access networks. Contreras
et al. (2011d) presents and exact algorithm, that combines LR and CG methods as
a bounding procedure, to obtain optimal solutions of large-scale capacitated HLPs
with single assignments with up to 200 nodes.
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12.6 Conclusions

In this chapter we have provided an overview of hub location problems in which
both the location of hubs and the design of the hub network are key decisions. We
have highlighted how the commonly used assumptions presented in Sect. 12.2.1
simplify network design decisions, which have created a first generation of idealized
hub location models focusing mostly on location and allocation decisions. Several
researchers have exploited the rich structure of these models and as a consequence, a
significant progress has been made on the development of strong MIP formulations
and efficient algorithms for their solution.

Strong path-based formulations, used in combination with sophisticated decom-
position methods, have proven to be amongst the most effective formulations to
solve to optimality large-scale instances (with hundreds of nodes) for several classes
of hub location problems. Flow-based formulations, having fewer variables and
constraints, have been particularly useful when used with general purpose MIP
solvers to solve small to medium-size instances (containing usually no more than
50 nodes) for a wide range of problems without having to develop ad-hoc solution
algorithms. These formulations have also been strengthened with the addition of
valid inequalities and used within a cutting plane framework to solve challenging
hub location variants. Over the past few years, promising two-index formulations
have started to arise. However, a substantial amount of work still needs to be done
to analyze how these can be used as a basis for sophisticated algorithms.

We have also pointed out how location and network design decisions become
more involved when relaxing some of the simplifying assumptions presented in
Sect. 12.2.1. In particular, Sect. 12.4.1 described several classes of hub network
topologies, arising from different areas of application, that have started to be
studied. The resulting hub location problems contain additional hub arc and access
arc selection decisions, making them substantially more difficult to model and
solve than first generation problems considering fully interconnection between
hubs and access networks characterized by single or multiple assignment patterns.
Section 12.4.2 focused on more realistic models with discounting levels that depend
on the amount of flow passing through each arc to better model the flow cost.
Although some flow-dependent models have already been presented in the literature,
alternative modeling approaches need to be studied to more accurately represent
flow costs, specially on transportation applications. Section 12.4.3 reviewed several
capacitated hub location models, most of which focus on capacity restrictions on the
hub nodes and only a few of them on the links. More complex problems combining
both types of capacities need to be studied. Section 12.4.4 described some models
in which specific sources of uncertainty were considered, mostly from a stochastic
programming perspective. However, additional aspects such as congestion on hubs
and arcs, reliability, and disruptions, among other things, need to be further studied.
Very few models considering dynamic and multi-modal features have been proposed
(Sect. 12.4.5). Additional models need to be developed to better model the optimal
evolution of hub networks and the choice for mode of transportation. Given that
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most companies using hub networks are not monopolists in a market and are also
not redesigning their network from scratch, competition and collaboration are very
important aspects in most hub location applications (Sect. 12.4.6). For this reason,
additional models that consider a competitive environment, collaborations, mergers,
acquisitions, and divestments of companies, need to be further studied.
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Chapter 13
The Quadratic Assignment Problem

Zvi Drezner

Abstract The quadratic assignment problem is reviewed in this chapter. Weights
between pairs of facilities and distances between the same number of locations
are given. The problem is to find the assignment of facilities to locations that
minimizes the weighted sum of distances. This problem is considered to be one of
the most difficult combinatorial optimization problems. The construction of efficient
solution algorithms (exact or heuristic) is challenging and has been extensively
investigated by the communities working in Operations Research/Management
Science, Industrial Engineering, or Computer Science. Examples of applications are
given, the related layout problem is briefly described, exact and heuristic solution
algorithms are reviewed, and a list of test problem instances and results are reported.

Keywords Exact methods • Metaheuristics • Quadratic assignment

13.1 Introduction

The quadratic assignment problem (QAP) is considered one of the most difficult
optimization problems to solve optimally. The QAP is a combinatorial optimization
problem stated for the first time by Koopmans and Beckmann (1957). Early papers
on the subject include Gilmore (1962), Pierce and Crowston (1971), Lawler (1973),
and Love and Wong (1976). The problem is defined as follows. A set of n possible
sites are given and n facilities are to be located on these sites, one facility at a site.
Let cij be the cost per unit distance between facilities i and j and dij be the distance
between sites i and j . The cost f to be minimized over all possible permutations,
calculated for an assignment of facility i to site p.i/ for i D 1; : : : ; n, is:

f D
nX

iD1

nX

jD1
cijdp.i/p.j / (13.1)
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There are nŠ possible permutations. The optimal solution is the best such permuta-
tion. Note that adding a constant to all cij does not change the solution. The objective
function is increased by a constant (the common weight increase multiplied by the
sum of the distances). Therefore, if there are negative weights, a constant can be
added to all weights so that all weights are positive if this is required for a solution
procedure.

The original formulation of the QAP by Koopmans and Beckmann (1957) is
based on defining n2 binary variables so that xij D 1 if facility i is located at site j
and xij D 0 otherwise. The problem is then:

minimize

8
<

:f D
nX

iD1

nX

jD1

nX

rD1

nX

sD1
cijdrsxirxjs

9
=

; (13.2)

subject to
nX

iD1
xij D 1; j D 1; : : : ; n;

nX

jD1
xij D 1; i D 1; : : : ; n;

xij 2 f0; 1g; i; j D 1; : : : ; n;

hence the name “Quadratic Assignment Problem”. The constraints are identical to
those of the linear assignment problem (Burkard and Cela 1999) but the objective
function is quadratic rather than linear.

The QAP was proven to be NP-hard by Sahni and Gonzalez (1976). Even
obtaining an "-approximation for a given " > 0 cannot be done in polynomial time
unless PDNP.

Reviews of the quadratic assignment problem include Burkard (1990, 2013),
Cela (1998), Rendl (2002), Taillard (1995), Drezner et al. (2005), Drezner (2008a),
Drezner and Misevičius (2013), and Loiola et al. (2007).

The web site QAPLIB (http://www.seas.upenn.edu/qaplib) includes comprehen-
sive and up to date information on the quadratic assignment problem such as
research papers and solution results of test instances. There are sets of problems
for which the optimal solution is known by design. Two of them are reported in Li
and Pardalos (1992) and Drezner et al. (2005).

13.2 Applications

There are many applications that can be formulated and solved as quadratic
assignment problems. Examples of such applications are listed here.

http://www.seas.upenn.edu/qaplib
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1. Office assignment. There are n planned offices, and n employees or special
equipment to be assigned to them. There are several possible interpretations for
the interaction weights cij (Drezner 1975, 1980).

(a) The interaction between any two employees (cij) and the physical distance
between any two offices (dij) are known. The problem is to assign
employees to offices such that those who interact extensively are as close
as possible to one another. The objective is to find the best assignment of
employees to offices so that the sum of the products of the interactions and
the distances is minimized.

(b) The weight cij is the probability that a customer of this complex needs to
visit both offices i and j in the same visit to complete the service. The
objective in this case is to minimize the total distance an average customer
needs to walk between offices.

(c) In a hospital setting (e.g., Elshafei 1977 and Hahn and Krarup 2001)
the offices represent different types of specific purpose rooms and the
interaction is the probability that a patient needs the service of two different
rooms.

2. Planning a complex of buildings. For example, Dickey and Hopkins (1972)
explore campus building arrangement; Drezner (1980) explores the building
arrangement of a military base. Most pairs of buildings have a positive
interaction. Some pairs of buildings may have zero interaction whereas others
may have a negative interaction (such as in planning a military base, top secret
intelligence offices should be as far as possible from the cafeteria or other
frequently visited offices).

3. The wiring problem of an electronic board or the construction of a computer
chip was suggested by Steinberg (1961). The total wiring distance between
components that send signals to one another has to be minimized.

4. Planning a keyboard of 26 letters was suggested by Burkard and Offermann
(1977). The interaction cij is the probability of typing letter i following or
preceding letter j . The distances between the letter-keys on the keyboard are
to be considered. Different languages may suggest different key configurations
even for the same letters.

5. The problem of finding the tightest cluster was suggested by Drezner (2006).
Consider n objects (such as points in the plane or nodes of a network) with
a given distance between every pair of points. We wish to find a cluster of m
points which minimizes the total distance between all pairs of points in the
cluster. This cluster can be interpreted as the “tightest” cluster of m points. We
define the interaction matrix fcijg as cij D 1 for i; j � m and cij D 0 otherwise.
Every permutation of the points defines the selected group as the first m points
of the permutation and the value of the objective function is the sum of all the
distances among the selected group members. For this problem there are mŠ
equivalent optimal permutations.
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6. The grey pattern problem instances were suggested by Taillard (1995). It is
based on a rectangle of dimensions n1 by n2. A grey pattern of m black points
is selected from the n D n1 � n2 points in the rectangle while the rest of the
points remain white. This forms a “grey pattern” of densitym=n. The objective
is to have a grey pattern where the black points are distributed as uniformly
as possible. This objective is achieved by defining a distance between pairs of
points according to some rule. The interaction matrix fcijg is the same as that of
the tightest cluster formulation because only distances between the m “black”
points are counted in the objective function. For more details see Taillard (1995)
and Drezner (2006).

7. The turbine balancing problem was suggested by Laporte and Mercure (1988).
Consider the manufacturing of a turbine engine, such as a hydro turbine or a
jet engine, with n blades. The blades are inserted into equally spaced slots. To
properly function, the turbine must be balanced. If all blades are identical, the
turbine engine is balanced. In reality, there are slight variations in the weights
of different blades, therefore the turbine is not perfectly balanced. Suppose that
the weights are designed to be 5 kg each and the variations across blades are
in the order of magnitude of milligrams. The problem is to find the “correct”
assignment of blades into slots so that the turbine will be as balanced as
possible. Let ıi be the deviation of blade i from the target weight. The objective
function is to find the permutation p.i/ i D 1; : : : ; n that minimizes

(
nX

iD1
ıi cos

�
2�p.i/

n

	) 2
C
(

nX

iD1
ıi sin

�
2�p.i/

n

	) 2
:

Following some algebraic manipulations the objective is equivalent to
minimizing

nX

i¤jD1
�ıi ıj sin2

�.p.i/ � p.j //
n

:

The weights are cij D �ıi ıj and the distances are dij D sin2 �.i�j /
n

. The
weights can be either positive or negative.

8. The arrangement of Microarray layouts was suggested by de Carvalho Jr
and Rahmann (2006). The engineering component of this problem is quite
complicated. The production of commercial DNA microarrays is based on
a light-directed chemical synthesis driven by a set of masks or micromirror
arrays. Because of the natural properties of light and the ever shrinking feature
sizes, the arrangement of the probes on the chip and the order in which their
nucleotides are synthesized play an important role on the quality of the final
product. The reader is referred to de Carvalho Jr and Rahmann (2006) for
complete information.
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9. Configuration of a large airport (Drezner et al. 2005). Many airports have
several terminals arranged in a partial star shape. Travel from one gate to
another in a different terminal requires passengers to go first to the center and
then to the other terminal. The weight cij is the probability that a customer has
a connecting flight involving gates i and j .

10. Zoning a forest for different uses was proposed by Bos (1993). Land of a
particular suitability and location has to be assigned land use objectives in such
a way that the highest value is derived from zoning.

11. Scheduling parallel production lines proposed by Geoffrion and Graves (1976).
Production orders for a number of products must be scheduled on a number
of similar production lines so as to minimize the sum of product-dependent
changeover costs, production costs, and time-constraint penalties.

12. Assigning runners in a relay team. Heffley (1977) observed that, for example, in
a four person relay swimming competition each swimmer swims in a different
style. For each swimmer the time for each style is known. The coach needs to
select four swimmers, one for each style, such that the total time of all four
swimmers is minimized. This leads to a linear assignment problem. However,
in a runners relay when a baton needs to be transferred from one runner to the
next, the transfer time depends on the runner handing the baton and the one
receiving it. Suppose that the relay spans n runners and the problem is which
runner to assign to the first position, which one to the second, and so on. Let
us assume that run times following the transfer of the baton do not depend
on the position. Therefore, total run time depends on the total baton transfer
times. The cost matrix cij is the baton transfer time from runner i to runner j .
The distances are all zeroes except that di;iC1 D 1 for i D 1; : : : ; n � 1. The
objective function of the resulting quadratic assignment problem is the sum of
all times of baton transfers.

13.3 The Layout Problem

The quadratic assignment problem seeks a permutation of equally sized facilities
to a given equally numbered set of locations. A similar situation is formulated
as the layout problem (Francis et al. 1992) where the locations of different sized
facilities are sought. Applications of such a problem are a floor layout of a plant, the
dashboard of an airplane instruments, layout of facilities, such as planed buildings,
in an area where the locations of the various facilities are flexible but an interaction
matrix representing the desirability of one facility to be close to another one is
given. The QAP can be viewed as a discrete location problem because the potential
locations for the facilities are given. In the layout problem the locations for the
facilities are not restricted to a given set of locations. Drezner (1980) suggested
that the facilities are circles of a given radius that cannot intersect but can be freely
located on the plane to minimize an expression similar to (13.1) where dp.i/p.j / is
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replaced by the distance between the centers of circles i and j . The solution method
is termed DISCON (dispersion concentration). In the dispersion phase all facilities
are put very close to one another and an explosion like the “big bang” disperses them
while they are attracted to one another by their weights as springs. At the end of the
process the circles are far from one another and in the concentration phase they
are moved back still attracted to one another by the weights. The solution for this
layout formulation of non-intersecting circles can be bounded or unbounded (when
some the weights are negative). Drezner (1975, 2010) analyzed the issue of when
the solution is bounded or unbounded, and formulated necessary conditions and
sufficient conditions on the set of weights to determine whether the solution to this
formulation is bounded or unbounded. A different approach to heuristically solve
this problem by replacing the dispersion phase with the eigenvectors associated with
the second and third smallest eigenvalues of a certain matrix based on the weights,
was suggested by Drezner (1987). Armour and Buffa (1963) defined basic square
shaped “building blocks” and each facility consists of a given number of building
blocks and the shape of the facilities can be formed by having control over the
configuration of the set of building blocks associated with each facility.

13.4 Extensions

The three-index assignment problem (three-dimensional AP or 3AP), first suggested
by Pierskalla (1967, 1968), is based on weights and distances defined by three
indices and the minimization requires two permutations rather than one.

The Generalized Quadratic Assignment problem (GQAP) was introduced by Lee
and Ma (2005). In this formulation the number of facilities is not necessarily equal
to the number of sites. Each site has a limited capacity to accommodate facilities.
The GQAP reduces to the standard QAP when the number of facilities is equal to
the number of sites, and the capacity of each site is one. Solution algorithms for the
GQAP can be found in Cordeau et al. (2006) and Hahn et al. (2008).

13.5 Exact Solution Algorithms

Designing an exact algorithm for solving the QAP is very difficult. Recently,
Fischetti et al. (2012) and Nyberg and Westerlund (2012) reformulated the problem
in ways that non-linear programming software can be applied to solve such
problems with limited success.

Even designing an effective lower bound to be used in a branch-and-bound
algorithm is not easy. The first lower bound was developed by Gilmore (1962)
and Lawler (1973). A linear programming based lower bound was suggested by
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Resende et al. (1995). A quadratic programming based lower bound was proposed
by Anstreicher and Brixius (2001) who reported in a follow-up paper (Anstreicher
et al. 2002) the optimal solution of the Nug30 (Nugent et al. 1968) instance. The
process was run in parallel on hundreds of computers that would take about 7
years on a single computer. The “Reformulation-Linearization Technique” (RLT)
was developed by Sherali and Adams (1990, 1998) and utilized by Hahn and Grant
(1998) as a Level-1 LRT. Later it was extended to Level-2 LRT by Adams et al.
(2007), and Level-3 by Hahn et al. (2012). Other lower bounds include the Level-2
RLT interior point bound by Ramakrishnan et al. (2002), the SDP bound by Roupin
(2004), the lift-and-project SDP bound by Burer and Vandenbussche (2006), and the
bundle method bound by Rendl and Sotirov (2007).

Most of the problems solved optimally are based on no more than 30 facilities.
Nyström (1999) reported the optimal solution of the n D 36 (Steinberg 1961)
problem. Drezner et al. (2005) proposed problems whose optimal solution is known
and problems with up to 72 facilities are optimally solved. The special structure of
grey pattern problems enables more efficient solution algorithms. The n D 64 grey
pattern problem of uniformly placing m D 13 black points in a 64 points square
(termed Tai64c) was optimally solved by Drezner (2006) in about 2 h of computer
time. Drezner (2006) also optimally solved n D 256 problems with 3 � m � 8

black points. The Tai64c problem was also solved later by Fischetti et al. (2012) in
about 5 h, and by Nyberg and Westerlund (2012) in about 50 h. Drezner et al. (2014)
developed a more efficient branch-and-bound approach which optimally solved the
Tai64c problem in about 15 s of computer time.

13.6 Heuristic Solution Algorithms

Optimal algorithms can solve relatively small problems. Consequently, considerable
effort has been devoted to constructing heuristic algorithms.

The first heuristic approaches based on a descent type heuristic of checking
some or all exchanges between facilities were proposed by Gilmore (1962), CRAFT
(Buffa et al. 1962) and Hillier and Connors (1966). Nugent et al. (1968) suggested
a biased sampling of exchanges rather than checking all of them. All exchanges
between pairs of facilities define a “neighborhood” of solutions which serves as a
basis for more recent metaheuristic algorithms.

In order to calculate all the values of the objective function in the neighborhood,
n.n � 1/=2 possible pair exchanges need to be evaluated. Evaluating each value
directly by (13.1) requiresO.n2/ time leading to a total ofO.n4/ time. Burkard and
Rendl (1984) suggested a short cut that we present for symmetric problems with
zero diagonal (i.e., the cost between a facility and itself, and the distance between
the same two locations is zero). Note, however, that this can be easily generalized
to non symmetric problems. Let �frs be the change in the cost f , calculated by
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Eq. (13.1), by exchanging the sites of facilities r and s. There are n.n � 1/=2 such
values. It can be easily verified that:

�frs D 2

nX

iD1

˚
cir

dp.i/p.s/ � d.p.i/p.r/

�C cis

dp.i/p.r/ � d.p.i/p.s/

��

D 2

nX

iD1

˚
Œcir � cis �


dp.i/p.r/ � dp.i/p.s/

��
: (13.3)

Calculating�frs by (13.3) requires onlyO.n/ time rather than O.n2/ time.
Taillard (1991) points to yet a faster formula for calculating �frs. Let �uvfrs be

the variation in the value of the objective function corresponding to exchanging u
and v given that the previous exchange involved r and s, and assuming u and v
different from r and s. This change in the value of the objective function can be
calculated in O.1/ time starting from the second iteration. The formula is based
on �fuv (the change in the value of the objective function from the previous
permutation by exchanging the pair uv). Therefore, one needs to keep all the values
of�fij for all pairs i; j . Saving these values requiresO.n2/ time for each evaluation
of all pair exchanges. It can be easily verified by (13.3) that:

�uvfrs D �fuv C 2 Œcsu C crv � csv � cru�

dp.s/p.u/C dp.r/p.v/ � dp.s/p.v/ � dp.r/p.u/

�
;

which is calculated in O.1/ time. Note that only 2n � 3 pairs are not mutually
exclusive and formula (13.3) can be used in these cases to evaluate�frs. Therefore,
evaluating the change in the value of the objective function for all n.n � 1/=2
possible pair exchanges requiresO.n2/ time rather than O.n4/ time.

Many metaheuristic approaches have been suggested for solving the QAP. For
example, simulated annealing was proposed by Wilhelm and Ward (1987), Connoly
(1990), Misevičius (2003), ant colonies was investigated by Gambardella et al.
(1999), Taillard (1998, 2000), Talbi et al. (2001), migrating birds optimization was
suggested by Duman et al. (2012), scatter search was implemented by Cung et al.
(1997), simulated jumping was proposed by Amin (1999) and a greedy randomized
adaptive search procedure was designed by Li et al. (1994) and Oliveira et al. (2004).

Various versions of the metaheuristic tabu search (Glover 1977, 1986; Glover
and Laguna 1997) were suggested for the solution of the QAP. Skorin-Kapov
(1990) proposed the first application of tabu search followed by Taillard (1991)
who proposed the Robust Tabu. The latter remained as the most powerful heuristic
approach for many years. The tabu list is set to contain pairs of facility-site (i.e.,
there are n2 possible entries in the tabu list). There is a short term and long term
tabu memory.

Short Term Memory: When a facility is removed from a site, the iteration number
is recorded. An exchange between two facilities is not allowed (unless the
objective function is better than the best one found so far) if both facilities move
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back to a site they were removed from in the last t iterations. The best solutions
found by Taillard (1991) were obtained considering the tabu tenure t randomly
generated in Œ0:9n; 1:1n� in every iteration.

Long Term Memory: Every iteration after x iterations (for example, x D 3n2): if
there is an exchange between two facilities such that one facility moves to a site
it was never there in the last x iterations, such an exchange preempts any other
exchange and is executed. The long term memory serves as a diversification of
the tabu search.

The robust tabu search approach proposed by Taillard (1991) was improved by
Drezner (2008a) who suggested a small change of the tabu tenure by selecting it
randomly in the range Œ0:2n; 1:8n� (rather than Œ0:9n; 1:1n�) in each iteration.

The “reactive tabu search” was proposed by Battiti and Tecchiolli (1994). The
“concentric tabu search” was proposed in Drezner (2002) and extended in Drezner
(2005b). Various tabu searches approaches were proposed and computationally
tested in Misevičius and Blonskis (2005) and Misevičius et al. (2006). The iterated
tabu search was proposed by Misevičius (2012).

Many versions of genetic algorithms which are inspired by biological evolution
and survival of the fittest (Holland 1975; Drezner and Drezner 2005) have also been
proposed for the QAP. The first two papers are due to Fleurent and Ferland (1994)
and Tate and Smith (1995). Other works investigating this type of algorithm include
Misevičius (2008), Wu and Ji (2008), Ahuja et al. (2000).

The most successful heuristic algorithms seem to be the hybrid genetic algo-
rithms (Drezner 2003, 2008a; Misevičius 2004, 2005; Misevičius and Rubliauskas
2009; Misevičius et al. 2009; Misevičius and Guogis 2012). For a review of the
application of such heuristic algorithms for the solution of the QAP see Drezner and
Misevičius (2013). Hybrid genetic algorithms apply a local search on the generated
offspring before considering its inclusion into the population. Two parameters are
given: the population size P and the number of generations G. A specific local
search, such as tabu search, is selected. The general framework of a simple hybrid
genetic algorithms is the following:

1. A starting population of size P is randomly selected, and the local search
heuristic is applied on each starting population member. The current generation
number is set to g D 1.

2. Two population members are randomly selected and merged by a crossover
operator to produce an offspring.

3. The local search heuristic is applied to the merged solution, possibly improving
it.

4. If the value of the offspring’s objective function is not better than the worst
population member’s objective function, the offspring is ignored and go to Step 5.
Else,

(a) If the offspring is identical to an existing population member, it is ignored.
Go to Step 5.
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(b) If the offspring is different from all population members, the offspring
replaces the worst population member.

5. Set g D g C 1. If g � G go to Step 2.
6. Otherwise (g D G C 1), stop with the best population member as the final

solution.

Many modifications for such a simple framework have been proposed. For example,
Schaffer et al. (1989), Drezner and Marcoulides (2003), Fox and McMahon (1991),
Wu and Ji (2008), Drezner and Drezner (2006), Misevičius (2008), Drezner (2005a),
and Cantú-Paz (2001).

An important component for the success of genetic algorithms is the crossover
operator. The following crossover operator, suggested by Drezner (2003), exploits
the structure of the problem and works well when distances are life-like distances
such as Manhattan or Euclidean distances. When problems are randomly generated
like the Taia instances (Taillard 1991) it may not work well. Two parents are to be
merged to produce an offspring. In Drezner (2003) the following crossover operator
is repeated for all n facilities considered separately as pivot sites. The best merged
offspring is selected for the local search heuristic. The merge of the two selected
parents for one pivot site is as follows:

1. The median distance from the pivot site to all sites is calculated.
2. A site that is closer than the median to the pivot site is assigned the facility located

there in the first parent.
3. All other sites are assigned a facility from the second parent.
4. It is possible that some facilities are assigned twice. The same number of facilities

are not assigned at all. Therefore,

(a) Go over all the facilities from left to right and create a list of unassigned
facilities.

(b) Find all facilities that are assigned twice, and replace the site that is farther
than the median (i.e., from the second parent) with a facility that is not
assigned at all.

Drezner (2003) applied the concentric tabu search (Drezner 2002) as the local
search heuristic. Drezner (2008a) found that the modified robust tabu (applying only
the short term memory) performed better as a local search heuristic.

13.7 Test Problem Instances

There are many test problems instances listed in the web-site QAPLIB. Commonly
used sets of test problem instances for evaluating the effectiveness of algorithms are
listed in Table 13.1.

Note that if at least one of the sets of weights or distances is symmetric, the
problem can be formulated as a symmetric problem. Suppose that dij D dji. Define
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Table 13.1 Problem instances

Name Range Reference Comments

Nug 12–30 Nugent et al. (1968) All optimal solutions found

Taia 12–100 Taillard (1991) Random weights & distances

Taib 12–150 Taillard (1991) Real-life like

Taic 64–256 Taillard (1995) Grey pattern problems

Taie 27–343 Drezner et al. (2005) Large airport configuration

Dre 30–90 Drezner et al. (2005) Known optimum

Tho 30–150 Thonemann and Bölte (1994)

Sko 42–100 Skorin-Kapov (1990)

BL,CI 36–144 de Carvalho Jr and Rahmann (2006) Non-symmetric weights

the weights as c0
ij D cij C cji and the problem becomes symmetric with double the

value of the objective function. Symmetric problems can be solved in about half the
time because most of the calculations are not replicated twice unnecessarily.

The best known solutions to some of the bigger problems are listed in Table 13.2.
The results for the Sko and Tho problems are taken from Drezner (2008a) and the
results for the other problems are taken from Drezner and Misevičius (2013).

The best known solution values for the grey pattern problems for n D 256

and 3 � m � 128 are available in Drezner (2006, 2008b), Misevičius (2011)
and reported in Table 13.3. For m > 128 the solution is obtained by exchanging
between the locations of black and white points. The results for 3 � m � 8 are
proven optimal in Drezner (2006). The original Tai256c (Taillard 1995) is defined
for m D 92. Misevičius (2011) also reports the best known solutions for various
value ofm for the n D 64 grey pattern problems and Misevičius et al. (2013) define
the largest QAP test problems using a grey pattern with n D 1024 points and report
the best known solutions for these problems up to m D 512.

Two pictorial solutions to the grey pattern problems reported in Drezner et al.
(2014) illustrate the grey pattern results. First we present in Fig. 13.1 the optimal
configuration of locating 20 black points in a square of dimensions 8 � 8 replicated
9 times. This problem was optimally solved in Drezner et al. (2014) in less than
six and a half hours. The configuration shows groups of 5 points in a “V” shape
alternating up and down. The other (heuristic, but probably optimal) solution found
in a few papers is for locating 64 black points in a 16 � 16 square. The pattern is
depicted in Fig. 13.2. It is interesting that this pattern is very close to an hexagonal
pattern that is known to be the densest packing, see Coxeter (1973) and Hilbert
and Cohn-Vossen (1956). The distance to the four points in a diagonal direction isp
5 D 2:236 while the distance to the two points on the left and on the right is 2. In

a hexagonal pattern these six distances are the same and therefore this pattern can
be viewed as “hexagonal-like”. The hexagonal pattern is also preferred to a square
pattern for a large number of points in many location problems (Drezner and Suzuki
2010; Drezner and Zemel 1992; Okabe and Suzuki 1987; Suzuki and Drezner 1996;
Suzuki and Okabe 1995; Szabo et al. 2007).
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Fig. 13.1 Optimal
configuration of 20 black
points in an 8� 8 square
replicated 9 times

Fig. 13.2 Grey patterns of
64 points in a 16� 16 square

13.8 Conclusions

The Quadratic Assignment Problem (QAP) is considered to be one of the most
difficult combinatorial optimization problems. The problem was presented and
applications were described. The related layout problem and two extensions were
briefly presented. Exact and heuristic solution methods were listed and best known
results for some test problems reported. We concluded with a depiction of two grey
pattern problems which are a special case of the QAP.

Current exact algorithms can solve mostly problems of up to 30–40 facilities
while heuristic algorithms require long run times to obtain reasonably good
solutions. Research in developing more effective exact and heuristic algorithms will
be very helpful and should be pursued.

References

Adams W, Guignard M, Hahn P, Hightower W (2007) A level-2 reformulation-linearization
technique bound for the quadratic assignment problem. Eur J Oper Res 180:983–996

Ahuja R, Orlin J, Tiwari A (2000) A descent genetic algorithm for the quadratic assignment
problem. Comput Oper Res 27:917–934

Amin S (1999) Simulated jumping. Ann Oper Res 84:23–38
Anstreicher K, Brixius N, Gaux JP, Linderoth J (2002) Solving large quadratic assignment

problems on computational grids. Math Program 91:563–588
Anstreicher KM, Brixius NW (2001) A new bound for the quadratic assignment problem based on

convex quadratic programming. Math Program 89:341–357
Armour GC, Buffa ES (1963) A heuristic algorithm and simulation approach to relative location

of facilities. Manag Sci 9:294–309
Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J Comput 6:126–140



13 The Quadratic Assignment Problem 359

Bos J (1993) Zoning in forest management: a quadratic assignment problem solved by simulated
annealing. J Environ Manag 37:127–145

Buffa ES, Armour GC, Vollmann TE (1962) Allocating facilities with CRAFT. Harv Bus Rev
42:136–158

Burer S, Vandenbussche D (2006) Solving lift-and-project relaxations of binary integer programs.
SIAM J Optimiz 16:726–750

Burkard R, Rendl F (1984) A thermodynamically motivated simulation procedure for combinato-
rial optimization problems. Eur J Oper Res 17:169–174

Burkard RE (1990) Locations with spatial interactions: the quadratic assignment problem. In:
Mirchandani PB, Francis RL (eds) Discrete location theory. Wiley, New York, pp 387–437

Burkard RE, Cela E (1999) Linear assignment problems and extensions. In: Pardalos P, Du D-Z
(eds) Handbook of combinatorial optimization. Springer, Dordrecht, pp 75–149

Burkard RE (2013) Quadratic assignment problems. In: Pardalos P, Du D-Z (eds) Handbook of
combinatorial optimization, 2nd edn. Springer, New York, pp 2741–2814

Burkard RE, Offermann J (1977) Entwurf von schreibmaschinentastaturen mittels quadratischer
zuordnungsprobleme. Math Method Oper Res 21:121–132

Cantú-Paz E (2001) Migration policies, selection pressure, and parallel evolutionary algorithms. J
Heuristics 7:311–334

de Carvalho Jr SA, Rahmann S (2006) Microarray layout as a quadratic assignment problem.
In: Huson D, Kohlbacher O, Lupas A, Nieselt K, Zell A (eds) Proceedings of the German
conference on bioinformatics, vol 83. Gesellschaft für Informatik, Bonn, pp 11–20

Cela E (1998) The quadratic assignment problem: theory and algorithms. Kluwer Academic
Publishers, Dordrecht

Connoly D (1990) An improved annealing scheme for the QAP. Eur J Oper Res 46:93–100
Cordeau JF, Gaudioso M, Laporte G, Moccia L (2006) A memetic heuristic for the generalized

quadratic assignment problem. INFORMS J Comput 18:433–443
Coxeter HSM (1973) Regular polytopes. Dover Publications, New York
Cung VD, Mautor T, Michelon P, Tavares AI (1997) A scatter search based approach for

the quadratic assignment problem. In: Proceedings of the IEEE international conference on
evolutionary computation and evolutionary programming (ICEC’97), Indianapolis, pp 165–170

Dickey JW, Hopkins JW (1972) Campus building arrangement using topaz. Transp Res 6:59–68
Drezner T, Drezner Z (2005) Genetic algorithms: mimicking evolution and natural selection in

optimization models. In: Bar-Cohen Y (ed) Biomimetics—biologically inspired technologies.
CRC Press, Boca Raton, pp 157–175

Drezner T, Drezner Z (2006) Gender specific genetic algorithms. INFOR Inform Syst Oper Res
44:117–127

Drezner Z (1975) Problems in non-linear programming (the allocation problem). Ph.D. thesis, The
Technion, Haifa

Drezner Z (1980) DISCON—a new method for the layout problem. Oper Res 28:1375–1384
Drezner Z (1987) A heuristic procedure for the layout of a large number of facilities. Manag Sci

33:907–915
Drezner Z (2002) A new heuristic for the quadratic assignment problem. J Appl Math Decis Sci

6:163–173
Drezner Z (2003) A new genetic algorithm for the quadratic assignment problem. INFORMS J

Comput 15:320–330
Drezner Z (2005a) A distance based rule for removing population members in genetic algorithms.

4OR-Q J Oper Res 3:109–116
Drezner Z (2005b) The extended concentric tabu for the quadratic assignment problem. Eur J Oper

Res 160:416–422
Drezner Z (2006) Finding a cluster of points and the grey pattern quadratic assignment problem.

OR Spectr 28:417–436
Drezner Z (2008a) Extensive experiments with hybrid genetic algorithms for the solution of the

quadratic assignment problem. Comput Oper Res 35:717–736



360 Z. Drezner

Drezner Z (2008b) Tabu search and hybrid genetic algorithms for quadratic assignment problems.
In: Jaziri W (ed) Tabu search, in-tech, pp 89–108. Available free on: http://books.i-techonline.
com

Drezner Z (2010) On the unboundedness of facility layout problems. Math Method Oper Res
72:205–216

Drezner Z, Marcoulides GA (2003) A distance-based selection of parents in genetic algorithms.
In: Resende MGC, de Sousa JP (eds) Metaheuristics: computer decision-making. Kluwer
Academic Publishers, Boston, pp 257–278

Drezner Z, Misevičius A (2013) Enhancing the performance of hybrid genetic algorithms by
differential improvement. Comput Oper Res 40:1038–1046

Drezner Z, Suzuki A (2010) Covering continuous demand in the plane. J Oper Res Soc 61:878–881
Drezner Z, Zemel E (1992) Competitive location in the plane. Ann Oper Res 40:173–193
Drezner Z, Hahn PM, Taillard ÉD (2005) Recent advances for the quadratic assignment problem

with special emphasis on instances that are difficult for meta-heuristic methods. Ann Oper Res
139:65–94
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Misevičius A (2005) A tabu search algorithm for the quadratic assignment problem. Comput Optim
Appl 30:95–111
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Chapter 14
Competitive Location Models

H.A. Eiselt, Vladimir Marianov, and Tammy Drezner

Abstract This chapter first provides a review of the foundations of competitive
location models. It then traces subsequent developments through the decades under
special consideration of customer behavior. After developing a general framework
for customers’ decision making, the main results are put into this framework. The
conclusion outlines a number of areas, in which existing models can be refined and
made more realistic.

Keywords Hotelling models • Nash equilibria • von Stackelberg solutions

14.1 The Basic Model: The First 50 Years

Competitive location models were first discussed by Hotelling (1929) in his seminal
paper. It has spawned hundreds of contributions (for a summary until the early
1990s, see Eiselt et al. 1993) that investigate many different aspects of the basic
model. A recent summary of Hotelling-style models was provided by Eiselt (2011),
for details we refer to that work. This chapter will first introduce the basic model,
followed by an outline of some of the main components of competitive location
models. We then discuss the main aspects and types of consumer behavior, and
then review the work on competitive location models under special consideration of
customer behavior.

The basic model is easy to describe: consider a line segment, a so-called “linear
market,” which Hotelling referred to as “main street,” along which customers are
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uniformly distributed. (The often-mentioned “ice cream vendors on the beach” were
actually introduced by Lösch 1954.) Each customer has a fixed and inelastic demand
for a given homogeneous good. Duopolists are now attempting to independently
enter the market, offering identical products. The competitors are profit maximizers,
and they attempt to achieve their objective by determining their respective locations
and prices; first both competitors choose their respective locations, followed by
the simultaneous choice of prices. It is assumed that both competitors employ
mill (or f.o.b.) pricing (a pricing policy in which customers pay a price set by the
facility and take care of the transportation themselves) and that transportation costs
between customers and facilities are linear. Customers will patronize the facility
that offers the good for the lowest full price, i.e., the smallest sum of mill price and
transportation costs. For simplicity, it is commonly assumed that the costs of the
firms have been normalized to zero.

Already in his original paper, Hotelling did not restrict himself to the aforemen-
tioned “main street” with customers in search for inexpensive physical goods from
brick-and-mortar retailers. One of the nonphysical applications he mentioned was
what we today refer to as brand positioning, viz., the location of a brand in some
feature space. More specifically, Hotelling used the example of ciders offered by
two firms, whose single distinguishing characteristic is their respective sweetness.
Given that a brand is sweeter (more sour) if it is located more to the right (left) side
of the market segment, the two firms will determine optimal locations and prices so
as to maximize their respective profits.

Similar, albeit with a marked difference, is the political positioning model that
was also mentioned in Hotelling’s original paper. The idea was very simply for
each of two political parties to each locate their own candidate, so as to maximize
the number of votes (i.e., the number of customers, or the market share) that the
candidate would obtain. The line segment was used to mimic the traditional left–
right scale in politics, voters (i.e., their “ideal points,” which symbolize their most
favored position on the line) were again assumed to be uniformly distributed on the
line segment, and the candidates would not have any inherent stand on the issues,
they would simply position themselves at a point, where it would win them the
largest number of votes. However, in contrast to all other previously mentioned
applications, there are no prices in this model.

The main focus of Hotelling’s original paper is the existence (or the lack) of a
stable solution, i.e., an equilibrium. Hotelling asserts that an equilibrium would exist
with both firms locating next to each other at the center of the market. This result
is often dubbed the “principle of minimum differentiation,” in reference to products
or political candidates being very similar to each other. Even though in a footnote,
Hotelling cautions that his result would not hold in highly competitive situation
(which is precisely what occurs when the two firms locate very close to each other),
he presented his agglomeration result as his major finding. Other authors, such as
Lerner and Singer (1937) and Eaton and Lipsey (1975) obtained different results, but
their contributions were based on Hotelling-style models albeit with fixed and equal
prices. Hotelling’s original result was not disputed until d’Aspremont et al. (1979)
demonstrated 50 years later that no equilibrium exists in Hotelling’s model. In
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Fig. 14.1 Hotelling’s duopoly on a linear market

order to follow the argument, first consider a graphical representation of Hotelling’s
scenario as shown in Fig. 14.1. Here, the linear market extends from 0 to 1, and the
locations of the two competitors are shown as A and B, respectively. They charge
mill prices pA and pB, respectively, and transportation costs are linear, resulting
in full prices to the customers shown in the two “V” shaped functions. The two
functions intersect at some point X, which is usually referred to as the marginal
customer, i.e., the customer who pays the same full price (i.e., the mill price plus
transportation costs) purchasing from firm A as he does purchasing from firm B. As
a matter of fact, the function that describes the full price for all customers on the
line segment is the lower envelope of the two “V”-shaped functions. Furthermore,
the market can now be subdivided into the following parts: The first piece of length
a is firm A’s hinterland, which A captures in its entirety. Similarly, the stretch b on
the right is firm B’s hinterland, which is captured by B. The remaining area is the
competitive region between firms A and B. (The terms “hinterland” and “competitive
region” appear to have been introduced by Smithies 1941.) This is subdivided into
parts x and y, such that x is the part in which customers can purchase more cheaply
from firm A, while in y, customers can purchase the good more cheaply from
firm B.

This allows us to determine the market shares of the two firms simply as
M(A)D aC x for firm A and M(B)D bC y for firm B. This depiction of the scenario
also permits us to examine the two forces that govern the process. The market share
force pushes the two facilities towards each other. The reason is that—given that
his opponent does not react, at least temporarily—a facility can move towards its
competitor and, in doing so, not lose market in its own hinterland, while gaining in
the competitive region. This force applies, as long as customers do not have finite
(and reasonably low) reservation prices, i.e., an upper bound on the full price they
are able or willing to pay for the good. On the other hand, there is the competitive
pricing force that pushes the two facilities apart. The reason is that if the two firms
locate very close to each other, whatever price one of them sets, his competitor can
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Fig. 14.2 Profit functions in Hotelling’s model with linear transportation costs

undercut him slightly and thus capture the entire market. This results in facilities
moving apart so as to position themselves in a region with less competitive pressure.

The obvious question is whether or not there is a locational arrangement and a
price structure, which represents a stable solution, i.e., an equilibrium. Temporarily
holding the location of both and the price of one of the competitors, say, B, constant,
Fig. 14.2a, b shows competitor A’s profit function   in the case of firms A and B
locating close to each other (Fig. 14.2a) or a significant distance apart (Fig. 14.2b).

First consider Fig. 14.2a. From left to right, A’s profit function is linearly
increasing for low prices pA (as firm B is cut out and A’s profit increases proportional
to the price); then, as pA increases, at some point, B is no longer cut out, there is a
marginal customer in the competitive region, and A’s profit function is an inverted
ellipse. As pA increases further, there is a point, at which it is sufficiently high so that
firm B cuts out firm A, and thus A’s profit drops to zero. Notice that there are two
local maxima, one at the first breakpoint from the left, and the second in the domain
of the quadratic piece of the function. In Fig. 14.2b, the linearly increasing part is
valid only for negative prices, which are nonsensical in this application. Other than
that, the function is similar to that in Fig. 14.2a, but with a single maximum.

d’Aspremont et al. (1979) first demonstrated that Hotelling’s model does not
possess an equilibrium in pure strategies, i.e., as long as each player chooses exactly
one strategy, rather than randomize. They then demonstrated that an equilibrium
was restored in the model if we were to use a quadratic, rather than a linear,
transportation cost function. Later, Gabszewicz et al. (1986) pointed out that the
lack of the existence of equilibria in Hotelling’s model is due to the lack of
quasiconcavity of the profit functions of the duopolists (see again Fig. 14.2a).
Figure 14.3a, b shows again competitor A’s profit  , given a quadratic, rather than
linear transportation cost function: Fig. 14.3a for competitors’ locations that are
close to each other, and Fig. 14.3b for locations far apart. Note that the functions are
both quasiconcave.

In general, many competitive location models have shown major signs of
instability: Hotelling’s original model with variable prices and linear cost func-
tions has no equilibrium, the same model with quadratic transportation costs has
one—with firms located at opposite ends of the market. Hotelling’s model with a



14 Competitive Location Models 369

Fig. 14.3 Profit functions in Hotelling’s model with quadratic transportation costs

linear-quadratic cost function (see, e.g., Gabszewicz and Thisse 1986, or Anderson
1988) does not have equilibria, as long as the linear part, no matter how small, exists.
Hotelling’s model with fixed and equal prices (see, e.g., Lerner and Singer 1937 or
Eaton and Lipsey 1975) has an equilibrium with minimal differentiation, while the
same model with three firms has no equilibrium; the duopoly with fixed and unequal
prices, regardless how small the difference between the prices, has no equilibrium.

Consider now the locational arrangement that minimizes the total transportation
costs to the customers. Using the notational convention in Fig. 14.1 and unit
transportation costs t, the total transportation costs to all customers can be written as
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"
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Partial differentiation @TC
@A
D 0 and @TC

@B
D 0 results in the optimal points AD 1=4

and BD 3=4, a configuration at which the total transportation costs are t/8. In contrast,
central agglomeration results in transportation costs of t/4, i.e., costs that are twice as
high. As the point (A, B)D (1=4, 3=4) minimizes the total transportation costs (which
are, given mill pricing, borne by the customers), this point is often referred to as
social optimum.

Before investigating the key elements of competitive location models, we would
like to draw attention to some surveys of the subject. Brown (1989) provides
a critique of Hotelling’s work and points out various directions, which would
make the original model more realistic. Eiselt et al. (1993) provide a taxonomy
and a short evaluation of the literature up to that point. Plastria (2001) looks at
the optimization aspect of the subject, while Drezner and Eiselt (2002) focus on
customer behavior and its consequences on the solution. More recently, Kress and
Pesch (2012) surveyed the subject, but concentrate on problems on networks, while
Drezner (2014) surveys problems in the plane.
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14.2 Elements of Competitive Location Models

The subject of competitive location models, as pioneered by Hotelling, has become
a rich research area. Since research has moved into many different directions, it
is useful to classify models, e.g., by using the taxonomy proposed by Eiselt et al.
(1993). Rather than describe it in detail, we will outline its major components here.

One aspect of all location models, competitive or not, is the choice of space. In
contrast to regular, noncompetitive, location models, many authors have used much
simplified spaces in their models: starting with Hotelling’s original linear market,
they have also investigated circular markets, which may appear rather contrived at
first glance, but are designed to avoid the “end-of-line effects” of bounded linear
markets.

Measures of distances are no issue when devising models in a single dimension,
but they are, as soon as models in two or more dimensions are investigated. While
some authors favor gauges in noncompetitive location models (see, e.g., Durier
and Michelot 1985, or Plastria 1992) most contributions in the literature that look
at continuous location models in the plane have used Minkowski distances, most
prominently Manhattan, Euclidean, and Chebyshev distances.

A similar situation prevails in networks. Measures of distances in trees are not
an issue, as, by definition, there is only one path between each pair of points.
However, in general networks one could, at least theoretically, use any distance that
best models reality. Assuming not only rational, but also cost-minimizing behavior,
virtually all authors in the field have chosen shortest path distances. Assuming
complete information, one could choose traffic choice models and assume that
customers take not the shortest route with respect to distances, but the shortest route
with respect to time; or that not all customers use the same route selection strategy
all the time. This would suggest itself particularly in highly congested (urban) areas.
One concept that is used extensively by authors who deal with network models is
known as node property or Hakimi property. It is based on Hakimi’s work (1964)
on network location properties, in which he proved that in some models, at least one
optimal solution locates all facilities at the nodes of a network.

The second component concerns the number of players and facilities that are to
be located. Traditionally, papers included duopolists who locate a single facility
each, so that the terms “firm” and “facility” (the entity to be located) were
synonymous. This is, of course, no longer the case once we include multiple firms
or multiple facilities to be located by each of the planners. Here, we will use the
game-theoretic term players for the (independently operating) firms, and “facilities”
for what they are locating. The number of facilities that one or more of the players
wish to locate may be preselected or unspecified. In the latter case, the cost or profit
function of a player includes fixed costs for opening a facility at a site.

The third component of competitive location models concerns the pricing policy.
One important feature of Hotelling’s original model was that he investigated
competition in location and prices. A more general model would let players also
choose their pricing policy. In particular, we typically distinguish between a variety
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of different pricing policies. Among the most prominent such policies is mill
pricing, where players set prices at the source, which are not necessarily the same
at all of their facilities. Customers will then purchase the product at the facility they
have chosen to patronize and pay for the transport costs themselves and separate
from the payment to the firm for the goods. Almost all retail facilities use this
principle. A special case of mill pricing is uniform pricing, a policy, in which the
facility planner sets the same price at all of his facilities. This policy was used by the
“Motel 6” chain in the 1980s, until they chose to charge different prices at different
locales to better reflect their own cost structure.

Another principle is uniform delivered pricing. In this pricing policy, facility
planners will deliver the goods to their customers for a fixed “full price” regardless
of customers’ locations. Domestic mail is a typical example of this type of pricing
policy. Clearly, in such a policy, customers that are located close to the facility
from which they receive the goods, will subsidize those who are located farther
away. A special case of this policy is “zone pricing,” a policy, in which the firm
has subdivided their market area into zones, such that a uniform delivered price is
charged in each zone. Typical examples are the outdoor store L.L. Bean that sells
canoes for one delivered price east of the Mississippi, and another price west of
the river, or postal services that typically charge one rate for domestic mail and (at
least) one for international mail. Spatial price discrimination is a policy that charges
customers a full price according to the customer’s location. Its applications have
been severely limited by the Robinson-Patman Act of 1936, even though it does
provide some benefits to the customers; see, e.g., Anderson et al. (1992). Note that
uniform delivered prices and spatial price discrimination are boundary cases of zone
pricing; the former in case there is only one zone, and the latter in case each point
in space represents its own zone. Many contributions, especially those from the
operations research community, assume that prices are universal and fixed, which is
the case in legislated pricing or producer-administered mandatory prices.

The fourth component concerns the rules of the game the players adhere to. In
essence, this feature describes how individual players (re-) act. Consider the simple
case of pure location competition. In the latter case, players could simultaneously
choose their strategies, i.e., decide on the locations of their facilities. If at this point,
none of the players has an incentive to unilaterally change his position, we say that
a Nash (or Cournot–Nash) equilibrium has been obtained. Such a situation indicates
some stability. Note that all players have, at least potentially, the same information
available to them, even though perceptions may differ, indicating some symmetry
among players.

Things are getting somewhat more involved, if players have not only locations,
but also prices as variables. In such a case, we can employ a refinement of Nash
equilibria, viz., Selten’s (1975) subgame perfection. Loosely speaking, a subgame
perfect equilibrium exists, if every subgame of a given game is a Nash equilibrium.
Applied to our type of problem, players may choose a “first location, then price”
strategy (see, e.g., Anderson and de Palma 1992), i.e., all payers simultaneously
choose their locations, and in a second phase, they simultaneously choose their
prices. Many authors have chosen this route. At this point, we need to define the
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concepts of pure and mixed strategies. A pure strategy prescribes a certain course of
action (i.e., a decision) for a decision maker, while a mixed strategy will provide a
schedule of decision, associated with probabilities that indicate with what likelihood
a decision maker should use this strategy. The work by Caplin and Nalebuff
(1991) outlines conditions under which a pure-strategy price equilibrium exists in a
locational game, while Dasgupta and Maskin (1986), who deal with discontinuous
payoff functions, describe conditions for the existence of mixed strategies.

A full sequential strategy has one player, the so-called leader, locate first,
followed by all other players, the followers, which locate later. This asymmetric
situation has originally been described by the economist von Stackelberg (1943).
The leader, when choosing his locations, will have to guard against the followers. If
all players have the same objective and the same perception of the demand structure,
this means that the leader will use a strategy to maximize the minimal market
share or profit he will obtain. On the other hand, the followers will have a chance
to observe the action of the leader and then react accordingly, meaning that they
solve a conditional optimization problem, in which they maximize their own market
share or profit, given that the leader has already located. Notice that the problem of
the follower is much easier to solve mathematically, as it is a simple optimization
problem. The problem of the leader, however, is a bilevel optimization problem, as
it requires the solution of the follower’s problem as an input parameter.

The last major descriptor of competitive location models concerns customer
behavior. As a matter of fact, this aspect is the main leitmotif of this paper. The
first major distinction between different classes of models is between demand
allocation models and customer choice models. As the name suggests, in allocation
models the firm decides which facility is allocated to a customer. A typical example
would be the delivery of furniture to customers, who will receive the goods from
whatever warehouse the firm decides to deliver from. (Note that, strictly speaking,
the purchase of, say, a sofa, typically involves a mix of allocation and choice models:
when customers drive to a store to purchase the sofa is a choice model, while
the actual delivery of the sofa is an allocation model.) In scenarios of customer
choice, on the other hand, customers choose which facility or firm they want to deal
with. Often, the two models are referred to shipping and shopping. This paper deals
exclusively with customer choice models.

The manner in which customers choose which facility they patronize, is the
main subject of this contribution. The next section will provide a framework for
this decision. At this point, suffice it to say that while many, or even most, papers
use the “patronize the closest facility” (or cheapest, in case prices are different and
mill pricing is assumed), other models have been suggested. For instance, some
models include a (single-dimensional) parameter that measures the attractiveness of
a facility in contrast to other, competing facilities. Furthermore, an important and
fairly recent strand of research uses probabilistic choice rules, according to which
customers at the same location do not all behave in the same way. Similarly, it is
able to capture the fact that a customer, even if he and all of the competing facilities
remain in the same positions, will not always patronize the same facility.
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14.3 Consumer Behavior in Competitive Location Models

Consumer behavior is one of the most important aspects in any user-focused models,
yet it is crucial to many such models. Some references are Raiport and Sviokla
(1994), who identified content, context, and infrastructure as major determinants
of customer behavior, Song et al. (2001) and Giudici and Passerone (2002), who
use data mining in their analyses of identifying changes in consumer behavior, and
Liou (2009), who presents decision rules that foster customer retention in the airline
industry.

The three-stage process below presents a decision-making framework that
customers use when making their choices. We will discuss the individual stages
and demonstrate how they encompass the rules and assumptions made in the
literature.

Stage 1 is the evaluation stage. In it, customers determine utilities to each of
the stores. For the purpose of this paper, we assume that customers actually have
complete and correct information, an assumption that may be justified by Internet
searches or similar fact-finding processes, together with past experience with the
facilities. The utilities created in this stage will be based on all components that
typical customers deem important. In the retail context, this may include, but not be
restricted to, the price charged at the facility, the distance to the facility, the parking
at the facility, the friendliness of the staff, and others. Formally, we can define uij as
the utility a customer at site i has (for simplicity, we will refer to “customer i”) for
goods or purchased at a facility at site j (called “facility j” for short). Furthermore,
we define dij as the distance between customer i and facility j, while t denotes the
unit transportation cost, i.e., the conversion from distance to money. We also need to
define pj as the price charged by facility j, and the basic attractiveness Aj of facility j.
The basic attractiveness is a composite parameter that includes different measures,
such as floor space of a retail establishment (as a proxy expression for variety), the
quality of service, and other features. It is not important to find an exact aggregate
measure, it is only important to find an expression that captures the differences
between facilities. For simplicity, we will restrict ourselves to a single homogeneous
product, such as a brand that can easily be compared between facilities. As an
aside, some firms make such comparisons difficult by assigning different model
numbers to the same product, one for department stores, and a different number to
the product, when it is sold through specialty retail outlets.

The simplest (deterministic) utility function is

• UD1a: uijD – tdij,

i.e., the utility of customer i regarding facility j equals the negative distance between
them. Hence, maximizing the utility, such a customer will patronize the facility
closest to him. Such a utility function has been used by early contributors, such
as Lerner and Singer (1937), Eaton and Lipsey (1975), and later by operations
researchers such as Hakimi (1983), ReVelle (1986), Serra et al. (1999).
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An extension is the utility function

• UD1b: uijD –pj – tdij

Maximizing such a utility is equivalent to minimizing the full price of the good,
i.e., the mill price plus the transportation costs. Hotelling’s own contribution falls
into this category, and so do the papers by Serra and ReVelle (1999) and Pelegrín
et al. (2006). Note that the utility UD1a is a special case of the utility UD1b with
zero prices (or prices that are equal at all existing facilities).

Consider now the utility function

• UD1: uijDRi – pj – tdij,

where Ri denotes the reservation price customer i assigns to one unit of the good in
question, an upper bound customers are prepared to pay for one unit of the good.
Given that, the utility is an expression of the amount of money that the customer
“saved,” i.e., the amount that he was prepared to, but did not have to, spend on a
unit of the product. Some authors refer to Ri as the valuation of the product, other
refer to it as income, while still others think of it as the budget. In all cases, Ri – pj –
tdij is an expression of the money that was available for the purpose, but did not have
to be paid for the product. It is apparent that the utility functions UD1a and UD1b
are special cases of the function UD1: Given equal reservation prices RiDRk, i¤ k,
maximizing the utility UD1 reduces to UD1b, which, in turn, reduces to UD1a for
fixed and equal prices pj. One important feature of the utility function UD1 is that,
in case the utility uij is nonpositive, it allows customer i to refrain from making any
purchases.

Finally, there exists a variety of other deterministic utility functions used by some
authors. Among them is Lane (1980), who uses a Cobb–Douglas-style function
that expresses the utility as the product of three components: a measure of a
characteristic raised to a power, another measure of the facility raised to some power,
and the available income of the individual. Neven (1987) frames his discussion in
the context of brand positioning, and his utility function is the difference between a
(very high) reservation price, and the price plus the squared of the customer-facility
distance (which, in this context, is actually the difference between the customer’s
ideal point and the actual feature of the product). Finally, Kohlberg (1983) uses a
utility function that includes the sum of travel time and waiting time, a utility that
is important in the context of facilities that feature congestion, such as health-care
facilities.

• UD1c: uijDRi – pj – tdij – Wi,

where Wi denotes the waiting time. One pertinent example in the context of health
services is found in Marianov et al. (2008).

Another utility function incorporates not only distances, which are present in
all spatial models—after all, they are what makes a model “spatial”—but also
the “attractiveness” of the facilities. As already briefly alluded to above, this one-
dimensional measure attempts to capture differences between facilities the way they
are perceived by customers: floor space as a proxy for selection (even though the
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models under consideration just deal with a single homogeneous good), friendliness
of staff, parking, lighting, temperature, cleanliness of the facility, and many others.
A simple utility function that incorporates the basic attractiveness of facility j as the
parameter Aj is

• UD2a: uij D Aj

d�ij

with some decay parameter œ. For œD 2, the relation reverts to the well-known
gravity model, first proposed by Reilly (1931) for the determination of trading areas.
This function has been used by authors, such as Aboolian et al. (2007), Drezner
and Drezner (1997), Eiselt and Laporte (1991), and Suárez-Vega et al. (2014), the
last using the slightly more general function “basic attractiveness divided by some
increasing continuous function of distance.” Clearly, given the absence of prices,
these models assume that prices are fixed and equal among facilities.

An alternative treatment that involves an attractiveness parameter is

• UD2b: uij D Aj e�“dij

with some parameter “> 0 that indicates the customers’ sensitivity to differences in
distances. Aboolian et al. (2008) use a function of this type, but go one step beyond:
their base attraction Aj is a negative exponential function of the price charged at the
facility.

Consider now utility functions that include probabilistic components. There
are considerably fewer probabilistic location models than there are deterministic
models. The probabilistic counterpart of the above deterministic function UD1 is

• UP1: uijDRi – pj – tdijC ©i�,

where ©i is, usually, a Weibull-distributed random variable, while � is typically
interpreted as a coefficient of heterogeneity of customer tastes.

On the other hand, a probabilistic version of the utility function UD2a is

• UP2: uijk,

defined as the utility a customer at site i has for feature k of facility j. This multidi-
mensional version of the attraction function leads to the probabilistic allocation rule
AP1.

Stage 2 in the decision-making process involves the allocation of a customer’s
demand. The most natural thing to use would be the deterministic allocation rule

• AD1: winner-take-all,

which allocates all of customer’s demand to the facility he is most attracted to.
Most of the contributions in the literature follow this rule. Actually, if the utility
function is assumed to include all of a customer’s wishes, this rule would be the
only logical choice. However, even when considering a single customer, he may opt
logically for a facility that is second-best or has an even lower ranking based on its
utility. The reason could be that the customer, having patronized on facility, wants
some variety, even though it is probably not as good. Alternatively, if a customer
point represents actually a group of customers (meaning that customer i is actually
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an aggregate, typically of a census tract or some other group of customers), some
members among the group may have different rankings and prefer what, on average,
is a higher-ranking facility.

This heterogeneity of customer tastes can be dealt with in different ways. One
such possibility is to use a

• AD2: proportional allocation.

This allocation rule will allocate a customer’s demand according to the relative
utility a customer has for a facility. For instance, the proportion of customer
i’s demand to facility j according to Hakimi’s (1990) “proportional” rule equals
uij
ıX

k

uik. As an example, if a customer faces a duopoly, for whose facilities he has

computed utilities of 3 and 7, respectively, he will satisfy 30 and 70 % of his total
demand at the two respective facilities. Hakimi (1990) also designed a hybrid rule
based on AD1 and AD2. He refers to it as a “partially binary” allocation. According
to this rule, customers consider only the closest facility or branch of each of the
competing firms, and they then distribute their demand proportionally among those
branches. Suárez-Vega et al. (2004) investigated AD1, AD2, and the aforementioned
hybrid in detail.

Consider now probabilistic allocation functions. A natural extension of Reilly’s
(1931) argument of attraction functions was Huff’s (1964) allocation function,
which allocates a proportion of a customer’s demand to a firm based on the firm’s
attractiveness and its distance to the customer,

• AP1a: pij D Aj=d
�
ijX

k

Ak=d
�
ik

.

Huff suggested the selection of a location from a pre-specified set of locations,
whereas Drezner (1994a, 1995) proposed a model for finding the best location any-
where in the plane. A multidimensional generalization of this idea was proposed by
Nakashani and Cooper (1974), the so-called multiplicative competitive interaction
model, or MCI for short. Assuming that uijk denotes the utility customer i has for
feature k of store j, let pij denote the probability that a customer at site i makes a
purchase at store j. The parameter ’ reflects how sensitive is pij to feature k. The
MCI model then asserts that

• AP1: pij D

Y

k

u˛kijk

X

j

Y

`

u˛`ij`

.

Following the arguments of McFadden (1974), the use of the probabilistic utility
function UP1 leads to the demand allocation rule

• AP2: pij D e.Ri�pj �tdij/=	
X

k

e.Ri�pk�tdik/=	
,
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Note that whereas any of the deterministic utility function could be followed by
any of the allocation functions, the allocation function AP2 is a direct consequence
of the utility function UP1.

Finally, in the third stage in the decision-making process, customers determine
the quantity that they are going to purchase from the chosen facility/facilities. Most
authors opt for the quantity choice rule

• Q1: fixed,

in which the quantity customers purchase is fixed. This is typically justified by
asserting that the good in question is essential. While such an assumption is
convenient, there are, actually, relatively few essential goods in real life: butter can
be replaced by margarine, private transportation can—at least within reason—be
replaced by public transportation; potatoes could be replaced by pasta, and so forth.
Yet, true essential goods exist, such as electric power (which cannot be replaced in
the short run), or medical care. Typical examples for the use of this rule include
almost all contributions in the literature, starting with Hotelling (1929), Eaton and
Lipsey (1975), and d’Aspremont et al. (1979) to Drezner and Drezner (1997),
Fernández et al. (2007), Braid (2013), and others.

A very general alternative rule is

• Q2: qijD f (pjC tdij, uij),

where qij denotes the quantity customer i purchases at facility j. This rule states that
the quantity that customer i purchases from facility j is a function of the full price
to be paid for purchases at that facility and of the utility customer i achieves from
purchases at facility j. While a customer’s utility is likely to include the full price
as one of its components, the quantity purchased by a customer is often assumed
to depend on the (full) price of the product, rather than on a customer’s utility.
The early contribution by Rothschild (1979) uses a negative exponential distribution
to relate a customer’s demand and the customer-facility distance, while Aboolian
et al.’s (2008) work includes not only distance, but also price, in their negative
exponential relation. The contributions by Penn and Kariv (1989) and Matsumura
and Shimizu (2006) assume that the demand at a point is the difference between a
constant and the travel distance, and the difference between a constant and the price
paid for the product. Both cases are designed so as to express the amount of money
a customer has left over after this purchase.

Once customers have gone through the three stages of their decision-making
process, they have decided how much to purchase and whom to purchase it from.
This can then be used as input by the competing planners of the facilities. Drezner
et al. (1996) analyzed an anomaly in the decision making process that occurs if
customers reevaluate their purchasing decision along the way to the chosen facility.
The authors also delineated areas in which this phenomenon occurs.
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14.4 Results for Different Behavioral Assumptions

This section is organized along the lines of customer behavior. Each part will
examine one customer choice rule, followed by results in the literature regarding
Nash equilibria, followed by von Stackelberg solutions. The review in this section
will be organized along the lines of the customer choice rules outlined in the
previous section.

14.4.1 UD1a, Linear Market, Nash Equilibria

Stevens (1961) appears to have been the first to use game theory to reestablish
Hotelling result of minimal differentiation for fixed and equal prices. Recognizing
the complexity of the problem described in Hotelling’s (1929) paper, some contrib-
utors decided to simplify matters. Eaton and Lipsey (1975) used fixed and equal
prices. While this assumption appears somewhat contrived, it is usually justified
by legislated pricing for essential goods. With this assumption, customer choice
rule UD1a (the “closest” rule) is applied. Given this assumption, Hotelling’s result
of minimal differentiation is reestablished, as by moving towards its opponent, a
firm gains customers in the competitive region and does not lose customers in
its hinterland. The authors also extend the analysis to more than two firms. In
particular, they determine that for more than five firms, multiple equilibria exist,
and the only case without equilibria is the instance with three facilities. In particular,
the two outside facilities will push inwards so as to gain additional market shares,
thus squeezing the market of the inside firm to zero. This firm will counteract by
“leapfrogging” to the outside, become an outside facility itself, and start moving
inwards. Teitz (1968) referred to this behavior as “dancing equilibria.” Shaked
(1975) investigates the usual Hotelling model with fixed and equal prices, but three
facilities that employ mixed strategies. It turns out that an equilibrium exists, in
which all facilities randomize their strategies in the central half of the market.

In a follow-up paper, Shaked (1982) investigates the Hotelling model with
three firms locating one facility each, with fixed and equal prices, allowing mixed
strategies. It turns out that all firms will chose locations in the central half of the
market with equal probability. Cancian et al. (1995) consider a Hotelling model
with directional constraints, i.e., customers can only walk in one direction towards
the firm they want to patronize. The authors determine that with random arrival
times of the customers and two or more facilities, no equilibrium exists.

14.4.2 UD1a, Linear Market, von Stackelberg Solution

The first author to introduce sequential (and final) location decisions into the
discussion appears to have been Hay (1976). However, it was the contribution of
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Prescott and Visscher (1977) that popularized the methodology and the results.
In one of their examples, the authors look at a duopoly on a linear market—the
simplest possible case—and determine that the leader will locate at the center of the
market, while the follower will locate next to the leader, thus resulting in central
agglomeration. The authors then extend their analysis to the case of three firms.
After considering many cases and subcases (see, e.g., Younies and Eiselt 2011),
it is determined that one of the outcomes (arguable the most likely one) is that
the three facilities locate at 1=4, 3=4, and 1=2 of the market, capturing 3=8, 3=8 and
1=4 of the market, respectively. The fact that the first two facilities to locate earn
50 % more than the last entrant into the market is, however, troublesome: having
established that it takes capability and incentive to be a leader (see, e.g., Younies
and Eiselt 2011), we can consider the second and third firms to enter the market
as followers. However, why would any follower accept being the third rather than
the second entrant, if the latter course of action is much more profitable? A similar
result had already been obtained by Teitz (1968), who considered duopolists, so that
the location leader would locate two facilities, while the location follower would
locate a single facility. He suggested “conservative optimization,” i.e., a minimax
strategy. While the leader locates his two facilities at 1=4 and 3=4 of the market, the
follower will locate his single facility anywhere between the leader’s facilities.

An interesting extension is provided by Thisse and Wildasin (1995), who locate
private facilities alongside a centrally located public facility. Households have
incomes, which they spend on trips to the facilities and paying land rent. In the first
stage of the game, all firms locate first, followed by stage two, in which customers
locate. The result is that high travel costs yield maximal differentiation, while low
travel costs result in minimal differentiation. Bhadury (1996) considers a Hotelling
model on the line with fixed and equal mill prices, in which the leader does not have
perfect information regarding the follower’s variable costs. For a general demand
distribution, the author shows that market failure is possible (i.e., the leader may not
wish to locate any facilities) and that a greedy strategy is not bad (optimal for an
atomistic leader, i.e., one who wishes to locate only a small number of facilities).
Osborne and Pitchik (1986) allow the demand distribution to be not necessarily
uniform. Allowing mixed strategies, the result for a three-firm problem has all three
firms randomize over the central half of the market. Dasci and Laporte (2005) allow
facilities to have different cost functions. The paper is novel in that it does not deal
with exact facility locations, but with the density of retails branches that are located.

14.4.3 UD1a, Plane, Nash Equilibrium

In two-dimensional space, Okabe and Aoyagi (1991) attempt to prove a conjecture
by Eaton and Lipsey (1975) in the two-dimensional plane. With fixed demand
and equal mill prices, customers patronize the closest facility. In the infinite two-
dimensional plane with Euclidean distances and an infinite number of independent
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firms, the market area of each of the firms is a cell in a Voronoi diagram. Each
firm attempts to maximize the area of its Voronoi cell. Voronoi cells are in global
optimum with the hexagonal pattern. It is noted that results in one-and two-
dimensional spaces are markedly different: the pairing in one dimension does not
carry over to the two-dimensional plane. Another attempt in the two dimensional
plane was reported by Okabe and Suzuki (1987). The authors use the same concept
as in the previous paper, but locate finite numbers of facilities (32–256) in a bounded
market the shape of a square. Global optimization techniques are sequentially and
repeatedly applied. The result is a honeycomb-type pattern that, however, self-
destructs again and rebuilds. The instability is likely to be the result of “boundary
effects” that distort the results.

Aoyagi and Okabe (1993) consider a Hotelling model in the plane with totally
inelastic demand, identical facilities, and customers who purchase the good from the
closest facility. Customers are assumed to be located in a compact and convex subset
Z of the two-dimensional Euclidean plane. The authors demonstrate that for nD 2,
an equilibrium exists if and only if the market is point-wise symmetric with respect
to some point in Z. The firms will then locate at that point. For three facilities, no
global equilibrium exists except maybe in the case of a equilateral triangle.

14.4.4 UD1a, Plane, von Stackelberg Solution

The first author to discuss competitive location problems in the plane given location
leaders and followers appears to have been Drezner (1981, 1982). His contribution
first considers the simple case, in which each firm locates a single facility in the
presence of n demand points. The follower’s best location is arbitrarily close to that
of the leader. Sorting of angles from the leader’s point to the demand points yields
an O(n log n) algorithm for the follower’s problem. The leader’s problem (given he
locates one facility and expects the follower to do the same) is shown to be solvable
in O(n4 log n) time. In case a minimum separation of some prespecified distance R
is required between leader and follower, the complexity of the two problems is still
O(n log n) and O(n5 log n), respectively. Other cases include the problem in which
the leader locates one, the follower r> 1 facilities. This problem is easy: the leader
is wedged in and his optimal strategy is to locate right on the point with the largest
demand, as that is all he will get. If the leader locates p> 1 facilities and the follower
locates one facility, then the follower’s problem can be solved in O(n2 log n)
time.

Shigehiro et al. (1995) consider a duopoly with firms A and B in a bounded
subset of the two-dimensional plane. Given fixed and equal prices, both firms are
market share maximizers. Given demand at grid points and the one of A’s two
facilities being already located, firm B locates a single facility, followed by firm A
locating its second facility. It turns out that firm A will locate its second facility next
to it competitor’s facility, thus re-establishing the pairing of facilities known from
one-dimensional markets. An algorithm for the centroid problem is also described.
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Infante-Macias and Muñoz-Perez (1995) discuss medianoid locations in the plane
with customer demand occurring at discrete points, and Manhattan distances are
used. A given parameter specifies how much closer a new facility must be to a
customer to be considered comparable, i.e., equally desirable. For the location of a
single new facility, the paper describes an O(n3) algorithm, for a given number p of
new facilities, an O(n5) algorithm is suggested.

14.4.5 UD1a, Networks, Nash Equilibria

Bhadury and Eiselt (1995) investigate duopoly models with fixed and equal prices
on tree networks. They describe locational Nash equilibria in case co-location (i.e.,
the location of both facilities at the same node) is permitted or not, and they describe
a measure of stability of the equilibrium, rather than applying the usual equilibrium-
no equilibrium dichotomy. In another paper, the same authors (Eiselt and Bhadury
1998) discuss the reachability of Nash equilibria (assuming that at least one such
equilibrium exists) on trees. Starting with arbitrary locations of the duopolists, they
apply sequential and repeated short-term optimization to investigate whether or not
an equilibrium will be reached. The answer is it will, provided an appropriate tie-
breaking rule is employed. Eiselt and Laporte (1993) describe conditions, under
which a three-facility problem on a tree has agglomerated, dispersed, and no
equilibria.

14.4.6 UD1a, Networks, von Stackelberg Solution

Among the early contributions, Slater’s (1975) work stands out. In it, the author
introduces leader and follower, respectively, does, however, not make the connection
to von Stackelberg’s work. The paper proves that on a tree network, the location
leader will locate at the median. In his contribution, Hakimi (1983) first introduces
von Stackelberg games by referring to the locations of the leader(s) of the sequential
game as centroids (based on their maximin objective), while the locations of the
follower(s) are termed medianoids (as their objective is of the “minisum” type).
In particular, if the leader has already located p facilities in a pattern denoted by
Xp, and if the follower is poised to locate r facilities, the follower’s problems is
an (rjXp) medianoid. On the other hand, if a leader wants to locate p facilities,
knowing/assuming that the follower will locate r facilities, we talk about an (rjp)
centroid. Hakimi discusses a number of results of special cases regarding the node
property, i.e., the question whether or not at least one optimal location pattern
naturally has locations at the nodes of the given network. In addition, he proves the
NP-hardness of (rjX1) medianoid of general networks as well as the NP-hardness
of the (1jp) centroid. In the same year, Megiddo et al. (1983) show a polynomial
O(n2r) algorithm for the (rjXp) medianoid problem on trees. Penn and Kariv (1989)
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require facilities to be located at the nodes of the tree, but allow a customer’s
demand to be linearly decreasing in the distance to the closest facility. Both firms are
assumed to locate a single facility. Characterizations of the solutions, especially with
respect to the median(s) of the tree are described. Hansen and Labbé (1988) present
a polynomial algorithm for the (1j1) centroid problem on tree networks. García
et al. (2003) follow the analysis of Eiselt (1992, Annals) and determine all von
Stackelberg solutions on a tree with parametric, but possibly different, prices. They
also discuss the “first entry paradox” (see Ghosh and Buchanan 1988), according to
which the leader in a von Stackelberg game would typically have the advantage.

ReVelle (1986) was the first to formulate the highly influential MAXCAP
problem on networks, i.e., the problem, in which the follower locates facilities.
By modifying the objective, he reduced the formulation to a p-median problem. In
follow-up papers, Serra and ReVelle (1994, 1995) present the PRECAP problem that
solves the leader’s (rjp) centroid problems. The authors design heuristic algorithms
for the (bilevel) problem of the leader, and report computational experience.
The main contribution in the Hakimi (1990) book chapter is the introduction of
three allocation rules: binary (i.e., winner-take-all), partially binary (a customer
distributes his demand proportional to the inverse distances to the closest facilities
of the two firms), and the (fully) proportional rules, in which customers allocate
their demand inversely proportional to the distances to the facilities. The authors
also presents results with these allocation rules with respect to the node property.
Suárez-Vega et al. (2004) expand on Hakimi’s discussion of the three allocation
rules for essential and unessential demand at the nodes of the network. The authors
also derive finite dominating sets, including those for concave capture functions.
Serra et al. (1999) discuss the usual MAXCAP problem, but with an additional
constraint that ensures that each facility has at least a market share of a certain size.
This is done so as to guarantee the viability of the firm. Some computational testing
with two rules is provided; on rule, which checks viability first, then locates and
reallocated demand, and the second rules that does not do the checking. It appears
that Rule 2 has some advantages.

Spoerhase and Wirth (2008) tackle the notoriously difficult problem of (rjp)
centroids. In order to obtain any results (as Beckmann 1972 stated: “As everyone
knows, in location theory one is forced to work with simple assumptions in order
to get any results at all”), they restrict themselves to paths and trees. Along similar
lines, Eiselt (1998) investigates a von Stackelberg problem on a tree, given that the
perceptions of leader and follower regarding the demands at the nodes are different.
Solutions to the bimatrix game (in which each player has full knowledge about the
perception of his opponent) and the hypergame (in which neither competitor knows
about the perception of his competitor) are characterized. In general, if a firm can
assume that its competitor has researched the demand diligently, it can gain little
by finding out about the exact perception of its competitor. Marianov et al. (1999)
extend the MAXCAP to the location of hubs by a follower firm, assuming that
passengers choose the airline which offers the shortest route (distance) between
their origin and destination. Marianov and Taborga (2001) address the problem of
locating public health centers competing with private ones for affluent customers,
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assuming that the closest center captures the demand. Later, Marianov et al. (2004)
extend these results to facilities with waiting lines.

14.4.7 UD1b, Linear Market, Nash Equilibria

Consider now models that employ the customer choice rule UD1b, i.e., models
in which customers patronize the least expensive facility. Hotelling’s original
model belongs into that group, which, with its linear transportation costs, does
not exhibit an equilibrium. This was pointed out by d’Aspremont et al. (1979)
who also demonstrated that as soon as quadratic transportation costs are used, an
equilibrium does exist with maximum differentiation, i.e., the two facilities locate
at opposite ends of the market. Anderson (1988) provided further insight into the
case: he demonstrated that in case of linear-quadratic transportation cost functions,
i.e., cost functions that have a quadratic and a linear component, equilibria only
exist, if there is no linear component and the cost function is purely quadratic.
Hamoudi and Moral (2005) extend the analysis and investigate linear-quadratic
transportation cost functions with different parameters, which result in convex and
concave transportation cost functions, respectively. The authors then define profit
functions for the two cases. Because a price equilibrium does not exist for all pairs
of locations, the authors delineate pairs of locations, for which such an equilibrium
does exist. It turns out that the region, in which price equilibria exist in the concave
case is complete enclosed in the region, in which equilibria exist in the convex case.

Tabuchi and Thisse (1995) analyze Hotelling’s model with a quadratic transport
cost function and triangular customer density. Again, a subgame-perfect equilibrium
is sought. It turns out that no symmetric location equilibrium exists. Instead,
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(0, 0.3736) and (0.2527, 1), given that we restrict facility locations to the inside
of the market. Cremer et al. (1991) locate n facilities on a linear market. Given
quadratic transportation costs and the usual Hotelling assumptions (including the
“first simultaneous choice of location, then simultaneous choice of mill prices”),
the model includes m public and n – m private firms. While private firms maximize
their individual profits, public firms maximize the social surplus, which, with the
assumption of inelastic demand, reduces to the minimization of transportation
costs. For nD 2, one public and one private firm perform best. The two facilities
will locate at the social optimum of 1=4 and 3=4, respectively. For nD 3 and one
public facility, profits of the private firms are higher and general welfare is lower
than in the all-private case. With two public facilities, the social optimum is reached.
Some additional combinations of public and private facilities are also investigated.

An important strand of research considers the original Hotelling model, but
allows mixed strategies on prices and pure strategies for the location subgame.
Among the earlier attempts is the contribution by Osborne and Pitchik (1987), who
determine that facilities will locate at about 0.27 away from the ends of the market



384 H.A. Eiselt et al.

of unit length. Matsumura and Matsushima (2009) use heterogeneity in the form
of different production costs, and if those result in pure strategy equilibria not to
exist, then mixed strategy equilibria are used. Location equilibria with minimal and
maximal differentiation appear each with probability of 1=2.

Anderson (1987) showed that in the “first location, then price” two-stage game
if facility A were to lead in the first-stage location game, then it would be best
for its opponent B to be a leader in the second-stage pricing game. As a result,
firm A would locate at the center at the market, while firm B will locate at 0.131
(or, symmetrically, at 0.869). Anderson and Neven (1989) use the usual Hotelling
assumptions, including duopolists on a linear market, mill pricing and “first location,
then price” competition, but allow customers to purchase goods from both firms
according to some loss function and the use of a quadratic transportation cost
function. The result is maximal differentiation with the duopolists locating at the
two ends of the market. In another contribution, the same authors (Anderson and
Neven 1991) employ spatial price discrimination in a two stage “first location, than
quantity” procedure. The result is an equilibrium with minimum differentiation. The
authors also demonstrate that for more than two firms, given linear transportation
costs and a regularity condition, all firms will locate at the center of the market. Such
agglomeration is often observed in practice, see, e.g., Marianov and Eiselt (2014).
Hamilton et al. (1989) describe a Hotelling model with spatial price discrimination
and a linear price–quantity relation. The authors compare the results of Cournot
(i.e., quantity) and Bertrand (i.e., price) competition. Throughout, Cournot prices are
higher than those in Betrand competition, and aggregate welfare (i.e., total surplus–
total transport costs) is higher under Bertrand than under Cournot.

Anderson et al. (1997) drop the assumption of uniform demand and consider
logconcave demand functions, coupled with quadratic transportation costs. It turns
out that if customers are more spread out, prices are higher, and that symmetric
demand densities lead to symmetric locations of firms. Bester et al. (1996) reex-
amine d’Aspremont et al.’s (1979) Hotelling game without coordination (firm A
is assumed to locate to the left of firm B) and allow mixed strategies. An infinite
number of mixed-strategy Nash equilibria exists, and without coordination, the
result of maximum differentiation is invalidated. Eaton (1972) follows Smithies
(1941) by considering a model, which includes a linearly sloping price-demand
function. The author also uses a modified zero conjectural variation assumption,
according to which a firm will react unless undercut. In case of a short market, the
result will be agglomeration of the firms, as the length of the market grows, duopoly
locations approach the social optimum. Behavior in case of a triopoly is similar:
as the length of the market grows, agglomeration forces get weaker. The paper by
Kohlberg and Novshek (1982) examines a similar model.

There are a few contributions that examine spaces similar to a line: Eaton’s
(1976) model allows free entry on a circle, Kats’s (1995) model locates duopolists
on a circular market, whereas Tsai and Lai (2005) investigate the case of a market,
in which customers are distributed along the sides of a triangle, and Braid (1989,
2013) looks at the case of intersecting roadways, i.e., intersecting lines.
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14.4.8 UD1b, Plane, Nash Equilibria

Hurter and Lederer (1985) appear to have been among the few investigators to look
at the subgame-perfect Nash equilibrium on the plane. Their contribution includes
different cost functions for the firms and transportation costs that are proportional to
Euclidean distances. Firm are supposed to locate in a given convex set. The authors
show that there are no peripheral equilibrium locations. They also demonstrate
that the locations that minimize the social costs for serving the entire market are
a proper subset of equilibrium locations. Similarly, Tabuchi (1994) locates two
firms in the two-dimensional space and uses quadratic transportation costs. The
paper determines that for any convex set, there are no interior locational Nash
equilibria. The author then determines that in a rectangle, Nash equilibrium has
the facilities locate on opposite sides of the rectangle at their respective midpoints.
If the rectangle is very long, the Nash equilibrium is unique.

This is not the same as d’Aspremont’s et al. (1979) result, as while this result
shows maximum differentiation in one direction, it has minimum differentiation
in the other. Lederer and Hurter (1986) consider customers located in a subset of
the two-dimensional plane with some typically nonuniform demand distribution
and firms facing different production and transportation costs. Firms use spatial
price discrimination and customer purchase goods from the cheapest source (a
number of tie-breaking rules is specified). The resulting “location, then price” game
has an equilibrium, and it is shown that identical firms (i.e., those with different
production and transportation costs) do not co-locate. The analysis is then extended
to nonidentical forms that locate on a disk, and again, there is no co-location.

14.4.9 UD1b, Networks, Nash Equilibria

Lederer and Thisse (1990) examine a competitive network location model, in
which firms determine their respective locations and chosen technologies in stage
1, and the prices in stage 2. The authors use spatial price discrimination. In
the usual backward recursion, the paper proves that for all first stage location
and technology choices, the second stage pricing game has an equilibrium. The
socially optimal location and technology choices of the first stage are also a Nash
equilibrium. However, locational Nash equilibria may exist that are not socially
optimal. An important feature is that if the transport cost function is concave, then
the equilibrium locations will satisfy the node property. Labbé and Hakimi (1991)
also use delivered pricing and, in addition, a linear price–quantity relation. The two-
stage game locates facilities in stage 1, and determined quantities in stage 2. It turns
out that for any fixed pair of locations, the quantity game has an equilibrium. If it is
required that it is always profitable to supply any market of the graph with a positive
quantity of goods, then a location equilibrium exists at the nodes of the graph. If this
condition is not satisfied, then either a locational Nash equilibrium does not exist,
or it exists on the edges of the graph.
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14.4.10 UD1, Linear Market, Nash Equilibria

Among the earliest papers to follow Hotelling’s lead is the work by Lerner and
Singer (1937). The authors keep Hotelling’s linear market and the assumption on
linear transportation costs, but introduced a finite reservation price, and assert that
each firm assumes that its competitor’s location and price is fixed, and a firm only
reacts if undercut. In such a case, equilibria do exist. The authors also extend
their analysis to spatial price discrimination, which results in social optima. The
contribution by Economides (1986) is most interesting, as it includes Hotelling’s
(1929) and d’Aspremont et al.’s (1979) results as special cases. The utility function
includes a budget and the utility inherent in the product. The transportation costs
are the facility—customer distance raised to some power ’. The main result is
that for ’ less than about 1.26 (which includes Hotelling’s original case with
’D 1), no subgame-perfect Nash equilibrium exists, whereas for ’ greater than
about 1.26, it does exist (which includes d’Aspremont et al.’s case of ’D 2). More
specifically, for ’2 [1.26, 1.6667], the equilibrium locations are strictly interior,
while for ’� 1.6667, they are at the endpoints of the market.

Zhang (1995) discusses the case of a duopoly with quadratic transportation costs
and reservation prices, in which decision makers make their decisions in three
phases: locate first, then decide whether or not to adopt a price-matching policy, and
then determine the price. The paper shows that if both players use price matching,
high reservation prices lead to a unique Nash equilibrium “with tacit collusion on
prices.” Equilibrium locations for high reservation prices lie at the center of the
market (minimum differentiation). Not surprisingly, they find that price matching
reduces price competition. The paper of Smithies (1941), which has spawned many
followers, discusses a Hotelling model with elastic demand and reservation prices.
The author appears to have been the first to use “push” and “pull” forces (see also
Eiselt and Laporte 1995). He also found that higher transportation costs lead to
less competition, and as unit transportation costs increase, firm will move farther
apart. Finally, the interesting contribution by Guo and Lai (2014) adds an online
dealer to the brick-and-mortar duopolists. While customers purchasing from the
latter, face the usual transportation costs, consumers who deal with the online firm
have waiting/inconvenience cost. The authors demonstrate that an equilibrium does
indeed exist given a relation between the unit transportation costs and the unit
inconvenience cost.

14.4.11 UD1, Linear Market, von Stackelberg Solution

Bonanno’s (1987) model examines location, which an incumbent can use to deter
future entry of competitors. His model uses quadratic transportation costs, fixed
setup costs for new stores and finite reservation prices. The proposed three-stage
procedure has the incumbent decide how many stores to open, followed by the
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potential entrant who must decide whether or not to enter and, if yes, where to locate
his store (the choices of the follower are limited to zero or one store as to ensure
tractability), followed by price competition. Given high setup costs, the leader is a
monopolist and further entry is blocked. For moderate setup costs, the incumbent
locates two stores at the social optimum, and entry is deterred. For even lower setup
costs, entry can no longer be deterred by the incumbent.

Meza and Tombak’s (2009) model uses uniform distribution, “sufficiently
high” reservation prices, quadratic transportation costs, and potentially different
production costs. The paper suggests a three-stage model, in which timing (of
entry), location, and price are determined. The low-cost firm is the leader. It is
possible for a higher-priced firm that is driven from the market, to re-enter at a later
stage. With a small difference in costs, firms enter the market immediately with
maximal differentiation. For a somewhat larger cost difference, the low-cost leader
enters immediately, soon followed by the higher-cost firm, still maintaining maximal
differentiation. For an even larger cost difference, the low-cost leader locates at an
interior point, followed by its competitor that locates as far away as possible from
the leader. With a very high cost difference, the low-cost leader locates at the center
of the market and effective blocks all further entry.

14.4.12 UD1, Plane, Nash Equilibria

The paper by Irmen and Thisse (1998) considers a duopoly in d-dimensional real
space with weighted squared Euclidean distances. Customers have a utility function
that includes a reservation price, the product’s price, and the sum of weighted
distances between customer and the firm (the customer’s ideal point and the product
features, as this model is discussed in feature space). The key result is that if there
is a main characteristic of the product, then there is a unique equilibrium in the
location game, in which the two products exhibit maximum differentiation in that
feature, while otherwise being identical. The authors cite an interesting application
of their result in the news magazines Time and Newsweek, whose main difference
is in the cover story. The similarity of this result and that by Tabuchi (1994) should
also be noted.

14.4.13 UD2a, Linear Market, Nash Equilibria

The contribution by Eiselt (1991) appears to have been the first to use attraction
function of the type “facility attractiveness divided by an increasing function of
distance” for the purpose of locating competitive facilities. It is shown that as long
as the weights are unequal, no equilibrium exists. The author then allows repeated
sequential relocation. It turn out that facilities shuttle but converge towards fixed
points whose location depends exclusively on the weights: if weights are similar,
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the fixed points are close to center, otherwise they are close to the boundaries of
the market. The paper then introduces fixed and variable relocation costs, which are
subsequently used to force an equilibrium.

14.4.14 UD2a, Plane, von Stackelberg Solution

Drezner (1994b) locates a single new facility in the Euclidean plane with a winner-
take-all allocation rule. For each customer, the paper determines a circle around
the customer location, so that any facility located inside that circle will capture the
customer. Such circles are then constructed for all customer points. This is then used
to optimally locate a new facility with given attraction.

14.4.15 UD2a, Network, Nash Equilibria

Eiselt and Laporte (1991) investigate the existence of locational Nash equilibria on
a tree, given an attraction function of the type facility attraction divided by distance
to some power greater or equal to one. When the base attractions of the facilities
are equal, equilibria always exist with either both facilities at the median of the
tree (in case co-location is permitted) or with one facility at the median and the
other adjacent to it in the largest subtree spanned by the median. For unequal base
attractions, if co-location is permitted and the winner-take-all allocation rule applies,
then an equilibrium never exists; otherwise (i.e., with co-location permitted and an
allocation proportional to the attractions and in case location at the same vertex is
prohibited), equilibria may or may not exist.

14.4.16 UD2A, Network, von Stackelberg Solution

von Stackelberg problems in networks enjoy quite some popularity among oper-
ations researchers. The main reasons are their relative tractability (the problems
can, at least in their basic form, be formulated as integer linear programming
problems). This is very much in contrast to the leader’s problem, which is a bilevel
integer programming problem. Suárez-Vega et al. (2007) employ an attraction
function, defined as facility weight divided by an increasing concave function of
the distance. Customers purchase proportionally from the facilities they are most
attracted to, provided they are attracted to them by a measure that exceeds a
minimally acceptable threshold. The authors describe a finite dominating set. They
deal with the case of a single new facility, but the results generalize to multiple
facilities (even though the computations will be more complex). Benati (2003)
does not fix the number of facilities the follower is going to locate. Customer
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behavior is modeled by a function that relates a customer’s attraction to a facility
to the sum of this customer’s attractions to all facilities. This leads to a concave
fractional problem, which is solved by a branch-and-bound method and heuristic
concentration techniques.

14.4.17 UD2b, Network, von Stackelberg Solution

Aboolian et al. (2008) investigate a follower problem on a network with an
exponential attraction function. In order to capture a customer’s demand, the
follower must be more attractive than the incumbent by a positive constant. The
variable production costs are the same everywhere, and the fixed location costs are
location-dependent. Co-location is not permitted. The model is loosely based on
work by Serra and ReVelle (1999). The node property does not hold. The authors
conjecture that there is a finite dominating set, but are unable to determine it in
this nonlinear integer program. Marianov et al. (2008) replace the distance by travel
time, and add waiting time as a competitive factor.

Consider now results relating to the probabilistic choice rules introduced in the
previous section. Most papers are written by economists, who are mainly interested
in the existence of Nash equilibria on a linear market.

14.4.18 UP1, Linear Market, Nash Equilibria

In all of these contributions, the parameter � can be interpreted as the heterogeneity
of the customer tastes with respect to the product under consideration. de Palma
et al. (1987a) use fixed and equal prices and unit transportation costs t (in a
linear cost function) in their triopoly model. Their main result is that for small
values of �/t, there are no symmetric equilibria. As the value of �/t increases,
there are symmetric dispersed equilibria, a further increase results in dispersed and
agglomerated equilibria, while for large values of �/t, only agglomerated equilibria
exist. de Palma et al. (1985) consider the usual “first location, then price” game
with a linear transport cost function, and n facilities located on a linear market of
length L. The key result is that for large values of �/tL, there is clustering of the
facilities at equilibrium, while small values of �/tL lead to dispersion. Braid (1988)
locates n firms on a line segment, on which the demand occurs at five even spaced
the facilities. de Palma et al. (1987b) discuss a duopoly under delivered pricing
in their model with linear transportation costs with parameter t. Under sufficient
heterogeneity (i.e., �> t/8), a centrally agglomerated location-price equilibrium
exists. The result generalizes to n firms.

Finally in this category, we find the contribution by Anderson et al. (1992), which
compares the three main pricing strategies in a duopoly setting. Transportation costs
are assumed to be linear, and social surplus is defined as the sum of customer



390 H.A. Eiselt et al.

surplus and the profits of both firms. Starting with small values of the heterogeneity
factor �, there is no equilibrium for mill pricing, and as � increases, there are first
symmetric dispersed equilibria, and finally, for large values of �, there is a unique
centrally agglomerated equilibrium. The case of uniform delivered demand just has
no equilibrium for small�, and centrally agglomerated equilibria for larger values of
�, and spatial discriminatory pricing has equilibria everywhere: outside the quartiles
for very small values of � that move towards a central agglomeration for sufficiently
large values of �.

14.4.19 UP1, Plane, Nash Equilibria and von Stackelberg
Solutions

Choi et al. (1990) frame their discussion in the context of product positioning.
Customers have a stochastic utility function that results in a logit model, and firms
maximize their profit. It is known that as long as the profit functions are pseudo-
concave, the game has a Nash equilibrium. The paper uses variational inequalities
to analyze computational aspects. The key contribution is a von Stackelberg game
with one leader and multiple followers. The solution of a von Stackelberg game
in continuous space cannot be a Nash equilibrium, as is often the case in discrete
spaces.

14.4.20 UP1, Network, Nash Equilibria

de Palma et al. (1989) investigate a very general model, in which n firms compete
with each other, and each locates ni facilities. Customers first choose a firm they
want to patronize, and then they patronize the closest facility of that firm. (Note the
similarity of this rule and Hakimi’s “partially binary” choice rule.) The main result is
that if consumer tastes are “sufficiently heterogeneous,” then firm i will locate its ni

facilities at the ni-median. If a stronger condition on taste heterogeneity is satisfied,
then the resulting pattern—all firms locate their facilities at the ni-medians—is the
unique noncooperative Nash equilibrium. A special case is when all firms have the
same number of facilities to locate, in which case all firms will locate their facilities
at the same nodes, a case of minimum differentiation.

14.4.21 UP1, Network, von Stackelberg Solution

Benati (1999) discusses a maximum capture problem in the presence of heteroge-
neous customers. Given fixed demand, fixed and equal prices, as well as p leaders on
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the market whose locations are known, The paper demonstrates that the follower’s
objective function is submodular, and that, given appropriate redefining of the
problem’s parameters, the problem can be formulated as an r-median model.

14.4.22 UP2, Plane, von Stackelberg Solution

Drezner et al. (2002) discuss a medianoid problem in the plane, in which customers’
choices are modeled probabilistic and are based on attraction functions. The
follower’s objective is to minimize the probability that the new facility’s revenue
falls short of a given threshold. The optimal locations tend to markedly differ from
those that are the result of the maximization of the expected market share, especially
in those cases, in which the probability of failure is relatively small.

14.4.23 UP2, Network, von Stackelberg Solution

The main contribution of the work by Serra and Colomé (2001) is the comparison
of various customer choice models. The basic setting includes fixed demand at the
nodes of a network, one homogeneous good, and two profit-maximizing firms with
identical cost structures. There are presently q facilities on the market. One new
firm enters the market and attempts to locate p new facilities. Customer behavior
is modeled as follows. Model 1 is the usual all-or-nothing assumption based on
the closest facility, while Model 2 is a multiplicative competitive interaction Model
(Nakashani and Cooper 1974), which assumes that the proportion of demand of
customer i captured by facility j equals 1/customer-facility distance raised to the
power of a parameter that indicates a customer’s sensitivity with respect to distance,
divided by the sum of such expressions, taken over all facilities. Model 3 is the
standard proportional model, and Model 4 assumes partially binary preferences. It
turns out that the simple Model 1 appears to be most robust, meaning that it has
never more than an 8 % deviation from the solution that is based on the correct
customer behavior.

14.4.24 Summary, Extensions, and Outlook

This chapter has described the basic Hotelling model, outlined its major compo-
nents, described a three-stage procedure that models customer behavior, and has
surveyed the literature regarding results of different models. While many different
features have been included, most models, while they have some explanatory power,
lack many facets of customer decision-making.
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The most prominent difference between actual and assumed customer behavior
involves the customers’ trips to the chosen facility. In particular, all competitive
models assume that customers make their individual purchases on a special-single-
purpose trip, while this type of trip appears fairly rare in practice (with the exception
of those trips related to work or emergency). However, a significant proportion of
trips are multistop or multipurpose, since for some types of products consumers
perform comparison shopping, visiting more than one facility selling the same item;
or use the same trip to purchase more than one type or good. This is particularly true
in a situation with high costs of fuel and long commuting distances.

One alternative is a planned multipurpose trip with full information. In such a
case, a customer has set out with a plan, full knowledge about what to purchase
at the individual stores (based, e.g., on advertisements or on-line information) and
the distances between home base and individual stores (based on past experience).
Typically, such a trip resembles a traveling salesman tour; for a good recent
reference, see, e.g., Applegate et al. (2007). Planning multi-purpose shopping trips
has been shown to foster the agglomeration of facilities; see, e.g., Marianov and
Eiselt (2014).

A much more difficult extension concerns trips without full information. The
main aspect of this single- or multi-purpose trip involves feature search. On such
a trip, a customer will first patronize a store, obtain information about the features
of the desired product (often, but not exclusively, its price), and will then decide,
whether to purchase the product, or continue to some other store in order to
potentially obtain a better deal. Such a search will incur certain costs (in terms
of transportation costs and time), while expecting potential advantages in terms of
better features, such as a lower price, better quality, or additional features. How
long such searches will be will certainly depend, at least in part, on the amount of
money involved and on the utility of a continued search, as compared to that of
an immediate purchase on the basis of the information gathered up to this point.
Houses, vehicles, furniture and similar high-priced items are typically purchased
in this manner. Narula et al. (1983) present a model that includes price search,
while Braid’s (1996) noncompetitive location model that locates a main facility that
has the desired product, and branch facilities, which have the product with a given
probability. Customers can obtain information by means of phone search and visit
search, respectively.

An interesting strand of research involves flow capturing, or flow interception
models has been developed by Hodgson (1990), Berman et al. (1995), and Berman
and Krass (1998). These models replace the assumption of customers making single
trips to the chosen facility by assuming that they make purchases on their way
to work. Considering work as one part of shopping, this model is a multipurpose
shopping model with one fixed stop (work). Competing facilities will attempt to
maximize their capture of the flow of customers to work. One of the main issues in
these models involves the avoidance of double counting, i.e., customers who have
made a purchase at one facility, have their demand drop to zero and they will not
make another purchase on their trip. Typical applications for this type of behavior
include child care facilities and gas stations.
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Additional behavioral patterns involve window shopping and showrooming (the
practice of getting advice and information about a product at local stores and the
subsequent purchase at a presumably cheaper no-frills internet dealer). The latter
behavior has already caused some problems among local stores, even though the
aforementioned detrimental effects may be, at least partially, offset by the fact
that customers typically obtain detailed technical information online, alleviating the
local store from having (expensive) specialized sales staff.
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Chapter 15
Location-Routing and Location-Arc Routing

Maria Albareda-Sambola

Abstract This chapter overviews the most relevant contributions on location-
routing problems. Although there exist many different models where location and
routing decisions must be made in an integrated way, the chapter focuses on the
so-called classical location-routing problems without entering into the details of
other related problems that might be included in the location-routing area from
a more general point of view. Reflecting the imbalance in the existing literature
and available approaches, the case of problems with node routing is treated in
detail throughout the chapter, while results concerning arc routing problems are
concentrated in a single section.

Keywords Discrete location-routing • Heuristics • Mathematical programming

15.1 Introduction

Combined location-routing problems (LRPs) are location problems where the
service to customers is provided by a fleet of vehicles in less-than-truckload routes.
That is, more than one customer can be served in one vehicle route from a facility.
Therefore, the cost of servicing a customer in a solution of a location-routing
problem does not only depend on the facility it is assigned to, but also on the
route followed by the vehicle that services it. As happens with pure vehicle routing
problems, a basic distinction needs to be made when referring to LRPs, depending
on whether the customers are associated with nodes or links of the underlying
network. In the first case, in order to provide service to a customer, a vehicle has to
visit the corresponding node, whereas in the second case, the vehicle has to traverse
the corresponding link. Most of the literature on LRPs is in fact devoted to node
routing LRPs and only a few references are concerned with solving some variant
with arc routing. For this reason, the name location-routing problem is commonly
used to refer to problems where customers are located at the nodes, whereas the
term location-arc routing problem (LARP) is used when customers are located on
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the links of the network. In both cases, the need to design vehicle routes to evaluate
the cost of a set of facilities adds an extra level of difficulty to these problems which
are, in general, N P-hard.

The first works addressing LRPs date back to the 1960s (e.g. Von Boventer 1961
and Maranzana 1964). However, it was not until the end of the 1980s, when a solid
knowledge on both pure location and routing problems was achieved, that location-
routing became a really active field of research. The most common approach in the
first references addressing this type of problems was to make locational and routing
decisions in two separate steps, although it is well-known that this is most likely
to yield suboptimal solutions, as shown in Salhi and Rand (1989). For this reason,
more recent references address both decisions simultaneously.

LRPs arise as a natural extension of both, location and vehicle routing problems.
Moreover, there are several settings where LRPs appear naturally. For example,
Schittekat and Sörensen (2009) study the optimization problem arising in some
automotive companies that use third-party logistics partners for the distribution of
spare parts and model it as a large scale LRP. Other examples of real applications
where extensions of the LRP need to be solved are given in Ahn et al. (2012), where
the authors present a LRP with profits faced by NASA while planning planetary
surface exploration, or in Samanlioglu (2013) where hazardous waste management
of a Turkish region is dealt with by solving a multiobjective LRP.

Although there exist papers dealing with planar LRPs (see, for instance,
Manzour-al-Ajdad et al. 2012 or Salhi and Nagy 2009), most of the studies
concerning LRPs deal with discrete location problems. As a consequence, this
chapter will only consider this type of LRPs. Moreover, it does not pretend to be a
complete survey of all works in the literature addressing discrete LRPs, and only
presents the state of the art methods and the tools that have proven to be the most
suitable ones to tackle LRPs. For a complete recent survey on works concerned
with LRPs the reader is referred to Prodhon and Prins (2014). The reader can also
find a taxonomy of location-routing models and the related literature in Borges
Lopes et al. (2013). Earlier works are surveyed in Nagy and Salhi (2007). Given the
little attention that LARPs have received, this chapter is also mostly concentrated
on LRPs with node routing, and the most relevant issues concerning LARPs are
gathered in a single section.

The remainder of this chapter is organized as follows. Section 15.2 provides a
formal definition of the considered problems, together with the notation that will
be used throughout the chapter. The next two sections describe the main scientific
contributions on LRPs; Sect. 15.3 explores the different types of LRP formulations,
together with the most relevant valid inequalities used in exact methods, whereas
Sect. 15.4 is concerned with heuristic algorithms. The main findings regarding
LARPs are outlined in Sect. 15.5, and 15.6 concludes the chapter.
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15.2 Problem Definition and Notation

Let J be a set of customers and I a set of locations where facilities can be placed.
For each candidate location i 2 I , let fi be the cost of setting up a facility at i , and
for each arc .i; j / with i; j 2 I [ J , let `ij be its length or cost. The basic variant
of the LRP consists of choosing a set of locations from I and defining closed routes
starting and ending at one of these facilities such that each customer is visited by
exactly one of the routes, subject to side constraints. The goal is to minimize the total
cost, which typically includes the sum of facility set-up costs plus a traveling cost.
We also denote by G the underlying graph of an LRP instance formed by the set of
vertices V D I [ J and the set of links E D EIJ [EI , where EIJ contains all links
connecting one facility with one customer, andEJ contains all links connecting two
different customers. In what follows, both, directed and undirected formulations will
be presented. For ease of notation, E will be used indistinctly to denote the set of
(directed) arcs .i; j / or the set of (undirected) edges fi; j g. For any set of nodes
S � V , ES will denote the set of links with both endpoints in S.

If a weight wj is associated with each customer j 2 J , capacity constraints
can be considered by imposing a maximum weight Q delivered by a vehicle or
a maximum weight qi delivered from each facility i 2 I . From now on, Q will
be referred to as the vehicle capacity, and qj as the facility capacity and, for each
set of customers S � J , w.S/ will denote the total weight of customers in S :
w.S/ DP

j2S wj . LRPs considering either type of constraint, or both of them, are
referred to as Capacitated LRPs (CLRPs). Additionally, many papers consider fixed
vehicle utilization costs, g, and a limited size fleet indexed in set K . Figure 15.1
depicts an LRP solution.

Further considerations and characteristics of the main elements of the problem
(number of facilities to locate, types of customers, size and characteristics of the

Fig. 15.1 Example of an LRP solution
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vehicle fleet, time horizon, etc.) give rise to a large variety of LRPs. A comprehen-
sive recent classification, following the ideas already presented in Laporte (1988)
can be found in Borges Lopes et al. (2013).

The main difficulty when modeling LRPs through mathematical programming
formulations is to ensure that each vehicle tour is connected to exactly one
facility; that is, there are no closed tours visiting only customers, and there are
no paths connecting two different facilities. Therefore, incorporating the design of
vehicle routes within facility location problems entails a relevant additional level
of difficulty. Furthermore, as some authors argue, facility location is most often a
strategic decision, while vehicle routing is operational. These facts have discouraged
many researchers from considering combined LRPs. However, although routing
decisions can be readjusted relatively often once the facilities are established, the
possible configurations of the routes are strongly conditioned by these locations.
Therefore, if locations are chosen without taking into account the routing component
of the final system, initial savings in the facilities set up costs may not compensate
for large losses in distribution in the long run. Consider, for instance, the extreme
situation depicted in Fig. 15.2. In this example, assume that the capacity of any
of the two candidate facilities (black squares) is sufficient to serve all customers
(white circles), and there is only one vehicle available at each location, also with
a large enough capacity. If one single location is to be chosen and routing costs
are ignored (i.e. if an uncapacitated facility location problem is considered in this
setting) obviously, the facility will be located at 2. However, if a tour needs to
be defined to serve all the customers once this facility is set, its cost will be
2M C .11�M/=6 ' 7:76M . On the other hand, if the facility is set at node 1,
a better route, with cost 2�M ' 6:28M can be defined. Since distribution is most
often a repetitive activity, this extra routing cost for having chosen facility location
2 will be incurred regularly and, after some time, these accumulated extra costs can
be larger than the initial possible savings in set up costs.

Fig. 15.2 Influence of
facility location on the
routing costs

1

2

M

πM
6
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15.3 Formulations and Exact Algorithms

The available exact algorithms for solving LRPs rely on mathematical programming
formulations of the problem. Most of these formulations have been developed
around the existing formulations for discrete facility location problems and multi-
depot vehicle routing problems. Since the early formulations of Golden et al. (1977)
and of Perl and Daskin (1985), several LRP formulations have been studied. CLRPs
have received particular attention, since they are amongst the most basic LRPs. This
section will concentrate on these problems.

As mentioned above, the main difficulty when developing a formulation for an
LRP model is to guarantee that each route will start and end at one facility and
neither closed loops visiting only customers, nor paths connecting two different
facilities will be formed. For this reason, to a large extent, the developments
concerning formulations for LRP models are strongly related with the literature
on capacitated vehicle routing problems, especially, on multi-depots problems. As
happens in these problems, one can assume, without loss of generality, that an
optimal solution exists in which no edge of EI is used more than twice and the
only edges used twice, if any, belong to EIJ . This is actually the case of problem
instances in which the edge lengths satisfy the triangle inequality. Any instance
can in fact be easily transformed into an equivalent one satisfying this property, by
replacing the actual length of each edge with the length of a shortest path connecting
its endpoints.

Broadly speaking, the existing formulations for the LRP can be classified in
either of two families. On the one hand, one can find the so-called flow formulations,
where different sets of variables are used to determine the set of located facilities
and to describe the vehicle routes. On the other hand, one can find set covering
formulations, where one single variable is defined associated with each feasible
vehicle route. To a large extent, the appropriate solution method depends on the
formulation employed; while branch-and-cut approaches are the most suitable
for flow formulations, set covering formulations are in general better suited for
algorithms based on column generation. The most recently presented algorithms
combine column generation and cut generation methods.

15.3.1 Flow Formulations

Within the flow formulations, different models can be distinguished according to
two criteria: the number of indices of the variables used to define the vehicle routes
(including or not a third index to identify which vehicle uses a given link), and the
nature of these variables, known as commodity flow variables when they consider
the quantity of goods traveling on every link and as vehicle flow variables when they
only indicate whether it is used or not.
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An early example of a three-index vehicle flow formulation is that of Perl and
Daskin (1985). In fact, this reference defines a three-layer problem with suppliers,
distribution centers and customers where, in addition to the characteristics of the
basic LRP, the authors consider variable costs associated with the throughput at
each distribution center, and extra constraints limiting the length of the routes.
The proposed formulation, simplified by excluding these extra considerations, is
described next. To this end, the following binary variables will be used:

• For each i 2 I , yi indicates whether a facility is established at i .
• For each i 2 I; j 2 J , xij indicates whether customer j is served from facility i
• For each .i; j / 2 E and k 2 K , zijk indicates whether vehicle k uses arc .i; j /.

Using the above variables, a three index vehicle flow formulation for the LRP is
detailed next:

.LRP1/ minimize
X

i2I
fiyi C

X

k2K

X

.i;j /2E
`ijzijk (15.1)

subject to
X

k2K

X

i2V
zijk D 1 j 2 J (15.2)

X

j2J
wj
X

i2V
zijk � Q k 2 K (15.3)

X

j2J
wj xij � qiyi � 0 i 2 I (15.4)

X

k2K

X

i2S

X

j2V nS
zijk � 1 I � S � V (15.5)

X

j2V
zijk �

X

j2V
zjik D 0 k 2 K; i 2 V (15.6)

X

i2I

X

j2J
xijk � 1 k 2 K (15.7)

X

t2J
zitk C

X

t2V
zjtk � xij � 1 i 2 I; j 2 J; k 2 K (15.8)

yi 2 f0; 1g i 2 I (15.9)

xij 2 f0; 1g i 2 I; j 2 J (15.10)

zijk 2 f0; 1g .i; j / 2 E; k 2 K: (15.11)

Constraints (15.2) mean that each customer is reached by one vehicle route, while
constraints (15.3) and (15.4) are vehicle and plant capacity constraints, respectively.
Additionally, constraints (15.4) guarantee that customers will be served from opened
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facilities. Connectivity constraints (15.5) ensure that each vehicle route includes a
facility, while flow conservation constraints (15.6) ensure that z variables do indeed
define routes, and constraints (15.7) mean that these routes visit one single facility.
Finally, constraints (15.8) force the x and z variables to take consistent values.

Formulations of this type tend to be rather large, on the one hand, because
they have an exponential number of connectivity constraints and, on the other
hand, because they have O.jV j3/ variables. Connectivity constraints, as well as
additional valid inequalities, have traditionally been dealt with by using cutting
plane procedures, such as branch-and-cut. However, even after relaxing connectivity
constraints, the size of the formulations remains too large for solving realistic size
instances.

As an alternative, several authors have worked on formulations where vehicle
flow variables z do not include the third index to identify which vehicle uses each
arc. In fact, early works addressing the particular cases of the LRP with one single
depot or one single route per depot, such as Laporte and Nobert (1981) or Laporte
et al. (1983) already used this type of approach.

A very successful example of this type of formulations is presented in Belenguer
et al. (2011). In this case, the authors propose an undirected formulation that uses
the following variables:

• For each i 2 I , yi indicates whether a facility is established at i .
• For each edge fi; j g 2 E , z1ij indicates whether edge fi; j g is used exactly once

in the solution.
• For each edge fi; j g 2 EIJ, z2ij indicates whether edge fi; j g is used twice in the

solution.

Note that, as mentioned above, it can be assumed that the only edges that can be
traversed twice in an optimal solution belong to EIJ and, therefore, variables z2 are
only defined for those edges.

Additionally to the above variables, the following notation is used. For each set
of customers S � J , �.S/ is a lower bound on the minimum number of vehicles
needed to serve the aggregate demand of all customers in set S . The most commonly
used bound in this type of formulations is

�1.S/ D
2

666
1

Q

X

j2S
wj

3

777
:

However, instead of �1.S/ some authors have used the optimal value of the bin
packing problem defined by the weights of the customers in S, and bin size equal
to the vehicle capacity,Q. In what follows, this second bound will be referred to as
�2.S/.
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The formulation proposed in Belenguer et al. (2011) is

.LRP2/ minimize
X

i2I
fiyi C

X

fi;j g2E
`ijz

1
ij C

X

fi;j g2EIJ

2`ijz
2
ij (15.12)

subject to
X

i2I
2z2ij C

X

i2V nfj g
z1ij D 2 j 2 J (15.13)

z1ij C z2ij � yi i 2 I; j 2 J (15.14)
X

i;j2S
z1ij � jS j � �.S/ S � J (15.15)

X

s2S

X

j2JnS
z1sj C

X

t2Infig

X

s2S
.z1ts C 2z2ts/ � 2 i 2 I; S � J Iw.S/ > qi

(15.16)

z1jt C
X

s2S
.z1sj C z1st/C

X

s;u2S
z1su

C
X

i2I 0

z1ij C
X

i2InI 0

z1it � jS j C 2 S � J; I 0� I I j; t 2J nS

(15.17)
X

i2I
.z1ij C z2ij/ � 1 j 2 J (15.18)

yi 2 f0; 1g i 2 I (15.19)

z1ij 2 f0; 1g fi; j g 2 E (15.20)

z2ij 2 f0; 1g fi; j g 2 EIJ : (15.21)

The original formulation includes an extra term in the objective function to
account for fixed costs for the use of vehicles. Although this term has not been
included here, these costs can be easily included in the above formulation by
suitably modifying the lengths `ij for each fi; j g 2 EIJ .

In this formulation, constraints (15.13) are the degree constraints, which force
each customer to be visited by some route. Constraints (15.14) are imposed in order
to ensure that no route is rooted at a closed facility. Constraints (15.15) play two
major roles. On the one hand, they forbid solutions with subtours which are not
linked to any facility. On the other hand, they ensure that the vehicle capacities are
not exceeded. Note that only z1 variables are involved in these constraints since
each z2 variable is associated with one complete facility-customer-facility tour,
which will not violate the vehicle capacity constraints in any feasible LRP instance.
Facility capacities are imposed through constraints (15.16): if a set of customers
S cannot be fully served from a given facility i because of its capacity, then at
least one customer in S must be visited by a vehicle route rooted at a different
facility and, therefore, at least two edges must be used that link set S with customers
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outside it, or to some facility different from i . Additionally, since individual routes
are not identified using 2-index variables, it is necessary to explicitly forbid tours
connecting two different facilities. This is done by means of the so-called path
elimination constraints (15.17). Additional constraints (15.18) are needed to forbid
paths connecting two facilities through one single customer. The path elimination
constraints are similar to the chain-barring constraints introduced by Laporte et al.
(1988).

Using this formulation enriched with some families of valid inequalities,
Belenguer et al. (2011) were able to solve within less than 2 h instances of up
to 50 customers and five potential facilities.

15.3.2 Set-Partitioning Formulations

Set partitioning formulations for the LRP were introduced much later than flow
formulations. Indeed, papers addressing this type of formulations have appeared
relatively recently, in parallel with similar formulations for vehicle routing prob-
lems. The first such formulation was presented in Berger et al. (2007); the slightly
different formulation presented in Akca et al. (2009) was later used in Baldacci et al.
(2011) and further strengthened by Contardo et al. (2014a).

In order to present this type of formulations, some extra notation is required.
Variables now correspond to the possible vehicle routes that are feasible with respect
to the vehicle capacity and serve more than one customer. These routes will be
indexed in � D [i2I�i , where �i gathers the routes starting from facility i . The
return trips from a facility to a single customer will be dealt with separately. For
each route r 2 � , we will denote by `r the total length of the route, by wr its total
demand and, for each edge fi; j g 2 E , the coefficient aijr will denote the number of
times edge fi; j g is used in route r . Note that coefficients aijr are binary if route r is
elementary, but can take larger values if non-elementary routes are allowed.

The formulation exploited by Contardo et al. (2014a) uses the following binary
variables:

• For each i 2 I , yi indicates whether a facility is established at i .
• For each i 2 I and j 2 J , z2ij indicates whether a return trip from facility i to

customer j is part of the solution.
• For each route r 2 � , �r indicates whether route r is used.

.LRP3/ minimize
X

i2I
fiyi C

X

r2�
`r�r C

X

fi;j g2EIJ

2`ijz
2
ij (15.22)

subject to
X

r2�

X

i2V
aijr�r C

X

i2I
2z2ij D 2 j 2 J

(15.23)
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X

r2�i

X

fj;sg2E
.wj C ws/ajsr�r C

X

j2J
2wj z2ij � 2qiyi i 2 I

(15.24)

yi 2 f0; 1g i 2 I
(15.25)

z2ij 2 f0; 1g fi; j g 2 E
(15.26)

�r 2 f0; 1g r 2 �:
(15.27)

Here, constraints (15.23) ensure that each customer is either visited once by one
of the selected routes, or in a round trip from a facility. Facility capacities are stated
by constraints (15.24). For ease of notation, in these constraints, an artificial demand
wi D 0 is defined for each facility i .

Of course, in order to take advantage of this formulation it is essential to use a
method based on column generation since the number of � variables is exponential.
Therefore, a crucial issue when developing exact solution methods based upon this
formulation is the pricing problem. Here, the pricing problem consists of finding
negative cost vehicle routes in � . It belongs to the family of resource constrained
shortest path problems, which have been the focus of an abundant literature, mostly
because they appear as pricing problems in many column generation algorithms
where vehicle routes are involved (see, for instance, Desrochers et al. 1992; Feillet
et al. 2007; Righini and Salani 2008).

In Contardo et al. (2014a), which has been the most successful work so far, the
authors allow for solutions that contain cycles, as long as they contain at least
three nodes. For this case, to guarantee that even if � contains non-elementary
routes, these routes will not be part of a solution of LRP3, the authors replace
the degree constraints (15.23) by their following stronger variant, the strengthened
degree constraints:

X

r2�

X

kWfj;kg2E
ajkr�r C

X

i2I
z2ij � 1 j 2 J: (15.28)

On top of the efficiency of the algorithm used in the pricing problem, most
set partitioning based exact algorithms for the LRP also rely on the addition of
valid inequalities to tighten the bounds obtained during the branching process. In
particular, Baldacci et al. (2011) proved that all valid inequalities developed for
flow formulations can be transformed into valid inequalities for the set partitioning
formulation presented above, since, thanks to the distinction between routes visiting
one or more customers made in the variables definition, the following equalities
hold:

z1ij D
X

r2�
aijr�r 8fi; j g 2 E: (15.29)
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Additionally to this equivalence, when adapting valid inequalities originally
stated for flow formulations to set-partitioning formulations, some authors have used
the following result, first established in Laporte et al. (1985) in the context of vehicle
routing problems. Many of the valid inequalities derived for two-index formulations
for vehicle routing problems are concerned with a combination of connectivity and
capacity issues. In these cases, arguments of the type “at least � vehicles are needed
to satisfy the demand of all customers in S � J ” result in constraints of the form
“the border of S is crossed, at least, 2� times”, that is, the sum of flows on edges
with a single endpoint in S must be at least 2�. In these constraints, the number of
routes visiting S is overestimated using the flow in the cut-set of S , since there is
no way to compute the exact number of routes that visit S using the flow variables.
When equivalence (15.29) is used to derive valid inequalities for LRP3 from these
valid inequalities, the coefficient of each �r variable for a given set S is the number
of times route r traverses the border of S . Bearing in mind the rationale behind
the constraints, one can see that, actually, these coefficients can be changed to take
value 2 if route r visits at least one customer in S , and 0 otherwise. In general, this
results in stronger valid inequalities.

15.3.3 Valid Inequalities

It is impractical to list all the valid inequalities that have been more or less
successfully used for LRPs. Actually, most of the valid inequalities that have been
developed for vehicle routing problems have been adapted later for the case of LRPs
and in many cases, families of inequalities have been gradually strengthened or
extended. In what follows, we present a selection of the most recent families. For
more detailed information on these cuts and their evolution, the reader is referred
to Belenguer et al. (2011) and Contardo et al. (2013) for flow formulations, and to
Baldacci et al. (2011) and Contardo et al. (2014a) for set partitioning formulations.

15.3.3.1 y-Strengthened Capacity Cuts (y-SCC)

For S � J , and a route r 2 � , let the binary parameter �rS take value 1 if route r
visits at least one customer in S , and 0 otherwise. Given S 0 � S such that �1.S 0/ D
�1.S/, the following inequalities are valid:

X

r2�
�rS�r C

X

i2I

X

j2SnS 0

z2ij � �1.S/:

This family of constraints is a strengthening proposed in Contardo et al. (2014a)
of the previous y-Capacity Cuts derived in Belenguer et al. (2011).
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15.3.3.2 Set Partitioning Effective Strengthened Facility Capacity
Inequalities (SP-ESFCI)

As mentioned above, the main difficulty when modeling vehicle routes is to ensure
the connectivity of the solutions, especially in capacitated problems. When loca-
tional decisions must also be made, ensuring connectivity and capacity satisfaction
entails an extra degree of complexity. Most of the known valid inequalities focus on
vehicle capacities and rarely take facility capacities into account. SP-ESFCI aim at
putting facility capacity constraints in relation with the locational variables.

To this end, we need to extend the definition of �1 to take into account a set of
facilities. Given a set of customers S � J and a set of facilities H � I , we define

�1.S;H/ D max
n
0;
l

w.S/�Pi2H qi
Q

mo
as a lower bound on the number of vehicle

routes rooted at facilities outside H , needed to serve all customers in S , even if all
facilities in H provided their service to customers in S . Then, for S 0 � S � J , and
i 2 H � I with �1.S n S 0;H/ D �1.S;H/, the following inequality is valid:

X

i2InH

X

r2�i
�rS�rC

X

i2InH

X

j2SnS 0

z2ij � �1.S;Hnfig/Cyi
�
�1.S;H/��1.S;Hnfig/

�
:

(15.30)

The main idea behind these constraints is similar to that of the y-SCC inequali-
ties, but now, the constraint takes two different shapes depending on whether facility
i is opened or not.

15.3.3.3 Strengthened Framed Capacity Inequalities (SFrCI)

Moving back to vehicle capacities, we find the following valid inequalities, which
have been successively improved since some early papers on vehicle routing.

Given a subset of customers S � J , partitioned into disjoint subsets S D
fS1; : : : ; St g (S D [tsD1Ss), we denote by �3.S jS / the optimal value of the bin
packing problem defined as follows. For each set Ss in S , we define �1.Ss/ items of
sizeQ, except for the last one, which will have a size equal to w.S/�.�1.S/�1/Q,
and we define bin capacities equal to Q. Then, the SFrCI corresponding to frame
.S;S / is:

X

r2�
�rS�r C

tX

sD1

X

r2�
�rSs�r � �3.S jS /C

tX

sD1
�1.Ss/: (15.31)

These inequalities generalize and reinforce the capacity inequalities, which
force that the number of routes that visit a given set of customers S is at least
�1.S/. Note that when no location decisions have to be made, in the presence
of degree constraints, capacity constraints are equivalent to subtour elimination
constraints (15.15). Indeed, when for a given set S � J , S only contains one set,
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the corresponding SFrCI constraint is a capacity constraint (in this case, �3.S jS / D
�1.S/). So, the two terms in the left-hand side of (15.31) are identical, the two terms
in the right-hand side are also equal, and the inequality becomes:

X

r2�
�rS�r � �1.S/;

which is the basic expression of the capacity constraint.
As is the case for other sets of inequalities, the framed capacity inequalities

(FrCI) where originally developed for two-index flow formulations and later
adapted to the set-partitioning formulation by using Eq. (15.29), and reinforced by
modifying the coefficients of the �r variables as explained in the last section. The
FrCI for formulation LRP2 corresponding to .S;S / is

X

j2S

X

k2V nS
z1jk C 2

X

i2I

X

j2S
z2ij C

tX

sD1

X

j2Ss

0

@
X

k2V nSs
z1jk C 2

X

i2I
z2ij

1

A

� 2
 
�3.S jS /C

tX

sD1
�1.Ss/

!
: (15.32)

To illustrate that FrCI (and, therefore, SFrCI) is a broader set of inequalities that
can be stronger than the combination of capacity constraints for the individual sets
Ss , Fig. 15.3 gives an example of a fractional solution with S D fS1; � � � ; S4g,
where the capacity constraints for each of the Ss sets are satisfied, but the overall
FrCI constraint is violated. In this figure, customers are numbered from 1 to 7 and
wi is given inside each customer. Note that, in this example, we have S D [4sD1Ss ,
w.S/ D 20 andQ D 7, so that �1.S/ D 3. Thus, the capacity constraint for set S is
satisfied, since the total flow in edges with one endpoint in S equals its lower bound,
2 � 3 D 6. Also, for each set in the partition, w.Ss/ < Q, so that �1.Ss/ D 1 and the

Fig. 15.3 Example of
unsatisfied FrCI
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z-degree of Ss is 2 or larger in all cases. In contrast, the evaluation of con-
straint (15.32) gives

6C .2C 2C 3C 2/ � 2.4C 1C 1C 1C 1/;

which is clearly not satisfied. Here, note that in the computation of �3.S jS /, four
items were defined, with sizes 6; 6; 2 and 6, respectively, and the bin capacity was
set to 7.

The example of Fig. 15.3 also provides some insight in the way how the variable
definition in set partitioning formulations such as LRP3 forbids some fractional
solutions that are sometimes encountered when using flow formulations. Indeed,
the solution of the figure can be obtained in a relaxation of formulation LRP2, but it
is impossible to obtain it from formulation LRP3, since it cannot be decomposed as
the (fractional) combination of vehicle routes which are feasible with respect to the
vehicle capacity constraint.

15.4 Heuristic Algorithms

Many heuristics have been devised for different variants of LRPs. It is not the
goal of this chapter to enumerate and explore all these contributions. Instead, we
concentrate on the tools that have been most useful in those heuristics.

In the design of heuristics for LRPs it is very difficult to ignore the fact that
the problem combines decisions of two completely different natures: the location
of the facilities and the design of vehicle routes. Indeed, even solution methods
based on the use of neighborhoods tend to distinguish between the neighborhoods
that affect the set of facilities (add, drop or swap) and those that are typically
used in vehicle routing problems. A clear example of this fact is the variable
neighborhood search (VNS) heuristic recently proposed in Jarboui et al. (2013) for
an LRP with capacitated facilities and uncapacitated vehicles or the granular tabu
search heuristic presented in Willmer Escobar et al. (2013) for an LRP where both
vehicles and depots are capacitated. Possible exceptions are some algorithms based
on the construction of giant tours that encode both types of decisions, so that tour
modifications can alter both, facility locations and vehicle routes. Examples of this
type of algorithm are those of Yu et al. (2010) or Contardo et al. (2014b).

A commonly accepted classification for heuristic methods for LRPs, due to
Nagy and Salhi (2007), includes four categories, depending on how the interaction
between these decisions is taken into account in the design of heuristics.

• Sequential methods split the problem into its subproblems. First they solve the
location problem, using estimates of the routing costs that only take into account
the distances between customers and facilities and, they then solve the routing
problems defined at each opened facility with its assigned customers. Although
Srivastava and Benton (1990) show that this type of methods, that are typically
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quite fast, can produce pretty good solutions for some types of instances, in
general, they tend to have a rather poor behavior, and most authors moved fast to
other types of heuristics.

• Clustering-based methods partition the set of customers into clusters and then
they either locate a depot for each cluster and solve a vehicle routing problem
afterwards, or solve an auxiliary traveling salesman problem for each cluster
before locating the depots. Barreto et al. (2007) present a method of this type and
also analyze different clustering criteria in this context. A more recent example
of this type of method is the constructive procedure considered in the two-phase
method of Willmer Escobar et al. (2013) for the capacitated LRP. With their
algorithm, the authors have provided the currently best known solutions for many
of the existing benchmark instances (with up to 200 customers and 20 facilities)
but at a high computational cost since some instances required more than 10 min
of CPU time.

• Iterative methods can be seen as an evolution of sequential methods, where
several iterations of a sequential method are performed, and the information
obtained at each iteration is used to guide the methods used for choosing the
locations and designing the vehicle routes built at the next one. The algorithm
proposed in Prins et al. (2007) falls in this category. Using their algorithm, the
authors could find very good solutions (proven to be optimal in several cases) for
instances with up to 200 customers and 20 facilities, and the CPU time exceeded
1 min in only a reduced subset of the considered instances.

• In hierarchical methods the problem is considered in a more integrated way,
without splitting its components. However, the two decisions are not considered
to be equally important; facilities location is regarded as the main problem
decision and vehicle routes design as a secondary one. Many contributions fit
in this category (Albareda-Sambola et al. 2005; Ting and Chen 2013), especially
the most recent ones, since they tend to yield better results. Indeed, the results
obtained in Ting and Chen (2013) are comparable with those of Willmer Escobar
et al. (2013), although solutions are slightly worse in general terms, this is
compensated by somehow smaller CPU times.

Finally, one can also find in the literature one approximation algorithm for the
LRP in Harks et al. (2013). The proposed algorithm builds a solution by combining
the solutions to two auxiliary problems: and uncapacitated facility location problem,
and a minimum spanning tree. For this algorithm, they prove an approximation
factor of 4:38.
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15.5 Location Arc Routing

LARPs are typically defined on graphs G D .V;E/ that can be either directed,
undirected or, in the most general case, mixed. In G, a set I � V of selected
nodes where facilities may be established is given, together with a selected subset
of links R � E , known as required arcs or edges, which must be traversed to
receive some service. Common applications of LARPs include garbage collection,
road maintenance and postal delivery. For details on these applications, the reader
is referred to Ghiani and Laporte (2001).

In contrast to the volume of the literature on LRPs with node routing, LARPs
have been addressed only in a few references. This is due in part, to the difficulty
of these problems, but also to the fact that several strategies have been devised to
transform arc routing problems into node routing problems by suitably modifying
the underlying graph (see, for instance Pearn et al. 1987; Baldacci and Maniezzo
2006; Longo et al. 2006). However, significant differences exist between the
structures of the routes depending on whether service is provided at the nodes or
on the links. These differences suggest that, as happens with pure routing problems,
specific approaches for either type of problem may yield more efficient algorithms.

The most relevant difference between routes in node and arc routing is that in
node routing problems one can assume, without loss of generality, that no node
will be visited more than once, and the only links that may be traversed twice are
those connecting one facility with one customer, allowing thus for routes visiting
one single customer. In contrast, in arc routing problems, even required links may
be traversed more than once in optimal solutions. Also, the set of required arcs
induces a family of connected components of G which, as happens in pure arc
routing problems, play an important role in determining which links are susceptible
of being used more than once.

The first paper addressing a LARP is probably that of Levy and Bodin (1989)
in which a problem with uncapacitated vehicles arising in the USA postal services
was solved. To this end, the authors split the problem into its components and solve
them sequentially, following the scheme (1) location of facilities, (2) allocation of
required edges to facilities, and (3) route design.

Uncapacitated LARPs were also studied in Ghiani and Laporte (1998). One of
the first consequences of having uncapacitated vehicles is that, when the triangle
inequality holds, only one route needs to be built for each open facility. Moreover,
the authors show that, in this case, optimal solutions exist where all the required
edges belonging to the same connected component are served in the same route,
which allows to transform this particular LARP into different arc routing problems,
depending on whether the number of depots to locate is bounded or not. Applying a
branch-and-cut algorithm to these problems, the authors solve uncapacitated LARP
instances on graphs with up to 200 nodes. Since then, no exact algorithm for
any LARP variant has been proposed, and only heuristic algorithms for different
variants can be found in the literature. Actually, two mixed integer programming
formulations for capacitated LARPs were proposed by Doulabi and Seifi (2013):
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one for the general case, and a second one for the particular case where one single
depot has to be located. Another formulation is also presented in Borges Lopes
et al. (2014). However, these papers do not explore the possibility of solving these
formulations exactly, possibly because they all use flow variables, with up to four
indices in some cases, and therefore, they are rather large.

Bearing in mind the evolution of the formulations for the capacitated arc routing
problem (CARP), one might expect set partitioning formulations to allow for more
efficient solution methods. Indeed, the most successful algorithms for the CARP
so far, proposed by Bode and Irnich (2012) and Bartolini et al. (2013), both rely
on set partitioning formulations for this problem. In any case, further research is
still needed before reaching efficient exact methods for solving general LARPs.
Although it is true that research on the CARP has been very fruitful in the past
years, the subproblem obtained from a LARP when the set of facilities to open is
fixed is a CARP with multiple depots, which has hardly been studied, and for which
only heuristic algorithms exist (see, for instance, Amberg et al. 2000).

In the case of heuristic methods, the original approaches relying on the sequential
solution of the different subproblems of a LARP have evolved with a recent
focus on the use of metaheuristics. Doulabi and Seifi (2013) propose a simulated
annealing heuristic which, at each iteration, proceeds following an allocation-
routing-location scheme: it first builds a routing solution then tries to improve
the depot locations. More recently, Borges Lopes et al. (2014) have proposed and
compared several heuristics combining tabu search, variable neighborhood search,
and GRASP for which they also test different constructive heuristics. According
to their computational experiments, the combination of tabu search and GRASP
provides the best results. With this combination, they find optimal or near optimal
solutions in less than a minute, for instances with up to 140 nodes and 190 required
edges. They also propose a set of benchmark instances for future comparisons.

In contrast to the scarce literature available on the LARP, a relatively large
variety of related problems have been studied. This is the case, for instance, of
the capacitated arc routing problem with intermediate facilities presented in Ghiani
et al. (2001). In this case, no location decisions need to be made, and a single depot
is considered, like in the CARP, but several facilities are available in the network
where a vehicle can unload the demand collected at the required edges before the
loaded demand exceeds the vehicle capacity.

Other examples are the capacitated arc routing problem with refill points or the
synchronized arc and node routing problem, presented in Amaya et al. (2007) and
Salazar-Aguilar et al. (2013), respectively. In these cases, an additional fleet of
vehicles is available to refill the main fleet, and the locations where these vehicles
meet each other need to be determined when designing their respective routes. These
problems differ in the types of routes performed by the vehicles used to replenish
the service vehicles.

A recent paper on the directed profitable location rural postman problem (Arbib
et al. 2014) also deserves a mention. This is an uncapacitated LARP where required
arcs have associated profits and the decision maker can choose whether or not to
serve any of them, taking into account the differences between the profit generated
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and the cost of reaching the arcs. Using a branch-and-cut algorithm, the authors can
solve to optimality instances involving up to 140 nodes and 190 required arcs.

15.6 Conclusions

This chapter has summarised some the most relevant research contributions on LRPs
and LARPs. As it has been shown, the different research directions followed in the
study of formulations and exact algorithms for LRPs have finally converged to one
single proposal, which has been able to incorporate most of the relevant contribu-
tions in the field so far. In the case of heuristic algorithms, the research activity has
recently been reactivated, giving raise to several competitive algorithms in the last
years. The most successful approaches involve one or several metaheuristics, and the
current activity in this area gives the impression that relevant further improvements
can be expected in the near future.

In contrast, research on LARPs is still in its early stages. Exact algorithms have
only been proposed for very particular cases, and even in the case of heuristics the
literature is rather scarce. Keeping in mind the evolution followed by the research on
LRPs, especially in what concerns exact algorithms, further research is still required
on arc routing problems with multiple depots before it is possible to devise efficient
algorithms for solving LARPs.
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Chapter 16
Location and Logistics

Sibel A. Alumur, Bahar Y. Kara, and M. Teresa Melo

Abstract Facility location decisions play a critical role in designing logistics
networks. This chapter provides some guidelines on how location decisions and
logistics functions can be integrated into a single mathematical model to optimize
the configuration of a logistics network. This will be illustrated by two generic
models, one supporting the design of a forward logistics network and the other
addressing the specific requirements of a reverse logistics network. Several special
cases and extensions of the two models are discussed and their relation with
the scientific literature is described. In addition, some interesting applications
are outlined that demonstrate the interaction of location and logistics decisions.
Finally, new research directions and emerging trends in logistics network design
are provided.

Keywords Forward logistics network design • Reverse logistics network design •
Models • Applications

16.1 Introduction

Logistics network design (LND) and facility location decisions are closely interre-
lated. The latter are prompted by the need either to build a new logistics network
or to re-design a network that is already in place. When a company enters new
markets or grows into new product segments, a new logistics network has to be
designed. However, “green field” projects are less frequent compared with re-design
initiatives. Changing market and business conditions compel a company to modify
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the physical structure of its logistics network from time to time. Major drivers
of network re-design projects comprise variations in the demand pattern and its
spatial distribution as well as increased cost pressure and service requirements.
Moreover, mergers, acquisitions, and strategic alliances also trigger the expansion
or reconfiguration of a logistics network in order to exploit the benefits and
synergies of integrating the acquired operations. Typically, re-design activities take
the form of opening new facilities (e.g., to be closer to new markets) and closing
existing facilities (e.g., to consolidate operations). As highlighted by Ballou (2001)
and Harrison (2004), well-conceived re-design decisions can result in a 5–15 %
reduction of the overall logistics costs, with 10 % being often achieved.

The (re-)design of a logistics network is a complex undertaking. It concerns
not only determining the number, size, and capacity of facilities (e.g., plants and
warehouses) to be operated but it also involves planning and integrating a manifold
of logistics functions that such facilities will perform. These functions range from
procurement of raw materials, transformation of these materials into semi-finished
and end products, and the delivery of finished products to customers through one or
several distribution stages. Depending on the industrial context, strategic decisions
may also concern the collection and recovery of product returns.

This chapter provides a holistic approach to strategic network planning by
integrating facility location decisions with decisions relevant to the configuration of
a logistics network. The integrated view will be illustrated by two general modeling
frameworks for designing forward and reverse logistics networks.

The remainder of the chapter is organized as follows. Section 16.2 presents
a comprehensive model for logistics networks with forward flows. Due to its
generic features, the model applies to a wide range of situations. Its relation with
other models proposed in the literature is established and extensions are discussed.
Section 16.3 focuses on reverse logistics network design (RLND) and introduces a
generic mathematical formulation for the design of a multi-purpose reverse logistics
network. Furthermore, some special cases and extensions of the proposed model are
presented. Section 16.4 addresses various representative applications of forward and
reverse LND problems from different areas. Finally, in Sect. 16.5 future research
directions are discussed.

16.2 A General Logistics Network Design Model

We introduce a base model that captures the main features of an LND problem.
The starting point is either a potential framework for a new network structure or an
existing network whose physical structure is to be re-designed. To this end, a general
network typology, as depicted in Fig. 16.1, is considered. Any number of facility
layers and any system of transportation channels can be modeled. The network
entities are categorized in so-called selectable and non-selectable facilities. The
former group includes a set of facilities already in place, that could be closed, and a
set of potential locations for establishing new facilities. In contrast, non-selectable
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Fig. 16.1 General structure of a logistics network

facilities comprise facilities that are not subject to location decisions. Typically,
such facilities include suppliers as well as existing plants and/or warehouses that
should be maintained. In addition, customer zones are viewed as special members
of this set as they have demand requirements for multiple commodities. As shown in
Fig. 16.1, no restrictions are imposed on the availability of transportation channels
for the flow of materials through the network. In particular, direct commodity flows
from upstream sources to customer zones (or to facilities not immediately below in
the hierarchy) are possible as well as flows between facilities in the same echelon.
In this rather general network typology, procurement, production, distribution, and
customer service decisions are to be made along with facility location and sizing
decisions. The mathematical model in Sect. 16.2.2 captures the aforementioned
features. The required notation is first introduced in Sect. 16.2.1. Several special
cases and extensions are discussed in Sect. 16.2.3.

16.2.1 Notation and Definition of Decision Variables

Table 16.1 introduces the index sets that are used in the base model. In addition to the
various types of network entities, also multiple commodities are considered, ranging
from raw materials and intermediate products to finished goods. Moreover, different
kinds of resources may be available for manufacturing and handling commodities.

Table 16.2 describes input parameters related to logistics operations. Multi-stage
production processes can be taken into account through bills-of-materials (BOMs).
In this case, the relationships between components and parent items are defined
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Table 16.1 Index sets

Symbol Description Index symbol

N Set of potential locations for new facilities i

E Set of existing facilities that could be closed i

I Set of selectable facilities, I D N [ E i

J Set of non-selectable locations (e.g., customer zones) j; j 0

L Set of all entities, L D I [ J `; `0

P Set of products p; q

M , H Set of manufacturing, resp. handling, resources m; h

Table 16.2 Logistics parameters

Symbol Description

d`p Demand of location ` 2 L for product p 2 P (typically, dip D 0 for i 2 I )

˛`qp Number of units of product q 2 P required to manufacture one unit of product
p 2 P (q ¤ p) at facility ` 2 L

	`mp Number of units of resource m 2 M required to manufacture one unit of product
p 2 P at facility ` 2 L

�`hp; O�`hp Number of units of resource h 2 H required to handle one unit of product p 2 P

upon its arrival at, resp. shipment from, facility ` 2 L

KMm; KHh Capacity of manufacturing resource m 2 M , resp. handling resource h 2 H

EMm; EHh Maximum increase in capacity of manufacturing resourcem 2 M , resp. handling
resource h 2 H

by given parameters. Capacities of service facilities are modeled in a general way
through manufacturing and handling resources. Three different relation types are
considered. In a many-to-one relationship, several resources are available at the
same facility. Some resources may be product-specific (e.g., a machine dedicated to
a given item) while others may be shared by multiple commodities (e.g., production
line or order picking system). A one-to-one association corresponds to the classical
way of modeling capacity in facility location models (e.g., storage space in a
warehouse). One-to-many relationships can also be modeled, although these are less
common. This could be the case, for example, of a team of experts responsible for
several production lines in different facilities. Resource availability can be increased
at additional expense, e.g., through overtime work or leasing extra storage space.
Resource consumption is described by specific parameters. In the case of handling
resources, the same type of equipment (e.g., forklift truck) may be required with
different intensity to unload incoming goods at a facility and load goods to be
shipped from the same facility.

Table 16.3 summarizes all facility and logistics costs. Facility costs are related
to establishing new facilities and closing existing facilities, and typically reflect
economies of scale. In addition, facility operating costs represent, for example,
business overhead costs such as staff and security costs. Logistics costs are incurred
for purchasing items from external sources (e.g., procurement of raw materials),
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Table 16.3 Cost parameters

Symbol Description

FCi Fixed setup cost of establishing a new facility in location i 2 N

SCi Fixed cost of closing existing facility i 2 E

OC` Fixed cost of operating facility ` 2 L

BC`p Unit cost of buying product p 2 P at facility ` 2 L from an external source

PC`p Unit cost of producing product p 2 P at facility ` 2 L

TC``0p Unit cost of transporting product p 2 P from facility ` 2 L to facility `0 2 L

(` ¤ `0)

MCm; HCh Unit cost of expanding manufacturing resource m 2 M , resp. handling resource
h 2 H

DC`p Unit penalty cost for not serving demand of facility ` 2 L for product p 2 P

Table 16.4 Decision variables

Symbol Description

yi 1 if the selectable facility i 2 I is operated, 0 otherwise

s`p Quantity of product p 2 P purchased at facility ` 2 L from an external source

z`p Quantity of product p 2 P manufactured at facility ` 2 L

x``0p Quantity of product p 2 P shipped from facility ` 2 L to facility `0 2 L (` ¤ `0)

wm; wh Number of extra capacity units of manufacturing resource m 2 M , resp. handling
resource h 2 H

u`p Quantity of unsatisfied demand of location ` 2 L for product p 2 P

for manufacturing commodities, and for distributing multiple products through the
network. The latter costs may also include charges for handling goods at the source
facility and at the destination facility (e.g., order picking and warehousing costs).
Furthermore, additional costs are considered for resource expansion. Penalty costs
are also incurred for failing to meet customer demand. These costs represent the
additional expense for outsourcing unfilled demand.

Finally, strategic decisions on facility location and logistics operations are ruled
by the variables in Table 16.4.

16.2.2 A Mixed-Integer Linear Programming Model

Under the assumption that all inputs are known non-negative quantities, the logistics
network (re-)design problem can be formulated as a mixed-integer linear program
(MILP) as follows.

The objective function (16.1) describes the aim of the decision-making process,
namely to identify the network configuration with the least total cost. To this end,
fixed costs associated with opening, closing, and operating facilities are considered.
The latter include a fixed cost term for maintaining facilities that are not subject to
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location decisions (i.e.,
P

j2J OCj ). Variable costs account for resource expansion
and for material procurement, production, and distribution. In addition, penalty costs
are incurred to unfilled demand.

.P1/ Minimize
X

i2N
FCi yi

C
X

i2E
SCi .1 � yi /C

X

i2I
OCi yi C

X

j2J
OCj C

X

m2M
MCm wm

C
X

h2H
HCh wh C

X

`2L

X

p2P
BC`p s`p C

X

`2L

X

p2P
PC`p z`p

C
X

`2L

X

`02Lnf`g

X

p2P
TC``0p x``0p C

X

`2L

X

p2P
DC`p u`p (16.1)

subject to s`p C
X

`02Lnf`g
x`0`p C z`p D

X

q2P
˛`pq z`q C

X

`02Lnf`g
x``0p C d`p � u`p; ` 2 L; p 2 P

(16.2)
X

`2L

X

p2P
	`mp z`p � KMm C wm; m 2M (16.3)

X

`2L

X

p2P
�`hp s`p C

X

`2L

X

`02Lnf`g

X

p2P

� O�`hp C �`0hp

�
x``0p

� KHh C wh; h 2 H (16.4)

0 � wm � EMm; m 2 M (16.5)

0 � wh � EHh; h 2 H (16.6)

0 � u`p � d`p; ` 2 L; p 2 P (16.7)

0 � sip �M yi ; i 2 I; p 2 P (16.8)

0 � zip �M yi ; i 2 I; p 2 P (16.9)

0 � xi`p �M yi ; i 2 I; ` 2 L n fig; p 2 P (16.10)

0 � x`ip �M yi ; ` 2 L n fig; i 2 I; p 2 P (16.11)

sjp � 0; zjp � 0; xjj0p � 0; j; j 0 2 J .j ¤ j 0/; p 2 P
(16.12)

yi 2 f0; 1g; i 2 I: (16.13)

Constraints (16.2) are the usual flow balance equations. The inbound flow of
an item to a facility consists of procuring or producing the item at the facility or
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receiving it from other locations. The outbound flow results from using the product
as a raw material to manufacture other commodities, distributing the item to other
facilities, or serving demand in case the location is a customer zone. Inequali-
ties (16.3), resp. (16.4), guarantee that the usage of manufacturing, resp. handling,
resources does not exceed the available capacity. Constraints (16.5)–(16.6) stipulate
that capacity expansions must be within given limits. Constraints (16.7) rule
the maximum amount of unsatisfied demand. Inequalities (16.8)–(16.11) ensure
that procurement, production, and distribution activities only occur at operating
facilities. A sufficiently large constant M is used in these constraints which can
be adjusted depending on each specific situation. Typically, M is replaced by
the maximum quantity that can be processed by a facility with respect to all
product types. Finally, constraints (16.12) are non-negativity conditions for the
logistics operations in non-selectable locations, while constraints (16.13) are binary
requirements for the location variables.

Although the above problem is NP-hard, being a generalization of the simple
plant location problem (see Krarup and Pruzan 1983), Melo et al. (2008) could solve
medium and large-sized randomly generated instances to optimality with general
purpose optimization software within reasonable time. To analyze the quality of the
MILP formulation, the linear relaxation bound was also compared with the optimal
solution of the tested instances. In general, a relatively small gap could be observed.
These findings have important practical implications, since managers often need to
base their decisions on the results of several scenarios. Hence, for a company to
be able to perform “what-if” analysis and thereby identify good quality (or even
optimal) solutions with an acceptable level of computational effort is a major step
towards better decision support.

16.2.3 Special Cases and Model Extensions

Historically, researchers have focused relatively early on the design of distribution
systems with at most two facility layers (e.g., plants and warehouses). In these
simple networks, decisions were mostly confined to facility location and distribution
operations. The contribution by Geoffrion and Graves (1974) is such an example.
In recent years, the trend has been towards the development of more comprehensive
models that integrate location decisions with supplier selection, production plan-
ning, technology acquisition, inventory management, transportation mode selection,
and vehicle routing, just to mention some important logistics functions considered
in this area (see Melo et al. 2009 for a comprehensive review). In many cases, the
proposed models combine strategic decisions (e.g., location and capacity choices)
with tactical decisions (e.g., inventory and transportation management) or even
operational decisions (e.g., vehicle routing). Usually, the interplay of different
planning levels can only be captured at the cost of increased model complexity.
This will be illustrated in Sect. 16.4 by three applications.
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a)

b)

Fig. 16.2 Facility sizing over multiple periods (the crossed symbol indicates a closed facility)

The generic formulation .P1/ comprises some of the aforementioned features
and it can also be adapted or extended to include further aspects relevant to LND.
For example, it is easy to add single-sourcing requirements to .P1/ to ensure that
the demand of each customer zone for a particular product is entirely satisfied
from a unique facility. A straightforward extension of .P1/ is also to embed the
(re-)design of a logistics network in a multi-period planning horizon. Such a
setting is meaningful since the establishment of new facilities is typically a long-
term project involving time-consuming activities and requiring the commitment of
substantial capital resources. In this case, strategic decisions can be constrained by
the budget available in each time period. Logistics decisions will be in turn impacted
by the location choices. Fleischmann et al. (2006) and more recently Correia et al.
(2013) included this feature in their dynamic network design models.

A multi-period setting is also appropriate for planning the re-design of a logistics
network that is already in place. In this context, existing facilities may have their
capacities expanded, reduced or even moved to new sites over several time periods
as illustrated in Fig. 16.2 (the bars in the figure next to the facilities indicate their
size). In turn, new facilities can be established through successive sizing. A gradual
transfer of production and/or storage capacities from existing locations to new sites
ensures a smooth implementation of relocation plans and avoids logistics operations
from being disrupted. Melo et al. (2006, 2012, 2014) proposed several models and
heuristics for this special form of network re-design.

In the mathematical model .P1/ all inputs (i.e., logistics and cost parameters)
are taken as known quantities. As noted by Melo et al. (2009), most of the
research dedicated to LND problems focuses on deterministic formulations. This
is explained by the complexity posed by many of these problems and the serious
computational hurdle that arises when the problem size becomes large. In the last
two decades, increasing attention has been given to the development of new models
that incorporate the uncertainties inherent to decision-making in LND (see Klibi
et al. 2010). This is the case, for example, of the multi-echelon LND problem
addressed by Santoso et al. (2005). Uncertainty is captured with respect to supply
and demand quantities, resource capacities, and processing as well as transportation
costs. Recently, Huang and Goetschalckx (2014) developed a scenario planning
approach for a similar problem focusing on solution robustness. The goal is to obtain
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a network configuration such that the solution values do not substantially vary over
different scenarios. Several authors also included stochastic problem characteristics
in a multi-period setting such as Aghezzaf (2005), Pan and Nagi (2010), and Nickel
et al. (2012).

A further relevant aspect in strategic network design is the integration of location
decisions with inventory management. Demand uncertainty and risk pooling play
an important role in this context. Inventory decisions concern working inventories
at storage locations (i.e., the amounts of products that have been ordered from sup-
pliers but not yet requested by customers) and safety stocks. The latter are intended
as a buffer against stockouts during ordering lead times. Shen (2005), Ozsen et al.
(2009), and Shu (2010) study the trade-off between inventory, transportation, and
fixed costs to locate warehouses and allocate customers. Combining inventory man-
agement and location decisions into a single model often results in mixed-integer
non-linear programming formulations that can only be solved for small problem
instances. Recently, Tancrez et al. (2012) developed a heuristic procedure that is able
to solve large-scale multi-echelon location-inventory problems comprising plants,
distribution centers, and customers.

Finally, the growth in globalization has led to the emergence of global supply
chains, that is, worldwide networks of suppliers, manufacturers, distribution cen-
ters, and retailers. Consequently, the integration of financial considerations with
location and logistics decisions has gained increasing importance in network design.
Financial factors comprise, among others, taxes, duties, tariffs, exchange rates, and
transfer prices. Meixell and Gargeya (2005) discuss various contributions in this
area while Wilhelm et al. (2005) propose a comprehensive model for the design of
a logistics network under the North American Free Trade Agreement (NAFTA).

16.3 A General Reverse Logistics Network Design Model

Reverse logistics refers to all operations involved in the return of products and
materials from a point of use to a point of recovery or proper disposal. The purpose
of recovery is to recapture value through options such as reusing, repairing, refur-
bishing, remanufacturing, and recycling. Reverse logistics includes the management
of the return of end-of-use or end-of-life products as well as defective and damaged
items, or packaging materials, containers, and pallets.

Major driving forces behind reverse logistics activities include economical
factors, legislations, and environmental consciousness. As stated by De Brito and
Dekker (2004), companies become active in reverse logistics because they can make
a profit and/or because they are forced to focus on such functions, and/or because
they feel socially motivated. These factors are usually intertwined. For example, a
company can be compelled to reuse a certain percentage of components in order to
achieve a recovery target set by the legislation. This will lead to a decrease in the
cost of purchasing components and in waste generation. Jayaraman and Luo (2007)
suggest that proper management of reverse logistics operations can lead to greater
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profitability and customer satisfaction, and at the same time be beneficial to the
environment.

Many actors are involved in the design and operation of a reverse logistics
network. Even though extended producer responsibilities present in the legislations
in various countries give the responsibility of recovering used products to original
equipment manufacturers, governments need to establish the necessary infra-
structure. Responsibilities can be shared among different parties, such as producers,
distributors, third-party logistics providers, or municipalities, in designing and
operating the reverse logistics networks.

In a reverse logistics network, end-of-life or end-of-use products can be gener-
ated at private households and at commercial, industrial, and institutional sources,
which are referred to as generation points. Products are usually collected at special
storage facilities called collection or inspection centers. Products are then sent
for proper recovery through reusing, repairing, refurbishing, remanufacturing, or
recycling. Inspected or recovered products and components can then be sold to
suppliers, to (re)manufacturing facilities, or to customers in the secondary market.
A generic reverse logistics network is depicted in Fig. 16.3.

Unlike forward logistics networks, where demand occurs at the lower echelon
facilities, in reverse networks demand (for recovery) arises at the upper echelon
facilities. However, a reverse logistics network is not a mirror image of a forward
network. In addition to the typical forward supply chain actors, different actors
and facilities are involved in reverse logistics networks, such as disposers, reman-
ufacturers, and the secondary market. Moreover, unlike forward networks, which
are mostly driven by economical factors, there are further factors motivating the
establishment of reverse logistics networks such as environmental laws.

In Sect. 16.3.2, a generic mathematical formulation for the design of a multi-
purpose reverse logistics network is presented. The required notation and the

Fig. 16.3 A generic reverse logistics network
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decision variables are first defined in Sect. 16.3.1. Some special cases and possible
extensions of the proposed model are additionally discussed in Sect. 16.3.3.

16.3.1 Notation and Definition of Decision Variables

The notation used in the generic RLND model is analogous to the notation
introduced in Sect. 16.2.1 for the forward LND model. Similar to the forward
network design problem, multiple commodities are considered in the configuration
of the reverse logistics network. These are represented by the set P , which may
include used, inspected, repaired, or refurbished products, components, or raw
materials. In order to represent a different state (inspected, repaired, refurbished,
etc.) of a certain item, a different product type needs to be defined within the set
P . Table 16.5 describes all index sets that are required for modeling the RLND
problem.

The set of available recovery options may include conventional options, such as
repair, refurbish, and recycle as well as other options such as inspection, disassem-
bly, selling to suppliers, to the secondary market or to external (re)manufacturing
facilities, and disposal. Even though the latter options may not be regarded as
recovery alternatives, in order to provide a generic model incorporating all the
decisions present in real-life reverse logistics networks, they are included in the
set R. Observe that some recovery options may be operated by third-party logistics
providers. These external facilities belong to the set Jr . Moreover, it is assumed that
generation points are also included in this set of non-selectable facilities.

Table 16.6 introduces the required parameters. Transitions between the stages
of products and reverse BOMs are taken into account by the parameter ˇ. For
example, a damaged product can be converted into a repaired product through the
recovery option repair, or a used product can be disassembled into its components
at a disassembly facility. Each recovery option has a given capacity which can be
expanded at selectable facilities. Revenues may be obtained through some recovery
options, e.g., by selling products or components to recycling facilities, to the

Table 16.5 New index sets

Symbol Description Index symbol

R Set of recovery options (e.g., repair, refurbish, recycle) r

Nr Set of potential locations for recovery option r 2 R i

Er Set of existing facilities with recovery option r 2 R i

Ir Set of selectable facilities with recovery option r 2 R, Ir D Nr [ Er i

Jr Set of non-selectable locations with recovery option r 2 R j; j 0

(e.g. secondary market, disposal)

L Set of all locations, L D [r2R .Ir [ Jr / `; `0
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Table 16.6 New parameters

Symbol Description

g`p Amount of product p 2 P generated at location ` 2 L

ˇrqp Number of units of product p 2 P obtained by processing one unit of product q 2 P

(q ¤ p) using recovery option r 2 R

KRr` Capacity of recovery option r 2 R at location ` 2 L

ERri Maximum increase in capacity for recovery option r 2 R at location i 2 Ir

RTrp Recovery target for product p 2 P with recovery option r 2 R

REr`p Revenue from recovering one unit of product p 2 P with recovery option r 2 R at
location ` 2 L (e.g., revenue from recycling or from the secondary market)

RCr`p Cost of recovering one unit of product p 2 P with recovery option r 2 R at location
` 2 L

FCri Fixed setup cost of establishing recovery option r 2 R at location i 2 Nr

SCri Fixed cost of closing recovery option r 2 R at existing facility i 2 Er

OCr` Fixed cost of operating recovery option r 2 R at location ` 2 L

ECri Unit cost of expanding capacity of recovery option r 2 R at location i 2 Ir

Table 16.7 New decision variables

Symbol Description

yri 1 if recovery option r 2 R is operated at the selectable facility i 2 Ir , 0 otherwise

vr`p Amount of product p 2 P recovered with recovery option r 2 R at location ` 2 L

wri Number of extra capacity units established for recovery option r 2 R at location
i 2 Ir

secondary market or to external (re)manufacturing facilities. Some recovery options
may also incur costs as in the case of product disposal.

Finally, Table 16.7 describes the decision variables. The RNLD model also uses
the flow variables x introduced in Table 16.4.

16.3.2 A Mixed-Integer Linear Programming Model

With the notation introduced in the previous section, the reverse logistics network
(re-)design problem can be formulated as an MILP as follows. The objective
function (16.14) maximizes the total profit. It sums the revenues obtained from
various recovery options (e.g., by sending products to recycling facilities, by selling
products to the secondary market) and subtracts the total cost of establishing and
operating the network. The latter comprises the cost of recovering products at
facilities, setting up new recovery options at facilities, closing existing recovery
options, operating new and existing recovery options at facilities, transporting
products, and expanding the capacities of recovery options. Observe that a fixed
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cost term is also included in (16.14) to account for the operation of non-selectable
facilities.

Equalities (16.15) are the flow balance constraints. For each location and product,
the total inflow comprises the amount of product generated at that location, the total
amount of product obtained after processing various items, and the total amount of
product shipped to this location from other locations. The total inflow is equal to the
total outflow which includes the total amount of product recovered at that location
and the total amount of product shipped to other locations. Constraints (16.16)
ensure that the recovery target for each product category and recovery option
is met. Recovery targets are usually stipulated by legislations for different types
of recovery options. Inequalities (16.17)–(16.19) are the capacity constraints.
Constraints (16.17) guarantee that the total amount of recovered products at the
selectable facilities does not exceed the total capacity. Similar conditions are set
at non-selectable facilities by inequalities (16.18). Constraints (16.19) restrict the
expansion of capacity at selectable facilities to be within given limits. Similar to the
forward LND model, constraints (16.20)–(16.21) impose that products can only be
shipped from operated facilities. Lastly, conditions (16.22)–(16.24) set the domains
of the decision variables.

.P2/ Maximize
X

r2R

X

`2L

X

p2P
REr`p vr`p

�
X

r2R

X

`2L

X

p2P
RCr`p vr`p �

X

r2R

X

i2Nr
FCri yri

�
X

r2R

X

i2Er
SCri .1 � yri/�

X

r2R

X

i2Ir
OCri yri �

X

r2R

X

j2Jr
OCrj

�
X

`2L

X

`02Lnf`g

X

p2P
TC``0p x``0p �

X

r2R

X

i2Ir
ECri wri (16.14)

subject to g`p C
X

r2R

X

q2P
ˇrqp vr`q C

X

`02Lnf`g
x`0`p D

X

r2R
vr`p C

X

`02Lnf`g
x``0p; ` 2 L; p 2 P (16.15)

X

`2L
vr`p � RTrp; r 2 R; p 2 P (16.16)

X

p2P
vrip � KRri yri C wri; r 2 R; i 2 Ir (16.17)

X

p2P
vrjp � KRrj; r 2 R; j 2 Jr (16.18)

0 � wri � ERri yri; r 2 R; i 2 Ir (16.19)
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0 � xi`p �M
X

r2R
yri; i 2 [r2R Ir ; ` 2 L n fig; p 2 P

(16.20)

0 � x`ip �M
X

r2R
yri; ` 2 L n fig; i 2 [r2R Ir ; p 2 P

(16.21)

xjj 0p � 0; j; j 0 2 [r2R Jr .j ¤ j 0/; p 2 P (16.22)

vr`p � 0; r 2 R; ` 2 L; p 2 P (16.23)

yri 2 f0; 1g; r 2 R; i 2 Ir : (16.24)

The proposed model is generic in the sense that it includes multiple types of
products and components at different stages (inspected, repaired, refurbished, etc.).
Moreover, it considers reverse BOMs and transitions between the stages of products
through various recovery options. The problem is modeled with a profit oriented
objective function accounting for the revenues from different recovery options in
addition to costs.

In terms of problem complexity, the above RLND model has similar attributes to
the forward network design problem (P1). Moreover, general purpose optimization
software (e.g., CPLEX or Gurobi) can be used to solve (P2). However, for large-
sized instances there may be a need for customized algorithms and heuristics.

16.3.3 Special Cases and Model Extensions

The generic model (P2) can be easily tailored to different applications. A reverse
logistics network design application for the collection and recovery of waste
electrical and electronic equipment is detailed in Sect. 16.4.4.

The term closed-loop supply chain refers to a network comprising both forward
and reverse flows. Figure 16.4 depicts the structure of such a network. The cost of
processing a return flow in a supply chain designed by considering only forward
flows can be much higher than processing a flow in the forward direction. Thus,
supply chain networks that include flows in the reverse direction should be designed
by integrating forward and reverse logistics activities. The models introduced in
Sects. 16.2.2 and 16.3.2 are readily extendible to the design of closed-loop supply
chains. The interested reader is referred to Krikke et al. (2003), Easwaran and Üster
(2009), and Salema et al. (2010) for exemplary studies determining the locations of
facilities within closed-loop supply chain networks.

As emphasized in Sect. 16.2.3, the dynamic nature of the (re-)design problem
should not be disregarded. Multi-period models in RLND were proposed, for
example, by Lee and Dong (2009), Salema et al. (2010), and Alumur et al. (2012).
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Fig. 16.4 A closed-loop supply chain network

A distinguishing feature of RLND problems is that various sources of uncertainty
in supply arise at the upper echelon facilities (e.g., uncertainty in the amount and
in the quality of returned products). There are some studies addressing uncertainty
issues in the context of RLND such as Realff et al. (2004), Listeş and Dekker (2005),
Listeş (2007), Salema et al. (2007), El-Sayed et al. (2010), and Fonseca et al. (2010).

As discussed at the beginning of Sect. 16.3, major driving forces in reverse
logistics networks include not only economical factors, but also legislations and
environmental consciousness. Thus, in addition to the actors involved in forward
logistics networks, actors such as municipalities, foundations, third-party logistics
providers, and disposers, are involved in designing and operating reverse logistics
networks. Multiple actors lead to decision problems with multiple objectives. Even
though there are some studies that consider the multi-objective nature of this design
problem (e.g., Pati et al. 2008, Fonseca et al. 2010, Tari and Alumur 2014), this
issue requires further attention.

For other extensions and special cases on RLND, the interested reader is referred
to the reviews by Fleischmann et al. (2004), Bostel et al. (2005), Akçalı et al. (2009),
and Aras et al. (2010).

16.4 Applications

The aim of this section is to demonstrate the richness in LND through presenting
applications from various areas including organ transportation in addition to
classical areas. The general form of the models described in Sects. 16.2 and 16.3
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allows them to be applied to an LND problem of a manufacturer as well as of a
logistics service provider under appropriate set, parameter, and variable definitions.

In this section, four applications from different sectors are discussed. Sec-
tion 16.4.1 presents the network design problem of a global beverage company.
Many companies utilize logistics service providers in their distribution networks.
In Sect. 16.4.2 an application from this area is provided. Section 16.4.3 is devoted
to an atypical application in LND arising in organ transportation. The problem has
additional features resulting from the nature of the good being transported. Finally,
Sect. 16.4.4 illustrates an application for waste electrical and electronic equipment.

16.4.1 Logistics Network Design of a Beverage Company

Beverage companies usually operate bottling factories in which the required
materials are mixed, bottled, and then packaged to be shipped to end users. Global
companies usually need to import some of the input materials, like flavors and
syrups, to guarantee the same quality worldwide. Moreover, ingredients may also
be provided by local suppliers. Thus, inbound logistics involves both international
and national shipments to the manufacturing plant. In turn, the outbound flow from
the plant comprises bottled and packaged beverages ready to consume. The flow of
end products may also be targeted at neighboring countries, thus involving again
national and international shipping. The schematic representation of the logistics
network, which is a specialized version of Fig. 16.1, is given in Fig. 16.5.

The main decisions in this LND problem include the location of new distribution
centers (DCs) and the choice of transportation channels for the inbound and
outbound flows of these DCs. As can be seen from Fig. 16.5, the manufacturer
may choose to operate additional DCs closer to the customs area to ease the overall
customs process. Certain beverages are not produced in every country. Thus, there is
a bottled beverage flow from the customs area towards DCs for those products that
are not manufactured in a country. Shipments to international customers (via the
customs) mainly consist of products that are produced in the local country and they
will constitute the in-country product flow in the LND problems of other countries.

Observe here that, in addition to finding the locations of DCs and deciding on the
transportation structures to use, the LND problem also includes routing decisions
for deliveries to the customers (see the dashed lines in Fig. 16.5). Typically, a global
beverage company resorts to logistics service providers to handle the distribution of
orders to end users. The service provider operates its own logistics network, which
will be detailed in the next subsection. Apart from location and routing decisions, a
typical beverage company also questions:

• the level of inventories at the DCs,
• the need for consolidation; some examples include consolidation on the route and

consolidation at the facility,
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Fig. 16.5 Logistics network of a beverage company

• the transportation mode to be utilized (especially from plants to DCs rail
transportation is a valid option).

A beverage company is also engaged in reverse logistics activities through the
return of empty flagons to the manufacturing plant. Typically, a logistics service
provider combines the delivery of beverages to customers with the collection of
empty refillable beverage containers.

16.4.2 Logistics Network Design of a Logistics Service
Provider Company

LND is a crucial problem for logistics service provider (LSP) companies since
they offer warehousing and transportation services to multiple manufacturers having
specific requirements. A typical LSP company generally operates based on yearly
contracts, each defining the level of integration to be provided to the customer.
This can range from basic services, which mainly handle the transportation aspect
of the overall distribution network, to integrated logistics activities, which can
even include packaging, labeling, and customs clearance type of services. The
design of the network of such a company is, of course, influenced by the level
of integration. Nevertheless, a typical LSP usually operates several DCs and the
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number of DCs is based on the geographical span and on the promised service
levels. Since the logistics network of the service provider company does not include
inbound shipments towards production plants, a generic network is composed of
production facilities, DCs, and customers (cf. Fig. 16.1). The main decisions to be
made in the LND problem include the location of DCs and the choice of appropriate
transportation structures.

Consolidation is a crucial aspect in the distribution network of an LSP company.
Especially in small geographical regions, say in urban areas, companies try to
consolidate customer orders into full truckload shipments. As a result, delivery
and/or collection vehicles serve many customers on each route they travel.

Typically, an LSP company operates a few DCs and delivery vehicles travel
from/to DCs to service customers. In the upper echelon of the network products flow
from factories or central warehouses to DCs. Thus, such a company may consolidate
shipments in both stages of the network. Different modes of transportation may be
used for bulk transportation from upper echelon facilities.

By nature, LSPs offer services to many companies. Depending on their yearly
contracts, the same DC may be used for more than one customer. This type
of consolidation brings out the importance of warehouse management activities.
Hence, the costs of operating DCs may grow with increasing capacity utilization.

Usually, the type of service offered by such a company is one-way: from the plant
or DC towards the customers. This results in empty vehicles returning to the DCs.
Providing service to more than one company may actually help in filling vehicles on
their return trips. An LSP company usually works with a fleet of vehicles which are
not dedicated to any DC or customer zone. Depending on the origin and destination
of the demand, vehicles are assigned dynamically.

LSP companies often choose to specialize their services based on the sector
of activity of their customers. Some examples include service providers for the
automotive industry or the cold chain, parcel delivery companies, etc. The generic
distribution network needs to be specialized depending on the application dynamics
of the sector where the service provider operates. For example, for cargo delivery
companies consolidation (hubbing) is very important in the design of the network
(see e.g.,Tan and Kara 2007, Yaman et al. 2007, and Alumur and Kara 2008).

16.4.3 Logistics Network Design for Organ Transportation

In this section, an atypical application of distribution logistics is discussed, namely
the design of a network for organ transportation. Due to the nature of the “product”
that flows through the network, this problem has specific features. It cannot be
simply considered as a cold chain application, mainly because it is not possible
to re-freeze and store organs. The organ which is harvested from a donor has
to be implanted into the recipient’s body within the so-called ischemia time,
which represents the time that an organ can be safely secured without fresh blood
circulation. Thus, in this area, apart from logistics costs, delivering in a timely
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manner is more important and so the logistics network is designed mainly based
on delivery time requirements.

Since the organ cannot be stored, DCs or warehouses are not considered in
the distribution network. Once an organ is donated, a search is conducted for the
recipient with the best match and then the organ is transported to the hospital of the
recipient. The most important aspect is to find the best match and send the organ in a
timely manner so that the donated organ (which is definitely a very scarce resource)
is not wasted. Search for potential recipients and organ transportation are under the
jurisdiction of regional coordination centers (RCCs) operated by the government.
Each RCC is responsible for a region, and any organ donated to an RCC is usually
transferred into a recipient’s body in the same region.

In this context, the LND problem consists of finding the best locations for
RCCs so that the regions covered by them are balanced in terms of their donor-
recipient ratio and the transportation of organs in each region is possible within
the ischemia time. For this type of networks, donors represent the supply side and
the hospitals performing organ transplants (and where the recipients are registered)
are the demand points. Examples of this type of centralized organ transportation
networks include Bruni et al. (2006), Kong et al. (2010), Beliën et al. (2013), and
Çay and Kara (2014). We remark that in this application area the location of an RCC
mainly determines a region. Shipment consolidation at an RCC is not allowed since
the transportation of an organ from a donor to a recipient is a dedicated trip carried
out, for example, by helicopter.

16.4.4 Reverse Logistics Network Design for Waste Electrical
and Electronic Equipment

The Waste Electrical and Electronic Equipment (WEEE) Directive of the European
Commission (2002/96/EC) sets collection, recovery, and recycling targets for all
types of electrical and electronic goods. The achievement of the targets for each
product category is calculated according to the total amount of WEEE that goes
through specific recovery options. Original equipment manufacturers are held
responsible for financing the collection, treatment, recovery, and disposal of their
products.

The Directive enforces a separate collection for WEEE. For this purpose,
appropriate facilities should be set up for collection. These facilities accumulate the
returns, either dropped off by the product holders or picked up by the collectors.
After collection, the returns can be sent to recycling and proper disposal, or to
inspection and disassembly centers. The inspected products can be disassembled
into components in these centers or sold to external facilities. The returns that are
deemed non-remanufacturable through inspection are recycled or disposed of. In the
event that the original equipment manufacturer decides to establish remanufacturing
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facilities, then suitable components can be re-used in such facilities to obtain new
products that can be sold to the secondary market.

The RLND problem under the WEEE Directive focuses on determining the
locations and capacities of collection and inspection centers, on deciding if it is
profitable to establish remanufacturing facilities, on setting the amount of products
or components to send to different recovery options, to recycling and disposal, and
on fixing the flow of products and components through the facilities in the network
(see e.g., Alumur et al. 2012).

16.5 Conclusions

This chapter highlighted the importance of integrating location decisions with
other decisions relevant to the design of forward and reverse logistics networks.
Although much work has been published addressing LND problems, emphasis has
been mostly given to a subset but not all of the features that such comprehensive
projects often require. Hence, several research directions still require intensive
research. In particular, models addressing the design of multi-commodity, multi-
echelon networks through determining the timing of facility locations, expansions,
contractions, and relocations over an extended time horizon have received less
attention than their static counterpart.

Traditionally, LND has been dominated by economic aspects leading to the
network configuration that either minimizes total cost or maximizes total profit.
The generic models presented in Sects. 16.2.2 and 16.3.2 illustrate these features.
Sustainable LND is an emerging research area that aims at capturing the trade-offs
between costs on facility location and logistics functions and their environmental
footprint. Due to the growing awareness on environmental issues, companies
have recognized the need to create environmentally friendly logistics systems
to mitigate the negative environmental impact of their business activities. This
calls for the development of models with multiple and conflicting objectives. For
example, Chaabane et al. (2012) formulate a bi-objective LND model involving the
minimization of network design costs and the minimization of green gas emissions.
The latter criterion is part of a longer list of environmental factors that should be
considered, according to Chen et al. (2014), together with social and economic
factors when deciding on the location of manufacturing facilities.

Humanitarian logistics has also become a new research field involving LND.
Döyen et al. (2012) integrate facility location decisions with transportation, inven-
tory management, and shortage policies in a two-echelon model. Uncertainty on the
location and intensity of a natural disaster is explicitly incorporated into the model.
The integration of different sources of uncertainty (e.g., customer demand, product
return in the context of reverse logistics) with network design decisions is also a
research direction requiring further attention.

Finally, it goes without saying that LND has given rise and will continue to pro-
vide a rich variety of problems. LND presents a challenging area for future research
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on the development of mathematical models and optimization methodologies. More
and more organizations recognize the importance of an efficient and agile logistics
network for responding to changes in the business environment and enabling future
growth. Therefore, LND will play an even greater role for companies in all industries
striving to deliver outstanding supply chain performance.
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Chapter 17
Stochastic Location Models with Congestion

Oded Berman and Dmitry Krass

Abstract In this chapter we describe facility location models where consumers
generate streams of stochastic demands for service, and service times are stochastic.
This combination leads to congestion, where some of the arriving demands cannot
be served immediately and must either wait in queue or be lost to the system.
These models have applications that range from emergency service systems (fire,
ambulance, police) to networks of public and private facilities. One key issue is
whether customers travel to facilities to obtain service, or mobile servers travel to
customer locations (e.g., in case of police cars). For the most part, we focus on
models with static (fixed) servers, as the underlying queueing systems are more
tractable and thus a richer set of analytical results is available. After describing the
main components of the system (customers, facilities, and the objective function),
we focus on the customer-facility interaction, developing a classification of models
based on the how customer demand is allocated to facilities and whether the demand
is elastic or not. We use our description of system components and customer-
response classification to organize the rich variety of models considered in the
literature into four thematic groups that share common assumptions and structural
properties. For each group we review the solution approaches and outline the main
difficulties. We conclude with a review of some important open problems.

Keywords Congestion • Facility location • Mobile and immobile servers •
Queuing • Stochastic demand

17.1 Introduction

The class of facility location models that is the main focus of the current chapter
make the following key assumptions:

1. Customers generate stochastic stream of demands, typically assumed to be a
Poisson process, or, more generally a renewal process.
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2. Facilities contain resources (often called “servers”) that have limited capacity
and stochastic service times.

3. Customer-facility interactions happen as the result of customers traveling to
facilities to seek service, i.e., our primary focus is on the “fixed” or “immobile”
server models (in the “mobile server” case, servers travel to customers to provide
service).

4. Due to stochastic arrivals of customer demands at the facilities, stochastic service
times, and limited capacities, facilities may experience periods of congestion
where not all arriving demands can be served immediately. Customers that arrive
when the system is busy may either enter a queue or leave without getting service.
This behavior will result in either queues, or lost demands, or both.

Applications of these models range from public service facilities such as hospitals,
medical clinics and government offices, to private facilities such as retail stores or
repair shops.

We note that assumptions listed above specifically exclude a number of interest-
ing and important classes of related location models (some of these are treated in
other chapters in the current volume). First, there are many models that incorporate
capacity limitations in a deterministic, rather than stochastic, manner. These include
models seeking to ensure that there is sufficient average capacity to provide
adequate service, models that try to design a system that should perform well
even under stochastic conditions by equalizing loads between facilities, and models
that handle possible congestion indirectly by requiring certain reserve capacity
at the facilities. All of these can be regarded as deterministic approximations of
the underlying stochastic system. While this deterministic approach leads to large
technical simplifications and, as a result, much easier computations, the roughness
of the approximation is usually impossible to estimate a priori. This may lead to
systems with poor levels of customer service (at some of the facilities), and is
typically not appropriate in cases where understanding and controlling potential
congestion is important.

Second, there are some models where facilities are modeled as reliability, rather
than queueing, systems, i.e., a facility may “fail” with certain probability in some
periods, at which point it cannot provide service to customers (who are typically
assumed to try to seek service from non-failed facilities). These models do incor-
porate stochastic demands explicitly. Moreover, “failure” periods may be regarded
as representing periods of congestion at the facilities when new customer arrivals
are blocked. Thus, these models are closer to the systems we study. However,
the key difference is that “reliability” models treat the blockage probability as
exogenous to the system (a typical assumption is that each facility may fail with
certain probability at any time, where such probability is a system parameter), while
models where facilities are represented as queues treat the probability of blockage as
endogenous, i.e., it is a direct outcome of other decisions such as capacity allocation
and customer-facility interactions. Thus, reliability models can only be regarded as
approximations for the systems we are interested in.
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Third, there is an important class of models where servers are assumed to
be “mobile”, i.e., servers travel to customers rather than customers traveling to
facilities. Examples of the underlying systems include emergency services (fire,
ambulance, police) as well as repairmen making house calls. These models are close
“cousins” of the fixed-server models as they do include most of the same com-
ponents: stochastic demand streams, stochastic service times, congestion/queuing
behavior. However, these models also include additional significant levels of
complexity, such as dynamic dispatching and routing of servers, where servers can
be repositioned between facilities, re-routed before completion of the call, etc. The
underlying queuing models are analytically intractable, even if the facility locations
are assumed fixed, leading to various approximation-based approaches. In contrast,
the queuing systems underlying models with fixed servers are often (though not
always) analytically tractable, allowing for more (theoretically) precise solutions
in many cases. We refer the reader to a survey by Berman and Krass (2002) and
to a more recent survey on emergency systems planning by Ignolfsson (2013) for
more details on models with mobile servers. We note that the technical distinction
between models with fixed and mobile servers does not lie in the server mobility per
se, but rather in how the underlying queuing network is modeled (in fact, some of the
models described in this chapter have been applied in mobile server contexts). We
will provide more precision for this distinction below, once the underlying technical
framework is properly introduced.

The field of Stochastic Location models with Congestion and Immobile Servers
(SLCIS), the main focus of this chapter, has seen a rather explosive growth over a
relatively recent time period. As noted in Berman and Krass (2002), by the early
2000s, only a handful of papers on SLCIS could be found. However, by 2006 over
20 contributions were listed in the comprehensive review by Boffey et al. (2006) (we
are only counting the papers that meet the assumptions for SLCIS models discussed
earlier). In the last eight years, this number has roughly doubled. It is our intent to
review the current state of the field, as well as to systematize the many variants of
SLCIS models that have been proposed.

We note that much of the recent work has been on models with elastic demand—
i.e., where the intensity of customer demands depends on the quality of the service
provided by the facilities. In this regard it is important to mention a review by
Brandeau et al. (1995) that describes early foundation for much of this work.

As with most other location models, one could focus on cost minimization or on
net revenue (profit) maximization. Cost minimization is more appropriate when the
revenues are either not well-defined (e.g., in the case of public health facilities), or
are assumed to be exogenous to the model (e.g., when customer demand levels and
prices are fixed). While most SLCIS models in the literature are formulated with the
cost minimization objective, profit optimization is more general and is much more
natural when demand is elastic. Therefore, we will assume this objective type in our
general formulation in the following section.

The remainder of this chapter is organized as follows. We start by describing
the main model components in Sect. 17.2. These components include customers,
facilities, and the objective function of the model. A crucial part of any SLCIS
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model is the set of assumptions made about how customers and facilities interact,
specifically how customer demand is “allocated” to facilities and how much of
the potentially available demand is “captured”. These issues are explored in detail
in Sect. 17.3, where we also introduce a classification of SLCIS models based on
the types of customer response. All model components come together in Sect. 17.4
where we formulate a “general” SLCIS model and review the main features that are
typically included in various sub-classes. In Sect. 17.5 we provide an overview of
SLCIS models discussed in the literature, providing a unifying structure organized
around four main “themes”. We also discuss the key challenges that arise for
different model classes and computational approaches that have been developed.
In the last section we discuss conclusions and suggestions for future research.

17.2 Key Model Components

As noted earlier, SLCIS models describe the system consisting of customers,
facilities and their interactions. We start by describing each of these components
in more detail.

17.2.1 Customers

Customers are assumed to be located in a set J , with customer location j 2 J
capable of generating a demand stream with maximum intensity of �max

j per unit
time. In the vast majority of models described in the literature, J is assumed to be
a discrete set, often conceptualized as the set of nodes of some underlying network
G D .J; A/, where A is the set of links. Other common alternatives in location
(but not in SLCIS) literature include J being a sub-region of the real plane R2, or
consisting of both links and nodes of a network G. The most general SLCIS setting
we are aware of is given in Baron et al. (2008), where J is a bounded sub-space of
RN and can contain a mixture of discrete points and continuous regions. To keep
the presentation as transparent as possible, we will retain the common assumption
that J is discrete and n D jJ j is the number of customer demand points, which we
will frequently refer to as “nodes”.

Let uj represents the utility derived by customers at node j 2 J from services
offered by the facilities. The demand stream generated by j is assumed to be a
Poisson process with rate �.uj / 2 Œ0; �max

j �. We will postpone the description of
utility functions until Sect. 17.3.1, since other system components need to be defined
first. However, we can already identify two different classes of SLCIS models: the
elastic demand models, where �.uj / is a non-constant function, i.e., �.uj / 6D �max

j

for some values of uj , and the inelastic demand models where the demand rate is
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assumed to be constant and equal to �max
j . As a shorthand, we will use �j D �.uj /

to represent the demand rate of customer node j 2 J . The inter-arrival times of
the demand processes generated by different customer locations are assumed to be
independent.

We should also note that while it is tempting to relax the Poisson assumption
for the demand process, this must be done with care as the facilities see aggregate
demands from different customer locations, i.e., a superposition of the demand
processes. In order to apply standard queueing results to the facilities, the demand
process seen by each facility must be a renewal process. While the superposition
of Poisson processes is Poisson, which is obviously a renewal process, in general,
the superposition of renewal processes is not a renewal process. This quickly leads
to a loss of tractability for the models. Thus, except for some trivial extensions,
the Poisson assumption for demand streams appears unavoidable (one interesting
exception occurs when customer demand space is continuous, rather than finite, in
which case facilities see Poisson arrivals under much loser conditions—see Baron
et al. (2008) for the development and required assumptions). However, there is no
problem, at least from the analytical point of view, in assuming that the demand
process at each node j 2 J is not time-homogenous, i.e., that the demand rate
is a function of time. To simplify the presentation, we will stick with the time-
homogenous assumption.

An important implicit assumption in all SLCIS models we are aware of is that
all customers generate “identical” demands (in terms of service requirements), i.e.,
that the streams of demand are indistinguishable once they reach the facility.

17.2.2 Facilities

Customer demands are serviced by the facilities that contain service resources (or
“servers”). All aspects related to the facilities, including their number, locations,
and the amount/types of resources allocated to them can, potentially, be treated as
decision variables in the model. In describing the system dynamics below we will
initially treat the values of these variables as having already been determined, but
will relax this assumption when describing model formulations later.

We will assume that facility locations must belong to some set I and that at
most m � 0 facilities can be located; we will use i 2 I; to represent the location
(site) of facility i . By far, the most common assumption in SLCIS literature is that
set I is discrete, i.e., that all potential locations for the facilities have already been
enumerated. In this case, we can assume without loss of generality that I � J

(since any point in I not containing customers can be treated as a customer demand
point with the maximum demand rate equal to 0). Other options, include I � R2,
leading to continuous SLCIS models (see, for example, Brimberg and Mehrez
1997; Brimberg et al. 1997), or I � J [ A for a network G, leading to network



448 O. Berman and D. Krass

SLCIS models (see, e.g., Berman et al. 2014). Unless stated otherwise, we will
generally assume I to be discrete.

To take advantage of the discreteness of I we will follow the typical convention
in location modeling and define yi 2 f0; 1g to be a binary indicator variable with
the value 1 if a facility is open at site i 2 I , and 0 otherwise. To ensure that the total
number of open facilities does not exceedm we require:

X

i2I
yi � m: (17.1)

If a facility is opened at i 2 I (i.e. yi D 1), it must be allocated some service
capacity 	i > 0, which can be thought of as the average processing rate. We will
assume that	i D 0whenever yi D 0, which can be assured by using the constraints

	i � Myi ; i 2 I; (17.2)

where M is the maximum possible processing capacity that can be assigned to a
facility.

As noted in Baron et al. (2008), there are two standard approaches to represent
facility capacity in queuing environment: as a “single-server” facility where the
capacity level can take on any value in some interval 	i 2 Œ0; 	max�, where 	max is
the maximum practical capacity level, or as a “multi-server” facility housing �i � 0
parallel servers each with fixed capacity 	0, where �i 2 f0; : : : ; kg is an integer,
	i D �i	0 is the processing capacity of facility i , and k is the maximum number of
servers that can be stationed at a facility (with 	max D k	0).

While there are some important differences between the single-server and multi-
server models (these will be touched on later) our bias is to favor the single-server
representation. It is more transparent, typically leads to cleaner analytical results,
and seems more practical as well: a typical facility will house a variety of processing
resources and discrete “servers” may be hard to identify. For example, a medical
clinic will often house doctors, nurses, examination rooms, X-ray machines, etc.
While it is sensible for a planner to think of processing capacity of a clinic in
terms of patients per hour (and how this processing capacity changes when certain
resources are added or removed), it is harder to think of the clinic containing �
distinct servers (are these doctors? nurses? rooms?). Thus, unless stated otherwise,
each facility will be assumed to house a single “server” with capacity 	.

The service times at each facility are assumed to be stochastic. More specifically,
following Baron et al. (2008), we assume First Come First Serve (FCFS) service
discipline and that service requirements (which can be thought of as the amount
of work required to process one customer request) are independent and identically
distributed random variables with a cumulative distribution function (CDF) FS .w/,
and a well-defined moment generating function (MGF)GS.�/. We also assume that
the mean service timeEŒS� D 1—this assumption is made with no loss of generality
as it simply rescales service times. Note that in this framework, since 	i represents
the service rate of facility i , the mean service time is 1=	i and it is not hard to show
that the distribution of service times is given by FS.	iw/ with MGF GS.�=	i/.
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We define xij to be demand allocation decision variables, specifying what portion
of demand from customer node j 2 J is directed to facility i 2 I . We will initially
assume that demand allocations are binary, with the value of 1 if the demand stream
generated by customer node j is directed to facility i , and 0 otherwise. The key
underlying assumption is that once the decisions about the number of facilities,
their locations yi and the service capacities 	i for i 2 I are made, the demand
allocations xij can be determined; the exact mechanism for determining demand
allocations depends on the underlying assumptions about system dynamics and is
described later. Mathematically, we assume that xij satisfies the following set of
constraints

X

i2I
xij � 1; j 2 J (17.3)

xij � yi ; i 2 I; j 2 J (17.4)

xij 2 f0; 1g; i 2 I; j 2 J (17.5)

These constraints are quite standard in location models: (17.3) ensures that at most
100 % of customer demand from j is allocated to the facilities, (17.4) prevents
allocating a customer to an unopened facility, and (17.5) enforces the binary
assumption for the allocations.

The integrality of xij reflects the “single sourcing” assumption made in most
SLCIS models, requiring each customer node to be assigned to at most one
facility. An alternative is to allow “multisourcing”, in which case xij is allowed
to be continuous, by replacing (17.5) with its linear relaxation. We also note that
constraints (17.3)–(17.5) represent “minimal” requirements on xij; they are often
supplemented by other constraints describing the mechanisms by which allocation
of customers to facilities is made.

We allow for the possibility that the demand from j is not assigned to any facility,
i.e.,

P
i2I xij D 0, which we interpret as the case of “intentionally” lost demand,

i.e. demand that could have been captured but was lost at the system planning stage,
usually due to insufficient overall system capacity. We note that even when xij D 1

some demand from i may be lost due to congestion at facility J - this portion can be
regarded as “unintentionally” lost demand, since the system did attempt to provide
service to customers at i . The amount of lost demand is typically controlled via a
penalty cost or constraints—we will return to these when we discuss specific model
formulations below. For each facility i we define the set Ni D fj 2 J jxij D 1g,
which represents the service region of facility i (clearly Ni D ; when yi D 0).

Observe that once �i and xij are known, the demand rate facing an open facility
i is a Poisson process with rate


i D
X

j2Ni
�j D

X

j2J
�j xij: (17.6)

As mentioned earlier, the Poisson property results from the fact that superposition
of Poisson processes is also a Poisson process. Moreover, the demand streams faced
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by different facilities are independent of each other. Thus, each facility i 2 I acts as
a stand-alone queueing system with Poisson arrivals and general service times, i.e.,
an M=G=1 (orM=G=�i ) queue with service rate 	i .

System stability (i.e., ensuring that queue lengths are finite) requires that


i � 	i ; i 2 I; (17.7)

which acts as a constraint on capacity assignment decisions. In addition, the
framework defined above allows us to express the key performance characteristics
of the facilities, such as the steady-state system waiting time Wi D W.
i; 	i /

(this includes both queueing and service times), and the steady-state number of
customers in the system Li D Li.
i ; 	i /, both of which are random variables
whose distributions can, in principle, be obtained. We will come back to these
quantities when we discuss system costs and service-level constraints in the next
section.

It may also be useful to require that each facility face some minimum demand
rate 
min in order to ensure that it can be operated economically; sometimes these
minimum demand rates are imposed by regulators for public service facilities (see,
e.g., Zhang et al. 2010). These constraints take the form


i � 
minyi ; i 2 I: (17.8)

We note that many models make additional assumptions regarding the operations
of facilities. For example, the assumption that the distribution of service times is
exponential is quite common (though likely not very realistic in many real-life
systems; e.g., see the discussion in Boffey et al. 2006). Some authors (e.g., Boffey
et al. 2010) assume limited buffer space at the facilities. We will delay the discussion
of these additional aspects until Sect. 17.5. For the moment we regard each facility
as an infinite-bufferM=G=1 orM=G=� queue.

Remark The fact that each facility (once location, capacity and customer allocation
decisions are made) can be viewed as an independent queueing system is the
main characteristic distinguishing immobile from mobile server models; in mobile
server models the systems operated by different facilities cannot be decoupled.
This is because in these models the typical assumption is that server assignments
are dynamic, i.e., depend on the state of the system. Thus a server from a given
facility may service demands from customers at point j under some conditions,
but not under others. This leads to a system which is not, in general, separable,
and where servers located at different facilities must be treated as distinguishable.
Such queueing networks are analytically intractable even when all location, capacity
and allocation decisions are made. Thus, all modeling approaches involve strong
approximations and/or descriptive/simulation components (e.g., the Hypercube
model proposed by Larson (1974) is frequently used as the modeling foundation).

In contrast, SLCIS models decompose into a set of queues with Poisson
arrivals—systems for which strong analytical results (both exact and approximate)
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are available. We emphasize that this tractability rests in the static nature of
customer-to-facility allocations (the demand allocations are determined once and
then remain in force for all states of the system). Thus, SLCIS models where
customers decide which facility to visit based on the current state of the system
(e.g., based on posted information about current waiting times), or where other
dynamic customer allocation mechanisms may be present, are likely to be closer
(in terms of tractability and solution approaches) to models with mobile servers.
On the other hand, models with mobile servers where static and non-intersecting
service regions are assumed for all facilities (effectively assuming away dynamic
customer reallocation) are quite similar to SLCIS models; many of the mobile server
models reviewed in Berman and Krass (2002) fall into this group. Thus, instead
of differentiating stochastic location models with mobile vs. immobile servers, it
would be more accurate to differentiate models with dynamic vs. static customer
assignments.

17.2.3 Costs, Revenues, and Constraints

To complete the description of the system it remains to specify two components: (1)
the mechanisms by which customers are “allocated” to the facilities, expressed by
the variables xij (which would also determine the actual demand rates �j ; j 2 J ),
and (2) the overall system costs and constraints assuring acceptable service levels.
We will postpone the discussion of (1) until Sect. 17.3, focusing on the costs and
constraints in the current section and treating values of the key location, allocation,
capacity assignment and demand level decisions fyi ; xij; 	i ; �i g; i 2 I; j 2 J as
fixed.

17.2.3.1 Travel Cost and Coverage Constraints

We assume that for each customer j 2 J and potential facility location i 2 I a
distance metric d.i; j / is defined, satisfying the regular properties of distance. The
travel cost function TC.d/ for d � 0, representing the cost of traveling distance d
is assumed to be non-decreasing and non-negative. This yields the System Travel
Cost of

STC D
X

j2J

X

i2I
TC.d.i; j //�j xij; (17.9)

where we assume that constraint (17.4) ensures that customers are only assigned to
open facilities. This expression merely states that the system travel cost is the sum
of travel costs of all customers to their assigned facilities. We note that a frequent
assumption is that the travel cost is a linear function of distance. More generally,
since both J and I are discrete, one could simply redefine the distance measure
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to be d 0.i; j / D TC.d.i; j // for all j 2 J; i 2 I and use this new measure in
place of the original one. Thus, after suitably redefining distances and without loss
of generality, we can write

STC D
X

j2J

X

i2I
ˇd.i; j /�j xij; (17.10)

where ˇ > 0 is a parameter relating the travel cost to other terms in the objective
function (defined below). We will use this linear form in place of (17.9) from this
point on.

Of course, a possible concern with the previous expression is that the short travel
cost of one customer will be added to the long travel cost of another, resulting in the
total quantity that may look reasonable, but will still provide poor service to some
customers. To assure that no customer faces an unreasonably long travel distance,
one can impose coverage constraints:

X

i2I
d.i; j /xij � R for all j 2 J; (17.11)

where R > 0 is the “coverage radius”, i.e., the maximum allowed travel distance
for a customer to be “covered” by a facility (this constraint should be interpreted
as referring to the “adjusted ” distance measure that incorporates the travel cost,
as discussed above). We note that most SLCIS models will include either (17.10)
or (17.11); while, in principle, both can be used in the same model, such usage is
rare.

17.2.3.2 Congestion Costs and Service Level Constraints

While travel-related costs are present in all classes of location models covered in
the current volume, the congestion-related costs and constraints are, of course, a
defining feature of the stochastic location models with congestion. As discussed
earlier, the two common performance measures in a queueing system operated by
each open facility i 2 I are the system waiting timeWi (recall that this includes the
service time; a closely related measure is W q

i which only covers the waiting time in
queue) and the number of customers in the system Li , which are random variables
with certain steady-state distributions. The most common way to define congestion
costs is in terms of expectations of these quantities, W i and NLi , respectively. Since
the two are related by Little’s Law, we will focus on the former (which is also more
commonly used). For an M=G=1 queue, the expression for the mean waiting time
in the systemW can be found in any standard reference on queuing (see, e.g., Gross
and Harris 1985, p. 255):

W D W q C 1

	
D 1C 2

2

�

1 � �
1

	
C 1

	
(17.12)
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where W
q

is the expected time in queue, � D �=	 is the utilization ratio and 2 is
the squared coefficient of variation for service times, given by 2 D �2	2, where
�2 is the variance of service times. Each term in the expression for W

q
has an

intuitive interpretation. Recall that we are assuming Poisson arrivals, which have

coefficient of variation equal to 1, and thus the term 1C2
2

represents the average
squared coefficient of variation for arrival and service processes, often called the
“variability factor” (for exponential service this term equals to 1). The second term,
�=.1 � �/ can be interpreted by recalling that � is the probability that the server is
busy and thus .1 � �/ is the probability that an arriving demand goes straight into
service. The ratio can thus be interpreted as the length of the busy period measured
in units of the length of the free period. The last term is simply the average service
time per customer, sometimes known as the “scale effect” to recognize that as more
capacity is assigned to the system, the average service time per customer declines.
Thus

W
q D ŒVariability Factor�



Prob system busy

Prob system free

�
ŒScale Effect�: (17.13)

The expression for W simply adds the expected service time to the above.

Remark As noted earlier, two popular ways to represent the queueing system at a
given facility are as either single-serverM=G=1 queue with capacity 	, where 	 is
a decision variable, or as a multi-serverM=G=� system where each of the � servers
has capacity 	0 and � is the decision variable. If we set �	0 D 	, i.e., require both
systems to have the same processing capacity, we can ask to what extent are these
systems “equivalent”? Can the simplerM=G=1 system be used as an approximation
of harder-to-analyzeM=G=� one?

Equations (17.12) and (17.13) can be used to analyze the relationship between
these two systems. First note that the coefficient of utilization � is the same when
	 D �	0. While no closed-form expression for W is known for the multi-server
M=G=� case, a popular approximation (see e.g., Hopp and Spearman 2000, p. 273)
is:

W D W q C 1

	0
� 1C 2

2

�
p
2.�C1/�1

1 � �
1

�	0
C 1

	0
; (17.14)

which is very similar to (17.12): focusing on the expression for W
q
, we see that

the only difference is that � in the numerator of (17.12) is replaced with �
p
2.�C1/�1

in (17.14). In fact, the latter approximates the probability that all servers are busy in
theM=G=� system. Thus, each term in the intuitive interpretation (17.13) ofW

q
has

the same interpretation for both systems. The only difference in the expected waiting
times is that M=G=1 system is busy more frequently (since 1 > � > �

p
2.�C1/�1),

thus yielding larger values ofW
q
. On one hand, the relative difference inW

q
can be

quite large (it approaches 100% as �! 0). On the other hand, this difference should
be small when � is close to 1 and waiting times in both systems are significant,
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while when � is small, the waiting times in both systems are quite small and the
large relative difference may not be of practical significance. Thus, as a rough
approximation,M=G=1 system can be used in place of M=G=� when the expected
waiting times are of primary interest.

However, when the primary measure of interest is the expected total time in the
system W , one has to be more careful. When the system is highly utilized, i.e., � is
close to 1, the main determinant ofW is the waiting time and the previous argument
applies. However, when the system utilization is lower, the expected service time
will play a large role. Since it is 1=	0 for M=G=� and 1=	 D �=	0 for M=G=1,
the difference is quite large and approximation is no longer appropriate. Thus, with
respect to W , the approximation can only be justified in the heavy utilization case.

Turning our attention back to the M=G=1 system, we would like to
rewrite (17.12) in terms of decision variables in our model. This is not difficult
to do, and with a little algebraic manipulation we obtain the following expression
for the expected waiting time at an open facility i 2 I :

W i D W q

i C
1

	i
D .1C 2/
i

2	i .	i �
i/
C 1

	i
(17.15)

with 
i given by (17.6). We assume that W i D 0 if there is no facility at i .
Several comments are in order. First, we treat 2 as an intrinsic model parameter,

rather than a decision variable, i.e., we assume that the coefficient of variation of
service times is fixed in advance. While this is certainly the case when a specific
distribution of service times is assumed (e.g., for M=M=1 queues 2 D 1), there is,
in principle, no reason why this should not be a decision parameter in the system.
For example, if the decision on how much capacity to install in facility i also deals
with what kind of capacity to install, then the coefficient of variation  could well
be affected, as well as 	i : service systems with higher level of automation may have
lower  , while more manual processes may have higher  (of course the resulting
values may be different at different facilities, so i notation would have to be used).
Another case where  may be a decision variable is when customers at different
nodes have different service time variabilities, in which case the allocation decisions
xij may well influence the total demand 
i and the variability of service times i
as well as 	i . Nevertheless, we are not aware of any SLCIS model that treats this
parameter as a decision variable; in fact the value of the coefficient of variation is
assumed to be identical at all facilities, which is reflected in our usage of  without
a subscript.

Second, observe that W i (and W
q

i ) is decreasing in 	i , increasing in 
i and
convex with respect to both 	i and 
i whenever system stability conditions (17.7)
hold. These properties are exploited in many SLCIS models that follow.

Let WC.w/ represent the “waiting cost”, i.e. the cost incurred by customers
waiting w units of time (henceforth we assume that waits include service times,
i.e. use measure W defined earlier; an equivalent treatment can be developed by
focusing on waiting times in queue only, i.e. W q). As with the travel costs, we
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assume that WC.w/ is non-negative and non-decreasing, noting that many models
make the simplifying assumption that the waiting cost is proportional to w. The total
expected waiting cost in the system can now be expressed as

SWC D
X

j2J

X

i2I
WC.W i/xij: (17.16)

In view of non-linear dependence of the expected waiting time W i on the decision
variables, SWC is a non-linear function even when the waiting cost is assumed to be
linear.

We note that since the waiting cost is only incurred by customers who are
assigned to some facility, we should also add a penalty term for customers that
are not assigned to any facility (i.e., not served)—otherwise the model may have
an incentive to not assign customers even if service capacity is available. The
“intentionally lost demand” customers may be represented in the revenue term
described later (i.e., they are treated as an opportunity cost of lost revenue).
Alternatively they can be represented by a term p

P
j2J

�
1 �Pi2I xij

�
which may

be added to the SWC expression above, where p represents the penalty for choosing
to not service a customer.

There are two potential issues with using (17.16) as the sole measure of service
quality (in terms of waiting times) at the facilities. First, as with the system travel
cost, a small value of SWC does not necessarily ensure that all customers are
receiving adequate service—a small expected waiting time at one facility may
“hide” a large expected waiting time at another. Thus, one may want to add the
constraints (these are traditionally stated in terms of waiting time, rather than system
time; we follow this tradition):

W
q

i � EW; i 2 I; (17.17)

where EW represents the acceptable maximum waiting time at any facility.
Second, the expected waiting time may not be sufficient to express the desired

service quality; we may wish to ensure that most customers experience no waiting
at all or that the probability of “long” waits is sufficiently low. For this we need to
consider a constraint of the form

P.W
q
i > T / � ˛T ; i 2 I; (17.18)

where P.�/ is the steady-state distribution of W q
i , T > 0 is the specified threshold

for the waiting times, and ˛T 2 .0; 1/ is the maximum acceptable probability
of waits longer than T at any facility. For example, ˛0 represents the maximum
acceptable proportion of customers that must wait for service at any facility.

Both (17.17) and (17.18) above are examples of Service level Constraints (SCs)
that are quite common in SLCIS models. Since (17.17) refers to the expected
behavior of the system, while (17.18) refers to the probability of occurrence of
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certain (undesirable) events, we will refer to the former as the “Mean SC” and the
latter as the “Probabilistic SC”. While the Mean SC is easily expressed in terms
of the decision variables by substituting (17.15) into (17.17), the Probabilistic SC
requires an expression for the steady-state distribution of the waiting time, which
is not generally available. One option is to make additional assumptions about
the distribution of service times (e.g., assuming M=M=1 or M=Ek=1 queues at
the facilities) since steady-state distributions of waiting times have been derived
for many common systems. Another option is to use an approximation. The
one we follow here is based on Baron et al. (2008). Assume that the service
constraints (17.18) are specified and let

V.T; ˛T / D � ln.˛T /

T
I

observe that since ln.˛T / < 0, this is a positive constant that is decreasing in ˛T and
in T . Then (under certain mild technical assumptions), constraint (17.18) is satisfied
whenever

GS.
V.T; ˛T /

	i
/.
i � 1/ � V.T; ˛T /; (17.19)

where GS.�/ is the MGF of service times defined earlier. Recall that GS.�/ is
an increasing function for � > 0, implying that the left-hand side of (17.19)
is decreasing in 	i . This is quite intuitive: when T or ˛T are decreased, the
probabilistic SC becomes tighter, requiring more capacity at the facility. In fact,
as V.T; ˛T / becomes larger, satisfying (17.19) requires more capacity 	i .

This leads to a general view of service constraints: for any arrival rate 
i at
facility i 2 I one can define a minimum capacity level N	.
i/ such that SC holds if
and only if

	i � N	.
i/; (17.20)

where N	.
i/ is computed (perhaps numerically) from (17.17), (17.18), or (17.19).
Of course, an equivalent view is to specify a function N
.	/, which is just an inverse
of N	.
/, so that SC holds whenever


i � N
.	i /; (17.21)

i.e., for a given capacity level 	i there is a maximal arrival rate N
.	i / for which
an adequate service level can be provided by facility i . This view extends to other
definitions of SCs (e.g., instead of using waiting time one could use L or another
service level measure)—the only thing that changes is the way functions N	.
/ and
N
.	/ are computed.

We note that system stability conditions imply that N	.
/ > 
 (equivalently
N
.	/ < 	) and the difference N	.
/ � 
 may be interpreted as the amount of

the “capacity cushion” (capacity in excess of the minimal possible level) needed
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to ensure adequate service given the arrival rate 
. For many systems and many
specifications of service level constraints it has been shown that this amount grows
proportionately to

p

, i.e.

N	.
/ � 
CQp
 (17.22)

for some constantQ (see, e.g., the discussion in Castillo et al. 2009). The derivations
in Whitt (1992) suggest that, under many conditions, a good interpretation for Q is
provided by

p
2Q �

p
2 C 1P.W > 0/;

where  is the coefficient of variation of arrivals. Thus,
p
2Q=

p
2 C 1 is approx-

imately equal to the probability of waiting, a natural service level measure. To
summarize, when the probability of waiting is used as the service-level measure,
the constraint

P.Wi > 0/ � ˛0; i 2 I

holds if

	i � N	.
i/ � 
i C
"r

2 C 1
2

˛0

#
p

i ; i 2 I: (17.23)

Similar expressions can be derived with for service level measures where the
threshold for waiting time is set above 0.

As noted earlier, incidence of long waits can be controlled through service level
constraints and/or explicit waiting cost terms in the objective function. While, in
principle, both can be used in the same SLCIS model, it is far more common
to use one or the other. In models where only service level constraints are used,
these constraints will be tight in an optimal solution (since capacity is costly). If,
in addition, the demand is assumed to be inelastic, 
i is a linear function of the
decision variables xij. In this case a significant simplification is achieved by using
the previous expression: setting the SC as an equality, we can eliminate decision
variables 	i from the model, replacing them with the right-hand side of (17.23).

17.2.3.3 Facility Costs

We assume that the decision to open a facility at i 2 I incurs two types of costs:
the fixed cost FCi , which depends on the characteristics of the location i , and the
variable cost VC.	i /, which depends on the amount of capacity 	i allocated to
the facility. The function VC.	/ is assumed to be non-decreasing and non-negative
with VC.0/ D 0; concavity of VC.	/ is a frequently made assumption, reflecting
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economies of scale. With these definitions, the System Facility Cost is defined as
follows:

SFC D
X

i2I
FCi yi C

X

i2I
VC.	i / (17.24)

17.2.3.4 Revenues and Overall Objectives

We assume that each customer that is served brings in a revenue r to the system (for
public service applications, we can treat r as a “system benefit” parameter). The
total expected revenue can be expressed as

SR D r
X

i2I

i D r

X

j2J
�j
X

i2I
xij: (17.25)

In principle, the parameter r can be treated as a decision variable—the price
charged by the decision-maker for service. However, in the vast majority of SLCIS
literature this term is treated as an exogenous parameter (Tong 2011 and Berman
et al. 2014 being the exceptions). Since treating prices as decision variables
introduces significant new complications, we will generally treat r as constant in
the model.

We also observe that when demand is inelastic (i.e., �j D �max
j for all

j 2 J ) and when the constraints require that all customers must be served (i.e.,P
i2I xij D 1; j 2 J ), it is easy to see that SR D r

P
j2J �max

j ; which is a
constant. In this case, the revenue term in the objective can be dropped, leading to
a pure cost minimization case. Even in models where some customers may not be
served, but the demand is inelastic, it is common to use cost minimization with a
penalty term, which can be interpreted as opportunity cost for unserved customers.

To summarize, the overall objective for a general SLCIC model is given by

maximize ŒSR � STC � SWC � SFC� ;

where the respective components are defined by (17.25), (17.10), (17.16),
and (17.24). We note that in most specific models described in the literature,
only a subset of the terms above is present, the rest being implicitly controlled by
constraints (e.g., in the presence of service level constraints, the SWC term is often
dropped).

Most of the terms above depend on demand allocations xij and demand rates �j ,
which have not yet been described. This is the subject of the following section.
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17.3 Customer Response: Demand Levels and Allocations

In this section we discuss the two remaining key issues in SLCIS models: the
mechanism determining the allocation of customer demand to facilities, represented
by xij variables, and the amount of demand �j generated by customers at j 2 J .

In location modeling two approaches for allocating customer demand to facilities
are generally considered: directed choice, where the same decision-maker determin-
ing the number and locations of the facilities also has the power to assign customers
to the facilities in a way that will optimize the model objective, and user choice
where customers self-assign to facilities based on maximization of their own utility
functions, which may not be aligned with the overall model objective. For example,
a common customer utility function is the travel distance. Thus, in a user choice
environment, each customer will select the closest facility, while in the directed
choice case a customer may be assigned to a further facility even when a closer one
is open (if such assignment reduces the overall facility cost).

The same framework can be applied to the SLCIS models. However it may be
more useful to also classify the models in terms of the assumed customer reaction.
We differentiate four classes of models:

Type NR: Models with no customer reaction: customers do not control the
demand allocations and the demand rates are fixed (directed choice with inelastic
demand)

Type AR: Models with allocation-only reaction: customers select utility-
maximizing facilities, but the demand rates are fixed (user choice with inelastic
demand)

Type DR: Models with demand rate-only reaction: customer do not control the
demand allocations but do determine the demand rates (directed choice with
elastic demand)

Type FR: Models with full customer reaction: customers control both, the alloca-
tion of demand (by selecting the utility-maximizing facilities) and the demand
rates (user choice with elastic demand).

This classification is summarized in Table 17.1.
The NR models correspond to the standard directed choice assumptions in the

literature: the values of the assignment variables xij are entirely controlled by the
decision-maker and must only satisfy the basic constraints (17.3)–(17.5). One may
also interpret such models as describing a “social optimum” (also known as “first
best solution” in economics)—the customers will accept whatever assignments are
needed to optimize the overall system objective, even if that means that some of

Table 17.1 Model
classification by customer
response

Demand allocation

Decision-maker Customer

Inelastic demand NR AR

Elastic demand DR FR
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them may have to travel to more distant and more congested facilities than the ones
available in their immediate neighborhood. On the other hand, since the objective
function combines the costs borne by the decision-maker (facility costs SFC) with
those borne by the customers (travel cost STC and waiting cost SWC), the interests
of both parties should be “balanced” in the solution. Customer demand is assumed
to be inelastic, with �j D �max

j for all j 2 J . Since customer utility has no effect
in this model, there is no need to define it. We note that xij are usually assumed
to be binary in NR models (though it is easy to construct examples showing that
higher objective values may be possible with fractional assignments). This is due
to the concern that enforcing fractional demand allocations is likely impractical in
most contexts. Thus, in NR models only the “minimal” constraints (17.3)–(17.5)
need to be imposed on demand allocations: the decision-maker is free to choose any
allocation that satisfies these constraints.

The other three model types assume some form of customer reaction in the form
of utility-maximizing behavior. The description of the utility mechanism is provided
next.

17.3.1 Customer Utility Functions

Recall that uj is the utility derived by customer j 2 J from the service provided
by the facilities. Note that there are two costs borne by the customer: travel and
waiting. Suppose a customer experiences travel distance d (as before we assume
that distances have been redefined to represent travel costs) and expected system
waiting time w. Let the utility U.d;w/ be a non-increasing function of d and w. To
relate uj to U.d;w/ we assume that the total utility derived by customer j is only
affected by the facilities this customer actually visits, letting

uj D
X

i2I
U.d.i; j /;W i /xij; (17.26)

Note that this definition remains valid even when the single-sourcing assumption
is relaxed. In this case, xij represents the proportion of time facility i is used by
customer j and uj can be interpreted as the resulting expected utility. Observe also
that if a customer does not receive service from any facility, xij D 0 for all i 2 I
and uj D 0.

Perhaps the most natural specification for the utility functionU.d;w/ is the linear
form

UL.d;w/ D �.�dd C �ww/; (17.27)

where �d ; �w > 0 are the relative weights on travel distance and waiting time,
respectively. When �w D 1, the parameter �d can be interpreted as the average
travel speed, so that �dd is the average travel time, and the right-hand side of (17.27)
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represents the negative of the total expected time spent by the customer in the system
(until the end of service).

There are two other common specifications of U.d;w/. The simpler one is

UD.d;w/ D ��dd; (17.28)

i.e., customer’s utility is simply proportional to the traveling distance (representing
the travel cost) and is independent of the waiting time. This is a very popular
specification form appearing (often implicitly) in numerous SLCIS models. While
the lack of dependence on w may seem counterintuitive, it is usually justified
by assuming that customers do not have advance knowledge of waiting times at
the facilities and thus must make their decisions based on travel times only. This
justification is not entirely convincing sine in a steady-state system some learning
about expected waiting times should, presumably, occur. Alternative justification is
that the waiting costs are dominated by the travel costs. Perhaps more importantly,
as will be seen below, specification (17.28) avoids many technical complications
that occur when a more general utility structure is used and can thus be treated as
an approximation.

Another natural specification is the log-linear form

UE.d;w/ D exp.��dd � �ww/; (17.29)

which is quite similar to (17.27) with the advantage of the utility being non-negative,
convex and bounded by 1. Note that UE.d;w/ D 1 when d D w D 0, i.e., when
the customer incurs neither travel nor waiting cost, and UE.d;w/ ! 0 as d;w !
1. This makes it convenient to interpret UE.d;w/ as the proportion of maximum
available demand realized from customer j if this customer is faced with travel
distance d and expected wait w. This interpretation will be useful when describing
elastic demand models below.

Finally, we note that a utility function can be defined in terms of service measures
other than the expected waiting time W— one can use the probability of waiting
P.W q > 0/, or any other performance measure of the queuing system operated at
the facilities. The specifications of the utility can also be generalized to incorporate
other decision variables, such as the price charged by the facility operator for service
(see Berman et al. 2014 for an example).

17.3.2 SLCIS Models with Customer Reaction

Once a utility function is specified, it should be possible to specify the customer
reaction as well. At a first glance, this seems fairly straightforward: a SLCIS model
with customer reaction can be viewed as a bi-level game, where the decision-maker
first specifies the number, locations and capacities of the facilities (i.e., values of m,
yi and 	i for i 2 I ) and then each customer selects a utility-maximizing strategy.
Unfortunately, as we will see shortly, complications quickly arise. This has to do,
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primarily, with the fact that customer utility is a function of the waiting time W i ,
which is not directly controlled by the decision-maker, but rather arises as a result
of joint actions of the decision-maker and all customers: the former determines
facility locations and capacities 	i , while the latter determine the demand rates 
i .
This gives rise to traffic equilibrium conditions, where the actions of one customer
(adjusting their demand rate �j and/or demand allocation xij) change the waiting
times at the facilities and thus affect the utilities of all other customers. Thus, not
only is there a bi-level game being played between the decision-maker and the
customers, but there is also a simultaneous non-cooperative game being played
between the customers themselves. Moreover, the response functions in the latter are
rather complicated, which may lead to lack of equilibria (if customers are restricted
to simple strategies), or to multiple equilibria, not to mention serious difficulties
in computing these equilibria. We discuss these issues briefly below, referring the
interested reader to more general references on spatial equilibria like Nagurney
(1999).

17.3.2.1 AR: Models with Allocation-Only Reaction

In this type of models, it is assumed that the demand rate of each customer node is
fixed a priori, with �j D �max

j for all j 2 J . However, the customers determine their
demand allocations, i.e., the values of xij variables, in a utility-maximizing fashion.
For concreteness, we will assume the linear specification of the utility function
UL.d;w/ given by (17.27), though much of the discussion extends to alternative
specifications as well.

We first consider the original “single-sourcing” assumption. Since the customer
will allocate all of their demand to a utility-maximizing facility, xij D 1 implies that

UL
�
d.i; j /;W i

� � UL
�
d.k; j /;W k

�
for all k 2 I with yk D 1;

which, assuming for simplicity that �w D �d D 1 in (17.27), is equivalent to

d.i; j /CW i � d.k; j /CW k if yk D 1; k 2 I:

Recalling that 
i is given by (17.6) and W i by (17.15), this leads to the following
equilibrium conditions that must be satisfied by allocations xij:

d.i; j /CW i � Œd.k; j /CW k�yk CM.1� xij/; i; k 2 I; j 2 J (17.30)

W i D .1C 2/
i

2	i .	i �
i/
C yi

	i CM.1� yi / ; i 2 I (17.31)


i D
X

j2J
�max
j xij; j 2 J (17.32)
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X

i2I
xij � 1; j 2 J (17.33)

xij � yi ; i 2 I; j 2 J (17.34)

xij 2 f0; 1g; i 2 I; j 2 J (17.35)

where M is a suitably large constant. We assume that some finite limit can be
imposed on the expected waiting timeW i at any facility and thatM � d.i; j /CW i

for all j and i .
Of course a trivial solution to this system is to have xij D 0 for j 2 J; i 2 I

(which also impliesW i D 0 for all i 2 I ), i.e., to have complete loss of all customer
demand. Clearly, we are interested in non-trivial solutions where at least some
customers choose to obtain service. On the other hand, the system may not have
enough capacity to serve all customers. We therefore make the following definition.

Definition 17.1 A subset of customer nodes J 0 � J is serviceable if

X

j2J 0

�max
j �

X

i2I
	i :

A subset J 0 is fully served if
P

i2I xij D 1 for all j 2 J 0, i.e. if (17.33) holds as
equality for all j 2 J 0.

This definition simply assures that there is sufficient capacity to serve any service-
able subset. We are interested solutions where at least some serviceable subsets of
J are fully served. Unfortunately, the system (17.30)–(17.35) may have no such
solutions.

Example 17.1 Consider a network with one customer node j and two facility nodes
0; 1 both of which contain facilities, i.e., y0 D y1 D 1. Assume further that 	0 D
	1 > �

max
j , and thus J D fj g is serviceable. Assume d.j; 0/ D d.j; 1/. Then, since

Wi D 0 if xij D 0 andWi > 0when xij D 1 for i D 0; 1, there is no feasible solution
to the system (17.30)–(17.35). Indeed, if customers at j select facility i , it creates
non-zero waiting time at that facility, making the other facility a utility-maximizing
choice. Other similar examples of non-existence of equilibria with binary allocation
vectors are easy to construct.

The underlying reason for the phenomena illustrated above is that single-sourcing
strategies create discontinuities (a facility receives either all of customer’s demand,
or none of it), while the existence of equilibria typically requires continuity of the
underlying functions. Indeed, intuitively it is clear that in the previous example
equilibrium allocations are achieved if the customers at j visit each facility with
equal frequency. This, of course, requires the relaxation of the single-sourcing
assumption, allowing xij to take on fractional values, which are interpreted as
visit frequencies. In addition to replacing (17.35) with its linear relaxation, the
equilibrium-defining inequality (17.30) has to be adjusted as follows.
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Recall the definition of uj given by (17.26), which is now interpreted as the
expected utility for customers at j 2 J given a fractional allocations vector xij; j 2
J; i 2 I (we emphasize that the waiting times are affected by the allocations of all
customers, not just the ones at j ). We seek allocations under which no customer can
improve their utility by making unilateral changes. It follows that the equilibrium
utilities u�

j ; j 2 J must satisfy

d.i; j /CW i

(
D �u�

j if xij > 0I
� �u�

j if xij D 0

(recall that we are assuming linear utilities which are equal to the negative of total
travel and waiting times). These conditions can be represented by replacing (17.30)
with the following non-linear complementarity conditions:

d.i; j /CW i � vj ; j 2 J; i 2 I (17.36)

.d.i; j /CW i � vj /xij D 0; j 2 J; i 2 I (17.37)

vj � 0; j 2 J (17.38)

where vj D �u�
j , representing the equilibrium “disutility” for customers at j 2 J ,

is included in the model as a new decision variable. We will refer to a solution of
the system (17.31)–17.38) as Customer Flow Equilibrium.

The following result follows directly from Theorem 5.4 of Ashtiani and Magnanti
(1981) by continuity of U

�
d.i; j /;W i.x/

�
for all j 2 J; i 2 I , where x is a

fractional allocation vector with components xij.

Theorem 17.1 For any values of yi 2 f0; 1g and 	i � 0 such that 	i � Myi ,
if a subset J 0 � J is serviceable, then there exists at least one customer flow
equilibrium xij; j 2 J; i 2 I under which J 0 is fully served.

In particular, if the system has the capacity to service all of customer demand,
i.e., J is serviceable, at least one customer flow equilibrium must exist under which
all customers are served.

The discussion and the result above is quite general: in particular, it extends to
models with elastic demand (i.e., models of type FR discussed below). Additionally,
in place of the expected waiting time for an M=G=1 queue, a general measure of
“congestion” can be used with the only requirements that it is strictly increasing,
twice differentiable, non-negative and convex (recall that all capacity decisions are
considered to be fixed in this section). These requirements are clearly satisfied
by most performance measures for queueing systems, including multi-server and
limited-buffer queues. We refer the reader to Brandeau et al. (1995) for a discussion
of these more general settings.

It is important to realize that the customer flow equilibrium may not be unique. In
fact, there may be multiple allocation vectors satisfying the equilibrium conditions
for a particular fully served subset of customer nodes. For an example, consider
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adding a second identical customer node j 0 to the system in Example 1. Now, if
customers at both nodes are assigned to different facilities: xij D 1; x.1�i /j D 0,
xij0 D 0; x.1�i /j 0 D 1 for j D 0; 1, we have two different equilibria. In fact, there
may be infinitely many equilibria: any assignment satisfying

xij D ˛; x.1�i /j D 1 � ˛; xij0 D 1 � ˛; xij0 D ˛; ˛ 2 Œ0; 1�

is also an equilibrium. In principle, different equilibrium allocation vectors may
lead to different values of the objective function in the underlying SLCIS model,
creating uncertainty as to which solution will actually arise. However, all equilibria
are “similar” in certain key aspects, as shown in the following theorem based on the
result provided in Brandeau and Chiu (1994):

Theorem 17.2 For any two customer flow equilibria under which a subset J 0 � J
is fully served, the values of 
i i 2 I (total demand seen at each facility) and
vj ; j 2 J (equilibrium disutility of each customer node) are the same.

This theorem implies that, under a sensible specification of the objective function,
where the total travel and waiting cost for each customer node is a function of vj ,
all equilibria will give rise to the same values of the objective.

While the previous results show that AR models with multi-sourcing demand
allocations are well-posed, there is an important issue concerning computational
tractability of system (17.31)–(17.38). Even for fixed facility locations and capac-
ities, solving the customer flow equilibrium conditions is far from easy. While
certain numerical approaches (described in Nagurney 1999) do exist, they are
computationally heavy even for moderate-size problems (see Tong 2011). Often,
to get reasonable algorithmic efficiency one has to make simplifying assumptions
about the system, e.g., assuming M=M=1 queues simplifies (17.31), making the
system much more solvable—see Zhang et al. (2010) who were able to compute
equilibria for a system with jJ j � 500 and jI j � 40 (note that their model also
had elastic demands, which likely increased computational complexity). Keeping in
mind that computing customer flow equilibrium is only a subproblem of an SLCIS
model, embedding this computation in an overall exact optimization procedure is
nearly impossible. Hence both of the papers cited above resort to search heuristics
for the upper level (location and capacity allocation decisions).

In view of the difficulties involved in using the customer flow equilibrium
approach above, it is natural to think of model simplifications. We mention three
such approaches. One is to keep the single-sourcing assumption in spite of the
possible non-existence of equilibria (see Zhang et al. 2009). The reason this may be
reasonable is that, as mentioned earlier, nonexistence is a result of discontinuity—
when re-assignment of a single customer alters the waiting times at the facility
for the remaining customers. It is reasonable to assume that for realistic problem
instances, this should not be an issue: as the number of customers and customer
nodes grows, no single assignment should exert a significant impact on waiting
times at the facilities. Thus, asymptotically, single-sourcing equilibria should
emerge. Indeed, Zhang et al. (2009) did not report issues with nonexistence of
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equilibria when solving realistic-size problem instances for mammography clinics
in Montreal, Canada. The obvious advantage of the single-sourcing approach is that
the system (17.30)–(17.35) is much easier to solve and can be embedded as part of
constraints in a larger SLCIS model.

The second approach is to use distance-only utilities UD.d/ given by (17.28).
Since these are independent of waiting times, the existence of customer flow
equilibria is no longer an issue; utility-maximizing behavior by customers merely
implies that once facility locations are specified, each customer travels to the closest
facility, replacing (17.30) with

d.i; j / � d.k; j /yk CM.1� xij/; i; k 2 I; j 2 J; (17.39)

which leads to significant simplifications (obviously, single-sourcing assumption
can be retained here as well).

Yet another alternative to customer flow equilibrium is to use market share
allocation approach, as discussed in Sect. 17.3.2.4 below.

17.3.2.2 DR: Models with Demand-Only Reaction

In this model class, the decision-maker has the control of the demand allocation
vector x, however, the demand �j D �.uj / for customer node j 2 J is assumed to
be a function of the utility uj realized by customers at j . Following Brandeau et al.
(1995) we assume that

�j D �max
j h.uj /;

where, as defined earlier, �max
j is the maximum possible demand rate at node j and

h.u/ 2 Œ0; 1� is a strictly decreasing, twice differentiable function with h.0/ D 1 and
h.u/ ! 0 as u ! umin

j , where umin
j is the lower bound on the utility for customers

at j (e.g., if utilities are scaled to be non-negative, then we can set umin
j D 0). Thus,

h.uj / can be interpreted as the percentage of the maximum available demand at j
that is “captured” by the system; it is often called the “participation rate”.

Recall that by (17.26), the utility uj is a function of the waiting time and travel
distance faced by customers at j . As in the case of NR models, we will assume
that xij is binary, motivated by the same considerations as before: when customer
demand allocations are dictated by the decision-maker, rather than by an equilibrium
condition of the previous section, enforcing fractional assignments is typically
unrealistic. Thus, assuming all customers at j will be served (as will be shown
below, this assumption holds automatically in DR models), xij D 1 for exactly one
i D i.j / 2 I . Then, we have

�j .d.i.j /; j /;W i.j // D �max
j h.U.d.i.j /; j /;W i.j ///; j 2 J: (17.40)
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One example of a functional form of h that satisfies the required assumptions is the
exponential utility UE given by (17.29), leading to the popular “exponential decay”
demand specification:

�j .d.i.j /; j /;W i.j // D �max
j exp.��d d.i.j /; j / � �wW i.j //; j 2 J: (17.41)

While this expression is assumed in several published DR models, most of the
results below apply to more general functional forms as well. Observe that (17.40)
implicitly defines an equilibrium condition: the left-hand side depends on the
waiting time W i.j / at facility i.j /, which is a function of demand 
i.j / DP

j2J �j xi.j /;j seen by this facility. Thus, (17.40) should be seen as a system of
jJ j equations that must be solved to yield the actual demand rates; this system
decouples into subsystems consisting of all customers j 2 J with i.j / D i for
each facility i with yi D 1. Thus, even though the allocation variables xij are fixed
(or, rather, set by the decision-maker) for DR models, the issues related to existence
and uniqueness of equilibria must be dealt with. The following result is based on
Berman et al. (2014), where it is established for the case where price r is also a
decision variable.

Theorem 17.3 For any given facility location, capacity, and demand alloca-
tions yi ; 	i ; xij for i 2 I; j 2 J , there exist unique equilibrium arrival rates
�j .d.i.j /; j /;W i.j // and waiting times W i .

Note that, unlike the case for AR models, this result holds with binary demand
allocations xij (it obviously extends to the fractional allocations as well). As
illustrated in Aboolian et al. (2012), as well as in Berman and Kaplan (1987),
computation of the equilibrium demand is relatively simple in this case, based on
the fixed-point iteration approach.

An interesting feature of the DR model is that it is self-regulating: as waiting
times become longer at the facilities, customer demand is automatically reduced.
Thus, the system stability is assured by (17.40) without the need for explicit
constraints (17.7). Moreover, even though customer assignments are “dictated” by
the decision-maker through the specification of xij, assigning customer j to a more
distant or more congested facility leads to lower demand �j , with the resulting
loss of revenue. Thus, the model assures that customer assignments must take
customer utilities into consideration, while avoiding the complexities of full traffic
equilibrium treatment. In fact, Aboolian et al. (2012) report (based on computational
experiments) that optimal solutions where some customers are not assigned to their
utility-maximizing facility are quite rare, though they do occur.

The behavior of DR model involves an interesting feedback loop: as the service
offered by the facilities is improved (by locating the facilities closer to customer
nodes, or allocating more capacities to the facilities), the customers respond by
generating more demand (positive feedback), which leads to increased congestion
at the facilities, leading to reduced demand (negative feedback). Thus one could
legitimately ask whether models with elastic demand may lead to counter-intuitive
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results where service improvements result in a net loss of demand. Fortunately, this
is not the case as shown in the following result from Berman et al. (2014):

Theorem 17.4 For j 2 J , let �j .dj ;wj / be the equilibrium demand rate when the
travel time is dj and the expected waiting time is wj . Then �j is non-increasing in
dj and wj (strictly decreasing when the utility function is strictly decreasing in the
corresponding parameter).

Thus, with a reasonably behaved utility function, when the service offered to
customers at j 2 J is improved in terms of either travel distance or waiting time,
or both, the demand rate increases, leading to higher revenue for the decision-
maker (for this customer node). Since nodes that are currently not served (i.e., withP

i xij D 0) can be treated as having the travel distance that is so high that the
demand rate is negligibly close to 0, the decision to serve these nodes by assigning
them to any open facility can be treated as reducing the travel distance. This leads
to the following result:

Corollary 17.1 In the elastic demand case, there exists an optimal solution to
SLCIS where every demand node is served.

17.3.2.3 FR: Full Response Models

In this model class, the customer response to facility location and capacity allocation
decisions includes both the level and the allocation of demand. Thus, the equilibrium
values of xij and �j are described by a system that includes flow equilibrium
conditions (17.36)–(17.38), as well as the elastic demand equilibrium (17.40). The
existence and uniqueness of equilibria are assured by the following corollary:

Corollary 17.2 The equilibrium existence and uniqueness results of Theorems 17.1
and 17.2 extend to the FR model class.

The reader can refer to Brandeau et al. (1995) for further details; note that the
uniqueness result has the same limitations as for the AR models (i.e., uniqueness
can only be guaranteed with respect to the values of the objective, provided the
objective function is suitably defined). Also, just as in AR models, this corollary
requires fractional allocation vectors xij.

The computation of equilibrium solutions presents even more challenges than
for AR models. This has lead to an alternative specification of demand allocation
vectors described in the following section.

17.3.2.4 FR and AR Models with Proportional Allocations: Market Share
Models

Our development of AR and FR models was based on the assumption that customers
allocate their demand in a utility-maximizing fashion. As we have seen, this
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assumption leads to flow equilibrium-type conditions with the ensuing structural and
computational difficulties. An alternative approach is based on the assumption that
customers allocate their demand among many (possibly all) facilities in proportion
to the utility derived from these facilities. Essentially, each customer node j 2 J is
viewed as a “market” with facilities competing for the shares of this market. These
models, that are axiomatically rooted in the stochastic utility theory, have generated
a large body of literature, particularly in economics and marketing; in the latter they
are accepted as the dominant model for customer choice in the presence of many
substitutable alternatives (e.g., predicting market share of a particular brand when
many other brands are available).

In the competitive location literature these models have appeared under many
names, including “competitive interaction models”, “Huff-type models”, “gravity
models”, “multinomial logit models”, “market-share models”. While there are
minor specification differences between these, the basic structure remains the same;
we refer the reader to the recent review by Berman et al. (2009a).

Since SLCIS models of AR and FR type can be regarded as bi-level games played
between the decision-maker and the customers, proportional allocation mechanism
can be applied to the SLCIS context as well (in effect, it specifies the solution to the
non-cooperative game played between customers once the decision-maker’s strategy
is specified). The specification is quite simple: for customers at j 2 J and (open)
facility at i 2 I , the demand allocation is given by

xij D U.d.i; j /;W i /yiP
k2I U.d.k; j /;W k/yk

; (17.42)

where the numerator represents the utility derived from facility i and the denomina-
tor is the total utility derived by customers at j from all open facilities. Note that if
there are any pre-existing competitive facilities that may attract customer demand,
they should be included as an extra sum

P
k2C U.d.k; j /;W k/ in the denominator,

where C is the set of competitive facilities. To simplify the exposition, we will
assume no competitive facilities in the remainder of the current section.

This specification implies that the demand allocations are fractional, and the
demand rate from j attracted by facility i is (as before) �jxij, where �j is elastic
for FR models and inelastic in AR case.

Note that from Eq. (17.42) it follows that market shares add up to 1, i.e.,
all available demand from j is served. This may be unrealistic if none of the
available facilities provide good service to j . The easy modification is to introduce a
“dummy” facility 0, representing “no service”, and letting U.d.0; j /;W 0/ D uj 0—
a constant representing the utility value of not getting served (e.g., the customer
may choose to consume a different product). The popular Multinomial Logit (MNL)
specification (McFadden 1974) employs exponential utilities, leading to

xij D exp.��dd.i; j /� �wW i/yiP
k2I exp.��dd.k; j / � �wW k/yk

; (17.43)
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where weights �d ; �w can be estimated from the available consumer demand
allocation data using the MNL methodology.

The advantage of the proportional allocation approach is that the values of
xij are directly computable from (17.42) or (17.43) without having to solve the
cumbersome flow equilibrium equations. Nevertheless, it is important to recognize
that an equilibrium condition is implicit in the definition above, even in case of
models with inelastic demand: the expressions for xij above are functions of waiting
times W i , which, in turn, are functions of xij. Thus, (17.42) together with waiting
time specification (17.15) and facility-level demand specification (17.6) form a
system of non-linear equations. A solution to this system represents an equilibrium
demand allocations and waiting times. In case of FR models, one also has to add
the elastic demand specification (17.40) and the equilibrium solution includes the
demand rates at each customer node. Thus, the issues of existence and uniqueness
of the equilibrium must be addressed. These were examined in some detail by Lee
and Cohen (1985). The existence follows directly from standard fixed-point results
and the continuity of xij in (17.42) and is based on Theorem 1 in Lee and Cohen
(1985):

Theorem 17.5 There exists an equilibrium solution .xij;W i ; �j /; i 2 I; j 2 J to
the proportional allocation model.

Lee and Cohen (1985) also examine uniqueness and stability of equilibria, where
stability refers to whether a system where customers start with some arbitrary
demand allocations, evaluate their utilities and then re-allocate according to (17.42)
will naturally reach an equilibrium. They derive sufficient conditions for both
uniqueness and stability. In the context of our AR and FR models, their results imply
the following:

Theorem 17.6

1. For AR models with proportional allocation the equilibrium is unique and stable
2. For FR models with proportional allocation the equilibrium is unique and stable

if

1 � uj
�j

@�j

@uj
; for all j 2 J

where uj DPi2I U.d.i; j /;W i /yi is the utility derived by customers at j from
all open facilities.

The condition in part (2) above states that the elasticity of demand from node j with
respect to the utility provided by all facilities must not exceed 1. As shown in Lee
and Cohen (1985) this holds automatically when the demands are given by (17.41),
as well as by many other common specifications of demand (we note that weaker,
but harder to verify, sufficient conditions are also provided in Lee and Cohen 1985).

We close this section by noting that the analysis in Lee and Cohen (1985)
assumes that all location and capacity allocation decisions have already been made.
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To the best of our knowledge, no papers on SLCIS models of FR class with
proportional demand allocation are available, though there are several publications
on AR models (i.e., where demand is inelastic) with proportional allocation. These
will be further discussed in Sect. 17.5 below.

17.4 General SLCIS Model Specification

In this section we summarize the discussion in the preceding sections. Putting all
the modeling components together allows us to provide the following formulation
for the General SLCIS with M/G/1 queues at facilities:

maximize Z D
r
X

j2J
�j
X

i2I
xij (17.44)

�
X

j2J

X

i2I
ˇd.i; j /�j xij (17.45)

�
X

j2J

X

i2I
WC.W i /xij (17.46)

�
X

i2I
FCi yi �

X

i2I
VC.	i / (17.47)

subject to W i D .1C 2/
i

2	i.	i �
i/
C yi

	i CM.1 � yi / ; i 2 I (17.48)

[ �j specification for DR and FR models ] (17.49)

[ xij specification for AR and FR models ] (17.50)

[ Coverage Constraints ] (17.51)

[ SC Constraints ] (17.52)
X

i2I
yi � m (17.53)


i D
X

j2J
�j xij; i 2 I (17.54)

X

i2I
xij � 1; j 2 J (17.55)

xij � yi ; i 2 I; j 2 J (17.56)
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	i � 
i ; i 2 I; j 2 J (17.57)

xij � 0I 	i � 0I yi 2 f0; 1gI integer; i 2 I; j 2 J: (17.58)

The objective function (17.44)–(17.47) represents the total profit which includes
the revenue, travel, congestion, and facility fixed and capacity costs, respectively.
Constraints (17.48) define the expected waiting time for M/G/1 queues. These
can be substituted with constraints defining other relevant congestion measures,
different queueing mechanisms or both. Specifications (17.49) are only relevant
for elastic demand models of type DR and FR type; when the demand rate is
assumed to be inelastic, one should omit these and set �j D �max

j . Similarly,
specifications (17.50) are only relevant for user-choice models of AR and FR
type. Constraints (17.53)–(17.57) enforce the basic interconnections between the
decisions variables and are typically present in some form in all models.

To the best of our knowledge, no published work contains all components listed
in the general formulation above. The specific SLCIS models considered in the
literature typically include only some of the terms in the objective function, differ in
terms of the queueing assumptions and performance measures, as well as in which
(if any) of the specifications (17.49)–(17.52) to include. The models also differ in
terms of the decision variables. While variables yi and xij are present in all models
we are familiar with (though xij may be restricted to binary values only), most
models will assume that the number of facilities is m and not a decision variable.
Many models also assume that all facilities have identical capacity 	, thus dropping
the decision variables 	i as well.

It is clear that the variety of SLCIS models one can define by mixing and
matching different parts of the general formulation above is almost unlimited. In the
next section we try to bring some structure to the models considered in the literature
by grouping them around some common themes and describing the key challenges
and solution techniques that have been developed for them.

17.5 SLCIS Models in the Literature: Overview
and Classification

Our primary focus (with a few exceptions) is on relatively recent SLCIS models that
have appeared since the survey of Boffey et al. (2006).

As noted earlier, the published SLCIS models constitute a rather bewildering
pattern of different assumptions, constraints and response mechanisms. However,
several common themes do emerge, allowing us to identify four common types
of models: Coverage-Oriented, Service-Objective, Balanced-objective, and Explicit
Customer Response. These are described in more details in the following sections.
The relevant references are summarized in Tables 17.2, 17.3, and 17.4. These
tables have the following format: the first column identifies the reference by the
list of authors/year of publication; the next two columns identify the Model Class



17 Stochastic Location Models with Congestion 473

T
ab

le
17

.2
C

ov
er

ag
e-

ty
pe

an
d

se
rv

ic
e-

ob
je

ct
iv

e
m

od
el

s



474 O. Berman and D. Krass

T
ab

le
17

.3
B

al
an

ce
d-

ob
je

ct
iv

e
m

od
el

s



17 Stochastic Location Models with Congestion 475

T
ab

le
17

.4
E

xp
li

ci
tc

us
to

m
er

re
sp

on
se

m
od

el
s



476 O. Berman and D. Krass

by customer response type, as well as by the utility function used, if applicable.
The following three columns indicate the main underlying system assumptions: the
nature of the queuing system, and whether the number of facilities and the number of
servers are flexible or not. The next two columns identify the presence of coverage
and service level constrains. The following five columns indicate the presence of the
specific terms in the objective function. The last two columns briefly describe the
solution approach and any additional comments.

17.5.1 Coverage-Type Models

Coverage-type models aim to design the system that provides adequate service
to customers, where adequacy is usually defined through travel distance and
congestion delays, which are controlled through coverage and service level con-
straints, respectively. The defining feature of this model class is the presence of
coverage constraints (17.51). The coverage-type models are denoted by “C” in the
“Model Type” column of Table 17.2; they include Baron et al. (2008), Berman et al.
(2006), Kakhki and Moghadas (2010), Marianov and Serra (1998). These models
were among the very first SLCIS models to be considered, dating back to Marianov
and Serra (1998), and stem directly from similar models for systems with mobile
servers (see Berman and Krass 2002 for an extensive discussion).

Coverage-type models usually assume that it may not be possible to provide
adequate service to all customers and thus demand losses may occur. The objective
is typically to maximize the “captured” demand, i.e., the total demand of customers
who get adequate service. The travel and congestion costs are not included in
the objective as these are controlled through the corresponding constraints. Earlier
models were of type NR (directed choice); later models tended to be of type AR,
but customer allocations were assumed to be only a function of travel distance,
i.e., the underlying utility is given by (17.28), avoiding all complications related to
equilibrium behaviors. It is interesting to note that even though demand is assumed
to be inelastic, the assumption of demand losses can be viewed as (a rather crude)
form of demand elasticity—corresponding to the implicit utility function which has
a stepwise function form, with customers using service provided by the facilities if
coverage and service level constraints are met, and not using it otherwise.

The typical formulation maximizes the objective consisting of (17.44) with r D 1
(i.e., the captured demand), subject to constraints (17.51)–(17.56). For models of
type AR, one also adds constraints specifying the allocations. These enforce each
customer to travel to the closest available facility. These constraints can be specified
in various forms; see Berman et al. (2006) for a discussion.

It can be seen that this leads to a formulation which is a linear mixed-integer
program (MIP), except for the service level constraints. However, as discussed in
Sect. 17.2.3.2, under some conditions, the latter can be linearized. Recall that a
general service level constraint can be recast as either (17.20), requiring adequate
service capacity at each facility, or (17.21), placing an upper limit on the allowed
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arrival rate at each facility. When the capacities 	i are decision variables, these
reformulations remain non-linear. However, if one makes a simplifying assumption
that all facilities have identical service rate 	 (for multi-server facilities, this
implies assuming identical number of servers at all facilities), non-linearities
disappear. This is a common assumption in coverage-oriented (and other SLCIS)
models: Berman et al. (2006), Kakhki and Moghadas (2010), Marianov and Serra
(1998) assume identical and pre-specified service rates at the facilities. Under this
assumption, (17.21) takes the form


i � N
;

where the right-hand side is a constant which depends on the desired service level
and is computable in advance. This shows the equivalence of a cover-type SLCIS
model with fixed service rates to the capacitated location problems. Such connection
is discussed at length in Boffey et al. (2006).

The resulting linear MIP may, in principle, be solved exactly using off-the-shelf
software, such as CPLEX. However, as pointed out in Berman et al. (2006), the
formulation resulting from the addition of linearized service level constraints and
the “closest assignment” constraints tends to be large and not very tight, causing
computational difficulties for even moderately-sized instances. This has led Berman
et al. (2006) and other authors to develop heuristic approaches.

Finally, we note an important result from Baron et al. (2008), who studied a very
general version of the coverage-type SLCIS model, where both the number and the
capacities of facilities are decision variables and the facility-related costs are quite
general (in their version, all customer demand must be served and the objective is
to minimize fixed and variable location costs). They show that, under quite general
conditions, the optimal facility configuration is one that ensures that each facility
sees (approximately) the same demand, i.e., ideally, 
i D 
k should hold for all
open facilities i; k 2 I (identical demand may not be possible to achieve when
customer demand originates from discrete nodes and single-sourcing assumption is
made). Once the facility locations are determined, the optimal capacities 	i can be
determined through a separate optimization model.

This result provides an important insight for coverage-type models: when the
goal is to ensure “satisfactory” service experience, the optimal design should
equalize loads at the facilities. This leads to an “Equitable Location Problem”—
a deterministic problem where one seeks to locate a set of facilities so that the
attracted demand is distributed as evenly as possible. Such problem was addressed
in Baron et al. (2007), Berman et al. (2009b), and Suzuki and Drezner (2009).

17.5.2 Service-Objective Models

Service-objective models seek to design a system that optimizes “customer service”
using limited resources. These models are denoted by “S” in the “Model Type”
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in Table 17.2, and include Aboolian et al. (2009), Berman and Drezner (2007),
Boffey et al. (2010), Drezner and Drezner (2011), Hamaguchi and Nakade (2010),
Marianov et al. (2009), Marianov and Serra (2011), and Wang et al. (2002).

Here “limited resources” means that the number of facilities to be located and the
total available service capacity are specified through constraints, rather than through
the objective function term (17.47). “Customer service” is typically defined as the
combination of travel and congestion costs; thus the objective function typically
includes terms (17.45) and (17.46). Since the congestion cost term (17.46) only
measures the aggregate congestion, some authors (see Boffey et al. 2010; Marianov
et al. 2009; Marianov and Serra 2011 and Wang et al. 2002) impose service level
constraints to ensure that congestion is controlled at each facility. Service-objective
models assume inelastic demand, so the revenue term is missing in the objective
as all available customer demand is assumed to be “covered” (even though some
models do allow for demand losses due to congestion, these losses are controlled
through service level constraints). Thus, all customers must be assigned to facilities
and thus constraint (17.55) is specified as equality.

The models of this class are either of NR type (directed assignment, no customer
response) or AR type with distance-based utility function (customers travel to
the closest open facility). An interesting exception is the use of AR model with
proportional allocation and exponential utility (17.29) by Drezner and Drezner
(2011) (though they do not comment on the existence and uniqueness of the
equilibrium solution, it is in fact assured by the results cited earlier).

While the constraint set for service-objective models is quite similar to that
of coverage-oriented models (in fact, it is somewhat simpler since the coverage
constraints and, in some cases, service level constraints are missing), inclusion
of the congestion term in the objective leads to a non-linear model for which
finding exact solutions is problematic. This difficulty is further compounded when
the queues at the facilities are of multi-server type and/or have non-Markovian
service times: in these cases exact closed-form expressions for the congestion-
related performance measures are either not available, or are quite complex,
requiring a separate procedure to evaluate the congestion levels for each set of
values of the facility location and customer allocation decision variables. For this
reason, the proposed solution methods are all heuristic-based, typically employing
meta-heuristic approaches such as tabu search, simulated annealing, and genetic
algorithms.

Service-objective models become significantly more complicated when capac-
ities of facilities are allowed to be flexible (i.e., when 	i are not assumed to
be identical at all facilities). Most of the published models assume identical
capacities, with Aboolian et al. (2009) and Berman and Drezner (2007) being
notable exceptions.
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17.5.3 Balanced-Objective Models

Balanced-objective models seek to design a system that “balances” the costs
incurred by the two main “players” in the system: customers, who bear the travel
and congestion costs, and the decision-maker who bears the facility-related costs.
Balanced-objective models are listed in Table 17.3 and include the following
references: Aboolian et al. (2008), Abouee-Mehrizi et al. (2011), Castillo et al.
(2009), Elhedhli (2006), Kim (2013), Marianov and Rios (2000), Pasandideh and
Chambaria (2010), Rabieyan and Seifbarghy (2010), Vidyarthi and Jayaswal (2013),
and Wang et al. (2004).

One may view balanced-objective models as seeking to achieve some kind of
“social optimum”; the objective functions in these models are similar to social
welfare functions in economics. Since the objective incorporates customer concerns,
the models are typically of NR type: customers accept the directed assignments
to optimize “social welfare”, even if this leads to assignments that are suboptimal
from individual customers’ point of view (two references that incorporate customer
response are Aboolian et al. 2008 and Abouee-Mehrizi et al. 2011). The demand
is assumed to be inelastic. The coverage and service level constraints are typically
absent, as service adequacy is addressed by the objective. The objective function
typically includes the “customer-borne” cost terms (17.45)–(17.46) representing
travel and congestion costs, as well as the “operator-borne” facility costs (17.47).
Since most models do not assume any demand losses, the revenue term (17.44) is
not included; the exception being Abouee-Mehrizi et al. (2011), who model revenue
losses due to balking and thus optimize the net profit. Other distinguishing features
of most models of this class are simple constraint sets and the inclusion of flexible
capacity at the facilities as the decision variables. The main solution difficulty stems
from the non-linearities inherent in the congestion term (third term of the objective
function). There are several approaches for either making these terms less complex
or linearizing them, leading to interesting exact algorithms. We describe two such
approaches below.

The first is based on Castillo et al. (2009). They assume an M=M=1 queuing
system at the facilities and use the average number of customers in the system
Li.
i ; 	i / as the performance measure at facility i . For M=M=1 queue, this can
be written as

Li .
i ; 	i / D 
i

	i �
i

: (17.59)

All costs are assumed to be linear and uniform (i.e., identical for all facilities),
leading to the following objective function:

minimize ZDˇ
X

j2J

X

i2I

d.i; j /�j xijCWC
X

i2I

Li .
i ; 	i /CFC
X

i2I

yi CVC
X

i2I

	i ;

(17.60)



480 O. Berman and D. Krass

where WC;FC;VC are the waiting cost, fixed cost and variable cost parameters
respectively. This function is minimized subject to constraints (17.53), (17.55)
specified as equality, as well as (17.54), (17.56) and (17.57).

Observe that for any specified values of xij and yi , the optimal capacity 	�
i can

be determined separately for each facility. Indeed, it is not difficult to show that

	�
i D 
i C

r
WC

VC

i :

Observe the similarity of this expression to (17.22) discussed earlier. It also has the
same interpretation: the optimal capacity at facility i consists of the minimal level

i , necessary to ensure system stability, and “capacity cushion” which grows with
the square root of 
i and whose size depends on the ratio of waiting and capacity
costs. Substituting the last expression into (17.60) and performing some algebraic
manipulations allows us to re-state the objective function as

mininize Z D ˇ
X

j2J

X

i2I

d.i; j /�j xijC 2
p
WC � VC

X

j2J

X

i2I

sX

j2J

�j xijCFC
X

i2I

yi ;

subject to constraints (17.53), (17.56), and (17.55) specified as equality; the
variables
i and 	i are no longer needed.

This is a MIP with a single concave (more specifically, square root) term in
the objective. Several methods are available to obtain exact solutions for models
of this type, which also arise in location-inventory models, competitive location
models and other contexts. One approach, based on Lagrangian Relaxation, is
described in Shen (2005); a variant of this is used in Castillo et al. (2009). Another
approach, based on piecewise linear approximation of the concave term, is presented
in Aboolian et al. (2007).

It should be noted that in view of the discussion preceding (17.22), a similar
“trick” for replacing the congestion cost term with a concave form should work for
more general queueing systems as well, at least as an approximation.

The second approach for obtaining exact solutions to balanced-type SLCIS is
based on Elhedhli (2006). Once again we start with the model whose objective
function is given by (17.60) and assume an M=M=1 queue at each facility. In
addition, it is assumed that processing capacity of a facility must be equal to one
of H C 1 discrete values, i.e., that 	i 2 f0; 	1; 	2; : : : ; 	H g for all i 2 I , where
	1 < 	2 < : : : < 	H .

Treating the expected queue length Li as a decision variable, we rewrite
(17.59) as


i D Li

1C Li
HX

hD1
	hzih; i 2 I; (17.61)
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where zih is a binary decision variable taking the value of 1 if 	i D 	h and 0
otherwise, with the constraints

PH
hD1 zih � 1; i 2 I added to the model. Now

consider the function f .L/ D L
1CL . It is concave, and can thus be represented as

the minimum of tangent lines, yielding a linear form. This can be used to represent
the expression (17.61) as an infinite set of linear constraints (note that the objective
is already linear, in terms of the new variable Li ). The resulting MIP can be solved
through a column generation approach. The reader should refer to Elhedhli (2006)
for details.

In summary, the simpler structure of balanced-objective models allows for
effective exact approaches to be developed. Another interesting observation is that
the “location-allocation” and “capacity determination” sub-problems often separate.
As noted earlier, these models, being of type NR, may assign individual customers
to rather distant facilities. However, since the travel cost is in the objective function,
these “undesirable” assignments can be controlled by increasing the corresponding
cost coefficients. The computational results in Castillo et al. (2009) suggest that
when travel costs are “reasonably” high, the overwhelming majority of customers
(over 99 % in the instances solved) are assigned to the closest open facility in the
optimal solution.

17.5.4 Explicit Customer Response Models

The final class we consider consists of SLCIS models where “explicit” customer
response mechanism is specified, i.e., they are of types AR, DR, or FR. These
models are listed in Table 17.4. The demand in these models is generally elastic,
though in a few cases elasticity is specified implicitly through demand losses due
to blockages. The objective always includes the revenue term (17.44), and may also
include the facility cost terms (17.47), unless the number of facilities and servers is
given.

While this class of models has received much recent attention, the earliest
publications date back to the very beginning of the SLCIS modeling: see Berman
and Kaplan (1987). Some of the seminal early work is described in Brandeau et al.
(1995).

Many of the technical issues related to this class of models have been covered in
Sect. 17.3.2. The problem of determining the optimal location for a single facility
(Berman and Drezner 2006; Berman and Kaplan 1987; Tong 2011; Berman et al.
2014) can be solved exactly. However, the treatment of the multi-facility case
is generally quite difficult since, as noted earlier, in addition to the non-linear
objective function the underlying models include the feedback loop between the
customer demand and congestion and/or the equilibrium conditions for facility-
client allocations, or both. Thus, heuristic approaches are almost always employed
for multi-facility models. These heuristics are usually two-level: at the lower
level they incorporate subroutines for computing the equilibrium solutions (using
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non-linear optimization techniques) for a given location set. At the upper level they
try improvement strategies to the determine a good set of open facilities, often using
meta-heuristics. As in the case of balanced-objective models, the determination
of the optimal capacity at a facility can often be done through a separate exact
optimization procedure, for a given location and customer-allocation scheme.

We illustrate the foregoing discussion with the approach loosely based on
Aboolian et al. (2012), who proposed one of the few exact approaches available
for Explicit Customer Response models (in fact, the approach outlined below is an
improvement on the original methodology). The model is of DR type, i.e., customers
accept directed assignments to facilities, responding by reducing their demand
when travel and congestion costs increase. Both M=M=K and M=M=1 queueing
systems can be considered; we will focus on the latter for simplicity. The primary
queuing performance measure is the expected waiting time W i at each facility i .
While a general concave utility function may be used, we employ the exponential
utility (17.29) for transparency, with the elastic demand given by (17.41). The fixed
and variable costs are assumed to be uniform, i.e., identical for all locations.

We start by observing that if customers at node j 2 J are assigned to facility i ,
the maximum demand is given by

�max
ij D �max

j exp.��dd.i; j //;

quantities that can be pre-computed. The resulting model can be formulated as
follows:

maximize Z Dr
X

i2I

i � FC

X

i2I
yi � VC

X

i2I
	i (17.62)

subject to W i D yi

	i �
i

i 2 I (17.63)


i D
X

j2J
�max

ij exp.��wW i/xij i 2 I (17.64)

(17.55), (17.56)

This reflects the typical structure of DR models: explicit specification of the waiting
time and demand, in addition to regular constraints for location models. Note that
system stability constraints (17.57) are omitted, as the demand automatically adjusts
to the offered capacities.

The next observation is that once customer allocation variables xij are specified,
both the optimal capacities at the facilities and the actual realized customer demands
are easy to determine. In fact, the latter only depend on xij through the total maximal
demand allocated to each facility:


max
i D

X

j2J
�max

ij xij: (17.65)
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For each facility i we now solve the following univariate “capacity optimization”
model:

maximize r
i � VC	i

subject to 
i D 
max
i exp.��w


i

	i �
i

/

	i � 0:

Aboolian et al. (2012) show that the solution to this model is unique and can
be found through a simple univariate search. Note that the solution yields both,
the optimal capacity 	i and the corresponding demand level 
i . It is convenient
to represent these quantities as functions of the allocated maximum demand:
	.
max

i /; 
.
max
i /. Substituting these quantities into the original model (17.62)–

(17.64), (17.55), (17.56) we obtain

maximize Z Dr
X

i2I

.
max

i /� FC
X

i2I
yi � VC

X

i2I
	.
max

i /

subject to (17.55), (17.56), (17.65),

where the only non-linearities occur in the objective function. By solving the
capacity optimization model repeatedly over a range of possible values of 
max

i ,
we can construct a piecewise linear approximation of the functions 
.
max

i / and
	.
max

i / to any desired level of tolerance. Using these approximations in the model
above yields a linear MIP which can be solved using standard off-the-shelf software.

As noted earlier, the separation of capacity optimization and customer allocation
problems is a common feature of Explicit Customer-Response models and has been
used by a number of authors. However, an important driver of the exact approach
outlined above is that the model in Aboolian et al. (2012) is of DR type, i.e.,
directed assignment and single-sourcing are both assumed. The analysis presented
in Aboolian et al. (2012) suggests that neither of these assumptions is very restrictive
(echoing the results in Castillo et al. 2009 discussed earlier). It was observed that in
the vast majority of instances solved, customers were, in fact, assigned to facilities
that minimize their sum of waiting and travel times, i.e., the facilities they would
have selected under an FR model. Also, by splitting the original customer nodes into
k copies each containing 1=k of the original demand, and allowing each of these
new nodes to be assigned to a different facility, the impact of the single-sourcing
assumption was examined. Again, it turned out that for the instances solved, the
violation of this assumption was rare (all copies of the original node were assigned
to the same facility in the vast majority of the cases) and when split assignments
occurred, they did not have a large impact on the objective function. Intuitively, both
effects can be explained by the fact that in DR models the incentives of customers
and the decision-maker, while not identical, are well-aligned: by forcing customers
to use a less convenient facility, the realized demand (and the revenue) are reduced.
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Thus, when designing the system, a design that maximizes customer utilities is often
optimal, even though such maximization is not explicitly enforced in the model.

17.6 Conclusions

In this chapter we have focused on a rather specialized sub-field of stochastic loca-
tion models: problems with congestion and static customer assignments. However,
as discussed above, this is a very active and growing field of research. We believe
that the key drivers of this growth are that, on the one hand, SLCIS models do
capture very important trade-offs and stochastic effects that must be taken into
account when designing many real-life systems. On the other hand, these models
retain enough structure to enable exact algorithmic approaches and managerial
insights that may not be available when more complex models (e.g., models with
mobile servers or dynamic customer assignments) are considered.

The variety of SLCIS models considered in the literature is quite bewildering. We
have tried to systematize the models along two dimensions: by customer response
and demand elasticity (leading to our NR/AR/DR/FR classification), and by the key
structural elements of the models, as described in Sect. 17.5. We believe that this
classification should be useful to future researchers in this field, both with respect
to the importance of clearly spelling out the assumptions for customer behavior and
key model objectives, and with regards to realizing what key difficulties may arise
for a given model type.

Many open questions remain, as should be clear from the preceding sections.
The assumptions made with respect to queueing behavior in many models are
quite restrictive and could likely be generalized using the approximation approaches
described in Sect. 17.2.3.2. The assumptions underlying NR models or AR models
with distance-only utility are questionable and could lead to under-performance of
the resulting system (especially with respect to the realized demand). The reliance of
many authors on heuristic approaches without the ability to benchmark the resulting
solutions versus the optimal ones is not comforting given the strategic nature of
decisions underlying SLCIS models. In short, many ways to improve on the existing
models remain to be explored. We hope that some of these improvements will be
investigated in the next generation of SLCIS models.

Finally we would like to mention that many of the issues that have been
explored in the SLCIS context (customer response, elastics demand) are still
waiting to be addressed in the models with mobile servers/dynamic customer
assignments. As noted earlier, these models involve a different level of complexity,
with the underlying queueing systems being much less tractable. Nevertheless,
the assumptions regarding customer behavior and response are very important and
deserve further study.
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Chapter 18
Demand Point Aggregation for Some Basic
Location Models

Richard L. Francis and Timothy J. Lowe

Abstract Location problems occurring in urban or regional settings may involve
many tens of thousands of “demand points,” usually individual residences. In
modeling such problems it is common to aggregate demand points to obtain
tractable models. We discuss aggregation approaches to a large class of location
models, consider various aggregation error measures, and identify some effective
measures. In particular, we focus on an upper bounding methodology for the error
associated with aggregation. The chapter includes an example application.

Keywords Aggregation • Demand points • Location

18.1 Introduction

Many location problems involve locating services (called servers) with respect to
customers of some sort (called demand points, and abbreviated as DPs). Usually
there is travel between servers and DPs, so that travel distances, or (more generally)
travel costs, are of interest. Location models represent these travel costs, and
solutions to the models can provide locations of the servers of (nearly) minimal cost.
For books on location models and modeling, see Daskin (2013), Drezner (1995),
Drezner and Hamacher (2002), Francis et al. (1992), Handler and Mirchandani
(1979), Love et al. (1988), Mirchandani and Francis (1990), and Nickel and Puerto
(2005).

A common difficulty with modeling location problems that occur in urban or
regional areas is that the number of DPs may be quite large, since each private
residence might be a DP. In this case it may be impossible, and also unnecessary, to
include every DP in the corresponding model. Further, the models may be NP-hard
to optimize (Kariv and Hakimi 1979). For problems as diverse as those including
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the location of branch banks (Chelst et al. 1988), tax offices (Domich et al. 1991),
network traffic flow (Sheffi 1985), and vehicle exhaust emission inspection stations
(Francis and Lowe 1992) a popular aggregation approach is used: to suppose every
DP in each postal code area or zone of the larger urban area is at the centroid of
the postal code area or zone, and to compute distances accordingly. The result is a
smaller model to deal with, but one with an intrinsic error. If the modeler wishes
to aggregate to have a small number of aggregate demand points (abbreviated as
ADPs), and also desires a small error, then aggregation becomes a nontrivial matter.

It is tempting to ask the following question: How many ADPs are enough?
There are no general answers to this question. This is because there are important
tradeoffs in doing aggregation. Aggregation often decreases: (1) data collection cost,
(2) modeling cost, (3) computing cost, (4) confidentiality concerns and (5) data
statistical uncertainty. The first four items seem self-explanatory; item (5) occurs
because aggregation leads to pooled data, which provides larger samples and thus
smaller sample standard deviations. The price paid for aggregation is increased
model error: instead of working with the actual location model we work with some
approximate location model. How to trade off the benefits and costs of aggregation
is still an open question. The question is open in part because there is no general
agreement on how to measure the aggregation error, and also because there is
no accepted way to attach a cost to model aggregation error. To the best of our
knowledge, professional judgment is generally used to do the tradeoffs. Francis et al.
(2009) provide a survey of various demand point aggregation error measures, and
an extensive literature discussion. In fact, much of the early material in this chapter,
and Table 18.4, is from that paper.

One can categorize location models as strategic, tactical, or operational in scope.
As pointed out by Bender et al. (2001), planar distances are often used for strategic-
level location models, and network distances for tactical-level location models. Such
models are often converted to equivalent mixed integer programming (MIP) models
for solution purposes, using some finite dominating set principle to reduce the set
of possible locations of interest to a finite set (Hooker et al. 1991). Thus results to
follow for these planar and network models also apply to their MIP representations,
including those for the p-median, p-center, and covering location models. These
models are the subject matter of Chaps. 2, 4, and 5 respectively. Operational-level
location models are not too common (mobile servers are one example), but for
such models no aggregation may be best. Note that the scope of the location model
may well indicate the degree of aggregation; a more detailed scope requires a more
detailed aggregation.

18.2 Terminology and Examples

We suppose that servers and DPs are all either points in the plane, or on some travel
network. In either case, there is some well-defined set of server points and DPs,
say ˝ , and a distance d(x, y) between any two points x, y in ˝ . If ˝ is a travel

http://dx.doi.org/10.1007/978-3-319-13111-5_2
http://dx.doi.org/10.1007/978-3-319-13111-5_4
http://dx.doi.org/10.1007/978-3-319-13111-5_5
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network (assumed undirected) then d(x, y) is usually the length of a shortest path
between x and y. For planar problems when ˝ D R2, with xD (�1, �2), yD ( 1,
 2), d(x, y) is often the `p-distance: jjx – yjjp D Œj�1– 1j p C j�2– 2j p�1=p , with
p� 1. Taking pD 1 or 2 gives the well-known rectilinear or Euclidean distance,
respectively. The limiting case of the `p-distance as p goes to infinity, denoted
by jjx� yjj1, is given by jjx – yjj1 D max fj�1– 1 j; j�2 �  2jg, and is called
the Tchebyshev distance. The Tchebyshev distance in R2 is sometimes analytically
convenient because it is known (Francis et al. 1992) to be equivalent to the planar
rectilinear distance under a 45-degree rotation of the axes. We define the diameter
of ˝ by diam .˝/ D sup fd .x; y/ W x; y2˝g, with the understanding that possibly
diam(˝)DC1. More generally, ˝ can be a metric space (Goldberg 1976) with
metric d, but no loss of insight occurs by considering the network and planar cases
for˝ .

Suppose we have n DPs, vj 2˝ , jD 1, : : : , n. Denote the list (or vector) of
DPs by VD (v1, : : : , vn). When we aggregate, we replace each DP vj by some
ADP v

0

j in ˝ , obtaining an ADP list V 0 D �
v0
1; : : : ; v

0
n

�
. While the DPs are usually

distinct, the ADPs are not, since otherwise there is no computational advantage to
the aggregation. When we wish to model q distinct ADPs, we let � denote the set
of q distinct ADPs, say � Df1, : : : , qg. We use the former (latter) ADP notation
when the correspondence between DPs and ADPs is (is not) of interest. Usually we
have q� n.

For any positive integer p, let SDfsk, : : : ,spg denote any p-server, the set of
locations of the p servers, S�˝ . (This symbol p is a different symbol from the
one defining the `p-distance.) Denote the location model with the given original
DPs by f (S:V), and the one with the aggregate DPs by f (S:V 0). The notation f (S:V)
and f (S:V 0) captures a key idea that an aggregation is a replacement of V by V 0, with
the entries of V 0 not all distinct.

For the large class of location models with similar or indistinguishable
servers, with only the closest one to each DP assumed to serve the DP, for
any p-server S�˝ and DP v2˝ we denote by D(S,v)	minfd(sk, v): kD 1,
: : : , pg the distance between v and a closest element in S. We then define the
closest-distance vectors D .S; V / 	 �

D
�
S; vj

� W j D 1; : : : ; n� ; D .S; V 0/ 	�
D
�
S; v0

j

�
W j D 1; : : : ; n

�
2RnC. Suppose g is some “costing” function with

domain RnC attaching a cost to D(S,V) and D(S,V 0). This gives original and
approximating location models f (S:V)	 g(D(S,V)) and f (S:V 0)	 g(D(S,V 0)),
respectively. Important and perhaps best-known instances of g are the p-
median and p-center costing functions, g.U / D w1u1 C � � � C wnun, and
g.U / D max fw1u1; : : : ;wnung respectively; the wj are positive constants, often
called “weights”, and may be proportional to the number of trips between servers
and DPs. Thus f (S:V) is either the p-median model, w1 D(S,v1)C : : : Cwn D(S,vn),
or the p-center model, maxfw1 D(S,v1), : : : , wn D(S,vn)g. These models originate
from Hakimi (1965) (each is called unweighted if all wjD 1: jD 1, : : : , n). They are
perhaps the two best-known models in location theory. The covering model, a model
related to the center model, will be described later in this chapter. Subsequently,
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we refer to the p-center, p-median, and covering location model as PCM, PMM,
and CLM respectively. These models are NP-hard to minimize (Kariv and Hakimi
1979; Megiddo and Supowit 1984).

Consider several aggregation examples which serve to illustrate our notation and
basic aggregation ideas. Let JDf1, : : : , ng denote the set of all DP indices. We
suppose, for these examples, that the DPs will be aggregated into two postal code
area centroids. Let Ji denote the subset of indices of the DPs in postal area iD 1, 2.
Let  i denote the centroid of postal area iD 1, 2. Clearly, the Ji form a partition of
J. To aggregate the DPs in the postal code areas into the centroids we replace each
vj with j2 Ji, by  i for iD 1, 2. Thus v0

j D i for j2 Ji and iD 1, 2. Hence V 0 is now
the n-vector of ADPs, and � Df1,2g is the ADP set.

Example aggregation 1, PMM: f .S WV /DP˚
wjD

�
S; vj

� W j2J �.
Let !1DP

˚
wj Wj2J1

�
; !2DP

˚
wj Wj2J2

�
. We then have f .S WV 0/D

Pn
wjD

�
S; v0

j

�
W j2J

o
DP˚

wjD .S; 1/ W j2J1
�CP˚

wj D .S; 2/ W j2J2
�

D!1D .S; 1/C!2D .S; 2/. This example illustrates how aggregation error can
occur. If only p-servers are of interest (with p� 2), then taking S to be f1,2g
minimizes f (S:V 0) with minimal value of 0, giving a useless underestimation of
minff (S:V):Sg.

If there is only one server, SDfsg, and the `p-distance is used, then it is known
that this 1-median under-approximation is valid for all s. Letting !DPfwj: j2 Jg,
and  DPf(wj/!) vj: j2 Jg be the centroid of the DPs, so that f (s:V 0)D!jjs� jjp,
it is known (Francis and White 1974) that f (s:V)� f (s:V 0) for all s. This is an
important reason why underestimation can occur for PMM aggregation when few
centroid ADPs are used. It is also known that for `p distances (Plastria 2001) the
difference f (s:V)� f (s:V 0) goes to zero as s gets farther from  along an infinite ray
with one end point at  . There are good theoretical reasons due to self-canceling
error (Plastria 2000, 2001); (Francis et al. 2003) for using centroids as ADPs for the
PMM, but none that we know of for the PCM and CLM. Indeed, better choices than
centroids are available for the latter two models.

Example aggregation 2, PCM: f (S:V)Dmaxfwj D(S,vj): j2 Jg. Let wC
1 D

max
˚
wj W j2J1

�
;wC

2 D max
˚
wj W j2J2

�
. We then have f

�
S W V 0� D

max
˚
wjD

�
S; v0

j

� W j2J �Dmax
n

max
˚
wjD

�
S; v0

j

� W j2J1
�
, max

˚
wjD

�
S; v0

j

� W
j2J2

�� D max
˚

max
˚
wjD

�
S; 1

� W j2J1
�
, max

˚
wjD

�
S; 2

� W j2J2
�o D max

˚
wC
1 D

�
S; 1

�
;wC

2 D
�
S; 2

��
. Again, if only p-servers (p� 2) are of interest, then

taking S to be f1,2g minimizes f (S:V 0) with minimal value of 0, giving an
underestimate of f (S:V).

Example aggregation 3, CLM: minimize jSj subject to D(S,vj)� rj, j2 J,
S�˝ , where rj is a “covering radius” associated with vj. All but two covering
constraints for the aggregated model are redundant. Define �1Dminfrj: j2 J1g,
�2Dminfrj: j2 J2g. Thus the aggregated model has constraints D .S; 1/ �
�1; D .S; 2/ � �2; S�˝ . This means it takes at most two servers to solve the
aggregated model. CLMs and PCMs are known to be closely related (Kolen and
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Tamir 1990). We shall see that aggregation results developed for one model often
also apply to the other.

These examples of models illustrate two equivalent approaches for representing n
DPs with an aggregation of q ADPs. Either we have a partition of the DP index set J
into q sets J1, : : : , Jq with one ADP per set, or for each vj there is a replacing ADP
v

0

j , with each v
0

j in the set � of q distinct ADPs. In either case, three aggregation
decisions (Francis et al. 1999) must be made: (1) the number of ADPs, (2) the
location of ADPs, (3) the replacement rule: for each vj, what is v

0

j? The (reasonable)
replacement rule often used is to replace each DP by a closest ADP. Further, for
the aggregation to be computationally useful we require the number of ADPs, q, to
be less (usually much less) than the number of DPs, n; also it is reasonable to have
p� q. The authors note that versions of these three aggregation decisions occur in
location modeling. Hence results in location theory help in doing DP aggregation,
so DP aggregation is a sort of “second-order” location problem to solve prior to
solving the original or “first-order” problem.

These three examples may suggest that as more ADPs are used the aggregation
error decreases—ideally, if we could use qD n ADPs, we don’t have an aggregation
error at all. In fact there are classes of location models where the law of diminishing
returns applies: aggregation error decreases at a decreasing rate as q increases
(Francis et al. 2004a). Thus a very small value of q may cause a very high
aggregation error, while a large value of q might give little less error than an
appreciably smaller value of q.

18.3 Case Study

This section is based on the work by Dekle et al. (2005), where supplemental
information may be found. We refer to the authors of this study as the “team”.

FEMA is an acronym for Federal Emergency Management Agency, a national
U.S. agency that deals with disasters such as fires, floods, hurricanes, tornadoes, and
terrorist attacks. This work stems from a FEMA request to all counties in Florida to
identify possible locations for disaster recovery centers (DRCs). FEMA describes a
DRC as “a facility established in or nearby the community affected by the disaster,
where people can meet face-to-face with representatives from Federal, State, local
and volunteer agencies to obtain assistance.” For the county this study deals with,
Alachua County, FEMA required the identification of at least three DRCs, which
could be called upon at very short notice for use in a local disaster. Alachua County
had a population of about 219,000 at the time of the study. The east–west and
north–south dimensions of the county are about 32 and 30 miles (51.5, 48.3 km)
respectively; the land area is about 874 square miles (2,266 km2).

FEMA provided seven DRC requirements/evaluation criteria. The County
accepted all of these requirements, but added four more, including that the proposed
DRC locations should be buildings allowing reasonable travel distances to them by
potential users. This criterion was the most challenging to satisfy, and led to the
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principal objective of the study. The team spent a substantial effort discussing with
their Alachua County sponsor possible principal objectives for the study; eventually
they agreed upon the following idealized one: minimize the total number of DRCs
needed, subject to each county resident being within a specified distance r (called
the “radius”) of a closest DRC. Thus if B(s,r) denotes the set of all points in the
plane whose distance from a given point s is at most r, a requirement meaning that
each county resident location must be in at least one B(s,r) for some DRC location
s; that is, each resident point in the county must be “covered” by at least one B(s,r)
for some DRC location s. Hence the location requirement specifies a “covering”
problem (see Chap. 5). It was the belief of the team (eventually confirmed) that if
they could solve this idealized problem meeting the location requirement, then they
could find nearby locations that would meet all the other requirements.

A natural and important question was how to measure distances between points.
Ideally, shortest path distances on the existing road network would have been used,
but these were unavailable due to the very limited study budget. Since the county
had a largely rectilinear/right-angle road network, the team, with the agreement
of its sponsor, settled on the use of rectilinear distances: for any planar points
sD (s1,s2), tD (t1,t2), d(s,t)D js1� t1jC js2� t2j defines the rectilinear distance
between s and t.

We refer to resident locations as “demand points”, abbreviated as DPs. For any
real aggregation location problem, obtaining and dealing with DP data will very
probably be a major part of the problem-solving effort. Interaction with the county
property appraiser’s office elicited the information that principal DP data sources
could be obtained from GIS data available in a library, and from the county property
appraiser’s office. The county DP data was arranged by “parcels” of land. There
were about 6,600 parcels, and for each parcel the following information was known:
x and y coordinates of the parcel center, the total heated square footage of the parcel
buildings, and whether parcel buildings were residential or commercial. The parcel
locations were used as residential location/DPs, and as possible DRC sites. As many
as 3,900 of the parcels seemed possibly usable for DRC sites, as they had public or
commercial buildings whose total usable footage exceeded 2,000 ft2. Figure 18.1
shows a plot of all the DPs, as well as the aggregated DPs (yet to be discussed).

Covering models are discussed in Chap. 5; they provide a way to compute, for
a specified covering radius r, a minimal set of locations, say SDfs1, : : : ,skg, so
that each DP is contained in at least one B(si,r). To formulate the covering problem
using all the available data as an integer program model would give a constraint
matrix with about 6,600 rows and 3,900 columns. The size of this model was
beyond the resources available to the team to deal with. The covering algorithm
readily available to the team was one in Excel, which could deal with at most 200
variables/columns. The need to somehow aggregate the DP data and the potential
site data thus became quite evident.

In a later section we discuss a useful error bound for covering location problems,

max
n
d
�
vj ; v

0
j

�
W j D 1; : : : ; n

o
, where vj is the location of DP j, and v

0

j is the ADP

(aggregate DP) that replaces vj; the vj are distinct while the v
0

j are not. Choosing the

http://dx.doi.org/10.1007/978-3-319-13111-5_5
http://dx.doi.org/10.1007/978-3-319-13111-5_5
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Fig. 18.1 Plot of demand
points and aggregate demand
points
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j to keep this error bound small keeps the covering error small. Note, if there are

n distinct v
0

j, that max
n
d
�
vj ; v

0
j

�
W j D 1; : : : ; n

o
may be viewed as the objective

function of an n-center problem with DPs vj and facility locations defined by the
v

0

j . This observation indicated that it would be reasonable to modify some p-center
algorithm to locate the ADPs. As discussed in Dekle et al. (2005), the team used
a variation of a Dyer and Frieze (1985) pick-the-farthest (PTF) algorithm to pick
the ADPs. Possible center locations were also similarly aggregated. Figure 18.1
illustrates that the algorithm chooses well-dispersed locations. A number of runs of
the PTF algorithm were made, and finally solutions were chosen that reduced the
number of DPs from 6,600 to 198 and the number of potential DRC sites from 3,900
to 162.

The teams’ version of the Dyer–Frieze algorithm works as follows. First, an
arbitrary DP is chosen as an ADP. Next, a DP whose closest-distance to an ADP
is farthest is then chosen to be an ADP. Continuing, at each iteration a DP is chosen
as an ADP whose closest-distance to the collection of ADPs is farthest. This process
continues until the closest-distance of every remaining DP to the collection of ADPs
is no more than a “control parameter” b. This parameter may be adjusted to provide
a computationally manageable number of ADPs. Dyer and Frieze give a low-order
implementation of this approach.

Subsequently, the covering location model is solved using the ADPs as DPs; the
model formulation guarantees that each ADP will be within the radius r of at least
one center. However, original DPs not chosen as ADPs may possibly not be within
such a radius r; supposing that v is any such unchosen DP, the algorithm guarantees
that some ADP, say v0, satisfies d(v0,v)� b. Thus for any center s that covers v0,
d(s,v)� d(s,v0)C d(v0,v)� rC b. Hence if b can be kept small then the uncovered
DPs will be nearly covered, as was true in this application (see Table 18.1).
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Table 18.1 (a) shows how some DRC performance measures changed with various r values for
the idealized stage 1; (b) shows similar results for the actual stage 2 results

(a) Idealized (b) Actual

Travel limit r (miles) 10 15 20 10 15 20
Maximum travel distance (miles) 10.9 15.1 20.3 14.0 25.8 26.94
Average travel distance (miles) 4.9 9.1 7.6 4.86 6.76 7.36
% Parcels covered 99.78 99.96 99.92 97.7 89.8 97.4
Average covering violation (miles) 0.184 0.84 0.184 1.05 2.80 2.55

Note that maxfd(vi,vi
0): all unchosen DPs vig� b when the algorithm terminates,

so keeping b small guarantees a small aggregation error. Aggregation error is
discussed in the next section.

Once the DPs were aggregated, and the potential DRC sites were also similarly
aggregated, the covering location problem could be solved. We call the covering
location problem the idealized problem, while we call the one that considers all
eleven criteria the actual problem. The team solved the idealized problem first,
and then sought good solutions to the actual problem that were “close” to those
of the idealized problem. This approach greatly simplified the problem and worked
acceptably.

Because of initial uncertainty about an appropriate value of r, the greatest
distance any resident should need to travel to a closest DRC, it was decided to treat
r as a parameter of the study, try various r values, and then evaluate the resultant
solutions. The team eventually chose r values of 10, 15 and 20 miles (16.1, 24.2 and
32.3 km respectively). By solving the idealized covering model with these three r
values, solutions were found requiring 8, 4 and 3 DRC’s respectively; see Fig. 18.2
for the case of 3 DRCs; note Fig. 18.2 illustrates three B(s,20) regions. The team
then proceeded to solve the actual problem by finding potential DRC locations near
the idealized solutions which would meet the other evaluation requirements. To aid
in this effort, they and the sponsor developed a score card, much like a grade card,
on which they could score each potential location considered; most of the buildings
considered were schools, churches, recreation centers, or government buildings.
Table 18.1a illustrates some DRC performance measures for the solutions to the
idealized problem. Discrepancies between Table 18.1a performance measures and
the three different radius measures are due to aggregation effects, and can be seen
to be quite small. Table 18.1b shows performance measures for the actual problem.
There are some bigger discrepancies than in Table 18.1a, but these locations scored
well on all the other criteria. Also it was recognized that the proper choice of a
radius value r was somewhat subjective.

A number of modeling insights were gained in the course of this study, including
the following. (1) Sponsors may not have a principal objective. (2) The choice of
a model may be somewhat subjective. (3) Getting and working with all the data
can be most of the work in an aggregation/location study. (4) Data aggregation can
be essential and helpful. (5) The covering location model solutions were easy to
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Fig. 18.2 The set of points
within 20 miles of three
disaster recovery centers
(DRCs)
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explain to the sponsor, in part due to the figures. (6) The well-dispersed locations of
the covering model also had political and geographic redundancy advantages.

The three-location solution to the actual location model for rD 20, which covered
97.4 % of the parcels, was accepted by the sponsor. The following is a quote from a
letter the sponsor provided to the team.

The Florida Division of Emergency Management has requested that all county emergency
management offices provide at least three sites preidentified as potential DRCs. With
completion of this project, Alachua County is now able to comply with this request : : :

Overall, this was an outstanding project which has provided the Office of Emergency
Management with tangible results. When DRCs must be opened in the future, it will be
based upon careful research and problem solving rather than guesses on which locations
would be best.

In closing, we remark that this approach easily generalizes to covering problems
using network distances, given adequate network data. The approach worked well,
and controls the covering error. We recommend its use for aggregating covering
location problems, as well as unweighted p-center problems.

18.4 Aggregation Error Measures

While there can be other types of error in location models, the one we focus on
is demand point aggregation error, which result from replacing DPs by ADPs.
Thus, instead of actual distances we obtain approximating ones. The use of these
approximating ADPs creates error. It is thus important for the location modeler
who does the aggregation to be aware of the aggregation error being created. The
modeler who does DP aggregation intentionally introduces error into the model.
The use of ADPs is the cause of the aggregation error, but there are error effects—
including inaccurate values of the objective function and of server locations, due
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to using the approximating distances. It is important to consider both cause and
effects in order to get the whole picture. There are a number of ways to measure
error effects; further, the magnitude of aggregation effects can depend on the model
structure—for the same aggregation, some models can have more error than others.
What is clear, in any case, is that the way to minimize DP aggregation error is to not
aggregate DPs—certainly this is what we recommend when it is feasible. The ideal
way to aggregate DP data is not to aggregate it.

If DP data must be aggregated, then we need to consider aggregation error
measures. We list and summarize ten such measures in Table 18.2. All these error
measures have an ideal value of zero. One simple way to measure aggregation
error is to consider ADP–DP distances. If these distance values are all zero then
ADPs and DPs are identical, so there is no error. Later we establish a relationship
between ADP and DP distances and other error measures, including the distance
difference error. For the PMM, this distance difference error leads to an error we
call DP error. Like the difference error, the DP error can be negative or positive.
Still considering the PMM, note that the total DP error e(S) in Table 18.2 satisfies
e.S/ D f .S W V 0/ � f .S W V /, the difference between the aggregated PMM and
the original model. Even though no DP error is zero, the total DP error can be zero or
nearly zero, since negative errors can cancel out positive errors—this is the concept

Table 18.2 Various demand point aggregation error measures for a location model f (S:V). Ideal
error measures have value zero for all j and all S

No. Error name Error definition

1 ADP–DP distances d
�
v0

j ; vj

�
; j2J

2 Distance difference error D
�
S; v0

j

�
�D

�
S; vj

�
; j2J , all S

3 DP error, PMM ej .S/ D wj
h
D
�
S; v0

j

�
�D

�
S; vj

�i
; j2J , all S

4 Total DP error, PMM e.S/ D P˚
ej .S/ W j2J �, all S

5 ABC error for PMM: J1, : : : , Jq

is a partition of
J D f1, : : : , ng;!i 	P˚

wj W j2Ji
�

for i D 1, : : : , q

abci .S/ D !iD .S; i /�P
˚
wjD

�
S; vj

� W j2Ji
�
,

all S

6 Absolute error, any location
model

ae.S/ D jf .S W V 0/ –f .S W V /j, all S

7 Relative error, for all S with
f (S:V)> 0

rel.S/ D ae.S/=f .S W V /, all S

8 Maximum absolute error mae .f 0; f / D max fae.S/ W S; S
˝; jS j D pg
9 Error bound eb

Ratio error bounds (when
f (S:V),
f (S:V0)> 0)

A number eb with ae(S) � eb for all S,

jf .S W V 0/=f .S W V /–1j�eb=f .S W V /;
jf .S W V /=f .S W V 0/–1j � eb=f .S W V 0/ for all S

10 Location error a measure, diff (S0, S*), of the “difference”
between p-servers S0 and S*
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of self-canceling error. Unfortunately self-canceling error only applies to models
with an additive cost structure.

Next, consider ABC errors for the PMM, due to Hillsman and Rhoda (1978),
pioneering aggregation researchers. Note that ABC errors are sums of the DP errors
which are organized by the ADPs. Suppose we represent an aggregation by a
partition of JDf1, : : : , ng, say J1, : : : , Jq, such that for iD 1, : : : , q, every DP
vj with j2 Ji is aggregated into the ADP  i; that is, v0

j D i for j2 Ji. Thus
Pfwj

D(S,vj): j2 Jig is replaced in the aggregate model by
Pfwj D(S,  i): j2 JigD!i

D(S, i), where !i	Pfwj: j2 Jig. In the parlance of Hillsman and Rhoda, the ABC
error illustrates their Source A error, which they define actually as !i D(S, i). Using
!i D(S, i) instead of

Pfwj D(S,vj) : j2 Jig is a source of error. The special case
of Source A error when  i 2 S, so that !i D(S, i)D 0, is their Source B error. If !i

D(S, i)D 0, then it is useless as an estimate of
Pfwj D(S,vj): j2 Jig. The Source

C error is a related sort of allocation error involving closest-distance definitions.
Suppose sk 2 S is closest to  i; we might then assume that every vj 2 Ji will be
closest to sk. However, in reality, some vj 2 Ji may be closer to another element
of S than sk. In effect, we would allocate some DPs to a wrong server location that
is not closest to them. Note abci(S)DPfej(S): j2 Jig for all i, so total ABC error
is e(S)D f (S:V 0)� f (S:V). ABC error can be negative or positive, again resulting in
possible self-cancellation effects. Hillsman and Rhoda recognize and discuss both
total error and error self-cancellation.

Now consider any location model f (S:V) with p-server S and its approximation
f (S:V 0). A difficulty with error measures that can be negative or positive is that
a smaller error (e.g., �3,000) can be worse than a bigger error (e.g., C3). We
can avoid this difficulty by using the (nonnegative) absolute error, ae.S/ 	
je.S/ jDj f .S W V 0/ –f .S W V /j defined for all S. This measure is familiar from
the calculus for measuring how well one function approximates another. Related
to ae(S) is the idea of an error bound: a number eb for which ae(S)� eb for all S.
An equivalent way to define an error bound, using f 0 and f to denote the functions
f (S:V 0) and f (S:V) respectively, is based on the maximum absolute error, mae( f 0, f ),
a number which may very well be quite difficult to compute. Any error bound is then
an upper bound on the maximum absolute error. Good error bounds may be much
easier to compute than the maximum absolute error. A relative error can be defined
when f (S:V) is always positive: rel(S)	 ae(S)/f (S:V), perhaps converted to percent.
Depending on the model structure, ae(S) may be large but rel(S) may still be small
due to the magnitude of f (S:V). Relative error is not affected by the measurement
scale chosen, whereas the preceding error measures are.

Assuming f (S:V)> 0 and f (S:V 0)> 0 for all S�˝ , the relative error idea gives
other equivalent ways of expressing the error bound, for all S�˝:

ˇ̌
ˇ̌f .S W V 0/
f .S W V / � 1

ˇ̌
ˇ̌ � eb

f .S W V / ()
ˇ̌
ˇ̌ f .S W V /
f .S W V 0/

� 1
ˇ̌
ˇ̌ � eb

f .S W V 0/
:

If the model f (S:V) is on a national scale, but aggregation is done on a city/town
scale (e.g., ebD 10 miles, f (S:V)D 500 miles), we could have relatively small ratios
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eb/f (S:V) and eb/f (S:V 0), in which case the model ratios would be nearly one and
we would have a good aggregation. By contrast, if the model is on a city/town scale
and the aggregation is also on a city/town scale, we might have a poor aggregation.
We need the aggregation scale to be substantially smaller than the model scale in
order to have a good aggregation. This is one reason that aggregation may be of
more interest for problems of city/town/regional scope than those of national or
international scope.

There is another way to view the use of an aggregation error bound. The error
bound allows us to draw conclusions about a family of original models, instead of
just one. If the actual location model is F(S:V) instead of f (S:V), but the error bound
applies to both, that is jf .S W V 0/ –F .S W V /j � eb and jf .S W V 0/ –f .S W V /j �
eb for all S, then whatever conclusions we draw about the function f using the error
bound inequality also apply to the function F. While we lose accuracy when we
aggregate, we gain the ability to draw approximate conclusions about a family of
original functions. As a general example of the function F, suppose instead of the
DP set fvj: j2 Jg we have a different DP set, say fbj: j2 Jg, defining F, while all
other model data is the same as for f (S:V). If each DP bj is aggregated into v

0

j , then
each of the functions F and f will be aggregated into the same approximating model,

denoted by f 0. Further, if also d
�
vj ; v

0
j

�
D d

�
bj ; v

0
j

�
for j2 J, then the methods

we present later would provide both F and f 0, and f and f 0, with the same error
bound. The data for F and f differ, but are sufficiently similar that the aggregation
does not detect the differences.

Denote (globally) minimizing solutions to any original and approximating loca-
tion models f (S:V) and f (S:V 0) by S* and S0 respectively. While we usually cannot
expect to find S* if we must aggregate DPs, we can still obtain some information
about S* if we know an error bound eb and S0. Geoffrion (1977) proves that if
jf .S 0 W V 0/ –f .S� W V /j � eb, then jf .S 0 W V / –f .S� W V /j � 2eb. Supposing

f (S0:V)> 0, we thus have
ˇ̌
ˇ1–f .S� W V / =f .S 0 W V /

ˇ̌
ˇ � 2eb=f .S 0 W V /. Hence, if

2eb is small relative to f (S0:V), we may reasonably accept S0 as a good substitute
for S*. We assume henceforth that we can compute S0 but not S*. Note that if we
wish to use S0 to approximate S*, then it makes no sense to allow p� q, for then we
can place a new facility at every ADP and may achieve a minimal approximating
function value of f (S0:V 0)D 0. Certainly it is desirable to have p� q.

Various authors, cited in Francis et al. (2009), have proposed different types of
optimality errors which we list in Table 18.3. The first error can be computed, and
indicates how well the approximating function estimates the original function at S0.
For large models, the second two errors cannot be computed without knowing S*.
They can be computed for smaller models where S* can be found without the need
to aggregate, or for larger models if one assumes the algorithm used to solve the
original problem provides S*. Unless one can be certain that S* is known, or that
some properties of S* are known, the latter two measures do not seem useful.

Although it is reasonable to use some measure of the difference between f (S:V 0)
and f (S:V) to represent aggregation error, doing so results in what may well be called
the paradox of aggregation (Francis and Lowe 1992). Often our principal reason to
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Table 18.3 Various types of
optimality errors for any
location model f (S:V)

No. Error name Error definition

1 Total error at S0 e(S0) D f (S0:V0) � f (S0:V)
2 Opportunity cost error f (S*:V) � f (S0:V0)
3 Optimality error f (S*:V) � f (S0:V)

Ideal error measures are zero

aggregate is because we cannot afford, computationally, to make many function
evaluations of f (S:V). We want to aggregate to make the error small; however,
algorithms to do this typically require numerous function evaluations of f (S:V) and
thus cannot be used for this purpose. Usually it is practical, however, to compute
error measures for at least a few S, and we certainly recommend doing so whenever
possible. For example, given we know V and V 0, we can use a sampling approach to
compute a random sample of size K of p-servers, say S1, : : : , SK , compute f (Sk:V 0)
and f (Sk:V) for each sample element Sk, and then compute a sample error estimate
of any error measure of interest.

Location error (Casillas 1987; Daskin et al. 1989) involves some comparison of
the p-server locations S* and S0. There are several difficulties with using this con-
cept. First, if we really knew S* we would not need to do the aggregation. Second,
when jS*j� 2, there appears to be no accepted way to define the difference between
S* and S0. Third (assuming we do know S*), the function f (S:V), particularly if
it is the PMM function, may well be relatively flat in the neighborhood of S*, as
pointed out by Erkut and Bozkaya (1999). This means we could have some S0 with
f (S0:V) only a little larger than f (S*:V), but S0 is “far” from S*. Fourth, S0 and S*
may not be unique global minima. Why are comparisons made between S0 and S*?
We speculate they are made in part due to unstated subjective evaluation criteria, or
known but unstated supplementary evaluation criteria. As another possible example
of the use of location error, we might solve the approximating model with three
different levels of aggregation (numbers of ADPs), obtaining three corresponding
optimal p-servers say S0, S00 and S000. In this case, differences between successive
pairs of these p-servers might be of interest; we might want to know how stable
the optimal server locations are as we change the level of aggregation (Murray and
Gottsegen 1997) .

Subjective or unstated aggregation error criteria may well be important, but are
not well-defined. Thus two analysts can study the same DP aggregation and not
agree on whether it is good or not. Further, if a subjective evaluation derives from
some visual representation of DPs and ADPs, such an analysis may single out
some relatively simple visual error feature that is inappropriate for the actual model
structure. For example, a visual analysis could not evaluate the (computationally
intense) absolute error for the PMM. Some generally accepted way to measure
location error is desirable.

How should we measure the location error diff (S,Y), the “difference”
between any two p-servers S and Y? The answer is not simple, because the
numbering of the elements of S and of Y is arbitrary, and we must find a
way to match up corresponding elements. Further, S and Y are not vectors,
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but sets. We propose the use of a method discussed by Francis and Lowe
(1992). For motivation, consider the case where for each element sk of S there
is only one “nearby” element of Y, say ykˆ. In this case we might use either
max fd .sk; ykO/ W k D 1; : : : ; pg or

P fd .sk; ykO/ W k D 1; : : : ; pg as diff (S,Y).
More generally, define the p x p matrix CD (cij) with cijD d(si,yj). Define an
assignment (permutation matrix) to be any 0/1 p� p matrix ZD (zij) having a single
nonzero entry of one in each row, and a single nonzero entry of one in each column,
and let P denote the set of all such p! assignments (permutation matrices). Define
the objective function value v(Z) for every assignment Z2P by v(Z)	maxfcij zij:
Z2Pg, so that v(Z) is the largest entry in C for which the corresponding entry in Z
is one. Define �(S,Y)Dminfv(Z): Z2Pg, so that �(S,Y) is the minimal objective
function value of the min-max assignment problem with cost matrix C. We propose
using �(S,Y) for diff (S,Y). There are several good reasons for using �(S,Y). One
reason is that it has all the properties of a distance (see Goldberg 1976): symmetry:
�(S,Y)D�(Y,S); nonnegativity: �(S,Y)� 0 and � .S; Y / D 0 () S D Y ;
triangle inequality: � .S; Y / � � .S;Z/C � .Z; Y / for any p-servers S, Y and
Z. Another reason, further explored in Francis et al. (2009), is that it is related to the
absolute error. (We could also use the optimal value of the conventional min-sum
assignment model for diff (S,Y). This optimal value also has all the properties of a
distance, but we know of no useful relationship between it and absolute error.) We
call the distance � the min-max distance. Note, for any two p-servers S, Y �˝ ,
�(S,Y)� diam(˝). Further, when pD 1 the min-max distance is just the usual
distance, d(x1,y1).

Both min–max and min–sum assignment models are well-studied and are effi-
ciently solvable in low polynomial order for any set of real coefficients (Ahuja et al.
1993) . In the assignment models we study, the coefficients typically correspond
to distances between points in some geometric spaces, e.g., planar Euclidean or
rectilinear cases. For these geometric models significantly more efficient algorithms
have become available (Agarwal et al. 1999; Agarwal and Varadarajan 1999; Efrat
et al. 2001; Varadarajan 1998).

There are a number of relationships between the error measures of Table 18.2.
These relationships, some of which may not be obvious, are a subject of discussion
in Francis et al. (2009), where there are also numerical examples of many of the
error measures. It also seems worth pointing out that error measures 2 through 7 of
Table 18.2 are local error measures, since they depend on S. By contrast, measures
1, 8 and 9 may be considered global error measures.

There is no general agreement on which aggregation error measure is best.
Until the research community agrees on one or more error measures, progress in
comparing various aggregation approaches, and in building a cumulative body of
knowledge, will necessarily be limited. The lack of agreement on error measures
also limits progress in trading off aggregation advantages and disadvantages.
Further, because comparisons of various aggregation algorithm results should all be
based on the same error measures, there is currently little point in developing a data
base of DPs that can be used by the profession to test their aggregation methods.
We personally recommend the uses of relative error based on absolute error
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and/or error bounds, together with ADP-DP distances. The bound in the inequalityˇ̌
ˇ1–f .S W V / =f .S 0 W V /

ˇ̌
ˇ � 2eb=f .S 0 W V / seems particularly promising.

An alternative to using some low computational order approach to aggregate
the original demand point set, and then solving the resulting aggregated location
model to optimality, is to use some low computational order metaheuristic approach
(Pardalos and Resende 2002; Reeves 1993; Resende and de Sousa 2004) to approxi-
mately minimize the original, unaggregated location model. The first approach gives
bounds on optimality to the original model. The second approach introduces an
additional source of error, since a heuristic is used, but may possibly result in a
better solution. Given the current state of the art, which approach is best is not
known. Indeed, “best” may not even be well-defined, since there is no generally
accepted measure of aggregation error.

18.5 Error Bounds

We have argued that an upper bound on the absolute error is among the best
representations and measures of the error associated with an aggregation. We have
used the symbol eb to represent this upper bound so that with f (S,V) a general
location model, jf .S W V 0/ –f .S W V /j � eb.

Consider now obtaining error bounds for the PMM and PCM, say ebpmm and
ebpcm, with these two models defined in Examples 1 and 2 respectively. Both error
bounds are direct consequences of the triangle inequality for shortest distances,
which holds for all j2 J and all S�˝:

�d
�
v0
j ; vj

�
� D

�
S; v0

j

�
–D

�
S; vj

� � d
�
v0
j ; vj

�

()
ˇ̌
ˇD
�
S; v0

j

�
–D

�
S; vj

�ˇ̌
ˇ � d

�
v0
j ; vj

�
: (18.1)

The p-median and the p-center models have the following error bounds respec-
tively:

ebpmm D
Xn

wj d
�
v0
j ; vj

�
W j2J

o
; ebpcm D max

n
wj d

�
v0
j ; vj

�
W j2J

o
:

The error bounds themselves can be viewed as location models; if v
0

j is the closest
ADP to vj (which is reasonable), then we have

ebpmm D
X˚

wjD
�
�; vj

� W j2J � ; ebpcm D max
˚
wjD

�
�; vj

� W j2J � :

Since it is of interest to have small error bounds when doing aggregation, we can
view each of the latter two error bound expressions as a location model, and use
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heuristic location minimization algorithms to compute � . Thus doing aggregation
may be viewed as solving a location problem.

We remark for PMM, if S is restricted to being in a finite set of possible sites, and
there are fixed site costs but the sites are not aggregated, then the site fixed costs can
be added to the objective function without affecting the error bound.

Francis et al. (2009) give an extensive discussion of the use of the above error
bounds for aggregation. The conditions for the PMM error bound to be tight are
much stronger than for the PCM error bound to be tight, and this is reflected by better
computational experience for the PCM than the PMM. However, computational
experience does show that the PMM error bound is well correlated with sample
absolute error measures, and that it makes sense to locate ADPs so as to keep the
PMM error bound small.

Another location problem of interest is the covering location model, defined by
Example 3. Since D(S,vj)� rj is equivalent to D(S,vj)/rj� 1, from (18.1) we obtain

ˇ̌
ˇD
�
S; v0

j

�
=rj–D

�
S; vj

�
=rj

ˇ̌
ˇ � d

�
v0
j ; vj

�
=rj ; for all j 2 J and all S�˝:

(18.2)

Thus we obtain n error bounds, one for each original constraint. Clearly, it makes
sense to aggregate so as to keep these error bounds small.

Let us now build on (18.2), the basic error bound idea for constraints. Generally,
we have location constraints of the form fj(S)� rj, j2 J, S�˝ . Suppose each
function fj(S) is replaced by some approximating function, say f

0

j(S), resulting
in some constraints that are not distinct for the aggregated model of f 0

j .S/ �
rj ; j2J; S�˝ . If we now define functions f (S) and f 0(S) by f (S)	maxf(1/rj)

fj(S): j2 Jg, f 0.S/ 	 max
n�
1=rj

�
f 0
j .S/ W j2J

o
, then the constraints for the two

models are equivalent to f (S)� 1 and f 0(S)� 1 respectively. Hence we can view f 0(S)
as an aggregated version of the function f (S), and apply whatever function error
measures are of interest. It is known (Francis et al. 2004a, b, c) for example, that if

f
0

j(S) and fj(S) have error bound bj
�
D d

�
v0
j ; vj

�
=rj for the CLM

�
for j2 J, then

f (S) and f 0(S) have the (unitless) error bound ebDmaxfbj: j2 Jg. For the CLM, the
resulting error bound is identical in form to that for the PCM; hence aggregation
methods providing small PCM error bounds also can provide small CLM error
bounds, and vice-versa.

When f (S) and f 0(S) are any original and aggregated functions with some error
bound eb, it follows directly that f 0.S/ � 1 � eb ) f .S/ � 1I f .S/ � 1 )
f 0.S/ � 1Ceb. Thus the constraint f 0(S)� 1� eb gives a restriction of the original
constraint, while f 0(S)� 1C eb gives a relaxation. Each can be easier to deal with
than the original constraint and may be used to compute lower and upper bounds
on the optimal objective function value of the original model. Supposing eb� 1
(which is clearly desirable), feasibility conclusions about one model thus allow us
to draw feasibility or “near-feasibility” conclusions about the other model.
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Table 18.4 Relaxation and restriction of both the original and aggregated covering location
models assuming all ıj < rj

Constructing aggregated CLM

1 Definitions 1, : : : , q: the q distinct ADPs
ıj	 d.v0

j ; vj /; j2J I ıj< rj ; j2J
ˇi 	 minfrj � ıj W v0

i D vj g; i D 1; : : : ; q

�i 	 minfrj C ıj W v0

i D vj g; i D 1; : : : ; q

2 Original covering
constraints

D
�
S; vj

� � rj ; j2J , all S

3 Aggregate constraints D
�
S; v0

j

� � rj ; j2J , all S

4 Restrictions of both original
and aggregate constraints

D
�
S; v0

j

� � rj � ıj ; j2J; all S ()
D .S; i / � ˇi ; i D 1; : : : ; q; all S

5 Relaxations of both original
and aggregate constraints

D
�
S; v0

j

� � rj C ıj ; j2J; all S ()
D .S; i / � �i ; i D 1; : : : ; q; all S

Following Francis et al. (2004b), Table 18.4 illustrates the use of error bounds as
discussed to obtain a relaxation and restriction of the aggregated CLM as well as a
relaxation and restriction of the original model.

Francis et al. (2004b) used the approach of Table 18.4. They solved to optimality
a CLM with almost 70,000 original CLM constraints by solving several aggregated
CLMs each with less than 1,000 covering constraints. Their computational experi-
ence was usually that the minimal objective function value of the original model
was underestimated when solving the approximating model without enough ADPs,
which is consistent with the discussion in Sect. 18.2. The case study of Sect. 18.3
uses some of these aggregation ideas.

The error bound max
n
wj d

�
v0
j ; vj

�
W j2J

o
for the PCM and CLM for some

choice of the wj including wjD 1/rj is quite robust. It applies to an obnoxious facility
location model (Francis et al. 2000); Erkut and Neuman 1989) and, when doubled,
to a p-center hub location model (Gavriliouk 2003; Ernst et al. 2002a, b).

18.6 Conclusions

For location problems with hundreds of thousands of demand points, aggregation is
often essential. This chapter has dealt with the topic of demand point aggregation
for location models. We have pointed out that demand point aggregation causes
error, and presented some possible ways of measuring this error. Our focus has
been on the concept of an error bound, an upper bound on the maximum absolute
error due to aggregation. Error bounds are given for three key location models: the
p-median model (PMM), the p-center model (PCM) and covering location model
(CLM). We have shown that minimizing the error bounds for (PMM) or (PCM)
results in a location problem. This is a concept that we have called “the paradox
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of aggregation”. We have also presented an application of the covering location
model to a real public sector location problem in the state of Florida, and have
demonstrated error bound analysis for this problem.

Difficulties in computing actual errors lead to the concept of an error bound, and
this error bound can be used as a surrogate for the maximum absolute error. In fact,
error bounds can be computed for many other location models since many of these
models share properties with (PMM), (PCM), or (CLM). In addition, error bound
analysis can be extended to more general costing functions g if f (S)D g(D(S,V))
and the costing function g is subadditive and nondecreasing (SAND) (see Francis
et al. 2000, 2009).

Based on our work on demand point aggregation for location modeling, we offer
the following observations:

1. the work of Hillsman and Rhoda is widely recognized and influential; in
particular, self-canceling error is a helpful concept for models with additive
structure;

2. there is little average-case analysis of aggregation error;
3. much more research on aggregation for the median problem has been done than

for center, covering and other models;
4. progress is definitely being made in understanding aggregation error;
5. aggregation error bounds can be useful, particularly for center and covering

models;
6. aggregation error measures used vary greatly, and there is no agreement on how

to measure error; hence it is pointless to ask which aggregation algorithm is best,
since “best” is not defined.
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Chapter 19
Location and GIS

Giuseppe Bruno and Ioannis Giannikos

Abstract The essence of facility location problems is to determine the position
of a set of facilities in a given location space in order to provide some service
to a set of actors which are supposed to patronize some of these facilities. This
implies that the availability of geographically referenced information represents
the fundamental prerequisite to model and solve such problems. Considering that
Geographic Information Systems (GIS) offer enormous possibilities for integrating,
storing, editing, analyzing, sharing and displaying spatial as well as non-spatial
information, it is evident that GIS can play a crucial role for supporting decision
making in the field of location science. We aim at illustrating and discussing the
various linkages and application opportunities between location science and GIS
and highlight the ways these two disciplines have influenced each other. Finally,
we wish to indicate possibilities for further connections that may materialize in the
future.

Keywords GIS • Location analysis • Optimization

19.1 Introduction

Although the study of location science formally began in the early twentieth century
with the formulation of the classical Weber problem, its origins can be traced as far
back as the seventeenth century when Pierre de Fermat formulated the problem
of finding the geometric median of three points. Since the 1960s location science
has evolved into a truly multidisciplinary area since it utilizes elements from
mathematics, engineering, geography and economics, among other disciplines. The
developments that have shaped modern location science may be regarded in two
dimensions: (a) the formulation of new models, describing more realistic aspects
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of problems involving the location of objects in space and (b) the proposal of
new algorithms that have enabled researchers and practitioners alike to efficiently
tackle larger and more complicated problems. A pivotal role in this process of
evolution is certainly attributed to the rapid advances in computer technology.
These advances facilitated the development of modern Geographic Information
Systems (GIS) which have now become an invaluable decision support tool in many
planning problems where geographically referenced information must be taken into
account. In fact, the emergence of GIS results from the insight that, in order to fully
comprehend certain phenomena, it is necessary to associate them with the locations
where they occurred. Hence, the need to store, handle and analyze spatial data has
been prominent in many disciplines. One of the first documented applications of
spatial analysis is the study by Picquet in 1832 in which he represented the 48
districts of the city of Paris by halftone color gradient according to the percentage
of deaths by cholera per 1,000 inhabitants. In 1854 John Snow depicted a cholera
outbreak in London using points to represent the locations of some individual
cases. His study of the spatial distribution of cholera helped to identify the source
of the disease, a contaminated water pump, whose handle he disconnected, thus
terminating the outbreak. The term “GIS” was initially used by Roger Tomlinson
and his colleagues who developed a digital natural resources inventory system for
Canada in the 1960s. The system provided capabilities for measurement, digitizing,
scanning and overlay, thus enabling the spatial analysis of stored data.

Given that placing objects in some sort of space is the core of location science,
several possibilities arose for interaction between location science and GIS. Initially,
GIS were seen as an efficient means of handling data and visualizing results
of location science problems, resulting in numerous applications where GIS and
location models were linked in a loosely coupled way. However, over the last
decade, GIS have evolved into highly sophisticated systems offering enormous
capabilities for data storage and manipulation. Consequently, a much broader range
of possibilities emerged for linking location science models with GIS in ways that
fully exploit the analytical capabilities of modern GIS. Our aim in this chapter is
to discuss the various linkages between location science and GIS and to highlight
the ways these two disciplines have influenced each other. In addition, we wish to
indicate possibilities for further connections that may materialize in the future.

This is not the first attempt to analyze the connections between location science
and GIS. Church (1999, 2002) and Murray (2010) give notable reviews of the
linkages between the two disciplines. Since the two fields and especially GIS
continue to develop rapidly, it is important to evaluate how these linkages have
evolved over time in comparison to the earlier reviews.

In the discussion of GIS we have chosen not to focus on any particular GIS
software package. The reasons for this are twofold. Firstly, our objective is to present
the theoretical principles and the functionality of GIS as well as the connections
with location science, rather than specific GIS techniques. Secondly, we expect GIS
software technology to develop at such a rate that references to particular packages
may soon become obsolete.
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The rest of the chapter is organized as follows. In the following section we
present the principles of GIS and give an overview of their basic functions. We then
discuss the main elements of location science and the various types of models arising
in the literature. In the next section we analyze some of the possible connections
between location science and GIS and discuss how the interaction between the
two disciplines has developed over the years. We then present some applications
exploiting this interaction and finish with some conclusions and further research
suggestions.

19.2 Principles of GIS

Different definitions have been proposed for describing GIS by single authors or
scientific and institutional organizations (Chrisman 1999). In broad terms GIS are
information systems that integrate, store, edit, analyze, share and display geographic
information as well as non-spatial information for supporting decision making. In
the practical use of the term, it came to indicate a technology as well as a tool or a
way of data acquisition, management, manipulation, analysis and display.

Data lies at the core of any GIS tool. Obtaining accurate, up to date and reliable
data is often more difficult or more costly than acquiring a GIS tool itself. Typically,
GIS store information as a collection of thematic layers that are linked together by
geography. In practical terms, GIS combine spatial data, namely data that is in some
way referenced to locations on the earth and attribute data that can be generally
defined as additional information about each of the spatial features. Attribute data is
typically represented in tabular format. For instance, in a GIS implementation of a
facility location problem, spatial data may refer to the coordinates of the customers
and the candidate locations for the facilities and attribute data may refer to the
demand of each customer or the fixed cost of each candidate location. Other types of
data such as image or multimedia are also becoming relevant in GIS following the
rapid advances in technology. Documentation of GIS datasets is known as metadata.
Metadata contains such information as the coordinate system, when the data was
created, last updated, etc.

Spatial data is represented using a vector or raster/image format. The vector data
model implies the use of discrete line segments (vectors) and points to represent
geographic features. It can represent points, lines and areas. Each point or vertex
consists of an X coordinate and a Y coordinate. An area is represented as a sequence
of vectors where each vector starts where the previous one ends and where the last
vector ends where the beginning vector of the sequence starts, thus enclosing the
area in question. The raster data model divides the study area into a regular grid
of cells with each cell containing a single value reflecting the dominant property
or attribute within the cell. Since most data is captured in a vector format, e.g.,
by digitizing, data must be converted to the raster structure. This is called vector–
raster conversion. Most GIS software allows the user to define the raster cell size for
vector–raster conversion. It is imperative that the original data scale, e.g., accuracy,
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be known prior to conversion. This should determine the cell size of the output
raster map during conversion. If the cell size is large, then data may be unnecessarily
generalized. On the other hand, if the cell size is too small, an excessive number of
cells may be created resulting in a huge amount of data and slower processing times.

Each of these two spatial data models is characterized by certain advantages and
disadvantages. In the vector model, data can be represented at its original resolution
without generalization. Moreover, since most geographic data is in vector form, no
data conversion is required. On the contrary, the location of each vertex needs to be
stored explicitly. In addition, continuous data such as sea-depth or elevation cannot
be represented easily in vector form. As far as the raster model is concerned, the
location of each cell in the raster is implied by its position in the grid which implies
that no geographic coordinates need to be stored, other than one reference point, e.g.,
the top left corner of the grid. On the other hand, it is not easy to represent in a raster
model linear features or network structures. For more details on the advantages and
disadvantages of these models, see Church and Murray (2009).

Image data may also be used to store remotely sensed imagery, such as satellite
scenes or aerial photos. Image data is typically stored in a variety of formats (e.g.,
.TIFF, .PNG, .JIF, etc.). Most GIS software packages allow the input and display of
such formats typically, through conversion into a raster format (and perhaps vector)
to be used analytically with the GIS.

Finally, attribute data is typically represented through relational database models
where data is organized in tables containing rows and columns. Each row corre-
sponds to a record and each column stores the values of a specific attribute. Most
GIS packages offer an internal relational data model as well as support for external
relational databases thus enabling the use of large existing datasets.

Most of the early GIS implementations gave greater emphasis on spatial data and
tended to ignore the time dimension in data representation. However, the existence
of a huge volume of spatial-temporal data and the ever advancing technology have
necessitated the extension of traditional models to cater for the temporal dimension
as well. The inclusion of time often results in complex, large, and highly varied
datasets. At the moment there does not seem to be a standard database model or
analytical approach to handle these complex datasets. As reported by de Smith
et al. (2013), specialized techniques have been developed for specific cases. Typical
examples include the approach employed to capture land-use change (see IDRISI’s
Land Change Modeler package (IDRISI (2013))), the modeling of coastline advance
and retreat (see Ahmad 2011) and the extension of spatial scan statistical procedures
to spatio-temporal point data for crime analysis (see Cheng and Adepeju 2013).

19.2.1 GIS Functionality

Since the mid 1990s a large variety of GIS tools has been developed that have
been employed for academic as well as commercial purposes. Some of them are
generic GIS packages that may be used in different applications whereas others were
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originally developed for a specific purpose (e.g., the processing of data from satellite
and aerial surveys) and subsequently evolved into more sophisticated systems.
Regardless of their origin or their purpose, all GIS perform a set of basic functions
including the management, transformation, analysis and visual presentation of
spatially referenced information.

The management of spatial and attribute data refers to the need to input, store
and handle large amounts of data that may come from different sources (e.g., public
records, company files, etc.) or that may be available in different formats. As noted
by Murray (2010), system management is often related to representation issues and
whether a raster and/or vector view of space is adopted. The transformation of
information reflects the need for georeferencing i.e. for linking each data item to
its location in a common coordinate system. This allows different data sets to be
linked together based on the fact that they refer to the same location. Each data set
constitutes a different layer of information. New layers may then be produced by
aggregating, converting or overlaying existing layers with each other, as shown in
Fig. 19.1 (FAO 2003). The figure depicts data related to a disease affecting shrimps
in the sea and shows how GIS may be used to analyze whether in a certain area there
is a relation between the occurrence of this disease in shrimp farming and parameters
such as water quality in the ponds or major canals, salinity level, feeding levels, etc.
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The analysis function enables the application of query, proximity, centrality and
other functions to one or more information layers. Finally, the visual presentation
of data and results has been a core component of all GIS packages and offers tools
for the production of digital map, figures and graphic displays. For more details on
the structure and the functionality of GIS packages see Murray (2010) and de Smith
et al. (2013).

19.2.2 GIS Software

The basic functions described above can be performed by a large variety of GIS
packages that has become available to both academic and commercial users over
the years. The list is long and rapidly changing. Many of these packages are free
while others are available for a small fee to all or selected groups of users. Special
reference must be made to the development of open source GIS, which has become
a long tradition in the history of GIS, with the appearance of the first package in
1978. In open source applications users may freely access and modify the source
code, thus providing the package with an ever increasing range of capabilities. Such
projects typically involve a large number of volunteer programmers. Finally, there
exist numerous GIS commercial products that are licensed at varying per user prices,
from a few hundred to over a thousand US dollars per user.

Access to spatial data as well as advanced mapping and spatial analysis over
the Internet is becoming more common. As a result, a wide range of web-based or
web-deployed tools has been developed, enabling the representation and analysis
of datasets, without the need for local GIS software installation. Following the
advances in cloud computing, GIS Cloud has been suggested as an approach to
upgrade the conventional GIS applications in order to provide a broad spectrum of
services to the users across the globe (Bhat et al. 2011). In fact several leading GIS
vendors have already developed GIS Cloud solutions in order to provide on-demand
services to their clients.

Detailed lists and reviews of GIS products can be found in Wikipedia and
in specialist magazines and websites such as Geoplace (www.geoplace.com) and
Geocommunity (www.geocomm.com).

According to de Smith et al. (2013), a frequent criticism of GIS software is that it
is over-complicated, resource-hungry and requires specialist expertise to understand
and use. Indeed, in many applications, only a handful of the capabilities provided
by modern GIS is exploited. As a result, many users prefer to utilize specialized
tools for their required analytical work and draw on the strengths of GIS in data
management and mapping to provide input/output and visualization functionality.
Example approaches include: (i) using high-level programming facilities within
a GIS (e.g., macros, scripts, VBA, Python)—in fact, many libraries and add-ins
have been developed in this way; (ii) using wide-ranging programmable spatial
analysis software libraries and toolsets that incorporate GIS file reading, writing and
display, such as R-Spatial; (iii) using general purpose data processing toolsets such

www.geoplace.com
www.geocomm.com
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as MATLab, Excel, Python’s Matplotlib, Numeric Python (Numpy); or (iv) directly
through mainstream programming languages (e.g., Java, CCC). The advantage
of these approaches is control and transparency, the main disadvantage is that
the development of such applications calls for a significant level of expertise and
requires ongoing maintenance.

The complexity of GIS implementations and the huge variety of applications
imply that it is not easy to develop benchmarks for testing the quality, speed and
accuracy of GIS products. As a result, it is up to the user to carefully assess their
particular current and future needs and to consider the features of each package
(cost, maintainability, transparency, flexibility, etc.) before they adopt a specific
product.

Since their appearance in the late 1960s, GIS have evolved tremendously both in
terms of the related technology and with respect to the underlying methodology.
Their ever increasing use has raised several research questions concerning the
development of theories, techniques, data and technology for interpreting the
relationships and patterns involving spatial data. In fact, this realization resulted
in the introduction of the term “Geographic Information Science” (GIScience) to
signify that the systematic study of these issues constitutes a science in its own
right (Goodchild 2010). The need to address these issues systematically inspired
the establishment of the US University Consortium for Geographic Information
Science (www.ucgis.org) which involves more than 60 institutions and defines
GIScience as “the development and use of theories, methods, technology, and data
for understanding geographic processes, relationships and patterns”. Hence, GIS are
not merely a tool for decision support but a rapidly changing domain which poses
significant challenges for academics and practitioners alike.

19.3 Generalities on Facility Location Problems

In general, the essence of Facility Location Problems (FLPs) is to determine the
position of a set of facilities in a given location space in order to provide some
service to a set of actors which are supposed to patronize some of the available
facilities. These actors correspond to the demand (actual or potential) that must be
satisfied. This definition implies the following fundamental ingredients of a FLP
(see also Eiselt and Laporte 1995; ReVelle and Eiselt 2005).

Location Space It represents the space where demand points are present and
facilities are to be located. It can be a physical space (e.g., a region or a city) or
not (e.g., a market or any multi-dimensional space defined by a set of variables).
Typically, the dimension of the space is assumed to be sufficiently large to consider
facilities dimensionless in such a way that they can be represented as points.

The location space can be considered continuous, discrete or it may be repre-
sented by a network. In a continuous space facilities are allowed to be located at
any point except within potential “forbidden zones”. Continuous space models are

www.ucgis.org
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sometimes referred to as site-generation models since the generation of appropriate
sites is left to the model in hand. On the other hand, in a discrete space facilities may
only be located at some predefined points. For this reason discrete space models can
also be referred to as site-selection models since the choice is limited within a set
of known candidates. Using network based models the choice may be restricted to
nodes or to any point of the network (node and/or arc). When a simultaneous choice
of nodes and arcs is required, the problem is usually referred to as a network design
problem. An example of this class is the so-called corridor location problems where
routes of arcs connecting two points have to be located. The characteristics of the
location space and the specific application generally drive the adoption of a metric
that is used to measure distances between elements of the space (facilities and/or
demand points).

Facilities The term facility is used to denote an object to be located in order
to optimize the interaction with other pre-existing objects. Classical examples of
facilities are industrial or commercial structures (e.g., retail outlets, plants, ware-
houses, bank branches), public services sites (e.g., schools, hospitals, fire stations,
waste disposal sites), transportation and logistics infrastructures (e.g., terminals,
cross-dockings, metro stations, parking lots). Facilities are usually characterized by
attributes such as the number and the type of services they provide, their capacity,
their attractiveness, the costs associated with their establishment and operation.
Depending on the “intensity” of these attributes, facilities may produce certain
“effects” on a set of actors. If these effects are judged as positive, then facilities
are defined as “desirable”. For instance, this is the case of schools, public service
sites or metro stations where users generally wish to be as close to them as possible.
Otherwise they are considered “undesirable” as in the case of nuclear or chemical
plants, waste disposal sites or incinerators, airport or military installations and so on.
There also exist situations where facilities are partly desirable, partly undesirable
(e.g., commercial stores) as they produce some positive effects (i.e. accessibility to
services) as well as some negative ones (i.e. traffic congestion) on the surrounding
area.

A fundamental characteristic of a FLP is the number of new facilities to be
located. The simplest case is the single-facility problem when the position of only
one facility has to be determined, while the more general one is the multi-facility
problem in which the aim is to simultaneously locate more than one facility. The
number of facilities can be either pre-specified or a decision variable of the problem.
In the latter case, there may be restrictions on the minimum or the maximum number
of facilities to be located. The decision problem can also consider the possibility to
shut down existing facilities or to reposition some of the existing ones.

Demand It represents the actors involved in the FLP. Depending on the kind of
service provided, they can be defined as customers, users, residents, population
centers and so on. Demand can be represented in continuous or in discrete fashion.
In the first case the demand area may be partitioned into sub-areas such that
within each sub-area it may be assumed that the demand is uniformly distributed.
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Otherwise demand may be assumed to be concentrated on discrete points. In any
case, it is always possible to transform continuous into discrete demand and vice
versa through appropriate procedures. However, during these operations particular
attention should be paid to approximations and errors introduced in the model
(Current and Schilling 1990; Francis et al. 2002).

When facilities provide different types of services, demand should concern
several kinds of services and the corresponding FLPs are referred to as multi-
commodity problems. Depending on each particular application, demand can be
deterministic or stochastic. In both these cases, it can be estimated either by
combining current data and/or attributes or by using appropriate forecasting tools.

Interactions Between Elements of a Problem In a FLP mainly two kinds of
interactions have to be taken into account: customer–facility interactions and
facility–facility interactions. In some applications customer–facility interactions
concern how customers patronize their own facilities or how they are “allocated”
to facilities. In some cases customers are free to decide on the basis of a utility
function which, in general, combines attributes of facilities and distances between
customers and facilities while, in other cases, customers are obliged to patronize
certain facilities according to given rules. Facility–customer interactions may also
concern the determination of the intensity of the effects produced by facilities to
the customers. This is typical, for instance, in problems where risks and/or damage
generated by obnoxious activities have to be evaluated on the population living in
the area around the facility position.

Facility–facility interactions take into account how facilities interact with each
other to capture the available demand. In some cases there is competition in order
to capture as much of the demand as possible (i.e. commercial stores of different
companies). This aspect is also known as cannibalization effect. On the other hand,
in some applications facilities are located in such a way that they cooperate in order
to assure a certain level of accessibility to the users (i.e. bank offices, public service
sites, franchising stores).

Objective Function(s) Location decisions can be made according to different
criteria or objective functions whose choice mainly depends on the nature of
facilities (desirable or undesirable). In the case of desirable facilities, efficiency is
the most commonly used criterion. Efficiency is typically associated to costs, and
distance is the most common proxy for costs. For this reason, objective functions are
in most cases expressed as functions of distances between customers and facilities,
possibly weighted by the demand associated with each customer.

Denoting with p the number of facilities to be located, problems differ according
to whether p is pre-defined or a decision variable. In the first case, the minimization
of the sum of the weighted distances between demand points and facilities to be
located (minisum objective) is the typical objective of the well known class of
p-median problems (Cooper 1963; Hakimi 1964; ReVelle and Swain 1970). When
p is a decision variable, the objective to be adopted is usually the minimization
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of the sum of the fixed setup costs and the variable costs to serve customers
from the facilities. This problem is known as uncapacitated or simple facility
location problem (Erlenkotter 1978). However, if efficiency is mainly viewed from
the customers’ point of view, an alternative measure to be minimized can be
represented by the maximum distance between customers and their patronized
facilities. In practice this so called minmax objective, typical of the class of center
problems (continuous or discrete), is focused on customers in the worst condition
(Hakimi 1964; Minieka 1970; Goldman 1971; Elzinga and Hearn 1972; Drezner
and Wesolosky 1980).

Another classical concept used to measure efficiency is related to the ability of
facilities to “cover” demand. More precisely a facility is said to cover a demand
point if their mutual distance does not exceed a given “coverage radius” which
can be evaluated depending on the specific application. In this context when the
number of facilities is specified a priori, the objective consists in positioning them
in such a way that they are able to cover as much demand as possible (Maximal
Coverage Location Problem) (Church and ReVelle 1974). When the number of
facilities represents a decision variable, the problem is to determine the minimum
number of facilities whose location ensures the coverage of the overall demand (Set
Covering Location Problem) (Hakimi 1965; Toregas et al. 1971).

In the case of undesirable facilities, customers wish that facilities be located as
far away from them as possible and objectives may be defined accordingly. More
specifically, instead of minisum and minmax objectives used for desirable facility
problems, maxsum and maxmin objectives are usually employed to formulate
undesirable facilities location problems (Church and Garfinkel 1978; Dasarathy and
White 1980; Drezner and Wesolosky 1980). However as the adoption in the model
of such objectives (maxsum, maxmin) can lead to very poor solutions from the
efficiency point of view, constraints regarding minimum levels of efficiency should
also be included.

Another class of interesting problems is based on the so called equality measures.
Either in the case of desirable or undesirable facilities, the decision maker may
be interested in finding solutions that assure a certain “fairness” in the access
to facilities. In order to describe this objective, various expressions have been
proposed, based on the minimization of measures related to the distribution of
distances between customers and facilities. Examples of such measures include the
variance, the mean absolute deviation or the Gini coefficient. For more details, see
Marsh and Schilling (1994) and Eiselt and Laporte (1995).

However, it should be underlined that locational decision problems in practice
can involve multiple, conflicting and incommensurate evaluation criteria and, in this
sense, they are multiobjective in nature. Hence, in order to tackle FLPs formulated
using multiple conflicting objectives, appropriate multiobjective techniques are
needed, some of which have been reviewed by Current et al. (1990) and Farahani
et al. (2010).

Depending on the combinations of the elements characterizing FLPs, a wide
range of mathematical models can be defined. Due to this variety, different classi-
fication schemes have been proposed in the literature such as the ones suggested
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by Francis et al. (1983), Brandeau and Chiu (1989), Eiselt and Laporte (1995),
Hamacher and Nickel (1998), ReVelle and Eiselt (2005) and ReVelle et al. (2008).

19.4 Linkages Between Location Science and GIS

Location science problems have been studied in various forms for hundreds of years.
On the other hand, GIS was not developed to solve location science problems as
such. Their primary purpose was to collect, store, manage, manipulate, display
and analyze spatial data. In fact, for a long period of time, the two fields seemed
to develop almost independently. However, as practical problems became more
sophisticated, it emerged that GIS offered excellent possibilities to handle the spatial
data needed to solve these problems. As a result, GIS were initially viewed as a
tool to provide data to location science models and to visually present their results.
Indeed, there are numerous applications where GIS and location science models
were combined in a loosely coupled way in the sense that spatial as well as attribute
data were extracted from the GIS to be used by an already defined location science
model. The model was then solved by commercial software or some special purpose
procedure and the results were imported back into the GIS for visual presentation.
In this setting, data requirements were determined primarily by the location science
model and the main task was to consider the data structures utilized by the GIS
and the location science component and to develop a procedure for exchanging data
and results files between them. Examples of these early approaches are reviewed by
Church (2002), Church and Murray (2009) and Murray (2010).

Following the continual development of GIS, it became evident that the links
between GIS and location science could progress far beyond the concept of loose
coupling described earlier. It can be argued that the two fields are beginning to
converge in a number of ways, some of which are analyzed below.

19.4.1 Suitability Analysis and Data Generation

In many practical applications of location science a pre-processing stage is neces-
sary in order to assess all the potential sites for one or more facilities and select
those that meet a given set of pre-determined prerequisites for further consideration.
As noted by Sumathi et al. (2008), apart from determining the set of feasible sites,
GIS may also provide a digital data bank for long-term monitoring of these sites,
for managing the collection operation and analyzing the routes between different
elements of the system. In addition, different data layers, each weighted by a
different factor, may easily be combined in order to calculate a suitability score
for each possible location and only consider locations whose suitability score
exceeds a pre-specified threshold. Several GIS offer interfaces to help determine
appropriate weighting factors. For instance, IDRISI’s Decision Wizard includes a
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module that employs the Analytic Hierarchy Process (AHP) to calculate a land
suitability index for each location. However, as emphasized by Church and Murray
(2009), special care should be given in handling data of different types (nominal,
ordinal, interval or ratio) and thorough analysis of the data transformation functions
and the methods for obtaining the weighting factors is required. The wealth of
spatial and attribute information available these days and the increasing capabilities
of modern GIS allows location modelers to utilize such systems in order to generate
data for a variety of location science models. Depending on the scope of the
location model in question, the modeler may employ GIS functions to aggregate
polygons, generate polygon centroids, derive service zones, calculate distances
between different objects and make this data directly available to location science
models. Moreover, as noted by Murray (2010), GIS functions may be used to
determine more complex spatial relationships such as adjacency, contiguity and/or
shape. For example, Murray and Kim (2008) developed a GIS-based procedure to
identify cliques of parcels or areal units, namely sets of parcels that are in conflict
with each other. These cliques were then used to generate constraints in an integer
programming formulation of the Anti Covering Location Problem which regards the
positioning of a maximally weighted set of facilities so that no two located facilities
are within a specified time or distance measure of each other.

19.4.2 Visualization of Results

Visual representation of large amounts of information is one of the most useful
aspects of GIS. Its role in the visualization of location model results has been
recognized by several researchers including Densham (1994) and ReVelle and Eiselt
(2005). Murray (2010) clearly states that the use of GIS for visualizing the results
of location models is far more complicated than a mere depiction of the sites
where facilities are located. By exploiting the graphical capabilities of modern
GIS, many more aspects of the solution may be represented. For instance, classical
GIS tools such as the construction of Voronoi diagrams or spider diagrams have
been utilized to represent additional aspects of location model results, namely the
coverage of each facility or the allocation of customers to facilities. Other methods
such as graduated circles or choropleth maps have also been used to represent
other attributes of the solution, e.g., the amount of demand left uncovered after the
facilities have been located or the level of cannibalization resulting from the location
of several competing facilities. These methods have been employed to good effect
in numerous applications including the ones reported by Vijay et al. (2005), Ghose
et al. (2005), Dobbins and Jenkins (2011), Suárez-Vega et al. (2011) and Pekin et al.
(2013).

The visualization of the results of location science models is vital in most
practical applications since it facilitates communication between the various stake-
holders involved. It allows analysts and clients to easily experiment with different
problem settings, directly compare alternative solutions simultaneously with respect
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Fig. 19.2 Visualization of
solution to a coverage
problem

to various criteria and, in the case of dynamic location models, monitor how the
solution evolves over time. Finally, an effective visualization through GIS may help
identify deficiencies of the solution that would otherwise have been difficult to
detect. Typical examples are shown in Murray (2005) and Alexandris and Giannikos
(2010) where the Set Covering Location Problem and the Maximal Covering
Location Problem respectively are solved with respect to a certain geographical area
which is divided into polygonal regions.

As shown in Fig. 19.2, taken from Alexandris and Giannikos (2010), the solution
corresponding to 13 available facilities leaves large areas uncovered and also
provides coverage to areas outside of the geographical area that must be covered.
These obvious deficiencies may lead the decision maker and the analyst to alter the
solution or even to modify the underlying model altogether in order to obtain more
satisfactory solutions.

19.4.3 Formulation of New Models

The linkages between GIS and location science have progressed far beyond data
generation and visualization of results. On a more theoretical note, the data handling
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and analytical capabilities of GIS have inspired location analysts to extend classical
location science models by taking into account geographical information. A typical
example is given by Suárez-Vega et al. (2011) who developed a multicriteria com-
petitive model for locating a hypermarket on a network. They extended traditional
Huff-based competitive location models, originally proposed by Huff (1964), by
employing GIS procedures to consider geographical aspects such as distance to the
main roads, land-use, slope of the terrain and distance to the distribution centers.
Another important contribution of GIS concerns the nature of the entities involved
in location models. In conventional location models the facilities to be located and
the customers are usually represented by points. This is clearly not sufficient in many
problem settings since the customers as well as the facilities may be described by
general objects other than points, such as lines, polygons or even other irregular
shapes. Using the computational geometry techniques implemented within GIS,
the adjacency and contiguity between such objects may be determined and their
distances to other objects may be calculated. As a result, various models have been
developed where the facilities to be located are described by lines, bands (corridors)
or polygons. Perhaps the most indicative example is the corridor location model
and its variations. This is the problem of identifying one or more paths across
a landscape such that some criteria are met. These paths may represent power
transmission lines such that their cost is minimized, roads through a region such
that visibility of a beautiful landscape is maximized, routes for a military unit that
minimize the view or the probability of being detected, etc. Although this problem
does not fall exclusively within the domain of GIS, its detailed study requires the
capabilities of GIS. Hence, nearly all the approaches to solving this problem employ
GIS at some stage. Some of the earlier approaches to the corridor location problem
are reviewed by Church (2002) whereas more recent ones can be found in Gonçalves
(2010).

A crucial issue in location science, especially when large amounts of data are
available, is to determine the level of aggregation or the scale where the elements
of a particular problem will be represented. For instance, if population data is
available at census block level, should this detailed data be directly used in a
location model or should it be aggregated at block group or census tract level?
Including all the data may imply significant effort and cost for data collection
and require considerable computation time, thus making the problem intractable.
On the other hand, aggregating the data reduces the amount of computation work
required but introduces errors in the analysis, as originally shown by Goodchild
(1979). Shortly afterwards Openswaw and Taylor (1981) remarked that the results
of spatial analysis may vary depending on the representation scheme adopted. This
effect, known as the Modifiable Areal Unit Problem (MAUP), can be divided into
two components, the aggregation level used and the type of unit utilized. Clearly,
any model suffering from this effect is problematic and should be used with caution.
As far as location models are concerned, Murray (2005) showed that the Set
Covering Location Problem is susceptible to MAUP and, then, he developed a GIS-
based alternative formulation that can be applied to points, lines, polygons or other
objects. Moreover, Tong and Murray (2008) and Alexandris and Giannikos (2010)
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observed that the Maximal Covering Location Problem is also prone to MAUP and
employed GIS functions to formulate new models that are more robust and are less
affected by changes in the scale or units of data. Finally, Kim and Murray (2008)
developed a similar model for a specific version of the coverage problem (Backup
Coverage Location Problem) which eliminates MAUP in comparison to the original
formulation. All these new models are based on the functionality of GIS which
provides tools for accurately calculating the portions of the demand areas that are
covered by different configurations of the facilities.

19.4.4 Uncertainty and Error Propagation

Uncertainty and error are inherent in many location problems. Demand for a product
or service is rarely determined with accuracy and is usually estimated on the basis of
historical data. Other parameters, such as transportation costs or distances between
facilities are also characterized by uncertainty. The coordinates of the potential
facilities themselves or the distribution of the customers may also be recorded
incorrectly or inaccurately. A variety of approaches has been proposed in the
location science literature to deal with this uncertainty. Most of these approaches
are based on the formulation of stochastic models, the performance of sensitivity
analysis or the definition of scenario-based problem formulations. A detailed review
of such approaches can be found in Snyder (2006).

As far as GIS is concerned, it can be safely said that no map or digital
representation of spatial and attribute data is error free. According to Murray and
Grubesic (2012), the uncertainty associated with the use of GIS is multifaceted
and is related to several aspects including the accuracy, precision, spatial scale
and geographic abstraction of the information stored in the GIS. Moreover, this
uncertainty and error propagate through the application of GIS functions thus
amplifying their effect. Since the early stages of GIS development, it became evident
that this uncertainty and error can influence the quality of the analysis and the
reliability of the results (Heuvelink 1998). Hence, a broad range of literature has
focused on data imperfections and ways to deal with them in GIS. Error propagation
has been studied for certain GIS functions such as overlay (see Veregin 1995). Other
methods to cater for uncertainty and error include the use of Monte Carlo simulation
or multiple analyses conducted on perturbed data in order to obtain more reliable
results. A detailed review can be found in Li et al. (2012). It must be noted that
although these methods seem to be well known in the GIS community, relatively
few applications are encountered in location science problems. This may be due to
the fact that a deeper understanding of GIS is required by location analysts in order
to fully exploit the capabilities of GIS for dealing with uncertainty and error (see
Murray 2010).

A notable example where GIS is used to study uncertainty and error in loca-
tion science is given by Murray (2003) who considered the planar multi-facility
location–allocation problem and used an Avenue script within ArcView to perturb
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the optimal facility locations and evaluate the effect on the objective function
value. Murray and Grubesic (2012) identified four categories of uncertainty (object
geometry, data precision, distance measurement, and proximity interpretation)
and proposed improvements of data and/or model quality along each of these
dimensions. They also argued that if one improves only one of these dimensions
but fails to address the others, the final result may still be problematic. Hence,
they concluded that model extensions are necessary to properly address the issues
of uncertainty and error in this context. Given the development of GIS based
techniques for reducing the effects of uncertainty and error, one would expect many
more such extensions to appear in the future.

19.4.5 Problem Solution

When it comes to solving location science problems, GIS may be utilized in several
ways depending on the nature of the problems in question. If the number of facilities
to be located is limited, as in the location of large infrastructures, then the solution
may be obtained by performing a straightforward suitability analysis through GIS
in order to determine the sites that meet the selection criteria.

GIS prove to be extremely useful for dealing with problems that can be directly
or indirectly solved using certain computational geometry techniques which are
standard tools in GIS. A typical example is the heuristic proposed by Suzuki and
Okabe (1995) for the continuous p-center problem. This heuristic relies on the
generation of a Voronoi diagram corresponding to a set of points at each step of
the algorithm. Given that the construction of Voronoi diagrams are standard GIS
functions, it seems natural to use GIS to solve this problem. In fact, Wei et al.
(2006) implemented this heuristic using a commercial package to locate emergency
warning sirens. In the same vein, Matisziw and Murray (2009) addressed the
continuous coverage problem and proved that the optimal location lies on the medial
axis of the demand area, namely the set of points having more than one closest point
to the demand area boundary. They then used GIS to implement a Voronoi-based
technique for deriving the medial axis.

When the number of feasible locations is significantly large, then a model is
required to determine the sites for the facilities to be located. Combining GIS and
some solution routines, either commercial or custom-made, in a loose coupling
sense implies a significant exchange of input and output files between the two
components and does not really exploit the capabilities of modern GIS. However,
following the rapid developments in GIS, several tight coupling possibilities
have emerged. In particular, several algorithms for solving location problems are
currently available within GIS software packages. The ArcGis Network Analyst
toolbox, the TransCad application modules for Territory Management and Site
Location Modeling and the Location Intelligence module of MapInfo are examples
of packages that offer tools for solving standard location science problems such
as the p-median or the Maximal Coverage Location Problem. Each of these
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packages employs heuristic procedures to solve a set of specific problems. While
this approach may be satisfactory for practitioners facing rather simplified versions
of these problems, it may not be sufficient in more realistic applications that involve
complexities such as capacitated facilities, additional objectives etc. Moreover, the
heuristics available within commercial packages may have not been tested on large
data sets. An alternative approach is to use an appropriate programming or scripting
language in order to implement more sophisticated solution methods within GIS
software packages. For instance, ArcGIS allows customization and access to all
of its core objects through a VBA (Visual Basic for Applications) environment.
This environment may also be used to link the GIS with dynamic link libraries
(DLLs) containing algorithms which can be called upon by the GIS to perform
optimizations. In fact, numerous scripts and tools, some of which related to location
science, have been prepared by developers for commercial as well as open source
GIS and are available in relevant forums. However, they are not always easy to
locate amongst the multitude of similar tools available over the internet. Finally,
another possibility for linking GIS and location analysis techniques is to invoke
both of them through a common programming language such as CCC or Visual
Basic. Examples where GIS and location science algorithms are integrated using
one of the approaches described above can be found in Johnson (2001), Ribeiro and
Antunes (2002), Bender et al. (2002), Liu et al. (2006), Bozkaya et al. (2010), Bruno
et al. (2010), García-Palomares et al. (2012) and Xu et al. (2013).

19.5 Using GIS in Location Science Applications

A GIS is recognized as a decision support system based on the integration of
spatially referenced data in a problem solving environment (Cowen 1988). This
definition is particularly relevant when, in order to appropriately solve a problem, it
is necessary to conduct a complex multidimensional analysis, involving a significant
set of feasible alternatives and multiple, often conflicting and incommensurable
evaluation criteria, which is most often the case in practical applications. Hence,
GIS appear to be ideally suited for addressing practical problem situations. A
great number of studies have appeared in the literature over the years, reporting
applications where GIS have been employed to tackle a wide range of practical
FLPs. A review of this literature may be useful for practitioners as well as for
researchers since it may identify the main application areas where GIS appear
particularly fruitful as an analysis and decision support tool. A first list of GIS
application areas is given by Maguire (1991). In this section we focus on the
most recent literature on the subject. Although an exhaustive review is practically
prohibitive, this literature can be classified into the following broad categories: land-
use suitability analysis, waste management, energy management, transportation and
private and public sector applications.
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Land-Use Suitability Analysis The objective of land-use suitability analysis is
the identification of the most appropriate spatial pattern for future land uses in
such a way that a set of requirements, properties and preferences are satisfied
(Collins et al. 2001; Malczewski 2004). The use of GIS based approaches in
this context can be considered the natural evolution of the hand-drawn overlay
techniques used by architects and planners to represent maps where different
attributes and characteristics should be shown. This general concept can be applied
in a wide variety of situations (i.e. urban and regional planning, environmental
impact evaluation, land habitat for animal and plant species, agricultural, ecological
and geological applications, public and private site facilities). Given a context where
a study area is subdivided into a set of territorial units, it is possible to distinguish
between a site selection and a site generation problem. In the first case, given a set
of potential feasible sites with known attributes and characteristics, the objective
consists in the selection of one or more facilities. This is generally performed by
combining the facilities’ attributes according to some ranking or rating rules. In the
site search problem apart from the location(s) to be selected, it is also necessary to
determine the site characteristics (i.e. extension, shape).

Hence, models oriented to land-use suitability analysis may consider very
different sectors. A traditional field is represented by the so-called conservation
planning, i.e. the activities related to the selection of protected areas based on
scientific considerations in order to reduce the risks of habitat fragmentation and,
consequently, on the related ecosystem due to the impact of land-use activities.
The increasing success in the use of GIS to tackle these problems lies in the
fact that most of the criteria for conservation planning are spatial data. In this
context, as already indicated by Church (2002), a traditional field of applications
of GIS based approaches concerns the forest conservation planning in which
the problem mainly consists in the identification of corridors and/or portions
of territory in order to extend protected areas and assure continuity (Phua and
Minowa 2005; Liu et al. 2014). The same problem can also be tackled by formally
assessing the environmental impact of land-use activities such as the location of new
infrastructures and by then selecting the minimum impact solution. A wide variety
of applications have been developed to consider various aspects and situations
related to these conservation issues (Marulli and Mallarach 2005; Liu et al. 2007;
do Carmo Giordano and Riedel 2008; Geneletti 2008a, b; Geneletti and van Duren
2008; Silberman and Rees 2010; Sherrouse et al. 2011; Swetnam et al. 2011). The
vast majority of these applications and case studies use the multi-layer functionality
of GIS to collect data and information (quantitative and qualitative) in order to define
criteria-based evaluation for prioritization and selection of potential solutions. Once
the criteria have been defined and measured, multi-criteria methods are usually
applied to provide the final ranking.

Waste Management It indicates the set of activities (waste reduction, reuse, recy-
cling, composting and disposal) associated with the overall chain of managing solid
waste in order to reduce its impact on the environment. The problem of solid
waste management has assumed significant dimensions in modern urban centers,
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partly due to the acceleration of the phenomenon of urbanization. From the logistic
point of view, waste management problems include location and routing aspects.
In particular, despite the efforts to reduce waste production at the source, disposal
of solid waste at appropriate facilities is still a crucial need. The identification
of suitable municipal waste disposal sites is a complex problem either from the
technical or from the socio-political point of view. From the technical point
of view the process requires environmental, health, economic and engineering
considerations to be taken into account. On the other hand, waste disposal sites
are a typical example of undesirable facilities, which implies that communities do
not accept any feasible solutions on the basis of “not in my backyard” (NIMBY)
and “not in anyone’s backyard” (NIABY) principles. In this context, it has been
argued that the collection of relevant spatial and non spatial information can help
planners in order to include in the decision making process the points of view
of the various and numerous involved stakeholders. Higgs (2006) underlined the
potentiality of integrating multi-criteria approaches with GIS, in order to highlight
the opportunities and challenges facing decision makers in their effort to increase
the involvement of the public at different stages of the waste management process.

For this reason in the last years a significant proliferation of papers appeared
in the literature, showing the ability of GIS to provide crucial support in such
complex decisions, in particular in combination with multi-criteria decision making
approaches. Sumathi et al. (2008) identified some advantages of applying GIS in
the process of identifying appropriate waste disposal sites such as the possibility
of determining zones to be excluded according to some screening criteria, per-
forming ‘what if’ data analysis, investigating different potential scenarios related
to population growth and area development, as well as checking the importance
of the various influencing factors etc., handling and correlating large amounts of
complex geographical data. They used 12 thematic maps and then employed a
weighted sum aggregation function to obtain a Composite Suitability Index while
the AHP approach was used to calculate relative weights. Integration of GIS with
AHP was also proposed by other authors (Guiqin et al. 2009; Sharifi et al. 2009;
Sener et al. 2011). A similar approach was used by Gbanie et al. (2013) who
built a pair-wise comparison matrix to derive weights using the weight module in
IDRISI 15.0. Nas et al. (2010) proposed an alternative approach in which each
suitability criterion is represented by a factor map. Each value of a criterion is
assigned a different rank, while the maps themselves receive different weights
according to the importance of the corresponding criterion. On a different note,
Chang et al. (2008) used a fuzzy multicriteria approach for locating waste disposal
sites in an urban region. Zamorano et al. (2008) developed a method based on
the use of environmental indices calculated through GIS to provide a quantitative
assessment of the possible environmental interactions between a waste disposal site
and potentially affected environmental components. Finally, in the context of waste
management Ghose et al. (2005) proposed a GIS based transportation model for the
efficient management of the daily operations for transporting solid wastes.
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Energy Management The increasing interest in meeting rising energy demands in a
sustainable manner through reducing energy wastes and searching for renewable
energy alternatives has stimulated proposals aiming to exploit the functionality
of GIS to support the relevant locational decisions. These decisions concern the
identification and selection of marginal lands, i.e. lots and areas economically
unprofitable due to, for instance, their poor agricultural or residential potential,
where biomass production (Niblick et al. 2013), least-cost bioenergy locations
(Panichelli and Gnansounou 2008; Kaundinya et al. 2013; Höhn et al. 2014), data
center infrastructures (Trigueiros Covas et al. 2013), corridors for electric lines,
solar and wind farms (Ramırez-Rosado et al. 2008; Janke 2010; Van Hoesen and
Letendre 2010; Molina-Ruiz et al. 2011) or renewable hybrid systems (Aydin et al.
2013) can be located.

Transportation Data availability constitutes a crucial aspect in transportation plan-
ning and management. Spatial socio-economic information, historical and current
data derived from users’ interviews are fundamental to estimate modal-choice, trip
generation and distribution among zones of a given study area. Locational decisions
in this field concern the optimal positioning of new infrastructures (i.e. roads and
highways, parking lots, metro and railway stations, bus lines and stops, intermodal
terminals, airports, etc.). Such decisions are traditionally reached through cost-
benefit analysis. However the evaluation of cost as well as benefit is often a
very complex issue as, in general, many factors need to be taken into account
and various effects need to be evaluated. For instance, at regional level, new
transport infrastructures may boost local economy by improving productivity and
competiveness, while at urban level they may produce significant modifications on
the land-use activities, on environmental impact and on the real estate market. For
these reasons, GIS represent fundamental tools for combining and synthesizing the
multidimensional aspects of the relevant problems. Usually this is performed by
calculating, through an analysis of spatial and non spatial data, a set of appropriate
composite indicators to describe complex concepts such as the accessibility i.e. the
opportunities available to actual and potential users to reach given places (Gutiérrez
et al. 2010; Mavoa et al. 2010; Rogalsky 2010; Neutens et al. 2012) or the value
of time in the intermodal transport chain (Macharis and Pekin 2009; Pekin et al.
2013). Other examples of transportation location problems in which GIS have been
successfully exploited regard, for instance, the coverage of remote communities
through “essential air service” (Grubesic et al. 2012), the location of bus stops
(Delmelle et al. 2012), of bicycle facilities (Rybarczyk and Wu 2010; García-
Palomares et al. 2012) and of hydrogen stations (Kuby et al. 2009).

Private and Public Sector Applications Applications related to GIS based
approaches for solving FLPs that involve private or public sector facilities usually
concern a wide variety of contexts. Typical applications include the location of
emergency services (Liu et al. 2006; Murray and Tong 2009), health care facilities
(Cromley and McLafferty 2012), public libraries (Park 2012; Higgs et al. 2013),
schools (Teixeira and Antunes 2008; Zolnik et al. 2010), taxi cab stands (Ocalir
et al. 2010) and many others. These kinds of problems can generally be defined in
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terms of coverage where the main differences among the different approaches lie
in the methodology adopted to estimate coverage, by combining and elaborating
different data layers.

Special reference should be made to the so-called retail site location problem,
consisting in determining the optimal positioning of commercial sites in a given area
in order to maximize expected future profits. As this decision involves significant
financial resources and risks, the selection process requires a careful analysis
of the spatial distribution of the demand (geodemand) and of the competitors
(geocompetition). When geographical data regarding population and its attributes,
activities, private and public traffic information are available, GIS are the most
powerful tool to perform geodemand and geocompetition analysis. The objective
is in line with the Maximal Covering Location Problem where it is necessary to
define a trade area within which it is assumed that a retailer is able to attract
customers and generate sales. Among the various approaches to tackle this problem
(see for instance Mendes and Themido 2004; Cheng et al. 2007), Roig-Tierno et al.
(2013) proposed a method based on the use of data at the level of single city
blocks and the evaluation of geocompetition by defining trade areas of competitors
as a function of their facilities’ size and then evaluating areas on the basis of the
overlap between individual trade areas. Then they finally ranked the set of potential
candidate locations by using AHP. Suárez-Vega et al. (2012) used GIS to implement
a bi-objective model considering the maximization of the captured demand and the
minimization of the cannibalization effect.

19.6 Conclusions

The recent overwhelming advances in Information and Communication Tech-
nologies (ICTs) have triggered a profound rethinking of scientific approaches
in many fields. As usual, in processes where significant gaps and discontinuity
have occurred in the use of consolidated methodologies, passionate and extensive
discussions within the relevant scientific communities are generally taking place
with researchers debating about the actual and substantial innovations produced
by technological change in their respective field. This observation has been also
evident in the vast multi and inter-disciplinary community involved in evaluating
the impact produced by the development and diffusion of GIS. In particular, in the
field of locational analysis, judgments regarding the actual opportunities offered by
GIS to effectively solve location problems may be very different. On the one hand,
more theoretically oriented researchers tend to downgrade GIS to a mere input-
output tool, capable of building sophisticated databases and knowledge bases that
external optimization models may use, assigning it a very limited added value as
far as the methodological aspects are concerned. On the other hand, researchers and
practitioners more interested in discovering opportunities to solve real problems in
a more appropriate manner, emphasize the role of GIS as crucial decision support
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systems which can be used to analyze new and more challenging problems. It can
be argued that a position somewhere between these two extremes better represents
the current state of the art and future expectations.

Location problems typically involve a large set of feasible alternatives, multiple
and conflicting evaluation criteria as well as the contribution and participation of
different actors (decision-makers, stakeholders, interest groups). In order to address
all these issues it is necessary, if not vital, for the analyst to have access to accurate
and reliable information. This requirement can be even more crucial in all those
decision problems such as environmental and land-use planning problems or the
location of public services, where the decision making process requires public
participation, consensus building and conflict resolution. In such cases appropriate
communication tools are required in order to assure that all the information related
to certain complex quantitative phenomena is readily available in a user friendly
representation. Through the management of multi-layered information, modern GIS
are capable of providing a solid and accurate description of such real problems in
terms of the variety and richness of information that can be stored and utilized.
Consequently, in the near future we expect many more applications concerning GIS-
based multi-criteria approaches, consisting in the transformation and combination
of spatial data and decision preferences to obtain information for decision making.

Another fundamental issue is represented by the need for tools, both methodolog-
ical and technological, capable of integrating, in a coherent framework, information
of various nature (data, opinions, preferences) that may be also expressed in
different and, apparently, incompatible languages. In this context, the widespread
use of generalized devices such as smart phones, tablets, or interactive Internet-
enabled televisions, may make GIS a reference platform for developing spatial
decision support systems able to transform and combine data in such a way that
complex problems may be modeled and then appropriately tackled. This aspect may
also stress the potential of GIS as a powerful communication tool with interesting
implications in institutional, political, social and ethical issues.

The technological evolution will also provide new interesting directions of
research as well as opportunities for a whole range of exciting applications.
Recent advances in wireless communication technologies have been adding new
perspectives to technology integration which is crucial in spatial IT management.
More specifically, the increasing popularity of Internet geospatial IT tools such as
Google Earth and the massive availability of location-based systems (i.e. Global
Positioning System) have been making available a huge amount of accurate spatial
information. As a result, Location Based Services (LBS) are expected to proliferate
in the near future since the information available within GIS can drive studies and
applications that model new problems on the basis of the dynamic availability of
customers’ positions (people, vehicles, goods). In fact, as argued by Sui (2005),
conventional GIS concepts may disappear and GIS functionalities may appear in a
pervasive fashion when the idea of ubiquitous computing comes true.

Despite the rapid progress in the technological aspects of GIS, many of the funda-
mental problems of data modeling, error propagation, uncertainty management and
integration with optimization tools are still open and can still represent interesting
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directions for future research. More specifically, with the emergence of personalized
LBS, more user friendly interfaces as well as faster and more efficient heuristics
need to be developed in order to fully exploit the capabilities of GIS in the most
appropriate manner.

In addition, at the moment GIS appear to be prevalently a two-dimensional
technology driven by the linkage with the geographical map. Even if some
approaches have been proposed for handling the third dimension, we are still
far from the availability of cost-effective tools whose reliability and efficiency,
especially in the function of data acquisition, can be considered comparable to the
corresponding 2D versions. Although the representation of the third and, especially,
the fourth dimension (time), may represent a serious challenge in terms of database
organization and conceptual framework, it will surely offer further interesting
opportunities to model and to analyze new location problems.

The extended functionality of modern GIS implies that a significant level of
expertise is required in order to utilize their full potential. Hence, the ultimate
question for location analysts still remains: is it worth investing the time and effort
in GIS in the context of location science? As far as applications are concerned,
the answer appears to be obviously affirmative. Furthermore, even in theoretical
terms the prospects of combining location science and GIS are constantly improving
as new opportunities are presented. We expect that in the years to come the two
disciplines will converge even more and the prospects of their interaction will
become even brighter.
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Chapter 20
Location Problems in Telecommunications

Bernard Fortz

Abstract Telecommunications is an important area of application in combinato-
rial optimization. A large class of problems encountered by telecommunications
operators are related to location theory. The aim of this chapter is to review
recent developments in the application of location models for the design of (wired)
telecommunications networks. In particular, we cover the Concentrator Location
Problem, the Connected Facility Location Problem, the Regenerator Location
Problem and some Ring Location problems.

Keywords Concentrator location • Connected facility location • Network
design • Regenerator location • Ring location • Telecommunications

20.1 Introduction

Location problems play a central role in telecommunications network design. In this
chapter, we cover a set of problems arising in wired (optical) telecommunications
networks. Other location problems arise for wireless networks, such as the location
of base stations or location areas planning for mobile users. For a review of these
problems (and some problems in wired networks not covered here), we refer to
Skorin-Kapov et al. (2006).

The design of a telecommunications network is a very difficult problem. The
usual approach is to decompose a problem in three main levels (Balakrishnan et al.
1991):

1. the long-distance or backbone network that typically connects city pairs through
gateway nodes;

2. the inter-office or switching center network within each city, that interconnects
switching centers in different subdivisions (clusters of customers) and provides
access to the gateway(s) node(s);

3. the local access network that connects individual subscribers belonging to a
cluster to the corresponding switching center.
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In the past, high speed optical fiber technologies were used mainly in the
long-distance and inter-office networks, while local access networks typically used
twisted pair or coaxial cable. However, the current tendency is to bring optical
fiber closer and closer to the end-users, which led to the concept of Fiber-To-The-
x (FFTx), e.g., Fiber-To-The-Home (FTTH), Fiber-To-The-Building (FFTB), and
Fiber-To-The-Cabinet (FTTC). This shift leads to new optimization problems.

At a high level, a telecommunications network can be seen as a set of equipments
(computers, routers, etc.) connected by links of different capacities (e.g., fiber optic
cables). The capacity of a link often depends of the cable itself (nominal capacity)
but also on the equipments installed at its endpoints (network interfaces). For optical
cables, for example, the nominal capacity is very high and the real limit is the
number of different lightwaves that can be transmitted on the cable. This number
of lightwave is in turn determined by the number of interface cards available at the
endpoints. When designing telecommunications networks, the decisions to optimize
can broadly be categorized as follows.

Equipment location: Due to the hierarchical structure of telecommunications
networks described above, and given that a single network often uses different
technologies simultaneously, an important question is to locate some particu-
lar pieces of equipment dedicated to provide the interface between different
technologies or network levels. Such equipments include add-drop multiplexers,
concentrators, splitters, regenerators, to name a few. These problems are the main
focus of this chapter, as these are typically related to classical location problems.

Link installation: A long term planning question is to determine a set of cables
connecting all nodes under some survivability criteria. In this context, the
network is seen as a given set of nodes and a set of possible fiber links that
have to be placed between these nodes to achieve connectivity and survivability
at minimum cost. The long-term horizon considered is such that demand data are
not reliable enough, and only topological aspects are considered. For reviews of
these problems, see Kerivin and Mahjoub (2005) and Fortz and Labbé (2006).

Network dimensioning and routing decisions: In the mid-term horizon, given a
forecast of the demand matrix for this period and the current topology of the
network, the problem is to compute how the expected demands will be routed
as well as the necessary capacities of the cables. In some models, the addition
of new edges is allowed. These problems involve, at the same time, survivable
design criteria and routing constraints. At an operational level, the focus is on
routing decisions for demands arriving online. For packet-switched networks,
the decisions are decentralized and each node takes the decision on the next node
to visit in order to reach the packet’s final destination. These decisions obey to
some protocol rules, and the network operator control on the routing is indirect,
possibly only by tweaking the protocol parameters (such as the arc metrics used
in shortest-paths routing protocols). An in-depth treatment of these problems can
be found in Pióro and Medhi (2004).
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Clearly, these different decision making levels are not completely independent
and should be integrated as much as possible. However, due to complexity and
scalability issues, these levels are often treated separately.

Location problems in the telecommunications context appear mostly for deci-
sions related to the placement of specific equipments into nodes of the network.
These problems are closely related to hub location problems (Alumur and Kara
2008). Note that common decisions that appear in most hub location and telecom-
munication optimization problems are routing decisions for demands between pairs
of nodes (while other location problems usually have demands associated to a single
node).

In this chapter, we focus on problems that have emerged recently (over the last 5
years) in the literature, that combine network design and equipment location in the
context of wired networks (typically fiber optic networks). For surveys of previous
work, see, e.g., Skorin-Kapov et al. (2006). To dig further, a unified view on location
and network design problems was recently proposed by Contreras and Fernández
(2012). The most basic application of equipment location is the Concentrator
Location Problem that we study in Sect. 20.2. Using this model as building block,
we cover in Sect. 20.3 several variants of the Connected Facility Location Problem,
which received much attention recently as operators are trying to bring high-
capacity fiber-optic technologies closer to the customers. The Regenerator Location
Problem presented in Sect. 20.4 is an example of a problem that emerged only
recently as fiber optic cables have almost unlimited capacity, therefore allowing for
very sparse designs, but suffer from the degradation of the signal when it travels too
long distances. As its name suggests, the problem is concerned with the location of
equipments that allow to regenerate the signal to ensure transmission without loss
over long distances. Section 20.5 covers problems where some degree of resilience
to failures is provided by the usage of rings in the topology of the network. Multi-
period and network expansion problems are briefly discussed in Sect. 20.6. The last
section concludes the chapter by describing some perspectives for future research
on the topic.

20.2 The Concentrator Location Problem

The (capacitated) Concentrator Location Problem is probably the most basic appli-
cation of equipment placement, and has received much attention in the literature,
see, e.g., Pirkul (1987), Boffey (1989), Balakrishnan et al. (1991), and Klincewicz
(1998). For a detailed survey of early work on the subject, see Chapter 2 in Yaman
(2005). The problem is to determine the number and location of concentrators that
are used to aggregate end-user demands before sending them on the backbone
network. In addition, the allocation of end-users network nodes to the concentrators
has to be determined, without violating the capacities of concentrators.

In this problem, the resulting network has a star-star topology, i.e., the subgraph
connecting a given concentrator to its assigned end-users is a star—end-users are
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Fig. 20.1 An example of solution to the concentrator location problem

directly connected to the concentrators, and the backbone network connecting
the concentrators is also a star—concentrators are directly connected to a central
node. Figure 20.1 illustrates such a topology. The concentrators are represented by
diamonds, round nodes represent end-user, dashed edges are connections between
end-users and concentrators while plain edges form the backbone network.

Let I D f1; : : : ; i; : : : ; mg be the set of potential concentrator locations and
J D f1; : : : ; j; : : : ; ng the set of end-users. The objective is to minimize the sum
of the costs cij incurred by establishing a link between node j and a concentrator at
node i , and the sum of costs fi for installing a concentrator at node i , linked to the
central node. Furthermore, we denote by dj the demand of end-user j and by qi the
capacity of concentrator i .

Using binary variables yi to indicate if concentrator i is open, and binary
variables xij to indicate if end-user j is assigned to concentrator i , the basic version
of the Concentrator Location Problem can be formulated as

Minimize
X

i2I
fiyi C

X

i2I

X

j2J
cijxij (20.1)

subject to
X

i2I
xij D 1 j 2 J; (20.2)
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X

j2J
dj xij � qiyi i 2 I; (20.3)

xij � yi i 2 I; j 2 J; (20.4)

xij 2 f0; 1g i 2 I; j 2 J; (20.5)

yi 2 f0; 1g i 2 I: (20.6)

Constraints (20.2) ensure that each end-user is linked to one of the concentrators.
Constraints (20.3) guarantee that no concentrator will serve more end-users than
its capacity. Assignment of end-users to open concentrators only is ensured by
constraints (20.4). These constraints are redundant in the integer program but
improve considerably the linear relaxation of the problem. Finally, constraints (20.5)
and (20.6) ensure that the variables are binary.

Note that this problem is also often called the Capacitated Facility Location
Problem with Single-Source Constraints as it becomes the classical Capacitated
Facility Location Problem if the binary requirement on xij variables is relaxed.

In the context of telecommunications networks, any node is a potential concen-
trator location, hence I D J . In this case, variables yi are sometimes replaced
by xii.

Many heuristic methods have been proposed to solve that problem, starting with a
Lagrangian relaxation algorithm proposed by Pirkul (1987). Holmberg et al. (1999)
embedded the Lagrangian relaxation approach in a branch-and-bound framework,
leading to a very efficient exact algorithm. More recently, Díaz and Fernández
(2002) proposed a branch-and-price algorithm for that problem, and Contreras and
Díaz (2008) developed a scatter search approach to provide upper bounds for the
optimal solution of the problem.

Ceselli et al. (2009) study different variants of the problem and propose a set-
partitioning reformulation that is used in a general branch-and-price framework.
Gouveia and Saldanha da Gama (2006) proposed a discretized model for the unit
demand case. The model is also used for an extension of the problem where facilities
have different possible capacities available (the so-called unit-demand capacitated
concentrator location problem with modular interfaces). They also strengthen the
model with additional valid inequalities. Correia et al. (2010) also used similar
discretization technique for the case of modular link capacities.

More realistic models for telecommunications have end-to-end demands, instead
of aggregated demands by end-user as assumed in the model above. The resulting
problems become quadratic and can be seen as special cases of the Single
Allocation Hub Location Problem. Labbé and Yaman (2006) made a polyhedral
analysis of formulations obtained by linearization of the quadratic terms, proposed
valid inequalities to strengthen the formulation and solve it by a branch-and-cut
algorithm. For the uncapacitated case, Labbé and Yaman (2008) extended their study
by adding routing costs. They also did a polyhedral analysis of formulations and
proposed a Lagrangian relaxation heuristic. Labbé et al. (2005b) study the variant



542 B. Fortz

in which the backbone network is complete instead of a star, i.e., each pair of
concentrators is connected by a direct link.

20.3 The Connected Facility Location Problem

As stated in the introduction of this chapter, telecommunications companies are
currently trying to bring rapid and high-capacity fiber-optic technologies closer
to the customers (FFTx networks). Outdated copper twisted cable connections are
progressively replaced by fiber optic connections. The Connected Facility Location
Problem (ConFL) aims at optimizing the building cost for networks mixing the
two technologies by modeling them as tree-star networks: the core network, made
of fiber optic connections, has a tree topology and interconnects multiplexers that
switch traffic between fiber optic and copper connections. Each multiplexer is the
center of a star-network of copper connections to the customers.

20.3.1 Uncapacitated Model

ConFL is a generalization of both the facility location problem and the Steiner tree
problem. Formally, an undirected graphG D .V;E/ is given, with a set of potential
locations for the facilities I � V and a set of customer nodes J � V . An opening
cost fi � 0 is incurred for opening facility i 2 I , each edge e 2 E has a cost
ce � 0, and each customer j 2 J has a demand dj . The edge cost ce , for an edge
e linking a customer j to a facility i , represents the assignment cost for sending
the demand of customer j to facility i . We assume the amount of demand dj is
implicitly accounted for in the assignment costs. Nodes in S WD V n J are Steiner
nodes (i.e., optional nodes that can be used to reduce the cost of the solution but
do not necessarily have a facility open). This set includes the set of facilities (i.e.,
I � S ). The cost ce of an edge between two Steiner nodes represents its installation
cost in the Steiner tree. When a facility node is used as pure Steiner node, no opening
cost is paid for it. Optionally, a root node r 2 I can be given (together with its fixed
location) that represents the connection to a higher order (e.g., backbone) network.
That root node corresponds to an open facility that is always included in the network.

A solution .F; T / of ConFL is composed of a set of open facilities F � I ,
such that each customer j 2 J is assigned to an open facility i.j / 2 F and the
open facilities are connected by a Steiner Tree T . An example of such a solution
is illustrated in Fig. 20.2. Plain rounded nodes represent the customers, dashed
rounded nodes are the Steiner nodes, where no facility is opened, and losanges
are the opened facilities. The plain black node in the middle is the root node. The
objective is to minimize the sum of assignment, facility opening and Steiner tree
costs.
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Fig. 20.2 An example of solution to the connected facility location problem

Early work on ConFL concentrated on approximation algorithms, such as the
primal-dual procedures proposed by Swamy and Kumar (2004). The currently best-
known constant approximation ratio is given by the 4-approximation algorithm of
Eisenbrand et al. (2010). Heuristic approaches have been proposed by Ljubić (2007)
and Bardossy and Raghavan (2010).

Different MIP models for ConFL were proposed and compared (both theoreti-
cally and empirically) by Gollowitzer and Ljubić (2011). As directed formulations
for problems with tree topologies usually outperform undirected formulations, the
problem is first converted to a directed instance by replacing each edge e D fi; j g 2
E between two Steiner nodes i; j 2 S by two directed arcs .i; j / and .j; i/ with
costs cij D cji D ce , and each edge e D fi; j g between a customer j 2 J and a
facility i 2 I by a directed arc .i; j / with cost cij D ce . If the problem is unrooted,
an artificial root r is added to V with cost fr D 0. Arcs .r; i/ are added for all
facilities i 2 I with cri D 0 and the number of arcs emanating from the root r is
limited to 1. The resulting set of arcs is denoted by A.

According to the results reported by Gollowitzer and Ljubić (2011), the most
effective formulation for solving this problem with a branch-and-cut algorithm is
the cut-based formulation, proposed by Ljubić (2007), and described below. We use
the following notation: AJ D f.i; j / 2 A W i 2 I; j 2 J g is the set of arcs
connecting customers to facilities, while AS D f.i; j / 2 A W i; j 2 Sg is the set of
arcs connecting Steiner nodes. Moreover, for any W � V , we denote the incoming



544 B. Fortz

and outgoing cuts induced by W as ı�.W / D f.i; j / 2 A W i … W; j 2 W g and
ıC.W / D f.i; j / 2 A W i 2 W; j … W g.

To formulate the problem, binary variables yi are considered to indicate if facility
i is open, as well as binary variables xij to indicate if arc .i; j / is used, as a Steiner
tree arc if .i; j / 2 AS , or to assign customer j to facility i if .i; j / 2 AJ . The
cut-based model of Ljubić (2007) can then be written as:

Minimize
X

i2I
fiyi C

X

.i;j /2A
cijxij (20.7)

subject to
X

.j;k/2ı�.W /

xjk � yi W � S n frg; i 2 W \ F ¤ ;; (20.8)

X

i W.i;j /2AJ
xij D 1 j 2 J; (20.9)

xij � yi .i; j / 2 AJ ; (20.10)

yr D 1 (20.11)

xij 2 f0; 1g .i; j / 2 A; (20.12)

yi 2 f0; 1g i 2 I: (20.13)

Cut constraints (20.8) impose that there is an arc entering any subset containing an
open facility but not containing the root. Together, these constraints ensure that a
path exists from the root to any open facility. Constraints (20.9) ensure that each
customer is linked to one of the facilities, while constraints (20.10) force to assign
customers to open facilities only. The root is always open by constraint (20.11).
Finally, constraints (20.12) and (20.13) ensure that the variables are binary.

20.3.2 The Capacitated Connected Facility Location Problem

Recently, Gollowitzer et al. (2013) extended ConFL by considering that each facility
i 2 I has a fixed capacity qi , and the sum of customers’ demands assigned to facility
i cannot exceed such value. Moreover, each facility has a demand bi that must be
sent from the root. Each arc .i; j / 2 AS has a capacity uij, and the flows routed in the
Steiner tree to satisfy the demands of the facilities cannot exceed these capacities.

Note that this problem is a generalization of both ConFL and the Concentrator
Location Problem. One way to formulate the problem is to explicitly introduce
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continuous variables gij for .i; j / 2 AS , representing the amount of flow routed
on arc .i; j / to satisfy the demands of the facilities.

Minimize
X

i2I
fiyi C

X

.i;j /2A
cijxij (20.14)

subject to
X

j W.j;i/2AS
gji �

X

j W.i;j /2AS
gij

D

8
ˆ̂<

ˆ̂:

biyi if i 2 I;
�
X

k2I
bkyk if i D r;

0 otherwise,

i 2 S; (20.15)

0 � gij � uijxij .i; j / 2 AS; (20.16)
X

i W.i;j /2AJ
xij D 1 j 2 J; (20.17)

X

j W.i;j /2AJ
dj xij � qiyi i 2 I; (20.18)

xij � yi .i; j / 2 AJ ; (20.19)

xij 2 f0; 1g .i; j / 2 A; (20.20)

yi 2 f0; 1g i 2 I: (20.21)

Constraints (20.17)–(20.21) are similar to the Concentrator Location Problem
(see Sect. 20.2). Constraints (20.15) are flow conservation constraints that ensure the
demands of open facilities are routed from the root node, while constraints (20.16)
make sure only arcs belonging to the Steiner tree are used for satisfying the demands
of the facilities, and that flows do not exceed arc capacities.

Although this formulation is compact, it is attractive from a computational point
of view to project out flow variables and replace constraints (20.15) and (20.16) by
the capacitated cut set inequalities (Ljubić et al. 2012):

X

.i;j /2ı�.W /

uijxij �
X

k2F\W
dkyk W � S n frg:

These inequalities can easily be strengthened as follows:

X

.i;j /2ı�.W /

min

 
uij;

X

k2F\W
dk

!
xij �

X

k2F\W
dkyk W � S n frg:
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The model can be further strengthened by adding constraints (20.8) and cut set
inequalities that ensure connectivity between the root and every customer:

X

.i;j /2ı�.W /

xij � 1 W � V n frg; W \ J ¤ ;:

Gollowitzer et al. (2013) also proposed additional valid inequalities based on
the combination of known inequalities from the literature on the facility location
and network design. They study the separation problems associated to all these
inequalities and show that the combination of all valid inequalities in a branch-
and-cut algorithm provides an effective algorithm for solving large size, realistic
instances.

20.3.3 Other Variants of the Connected Facility Location
Problem

The Connected Facility Location problem is still getting much attention, and many
extensions have been studied. Bardossy and Raghavan (2013) proposed a robust
version of the problem based on the framework introduced by Bertsimas and Sim
(2003). In particular, they proposed a heuristic based on the dual-ascent based local
search for the basic ConFL problem proposed in the latter paper.

Leitner et al. (2013) proposed a model and a branch-and-cut algorithm for the
Connected Facility Location with Two Architectures problem. This is an extension
of the ConFL problem for networks that mix two architectures in a combined
deployment (e.g., FFTH and FFTC/FFTB). Two types of facilities (one for each
architecture) exist in the network. Central offices in the network are nodes where
switching between the two architectures is possible. Each open facility must be
connected by a path to an open central office. In addition, a certain fraction of
customers (determined according to minimum coverage rates) must be served by
each architecture.

Related to ConFL, Contreras et al. (2010) studied the Tree of Hubs Location
Problem where exactly p hubs (facilities) must be opened, connected by a spanning
tree. The major differences with ConFL lie in the fixed number of facilities to open,
and the cost structure that considers routing costs explicitly. Moreover, there are
no Steiner nodes in this problem. A four index formulation was also proposed in
Contreras et al. (2009), leading to better lower bounds. However, this improvement
comes at the price of a considerable increase in the computational time used to solve
the linear relaxation of the problem. The authors therefore suggested a Lagrangian
relaxation method leading to an efficient decomposition method.
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20.4 The Regenerator Location Problem

Fiber optic cables used today provide large capacity, and technologies like Wave
Division Multiplexing (WDM) are frequently used to increase it further by using
multiple wavelengths to transmit different signals on the same fiber. In practice, this
means that an optical network can transport almost unlimited amounts of bandwidth.
However, optical networks face a fundamental restriction related to the geographical
extent of transmission: an optical signal becomes weaker as it gets farther from its
source, and therefore the distance over which an optical signal can be sent without
loss or errors is limited. To overcome this limitation, regenerating can be done with
some specific equipments (called regenerators) to allow the signal to be sent farther.
These regenerators are located in nodes of the network.

Network design models usually ignore the distance aspects and do not deal with
the placement of the regenerators. Since planners typically work in a hierarchical
fashion, Chen et al. (2010) suggested to address the Regenerator Location Problem
(RLP) at the start of the network design phase, to ensure that regenerators are placed
at nodes of the network so that all nodes of the network may communicate without
worry of losses due to distances.

The problem can be formally defined as follows: given an undirected network
G D .V;E/, with a length de associated to each edge e 2 E , and a maximum
distance dmax that the signal can travel without being regenerated, find a minimum
cardinality subset of nodes L such that for every pair of nodes in V , there exists a
path between the nodes that contains no subpath of length � dmax without at least
an internal node in L.

Chen et al. (2010) showed that the problem is NP-hard and suggested three
constructive heuristics and an improvement procedure. Furthermore, they showed
that RLP is equivalent to a Steiner arborescence problem with a unit degree
constraint. The transformation can be summarized as follow: a new directed graph
H D .N;A/ is created with two copies i1 2 N1 and i2 2 N2 for each node i 2 V ,
and a dummy root node r . The set of nodes in H is thus N D N1 [N2 [ frg. The
set of arcs is defined as A D A1 [A2 [Ar where

• for each i 2 V , there is an arc .i1; i2/ 2 A1 with cost ci1i2 D 1;
• there is an arc .r; i1/ 2 Ar from the root to each node i1 2 N1 with cost cri1 D 0;
• A2 is constructed by first applying the all pairs shortest path algorithm to graph
G. For edge fi; j g 2 E , if the shortest path between i and j has a length� dmax,
then there are two arcs .i2; j1/; .j2; i1/ 2 A2 with costs ci2j1 D cj2i1 D 0.
These correspond to nodes that can communicate directly without adding any
concentrator.

With this transformation, a Steiner arborescence, rooted at r , with unit degree
at the root node and that spans N1, has a cost equal to the number of internal
terminal nodes in the arborescence. It can be proved that these internal terminal
nodes correspond to a feasible set of regenerators for RLP, and that conversely, a
feasible Steiner arborescence of cost jLj can be built from a solution L of RLP.
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Hence the two problems are equivalent, and Chen et al. (2010) solved the RLP
indirectly with a branch-and-cut algorithm for the unit degree Steiner Arborescence
problem.

Introducing binary variables yi to indicate if a node i 2 N2 is used in the
arborescence, and binary variables xij to indicate if arc .i; j / 2 A is used, the
problem can be formulated as:

Minimize
X

.i;j /2A
cijxij (20.22)

subject to
X

i W.i;j /2ı�.fj g/
xij D 1 j 2 N1; (20.23)

X

i W.i;j /2ı�.fj g/
xij D yj j 2 N2; (20.24)

X

.i;j /2ı�.W /

xij � 1 W � N; W \N1 ¤ ;; (20.25)

X

.i;j /2ı�.W /

xij � yk W � N; k 2 W \N2; (20.26)

X

j W.r;j /2ıC.frg/
xrj D 1 (20.27)

xij 2 f0; 1g .i; j / 2 A; (20.28)

yi 2 f0; 1g i 2 N2: (20.29)

Constraints (20.23) and (20.24) are degree constraints imposing that each node
used in the arborescence has exactly one incoming arc, cut constraints (20.25) and
(20.26) ensure connectivity, while (20.27) is the degree constraint on the root.

A weighted version of the problem was also discussed by Chen et al. (2010),
where a cost wi is associated with the placement of a regenerator in node i 2 V ,
depending on the location in the network. The model above can again be used by
setting the cost of arc .i1; i2/ to wi instead of one.

Computational results reported show the effectiveness of the branch-and-cut
algorithm for small to medium size instances. For large scale instances, heuristics
appear to be the only viable approach as the lower bounds provided by the branch-
and-cut algorithm are really weak. Very recently, Duarte et al. (2014) proposed
randomized heuristics that outperform the constructive heuristics of Chen et al.
(2010).
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20.5 Ring Location Problems

All the problems studied so far in this chapter impose simple connectivity in the
network, i.e. only a single path is required between nodes that have to communicate
with each other. However, this is clearly not sufficient to build a network resilient
to failures, since a single link (or node) failure would disconnect the network. A
network is said to be survivable if traffic interrupted by the failure of some of its
elements can be rerouted via spare or excess capacity specifically placed in the
network for that purpose.

It is generally considered that failures affecting more than one element at a time
are extremely improbable. With the advent of SDH/SONET networks, a protection
technique, known as Self-Healing Rings, was introduced which maintains very
fast reconfiguration times while achieving low redundant capacity requirements.
Demand nodes are grouped together forming a closed loop or cycle in the network.
Within such a ring architecture, there always exist two link- and node-disjoint paths
connecting any pair of nodes belonging to the ring. All traffic flowing through a ring
is therefore protected against any single failure (as well as some multiple failures)
of the links or nodes forming it by providing enough spare capacity on the alternate
path of each demand.

Survivability is particularly important in the backbone network. A natural
extension to the concentrator location problem is then to ensure that concentrators
are interconnected through a ring structure, while customers are connected to
concentrators by point-to-point links, resulting in a star topology. The resulting
problem, called the Ring Star Problem (RSP) was first introduced and studied
by Labbé et al. (2004). They model the problem as an integer program, propose
several classes of valid inequalities and solve the problem with a branch-and-cut
algorithm. On the heuristic side, a hybrid metaheuristic combining General Variable
Neighborhood Search with a Greedy Randomized Adaptive Search Procedure was
proposed by Dias et al. (2006).

In order to be consistent with the notation used throughout the chapter, we use
here slightly modified notation and formulation from the ones in Labbé et al. (2004).

Formally, let G D .V;E/ be an undirected graph, and r 2 V be a given root
node in that graph. An assignment cost cij is incurred for establishing a direct link
between node j and concentrator node i on the cycle (i; j 2 V ), and a ring cost
dij is paid for using edge fi; j g 2 E in the ring connecting the nodes chosen as
concentrators. A solution of the problem is defined as

• a subset L � V of nodes opened as concentrators, with r 2 L;
• an assignment of each node in V to an open concentrator (a concentrator is

assigned to itself);
• a set of edges defining a cycle going through all the open concentrators.

The objective is to minimize the sum of assignment and ring costs. Such a solution
is illustrated in Fig. 20.3.
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Fig. 20.3 An example of solution to the ring star problem

Using binary variables xij to indicate if node j is assigned to concentrator i ,
i; j 2 V , with xii D 1 indicating that i is selected as concentrator, and variables zij

to indicate if edge fi; j g 2 E is used in the cycle, the problem can be formulated as:

Minimize
X

i2V

X

j2V
cijxij C

X

fi;j g2E
dijzij (20.30)

subject to
X

i2V
xij D 1 j 2 V; (20.31)

X

j Wfi;j g2ı.fig/
zij D 2xii i 2 V; (20.32)

X

fj;kg2ı.W /
zjk � 2

X

i2W
xii W � V n frg; i 2 W; (20.33)

xrr D 1 (20.34)

xij 2 f0; 1g i; j 2 V; (20.35)

zij 2 f0; 1g fi; j g 2 E; (20.36)

where, for any W � V , ı.W / D ffi; j g 2 E W i … W; j 2 W g denotes the cut
induced by W . Constraints (20.31) ensure that each node is linked to one of the
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open concentrators. Constraints (20.32) impose a degree 2 for each concentrator
in the cycle, and cut constraints (20.33) make sure the cycle is connected (i.e.
disjoint cycles are avoided). Finally, constraint (20.34) imposes to open the root,
and constraints (20.35) and (20.36) ensure variables are binary.

A variant of the RSP is the Median Cycle Problem (MCP), studied by Labbé
et al. (2005a). In this case, the objective function only contains ring costs, i.e.

Minimize
X

fi;j g2E
dijzij;

and the problem incorporates the assignment costs as a budget constraint

X

i2V

X

j2V
cijxij � B;

for a given maximal budget B .
For larger scale networks, instead of connecting customers directly to con-

centrators, additional resilience to failures can be obtained by interconnecting
customers assigned to the same concentrator through a self-healing ring connected
to the backbone ring of concentrators (sometimes called the federal ring in this
context). Goldschmidt et al. (2003) study a basic version of this problem, called
the SONET ring assignment problem (SRAP). The problem can be described as a
node-partitioning problem consisting of assigning nodes to local rings and inter-
connecting the local rings by a federal ring. The goal is to minimize the number
of rings needed, while ensuring that the sum of demands between nodes in the
same ring do not exceed the capacity of the ring, and also that the sum of inter-
ring demands does not exceed the capacity of the federal ring. They report results
with an integer programming approach as well as several heuristics for solving the
problem. Note, however, that they do not consider the physical topology of the rings.

As reported by Goldschmidt et al. (2003), another drawback of this kind of
designs is that many instances are infeasible. Recently, Carroll et al. (2013) studied
a generalization of both the SRAP and the RSP, called the Ring Spur Assignment
Problem (RSAP). In this problem, the objective is to design a set of bounded
disjoint local rings that are interconnected by a federal ring, like in the SRAP.
The topology of the rings must also be determined. Since no SRAP solution exist
in some real world instances, locations that have insufficient spare capacity or no
possible physical route due to limitations of geography can be connected to local
rings by spurs off the local rings. Spur nodes must be connected to a local ring
by a single edge, like in the RSP. Carroll et al. (2013) proposed a formulation for
the problem that combines blocks of constraints similar to the formulation above
for the RSP for each local ring, plus additional constraints linking the local rings
together and defining the federal ring. We do not reproduce the formulation here
due to its complexity and large size. Carroll et al. (2013) also proposed some valid
inequalities and solved the problem with a branch-and-cut algorithm. To the best
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of our knowledge, no heuristic algorithm has been proposed to tackle large-size
instances of the problem.

20.6 Network Expansion and Multi-Period Problems

Models covered so far in this chapter consider telecommunications networks that are
built from scratch. This static (single-step) setting is not realistic in all situations, and
network operators are sometimes faced to the upgrading of an existing network. As
stated in the introduction of this chapter, a network is often composed of a backbone
network, for the transfer of large volumes of data, and local access networks that
connect terminals to an access node of the backbone network. Network capacity
expansion problems for backbone networks have been studied since the pioneering
work of Balakrishnan et al. (1991).

For local access networks, a basic model, in which growing demand can
be satisfied by expanding cable capacities and/or installing concentrators in the
network, was introduced by Balakrishnan et al. (1995). They showed that the
problem is NP-hard and proposed a Lagrangian-based decomposition heuristic to
solve it. Flippo et al. (2000) later showed that the problem is weakly NP-hard
and presented a pseudo-polynomial dynamic programming algorithm. A multi-
period expansion problem for the particular case of a local access network that
has a tree topology was solved heuristically by Gendreau et al. (2006). Gourdin
and Klopfenstein (2008) studied a multi-period capacitated problem with modular
concentrators and link capacities. They proposed an integer linear model, and after
a polyhedral analysis of the problem, presented some facet-defining inequalities.

20.7 Conclusions

This chapter described some applications of location problems in telecommunica-
tions. Some of these problems have been studied only recently, and advances in
understanding their structure to provide better exact algorithms are still necessary.
Furthermore, these problems have been mostly studied in their uncapacitated
versions. Since capacitated versions are usually much harder to solve, it is expected
that they will attract more interest in the near future. Additionally, demands in
the telecommunications industry fluctuate a lot, and the development of robust
optimization approaches has emerged as a hot topic. The development of robust
counterparts for the problems presented in this chapter is therefore another impor-
tant trend for future research. If probability distributions can be associated to
demand and/or failure scenarios, stochastic programming approaches might be used,
although the literature on the subject is currently very limited. Finally, advances in
heuristics are still expected for some of these problems, in order to tackle very large
scale instances.
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Chapter 21
Location Problems in Healthcare

Evrim Didem Güneş and Stefan Nickel

Abstract In this chapter, we discuss facility location problems arising in the
context of healthcare. We concentrate on three main areas: the most classical one
is healthcare facility location which is closely related to public facility location.
Secondly, we look at ambulance planning which includes ambulance location
and relocation problems. In the last part, we give an overview of hospital layout
problems. For all three parts, we state some important models and give an overview
of relevant literature as well as current research directions. A comprehensive
reference list is included at the end of the chapter.

Keywords Ambulance location • Healthcare facility location • Layout
problems • Public facility location

21.1 Introduction

The ageing society together with a high cost pressure on the healthcare sector brings
methods from operations research in a quite prominent place. From a perspective
of facility location, healthcare applications bring together different models from
location theory and moreover, they give raise to new models as we will see in this
chapter.

One of the most discussed topics in healthcare is the equal access to health
services and a high level of health protection at the same time which is a universal
and ageless problem. This leads to the first topic that we deal with in this chapter:
Sect. 21.2 is devoted to healthcare facility location; we review the literature and
present some classical models in that area. The reader needs some basic knowledge
on discrete facility location problems as discussed in Chaps. 2–5 of Part I of this
book. Another crucial issue in healthcare is the time interval between an emergency
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call and the delivery of the patient to an appropriate health service provider. We
devote Sect. 21.3 to ambulance location problems which integrate aspects from
covering location models, multi-period location models, and location problems
under uncertainty. In these problems, the influence of local law regulation on
constraints and objective functions is quite remarkable as well. The third and last
topic we are dealing with in this chapter concerns layout problems in hospitals. As a
result of a good layout, hospitals prepare themselves for changes in the structure of
patient groups and the mix of medical cases as well as for a trend from surgery-
centered care to chronic disease care. In Sect. 21.4, basic models are presented
and modern trends are discussed, such as the inclusion of multiple floors, multiple
objectives or uncertainty. At the end of this chapter, the reader will find some
conclusions and a comprehensive list of references.

21.2 Healthcare Facility Location

In this section, we focus on applications of discrete network location problems
to health facilities. Such facilities involve community health clinics, primary care
centers, public and private hospitals, or specialized clinics. The problems are
therefore closely related to public facility location. We do not discuss continuous
location models. In the literature, there are only a few papers applying such models;
see, e.g., Dokmeci (1977, 1979).

Location of healthcare facilities can be a critical decision for developing
countries since they have scarce resources and the majority of their population living
in rural areas. The low population density in these regions makes the provision
of health services a challenge. Within this context, location-allocation models can
therefore be successfully applied for the design of health facility networks. One
of the earliest applications is due to Gould and Leinbach (1966) who considered
locating hospitals and determining their capacities in Western Guatemala. For an
extensive review of such applications, see Rahman and Smith (2000); for a review
on healthcare facility location problems, see Daskin and Dean (2004).

In the following, we give an overview of health facility location applications
by first discussing the relevant objective functions and then presenting important
aspects of these problems with examples from the literature.

21.2.1 Objective Functions in Healthcare Facility Location

Healthcare facility location problems are inherently multi-objective since there are
different stakeholders and the facilities are predominantly public. The decisions
affect health consumers and healthcare providers as well as the public community.
These three sectors can have different priorities and utility functions. For example,
consumers are influenced by the travel cost and time, quality of service, comfort and
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convenience of the facility, waiting time at the facility, and the cost of service. On
the other hand, providers are influenced by setup and operating costs, travel costs for
the staff, and availability of supporting facilities (Calvo and Marks 1973). From the
community perspective, equity in access among different districts is an important
issue. Moreover, workload equity can be a concern for healthcare staff. Notice also
that some of these factors are very difficult to quantify and measure. Consequently,
the literature focuses on a few of these criteria. Relevant objectives most commonly
applied in the healthcare facility location literature are the following:

• Minimize access cost for health consumers. This cost type can be defined as
travel costs, distance, or travel time from a population district to a health facility,
weighted by the population size of that district. When this is the only objective,
the standard p-median formulation is commonly used for deciding where to
locate a set of health facilities. The following function may represent access cost:

X

i2I

X

j2J
dj cijxij; (21.1)

where I is the set of potential locations for the facilities, J is the set of
populations or districts to serve, dj corresponds to the population size in district
j 2 J , cij represents the distance between location i 2 I and district j 2 J , and
xij is a binary decision variable that is equal to 1 if the population in district j is
served from a facility at location i and 0 otherwise.

• Maximize population with access to a health facility, or maximize covered
demand. A cover type objective assumes that a population in a district is covered
(has access) only if it can be assigned to a facility within a pre-determined
maximum distance, and aims to maximize the covered population. Such a type
of objective is appropriate to locate emergency medical services or primary care
centers for under-served populations. When the objective is to minimize the total
access cost, some districts can have very high access costs. Cover type objectives
overcome such undesirable solutions.

Some health services, such as preventive care, are not perceived as essential
by the consumers. However, providing these services is an important public
health goal. Therefore, maximizing the utilization of health facilities is another
cover related objective that was first defined by Calvo and Marks (1973). There
are several socio-economical factors that affect health service utilization, such
as income, age, insurance coverage of the population, and convenience and
proximity of the facilities (Institute of Medicine 1993). Location models are best
suited to account for the “proximity of the facilities” among these factors. Zhang
et al. (2009) introduced the concept of “participation” which they measure using
a decreasing function of travel time plus waiting time. In that paper, the goal was
to maximize participation as opposed to coverage. Güneş et al. (2014) defined
participation as a decreasing function of distance, and solved models aiming
at maximizing coverage and participation for a primary care network design
problem.



558 E.D. Güneş and S. Nickel

A simple participation function can be defined as follows: �ij D 1 � cij=cmax

if cij is less than or equal to cmax and �ij D 0 otherwise, where cmax is the pre-
determined maximum distance between a facility i 2 I and a district j 2 J that
can be covered by that facility. The total weighted participation function is the
following:

X

i2I

X

j2J
dj �ijxij: (21.2)

• Maximize equity in access. There is an increasing interest in incorporating equity
in healthcare facility location applications. Nevertheless, there is no agreement
on how to define equity, and various definitions have been used in the literature.
For a review of these definitions, see Marsh and Schilling (1994). Commonly
used equity objectives are: minimize the maximum distance that patients must
travel (Mitropoulos et al. 2006; Güneş et al. 2014), minimize deviations from a
standard distance (Smith et al. 2009, 2013), minimize differences of utilization
from a national norm (Oliveira and Bevan 2006), or minimize standard deviation
of the distribution of the allocated populations to healthcare facilities (Güneş
et al. 2014).

All of these objectives are important, and it may be difficult to choose one
in realistic applications. Therefore, multi-criteria models have gained popularity
in recent years. We note that the equity criterion is commonly considered in
combination with the efficiency (access) criterion since the equity objectives alone
can produce undesirable solutions (Smith et al. 2013). The reader can refer to
Mayhew and Leonardi (1982), Cho (1998), Mitropoulos et al. (2006), and Smith
et al. (2009, 2013) for examples on applications with bi-criteria equity-efficiency
objectives. Stummer et al. (2004) developed a multi-objective model to determine
the size and location of departments in facilities within a given network of hospitals.
The objectives considered are: minimize total access cost for patients, minimize
total cost of the network, minimize number of patients rejected due to low capacity,
and minimize total number of changes required in the network. Güneş et al.
(2014) considered the objectives of minimizing access cost for patients, maximizing
coverage, maximizing participation, and maximizing equity among physicians.

A common solution approach in multi-criteria problems is to construct efficient
solution sets to inform decision makers (cf. Stummer et al. 2004; Smith et al. 2013;
Güneş et al. 2014). In bi-criteria problems, the efficient frontier can be found by
solving the problem with one of the objectives and then including the obtained
result for the objective value as a constraint while solving for the second objective
(cf. Ehrgott 2005; Smith et al. 2013). Another approach, which is not restricted to
the bi-criteria case, is to include all criteria in the objective function with different
weights. For example, Bruni et al. (2006) modeled the location of transplant centers
considering distance, waiting list, and maximum waiting list (as a proxy for equity)
with different weights in the objective.
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21.2.2 An Overview of Healthcare Facility Location Models

The classical p-median problem seeks for the optimal location of p facilities to
minimize a demand-weighted cost of access (or equivalently distance, or time) for
the population residing at the nodes of the network (see Chap. 2 for a detailed
discussion of this problem). Therefore, the problem that consists of deciding where
to locate a set of primary care facilities, such as community clinics or family centers,
or hospitals, is often casted as a p-median problem. Assuming, as before, that I
denotes the set of potential locations for the facilities and J the set of districts or
populations to serve, the basic formulation is as follows:

minimize
X

i2I

X

j2J
dj cijxij (21.3)

subject to
X

i2I
yi D p (21.4)

X

i2I
xij D 1 8j 2 J (21.5)

xij � yi 8i 2 I; j 2 J (21.6)

yi 2 f0; 1g 8i 2 I (21.7)

xij 2 f0; 1g 8i 2 I; j 2 J; (21.8)

where dj is the population in district j , cij is the distance between location i and
district j , xij is a binary variable equal to 1 if the population in district j is served
from the facility at location i and 0 otherwise, yi is a binary variable equal to 1 if a
facility is opened at location i and 0 otherwise, and p is the total number of facilities
to open.

The formulation assumes an unlimited capacity for each facility which is
rarely the case in practice. Therefore, most practical applications use a capacitated
formulation by adding the following constraint:

X

j2J
dj xij � qi 8i 2 I; (21.9)

where qi is the exogenous capacity of the facility at node i . In some situations, facil-
ity capacities can also be decision variables. This can be modeled by incorporating
the cost associated with building capacity in the objective function.
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21.2.2.1 Modeling Capacity

Explicit modeling of capacity decisions is facilitated by a resource-based view
of facilities. For example, the capacity of a health center is determined by the
number of physicians assigned to that clinic. Similarly, the number of beds is
a significant determinant for hospital capacity. Many healthcare facility location
models consider the amount of resources in facilities also as decision variables. For
example, Güneş and Yaman (2009) modeled the resource re-allocation problem for
a hospital network with beds as resources. Oliveira and Bevan (2006), Griffin et al.
(2008), Zhang et al. (2009, 2010) and Güneş et al. (2014) modeled the staff in each
facility as a decision variable. In addition, these models can incorporate the decision
about the services to offer in each facility (cf. Oliveira and Bevan 2006; Griffin et al.
2008). WithR denoting the set of resource types and S the set of service types, such
a model can be built by defining resource sets Rs � R required to serve demand for
service s 2 S . To this end, let �sr be the amount of resource r that is utilized to serve
a patient requiring service s. Then, the decisions concerning the capacity (number
of patients that can be served) for service s in location i , qis, and the amount of
resource r in location i , wri, are modeled by the following constraints:

X

s2S Wr2Rs
�srqis � wri 8i 2 I; r 2 R (21.10)

X

j2J
dj xijs � qis 8i 2 I; s 2 S (21.11)

X

i2I
xijs D 1 8j 2 J; s 2 S; (21.12)

where xijs is a binary variable defining the assignment of patients for service s from
district j to the facility at location i .

In some cases, there may be restrictions on the minimum number of patients
assigned to a facility. In general, such restrictions are motivated by economies of
scale arguments. For healthcare services, there may also be regulations on minimum
number of patients assigned to a physician because for some specialties (such as
mammography interpretation or surgery), regular practice is important to maintain
high service quality. See Verter and Lapierre (2002), Güneş and Yaman (2009),
Mestre et al. (2012), Güneş et al. (2014) for examples on how to incorporate such
type of constraints.

21.2.2.2 Assumptions on Allocation

The classical p-median formulation assumes that when xijs D 1, all the population
in district j is served from the facility at location i for service s. This single
assignment assumption may be appropriate when it is desired to provide the same
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service for all patients in a location. However, in case of capacity constrained
systems, this may not be a reasonable assumption since the capacity of a facility may
not be sufficient to serve large population centers. In that case, multiple assignment
can be modeled by redefining the variable xijs as the number of patients from district
j assigned to location i for service s, and by changing the assignment constraint
(21.12) as follows:

X

i2I
xijs D dj 8j 2 J; s 2 S: (21.13)

Notice that these models do not account for preferences of patients in different
locations, while healthcare facilities are utilized by consumers who may have
discretion on which one to patronize. A common approach to incorporate these
preferences is to use closest assignment constraints in order to ensure that each
population will patronize its assigned facility, assuming that the closest facility is the
most preferred one (cf. Verter and Lapierre 2002). The following set of constraints
can be added to model (21.3)–(21.8) (see, e.g., Canovas et al. 2007; Güneş et al.
2014):

X

k2I Wckj>cij

xkj C yi � 1 8i 2 I; j 2 J: (21.14)

These constraints ensure that for a given zone j 2 J , if a facility at location
i 2 I is open, then j is not assigned to any facility whose distance to j is more than
the distance between j and i . For other examples of closest assignment constraints
in a healthcare context see Verter and Lapierre (2002), Smith et al. (2009, 2013).

21.2.2.3 Assumptions on Demand and Patient Choice

The problem of locating healthcare facilities is characterized by various complexi-
ties due to the central presence of the human element in the system. Consequently,
the demand for health services is uncertain and its estimation is not trivial since there
are various relevant factors influencing it, such as disease prevalence, insurance
coverage, demographics, and accessibility of the facilities. Therefore, there is a
need for a better understanding of the patient behavior and preferences, and for
incorporating them in location models.

Parker and Srinivasan (1976) were the first authors incorporating consumer
preferences. Their model was built for expanding a rural primary care facility
network. They estimated the benefit of a patient when getting service from a facility
as a function of several attributes, such as distance, waiting time, time to get an
appointment, and the type of facility. In that paper, the total benefit was maximized
using an iterative procedure which finds the equilibrium allocation. Some recent
papers investigate models that include demand estimation. For example, Griffin et al.
(2008) embedded statistical estimation of demand for community health clinics.
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Cardoso et al. (2012) proposed a simulation model based on a short term decision
tree and long term Markov model in order to predict annual demand for long term
care services over the next few years.

Location-allocation models are commonly used for healthcare facility planning.
In some applications, the assumption that some patients will patronize the desig-
nated facility may be realistic. This may be forced by regulations dictating that
patients must be served from the facilities they are assigned to. However, in many
health service systems, patients have free choice of where to get service from. If this
is the case, then a user-choice model defining patient behavior should be considered.
One approach is to assume that patients patronize each facility with a certain
probability that depends on its location as well as on other relevant factors. For
example, Oliveira and Bevan (2006) used a gravity model to define the probability
that patients in some district or region choose some hospital.

An alternative approach is to assume that patients patronize their first choice
given by an optimization model. It is common to assume that patients patronize the
closest facility, i.e., to use the closest assignment constraints in (21.14). However,
although the distance to a facility is very important, it is not the only factor
influencing the choice of users. In fact, the waiting time at a facility is another
important factor that can be considered. Capturing congestion and its effects on
patient preferences is an interesting aspect to improve realism in healthcare facility
location models. In this case, the number of people using a facility determines
the waiting time at the facility. Since waiting time, in turn, affects the number of
people using the facility, models should incorporate equilibrium constraints. In the
equilibrium, allocation should ensure that patients are assigned to their best choice
and do not want to switch facilities. One such example was proposed by Chao et al.
(2003) where resource allocation decisions for a public hospital network are made
in order to minimize the waiting time at the facilities. The resulting allocation is
incentive compatible, i.e., it is also optimal from the perspective of the patients.
Zhang et al. (2009) modeled the location of preventive healthcare facilities where
patients choose the facility with minimum total service time. The latter is defined
as the sum of travel time and waiting time at the facility. In turn, the waiting time
at a facility can be modeled using steady-state equations found in queuing theory.
The resulting formulation proposed by Zhang et al. (2009) is highly nonlinear and
a heuristic approach was suggested in that paper. Zhang et al. (2010) proposed a bi-
level model with equilibrium constraints for a preventive healthcare facility network
design problem. The solution approach uses a gradient projection method and a tabu
search heuristic.

21.2.2.4 Assumptions on Facility Types and Patient Flows: Hierarchical
Models

In most countries, healthcare systems are organized in hierarchical structures. There
are different types of facilities, such as physicians’ offices, community health
centers, specialty clinics, and general hospitals. Notice that there is a hierarchy
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in the services offered by these facilities. For instance, a hospital can usually
provide all the services offered in a clinic. Moreover, some health systems require a
referral from a general practitioner before a patient can ask for service at a hospital.
Hierarchical location models can incorporate such characteristics. Şahin and Süral
(2007) provided a comprehensive review on hierarchical systems with a discussion
of modeling approaches and applications.

Hierarchical systems are commonly classified as successively inclusive or
exclusive: in a successively inclusive hierarchy, a facility at some level provides
all the services offered by lower level facilities (Calvo and Marks 1973; Narula
1984). This is a typical structure for healthcare facilities. Conversely, a successively
exclusive hierarchy implies that facilities at each level offer a service that is unique
to that level (Tien et al. 1983). This is the case for specialized service facilities. We
now assume that I D J D f1; : : : ; ng, i.e., in each district j 2 J there is exactly one
potential location i 2 I for a facility. The formulation provided by Calvo and Marks
(1973) for a successively inclusive hierarchy is an assignment based p-median type
model with an objective function that quantifies the total distance traveled:

minimize
X

i2I

X

j2J
cij

X

s2S
djsxijs (21.15)

subject to
X

i2I
xijs D 1 8j 2 J; s 2 S (21.16)

xiis � xijs 8i 2 I; j 2 J; s 2 S (21.17)
X

i2I
xiik D

X

s2S Ws�k
ps 8k 2 S (21.18)

xijs 2 f0; 1g 8i 2 I; j 2 J; s 2 S: (21.19)

where cij is the distance between location i and district j , xijs is a binary variable
equal to 1 if individuals residing in district j that require service type s are assigned
to location i and 0 otherwise, djs is the number of individuals residing in district
j and requiring service type s, and ps is the number of facilities offering type s
services to be located. Constraints (21.16) ensure that all districts are assigned to
a facility for all services. Constraints (21.17) ensure that assignments are done to
open facilities only, and constraints (21.18) specify the possible number of self-
assignments (i.e., the assignment of the groups of individuals residing at a location
to the facility at that location). Finally, constraints (21.19) are the variable domain
constraints.

Narula and Ogbu (1979) developed a two-level hierarchical model with an
approach based on network flows where p1 health centers (level s D 1) and p2
hospitals (level s D 2) are to be located among the population centers, and a
proportion of patients, � , at health centers are transferred to hospitals. In each
location, at most one facility type can be located. yis is a binary variable equal to 1
if a facility of service type s is located in location i . x0sij is the number of patients
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from district j allocated to a facility of type s located at i ; x12ij is the number of
patients that are transferred from a health center in location i to a hospital in location
j . Finally, qs is the exogenous capacity of a facility with service type s, cij is the
minimum distance between locations i and j , and dj is the number of individuals
of population j . Then a mixed-integer programming formulation to minimize total
distance traveled is as follows:

minimize
X

i2I

X

j2J
cij.x

01
ij C x02ij C x12ij / (21.20)

subject to
X

i2I
.x01ij C x02ij / D dj 8j 2 J (21.21)

X

i2I
x12ij D �

X

i2I
x01ij 8j 2 J (21.22)

X

j2J
x01ij � q1yi1 8i 2 I (21.23)

X

j2J
.x02ij C x12ij / � q2yi2 8i 2 I (21.24)

X

i2I
yis D ps s 2 S (21.25)

yi1 C yi2 � 1 8i 2 I (21.26)

0 � x01ij � dj 8i 2 I; j 2 J (21.27)

0 � x02ij � dj 8i 2 I; j 2 J (21.28)

0 � x12ij � �q1 8i 2 I; j 2 J (21.29)

yis 2 f0; 1g 8i 2 I; s 2 S: (21.30)

Narula and Ogbu (1979) proposed heuristic procedures for tackling this model.
Some examples of hierarchical facility location models include Hodgson (1988)

for primary care facilities, Smith et al. (2009, 2013) for community health facilities,
and Mestre et al. (2012) for regional and central hospitals. Typically, these models
can be solved by commercial solvers. Galvão et al. (2002) applied a three-level
hierarchical model for the delivery of perinatal care in the municipality of Rio
de Janeiro with service referrals, and Galvão et al. (2006) extended this model to
include capacitated facilities. The increased complexity of the models motivated the
use of Lagrangian relaxation based procedures.
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21.2.2.5 Modeling Dynamic Aspects of Location Decisions

A majority of health facility location applications discussed in this section assume
a static environment: demand is known and fixed, and facilities are static. These
assumptions may be realistic for short term planning problems. However, facility
location decisions are often made at a strategic level with a long term impact.
Therefore, if changes in the demand or in other relevant parameters are expected
in the long term, then multi-period models may be more appropriate. For instance,
we may observe seasonal effects in demand because of nomadic population groups
or because of tourism. Ndiaye and Alfares (2008) developed a multi-period integer
programming model to minimize the total cost for locating primary health centers
where the populations to be served occupy different locations in different seasons.
Benneyan et al. (2012) considered a multi-period model for the location of specialty
care clinics for veteran administration to minimize the total cost subject to access
constraints where the demand changes over time. Harper et al. (2005) developed
a discrete event geographical simulation model incorporating changes over time in
many aspects of the system, such as demand, services offered, and facilities opened.
Such changes can be used for a scenario analysis in the environment of simulation
models.

Mobile healthcare facilities are commonly used in rural areas to improve access.
Hodgson et al. (1998) developed an integer programming formulation for the
problem of covering tour planning for the mobile healthcare facilities in Ghana.
The objective is to minimize the total travel time of the facility while serving all
population centers within a range of the feasible stops. Note that this problem is
different from ambulance location problems since mobile facilities here serve for
primary care needs as opposed to emergency care situations.

21.3 Ambulance Location

A usual goal of ambulance location problems is to find locations for ambulances
(or ambulance stations) minimizing the number of ambulances (or ambulance
stations) needed while fulfilling a certain level of demand. Another possibility is
to maximize the coverage having a fixed number of ambulances (or ambulance
stations) available. The main aspect of the corresponding coverage models is that
the demand points must be reachable from the determined locations within a given
time interval. Concerning ambulance planning, a large variety of literature exists.
Reviews can be found in Marianov and ReVelle (1995), Owen and Daskin (1998),
Brotcorne et al. (2003), Galvão et al. (2005), and Li et al. (2011).

In general, ambulance planning can be done at three different levels: strategic,
tactical and operational level. At the strategic level, decisions concerning the
locations of ambulance stations are made. These decisions often have a long term
effect and last for several decades. The number of ambulances per station and the
movable locations are determined at the tactical level. The operational level includes
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the dispatching of ambulances, i.e., the allocation and reallocation to emergencies
and stations. In the next two sections, exemplary models for the planning problems
at the three levels are presented. Section 21.3.1 looks at strategic and tactical models,
while Sect. 21.3.2 concentrates on operational aspects.

21.3.1 The Strategic and Tactical Level: Finding Ambulance
Base Locations and Assigning Ambulances

One possibility for determining ambulance base locations is to use the location set
covering model (LSCM) that has been first introduced by Toregas et al. (1971). The
objective is to find the minimum number of ambulance bases needed to cover all
demand points.

For the LSCM, a set J of demand nodes is given, and these nodes are also
the potential locations for the ambulances. Moreover, as usually done in covering
problems in ambulance planning, a maximum response time T is defined. Therefore,
a node i can cover an emergency in node j if and only if the driving time tij between
the two nodes is less than or equal to T . The set of all the nodes i that fulfill
this condition is denoted by Jj D fi 2 J j tij � T g; 8j 2 J . For each node
j 2 J , a binary decision variable xj is considered, equal to 1 if an ambulance is
located at site j and 0 otherwise. The objective function represents the number of
ambulances, which is to be minimized. The constraints ensure that each demand
node can be served within the given response time by at least one ambulance. The
LSCM therefore looks as follows:

minimize
X

j2J
xj (21.31)

subject to
X

i2Jj
xi � 1 8j 2 J (21.32)

xj 2 f0; 1g 8j 2 J: (21.33)

21.3.1.1 A Double Coverage Model

The model by Toregas et al. (1971) only assures that all demand points can be
reached within a given time interval, but it does not consider the possibility of
covering demands from multiple nodes. Therefore, Gendreau et al. (1997) presented
a so-called double standard model (DSM) that includes what is referred to as
double coverage for the demand points. Compared to LSCM, DSM includes several
additional features. First, the number of ambulances to be located is fixed and equal
to p. Second, for demand and potential ambulance locations, two node sets I and
J are considered, which may be distinct. Third, for each node i 2 I , up to pi
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ambulances can be placed. Additionally, instead of a single maximum response
time, two values, t1 and t2, are considered with t2 � t1. Note that t2 is equivalent to
T since all demand must be covered by an ambulance located within time t2. Finally,
a proportion ˛ is defined for which the demand must also be fulfilled within t1 time
units by some of the ambulances (which can be the same ambulances or different
ones). Consider now a complete graph whose nodes correspond to the elements in
I [ J , and whose edges fi; j g with i 2 I and j 2 J are weighted with the travel
time tij between these two nodes. Further, let dj denote the demand at node j 2 J ,
and define the following two coefficients for i 2 I and j 2 J :

1ij D
(
1 if tij � t1 .j is covered by location i within time t1/

0 otherwise
(21.34)

and

2ij D
(
1 if tij � t2 .j is covered by location i within time t2/

0 otherwise
(21.35)

Two sets of decision variables can be considered: yi denotes the (integer) number
of ambulances to locate at i 2 I (bounded by pi ), and xjk is a binary variable equal
to 1 if j is covered at least k times within t1 for k 2 f1; 2g and 0 otherwise. The
double standard model (DSM) proposed by Gendreau et al. (1997) is the following:

maximize
X

j2J
dj xj 2 (21.36)

subject to
X

i2I
2ijyi � 1 8j 2 J (21.37)

X

j2J
dj xj1 � ˛

X

j2J
dj (21.38)

X

i2I
1ijyi � xj1 C xj2 8j 2 J (21.39)

xj2 � xj1 8j 2 J (21.40)
X

i2I
yi D p (21.41)

yi � pi 8i 2 I (21.42)

xj1; xj 2 2 f0; 1g 8j 2 J (21.43)

yi 2 Z
C
0 8i 2 I: (21.44)
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The objective function (21.36) maximizes the amount of demand that is covered
twice within t1. Each node must be covered at least once within time t2 as assured by
constraints (21.37). Constraint (21.38) states that a proportion ˛ of the demand must
be covered within t1. A location can only be covered twice within t1 if it is covered
once, as expressed by constraints (21.39) and (21.40). Exactly p ambulances
must be located in total (21.41) and only pi can be located at node i (21.42).
Constraints (21.43) and (21.44) define the domains of the decision variables. The
model (21.36)–(21.44) has been tackled in Gendreau et al. (1997) by a tabu search
heuristic.

21.3.1.2 Considering Ambulance Utilization

In practice, ambulances are not always available when they are needed. Therefore,
the strategic and tactical level planning has to take some aggregated data from the
operational level into account (if possible): the utilization of ambulances. For this
situation, the expected coverage of a region can be determined. When the number
of ambulances to be placed is fixed and the expected coverage is to be maximized,
the problem can be formulated as the maximum expected location covering problem
(MEXCLP) proposed by Daskin (1983).

The set of demand nodes is denoted by J , and each node has a demand dj . I is
the set of possible ambulance locations, and the maximum number of ambulances
that can be located is bounded by p. In the original model, we have I D J D
f1; : : : ; ng. The probability that an ambulance is occupied is defined by P and Pk

is the probability that k ambulances are busy at the same time. If node j 2 J is
covered by k ambulances, Ej

k D dj .1 � Pk/ gives the corresponding expected

covered demand and Ej

k � Ej

k�1 D dj .1 � P/P k�1 is the marginal contribution
of the kth ambulance to this expected value. A decision variable yi is considered
representing the number of ambulances to locate at node i . Moreover, we use set
K D f1; : : : ; ng in order to refer to the number of times that a node is covered by an
ambulance. A decision variable xjk is equal to 1 if node j is covered k times and 0
otherwise. In addition, ij is a binary parameter with:

ij D
(
1 if tij � T .an ambulance at i covers demands at j /

0 otherwise
(21.45)

Here, tij states the driving time from node i to node j and T expresses the maximal
allowed driving time. The MEXCLP can be written as follows:

maximize
X

k2K

X

j2J
dj .1 � P/P k�1xjk (21.46)

subject to
X

k2K
xjk �

X

i2I
ijyi 8j 2 J (21.47)
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X

i2I
yi � p (21.48)

yi 2 f0; 1; : : : ; pg 8i 2 I (21.49)

xjk 2 f0; 1g 8j 2 J; k 2 K: (21.50)

The objective function (21.46) maximizes the expected demand that is covered.
Note that this expression adds the expected coverage over all possible numbers of
ambulances. Constraints (21.47) ensure that the number of ambulances used to cover
j is bounded by the number of ambulances located not farther away than time T
from j . Constraints (21.48) impose that in total at most p ambulances are located.
Constraints (21.49) and (21.50) are the variable domain constraints. A heuristic for
the problem has also been devised in Daskin (1983).

21.3.1.3 Further Reading

In addition to the models presented in the previous sections, several more can be
found in the literature. Chapman and White (1974) proposed the first probabilistic
approach by considering a probabilistic set covering model in which servers are
not always available. Nowadays, different kinds of probabilistic approaches can
be found for ambulance location planning. They use, for example, reliability
constraints and busy fractions for servers. The same probabilistic approach is used
in the maximal cover location problem investigated by ReVelle and Hogan (1988).
The maximum availability location problem by ReVelle and Hogan (1989) is also
worth mentioning. Overall, we can identify two main approaches for including
stochasticity into the ambulance location problem, namely hypercube queuing
models and stochastic programming. Larson (1974) introduced the first hypercube
queuing model which represents a general planning approach where a set of states
is considered as well as the transition probabilities between them. Based on that,
different variations can be found, such as in Geroliminis et al. (2009), Iannoni and
Morabito (2007), Iannoni et al. (2011), Silva and Serra (2008), and Takeda et al.
(2007). Stochastic programming approaches have also been proposed as it is the
case with the works by Beraldi et al. (2004), Beraldi and Bruni (2009), and Noyan
(2010).

21.3.2 The Operational Level: Ambulance Relocation

At an operational decision level, decisions usually concern the allocation of
ambulances to emergencies and the reassignment of ambulances to bases after
having finished a service. In addition, relocations of ambulances during some time
period (e.g., 1 day) are possible, and they can either be predefined or dynamically
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determined throughout the period. A review on relocation models can be found in
Brotcorne et al. (2003).

Relocation approaches proposed so far are based on Markov chain models
(Alanis et al. 2013) or on approximate dynamic programming (Maxwell et al. 2009,
2013; Schmid 2012). Gendreau et al. (2001) use a parallel tabu search heuristic
for solving the dynamic relocation problem. Further approaches were presented by
Rajagopalan et al. (2008) and Schmid and Doerner (2010).

Because of real-time requirements encountered in practical settings, literature
on ambulance relocation focuses mainly on heuristic solution methods. One such
heuristic was proposed by Andersson and Värbrand (2007). The main idea was to
include a so-called preparedness of ambulances. For this purpose, the area to serve
is divided into a number of zones. Denote by I the set of ambulances and by J
the set of zones which have a demand for ambulances. A weight dj is assigned
to each zone j which states the demand for ambulances in the zone. pj is the
(exogenous) number of ambulances that contribute to the preparedness in zone j
and �ij represents the driving time from ambulance location i to zone j . Moreover,
let t lj denote the travel time of the l th closest ambulance to zone j and let x be
the vector form of the decision variables xij which are equal to 1 if ambulance i is
relocated to zone j and 0 otherwise. Clearly, t lj .x/ is a function of the x-variables
since the travel time depends on where the ambulances are located currently as
decided by the values in x. In addition, let l be the (user-defined) contribution
factor of the l th closest ambulance and let the following two properties be fulfilled:

t1j � t2j � : : : � tpjj ; (21.51)

1 > 2 > : : : > pj : (21.52)

The preparedness in zone j is then defined as

qj D 1

dj

pjX

lD1

 l

t lj
: (21.53)

Andersson and Värbrand (2007) proposed a tree search algorithm that tackles the
following relocation model in order to minimize the maximum travel time for the
ambulances (21.54) while restricting possible relocations:

minimize z (21.54)

subject to z �
X

j2Ji
�ijxij 8i 2 I (21.55)

1

cj

pjX

lD1

 l

t lj .x/
� qmin 8j 2 J (21.56)
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X

j2Ji
xij � 1 8i 2 I (21.57)

X

i2I

X

j2J
xij � p (21.58)

xij 2 f0; 1g 8i 2 I; j 2 J: (21.59)

In this formulation, Ji is the set of zones that can be reached by ambulance
i within a given time frame. The objective function (21.54) in conjunction with
constraints (21.55) (which ensure that z must not be smaller than any of the driving
times �ij) represents the minimum time it will take so that the preparedness in each
zone is at least qmin as prescribed in constraints (21.56). Hence, the left side of these
constraints can be interpreted as the preparedness for zone j that must be greater
or equal to a minimum value qmin. Constraints (21.57) assure that each ambulance
can only be relocated to at most one zone in Ji . Constraints (21.58) guarantee that at
most p ambulances are relocated in total. Finally, constraints (21.59) are the variable
domain constraints.

21.4 Hospital Layout Planning

A special class of location problems are layout planning problems which aim
at minimizing in-house travel distances or costs associated with the positions
of organizational units (OUs) inside a building. This class of problems mainly
originates from industrial applications for layout planning of public buildings.

Layout planning problems in healthcare were first introduced by Elshafei (1977).
He modeled a hospital layout problem as a quadratic assignment problem (QAP) and
developed heuristics to solve it. In the framework for hospital planning and control,
the hospital layout planning problem is classified as a resource capacity planning
problem on a strategic level (Hans et al. 2011). Although it is a long term decision,
the spatial organization within hospitals directly influences the quality and efficiency
of healthcare and secondary services of the daily routine (Choudhary et al. 2010;
Hignett and Lu 2010) as well as patient satisfaction (Chaudhury et al. 2005). The
challenge lies in developing a holistic approach in order to combine the architectural
and legal aspects with logistics, i.e., patient, personnel, and material flows inside the
future hospital building.

In the next section, the quadratic assignment problem (QAP) is presented.
Section 21.4.2 details a mixed-integer programming (MIP) formulation. Thereafter,
in Sect. 21.4.3, suggestions for further reading are provided in order to show some
extensions of the presented QAP and MIP models with respect to the underlying
assumptions.
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21.4.1 The Quadratic Assignment Problem

The well-known QAP (see Chap. 13) as introduced by Koopmans and Beckmann
(1957) has been first applied to hospital layout planning by Elshafei (1977) who
developed heuristics to solve large instances of the problem since it is NP-hard. A
solution of the QAP determines the assignment of each OU j 2 J to a predefined
location (e.g., a room) i 2 I inside a building. It is assumed that each OU can be
assigned to each location. The solution of a QAP instance is an assignment of jJ j
OUs to jI j locations.

Denote by fjk the flow between each pair of OUs j; k 2 J . The distance between
each pair of locations h; i 2 I is given by dhi. A binary decision variable xij can
be considered, indicating whether OU j is assigned to location i (xij D 1) or not
(xij D 0). Moreover, we now assume that I D J D f1; : : : ; ng in order to obtain a
mathematical formulation of the QAP as follows:

minimize
X

h2I

X

i2I

X

j2J

X

k2J
fjkdhixhjxik (21.60)

subject to
X

i2I
xij D 1 8j 2 J (21.61)

X

j2J
xij D 1 8i 2 I (21.62)

xij 2 f0; 1g 8i 2 I; j 2 J: (21.63)

The objective function (21.60) minimizes the sum of all travel distances.
Constraints (21.61) ensure that each OU is assigned to exactly one room whereas
constraints (21.62) guarantee that each room is only occupied by one OU. Con-
straints (21.63) define the domain of the decision variables.

In this basic formulation of the QAP, the area and shapes of the OUs and locations
are not regarded explicitly. This means that each OU fits to each location. This is a
very strong assumption which is not realistic in many applications, such as hospital
layout planning, since the dimensions (area, length, width) of the OUs to be assigned
can vary in a wide range. In the next section, a MIP formulation is presented which
overcomes this drawback.

21.4.2 A Mixed-Integer Program

In contrast to the discrete layout representation by the QAP formulation, the MIP
formulation presented next allows for a continuous representation of the layout.
Thus, the length and width of each OU can be modeled explicitly as decision
variables considering the defined area of the OU. Furthermore, the location of each
OU can be chosen in a more flexible way within a given floor area, i.e., not only by
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predefined locations as in the QAP model. Again, the objective is to minimize the
total travel distance. The model presented here goes back to Montreuil (1991) and
has been linearized and explained in detail by Tompkins et al. (2010).

The following parameters are given: Ba and Bb represent the length and width
of the building, respectively. The lower and upper limits on the length and width
of OU j are given by Llj ; L

u
j ;W

l
j and W u

j , respectively. P l
j and P u

j are lower and
upper limits on the perimeter of OU j , respectively.M represents a sufficiently large
number (Big M ). Again, fjk is the flow between two OUs j and k. Furthermore,
the following decision variables are defined: ˛j and ˇj are the x- and y-coordinates
of the centroid of OU j . The x-coordinates of the left and right sides of OU j are
defined by a0

j and a00
j , respectively. The y-coordinates of the bottom and top of OU

j are represented by b0
j and b00

j , respectively. Furthermore, the binary variables zajk
(zbjk) are considered which are equal to 1 if OU j is strictly to the right (top) of OU
k and 0 otherwise. The layout problem can be formulated as follows:

minimize
X

j2J

X

k2J
fjk

�
˛C

jk C ˛�
jk C ˇC

jk C ˇ�
jk

�
(21.64)

subject to ˛j � ˛k D ˛C
jk � ˛�

jk 8j; k 2 J; j ¤ k (21.65)

ˇj � ˇk D ˇC
jk � ˇ�

jk 8j; k 2 J; j ¤ k (21.66)

Llj �
�
a00
j � a0

j

�
� Lu

j 8j 2 J (21.67)

W l
j �

�
b00
j � b0

j

�
� W u

j 8j 2 J (21.68)

P l
j � 2

�
a00
j � a0

j C b00
j � b0

j

�
� P u

j 8j 2 J (21.69)

0 � a0
j � a00

j � Ba 8j 2 J (21.70)

0 � b0
j � b00

j � Bb 8j 2 J (21.71)

˛j D 0:5
�
a0
j C a00

j

�
8j 2 J (21.72)

ˇj D 0:5
�
b0
j C b00

j

�
8j 2 J (21.73)

a00
k � a0

j CM
�
1� zajk

� 8j; k 2 J; j ¤ k (21.74)

b00
k � b0

j CM
�
1 � zbjk

� 8j; k 2 J; j ¤ k (21.75)

zajk C zakj C zbjk C zbkj � 1 8j; k 2 J; j < k (21.76)

˛j ; ˇj ; a
0
j ; a

00
j ; b

0
j ; b

00
j � 0 8j 2 J (21.77)

˛C
jk ; ˛

�
jk ; ˇ

C
jk ; ˇ

�
jk � 0 8j; k 2 J; j ¤ k (21.78)

zajk; z
b
jk 2 f0; 1g 8j; k 2 J; j ¤ k: (21.79)
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The objective function (21.64) minimizes the sum of the rectilinear distances of
all the flows between the centroids of the OUs. Constraints (21.65) and (21.66) are
needed in order to linearize the model given by Montreuil (1991): in order to get a
linear objective function, the auxiliary decision variables ˛C

jk ; ˛
�
jk ; ˇ

C
jk and ˇ�

jk have

to be introduced such that with (21.65) and (21.66), we have
ˇ̌
˛j � ˛k

ˇ̌ D ˛C
jk C ˛�

jk

and
ˇ̌
ˇj � ˇk

ˇ̌ D ˇC
jk C ˇ�

jk . Constraints (21.67), (21.68) and (21.69) control the
lower and upper limits of the length, width and perimeter of the OUs, respectively.
The correct definition of the sides of the OUs as well as their location inside the
building is ensured by constraints (21.70) and (21.71). The centroid of each OU
is defined by constraints (21.72) and (21.73). The non-overlapping requirements for
the OUs are formulated by constraints (21.74)–(21.76). The domains of the decision
variables are given in constraints (21.77)–(21.79). We finally remark that the model
has been first used by Montreuil (1991) in order to devise a comprehensive modeling
framework which aims at integrating layout design and material flow network design
in material handling and logistics systems.

21.4.3 Further Reading

In this section, some possible extensions to the two models discussed in Sects. 21.4.1
and 21.4.2 are presented. Important characteristics which were not considered
above, but which are also of importance for hospital layout planning problems
comprise the consideration of multiple periods, multiple floors, multiple objectives
as well as uncertainty in patient, personnel, and material flows. Overall, there are
very few publications considering the application of layout planning problems in
hospitals from a mathematical perspective. General surveys on layout planning have
been conducted, among others, by Drira et al. (2007) and Singh and Sharma (2006).
Textbooks on facility layout planning and design are given by Tompkins et al. (2010)
and Heragu (2008).

A general review on dynamic layout problems which takes into account multiple
periods and, thus, changing process flows, is given by Balakrishnan and Cheng
(1998). A very recent approach for a multi-period ward layout planning problem
for hospitals has been presented by Arnolds and Nickel (2013b).

Since hospital buildings usually have more than one floor, another extension
comprises multiple floors. In this respect, the planning of elevators such as their
location, number, capacity and control is a quite new and challenging field that has
been addressed for example by Matsuzaki et al. (1999), Goetschalckx and Irohara
(2007a,b), and Krishnan et al. (2009). Further modeling and solution approaches
for multi-floor layout problems can be found in Bozer et al. (1994), Patsiatzis and
Papageorgiou (2002), and Meller and Bozer (1997).

In the last years, a number of papers has been published with respect to multiple
objectives (Chen and Sha 1999, 2005; Sha and Chen 2001; Tenfelde-Podehl 2002;
Aiello et al. 2006; Chen and Rogers 2009a,b; Bashiri and Dehghan 2010). This is
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a very important issue for hospital layout planning problems since, for example,
travel distances or times of patients, personnel and materials somehow have to be
regarded and balanced.

One additional aspect worth discussing is the uncertainty that can impact data.
For example, future patient figures for certain diseases are unknown. Accordingly,
processes, i.e., the flow of patients, personnel, and materials, depend on outcomes
and reconvalescence and, thus, are not deterministic. This uncertainty should be
reflected in the design process. Some works taking into account different sources of
uncertainty in general layout planning problems include Liu et al. (2006), Norman
and Smith (2006), Kulturel-Konak (2007), and Tavakkoli-Moghaddam et al. (2007).
Another approach has been developed by Arnolds and Nickel (2013a) who apply
a simulation-optimization approach in order to take into account the uncertainty in
patient, personnel, and material flows: while solving a mathematical layout model
results in optimal solutions under deterministic data, discrete-event simulation
scenarios help to create a robust layout which will show high performance even
when patient, personnel, and material flows are uncertain.

21.5 Conclusions

In this chapter, we have seen that mathematical models of facility location can be
applied to the healthcare sector at all planning levels. Considering the challenge of
an ageing population on the one hand and the increased significance of an efficient
resource management in the medical sector on the other hand, the topic will be
receiving even more attention over the next decades. Future research directions
could integrate planning problems at different levels with the goal of develop-
ing advanced planning instruments focused on healthcare applications. Likewise,
advancements in solution methods for current problems as discussed in this chapter,
as well as the identification of future problems along with the development of
corresponding solution methodologies represent interesting challenges for future
research on location problems in healthcare.
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Chapter 22
The Design of Rapid Transit Networks

Gilbert Laporte and Juan A. Mesa

Abstract Metro and other rapid transit systems increase the mobility of urban
populations while decreasing congestion and pollution. There are now 191 cities
with a metro system in the world, 49 of which were inaugurated in the twenty-
first century. The design of a rapid transit system is a hard problem involving
several players, multiple objectives, sizeable costs and a high level of uncertainty.
Operational research techniques cannot fully solve the problem, but they can
generate alternative solutions among which the decision makers can choose, and
be employed to solve some specific subproblems. The scientific literature on rapid
transit location planning has grown at a fast rate over the past 20 years. In this
chapter an account of some of the most important results are provided. First the main
objectives and indices used in the assessment of rapid transit systems are described.
Then the main models and algorithms used to design such systems are reviewed.
The case of a single alignment and of a full network are treated separately. Then
follows a section on the location of stations on an already existing network.

Keywords Location • Metro • Network design • Rapid transit • Stations

22.1 Introduction

Due to the increasing population and the spread of urbanized zones, many cities
and metropolitan areas around the world are planning, constructing or extending
their transit systems. Among these, metro systems are the most efficient because
they consume less energy and are able to transport more passengers per surface unit
than any other form of public transport. Metro systems help decrease private car
traffic, therefore reducing congestion and pollution. The term metro is sometimes
used synonymously with rapid transit but the latter has a wider acceptation. In the
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technical literature, rapid transit usually covers not only metro, but also commuter
train, light metro, light rail, monorail and others urban mass rapid public transport
systems. A metro system is independent from other traffic, even though some light
metros or German stadtbahn are underground in city centers, but at grade with
preference level crossings in suburban areas. According with the World Metro
Database (Rhode 2014), 49 out of 191 cities with a metro system have inaugurated
it in the twenty-first century. The latter figure can be compared with that of 1991
(Gendreau et al. 1995), when there existed fewer than 90 metro systems. Even
though the list is not exhaustive, in July 2014 Wikipedia reported that 36 such
systems were under construction (Wikipedia 2014). Bus rapid transit (BRT) systems
are sometimes considered as rapid transit systems. They share several characteristics
with those using rails but they exhibit several differences, such as slower vehicles,
level crossings, and less capacity. They are usually treated separately in planning
processes and in academic research.

In practice, rapid transit planning is a very complex task involving agents with
different backgrounds and loyalties (politicians, urban planners, transit agencies,
engineers, construction companies, citizen groups, etc.). These players may there-
fore have different and sometimes conflicting goals. The planning process usually
starts by analyzing the area under consideration and the main travel patterns. Then,
based on travel patterns codified by origin-destination flow matrices, some broad
traffic corridors are identified and combined, giving rise to several network scenarios
which can be evaluated from different points of view, often using finite multi-criteria
analysis. Since, the problem is inherently strategic, this process usually takes a long
time.

Rapid transit planning can be broadly classified depending on whether the
network is to be constructed from scratch or whether it is to be extended by adding
new lines or extending some existing ones. Rail rapid transit planning lies within
the broader field of rail network planning. The sequential process of rail planning
is based on the knowledge of the travel patterns and starts with network design.
Line planning, timetabling and resource scheduling are the subsequent stages in
this process. Other related important issues are reliability, robustness, timetabling
information, shunting, platforming, etc. However, due to their special characteristics
rapid transit planning deserves a particular study. Usually, the tracks of metro lines
are not interconnected. There are exceptions to this rule, for example the cases
where there is a common trunk for several lines (Los Angeles, Brussels and Bilbao
metros), or the case of a line working as a set of lines but most of the lines work
independently. This is the case of the London Underground Northern line with three
northern termini and two different routes in the city center, see Fig. 22.1. Some lines
in commuter systems also share the railway system in the city centre. This implies
that network design and line planning (except frequency setting) are considered
together in the modeling process. A second specific characteristic of metros is that
they carry a large number of passengers traveling over short distances compared
with medium and long distance railways. This implies that headways are very short
(with the new telecommunication technologies, in some cases these are reduced to
one minute and a half). Another distinguishing feature is the importance of mode
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Fig. 22.1 The Northern
Line, London underground
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selection due to the fact that in most metropolitan areas where such systems are
planned, several competing modes of transportation (bus, private car) are available.

Rapid transit network design is made up of two intertwined problems: the
determination of alignments and the location of stations. There are other related
location problems such as those of locating park-and-ride facilities and depots, but
usually their corresponding feasible sets are limited to very few possibilities and
thus do not give rise to interesting location problems. The location of stations is a
typical attractive facility location problem for which several criteria can be applied
depending on the goals of the decision maker. However, a station located in a high
density area could be non-efficient because of the direction of the line to which it
belongs. For example, if the line goes north-south but the people located close to the
station work east of the station, this station will not be useful for their working trips.
Therefore, it is crucial to concentrate on the location of the alignments and not only
on that of the stations. Since the facility to be located is a network, and therefore
very large with respect to its environment, the problem under consideration is an
extensive or multi-dimensional facility location problem (Mesa and Boffey 1996).

Our aim is to review some of the main aspects of rapid transit location. For the
sake of readability, we have avoided the use of lengthy formulations and formulas as
much as possible. These can be found in the original sources. We will first describe
in Sect. 22.2 the main indicators used to assess the quality of a rapid transit network.
Models and algorithms used for rapid transit network design will be described in
Sect. 22.3. In Sect. 22.4 we focus on the location of stations. Conclusions follow in
Sect. 22.5.

22.2 Objectives and Network Assessment

The main objective of a collective transit system is to improve the population
mobility. Since rapid transit systems usually have a high capacity, they extensively
reduce traffic congestion, airborne pollution and energy consumption, thus provid-
ing sustainable mobility. Moreover, these systems are among the quickest collective
mode of ground transportation, and therefore they usually provide the shortest travel
times. Another important feature is their structuring influence on cities since they
provide the backbone for the development of residential, business and commercial
areas. Rapid transit systems require high-level investments, both for construction
and maintenance. The initial investment is related to the construction of tunnels,
elevated or at grade right-of-ways, communication systems and the purchase of
rolling stocks. Operating cost include fixed and variable costs on a daily basis.

The agents interested in the planning processes can be broadly classified into
three groups: the society in general, which is represented by transportation agencies
and government sections, the potential riders, and the company offering the service.
The first group is mainly interested in global advantages such as those mentioned
above and they are therefore concerned with the population to be served by the
system. A measure frequently used at the planning stage is the population covered
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by the system, often defined as the population living within a certain distance
threshold from stations. This limit has been fixed to 400 m or 5 min walk in dense
areas (Vuchic 2005), but it can grow to 1 km in less populated regions. Moreover,
the catchment areas of stations are not always limited to pedestrian traffic but also to
combined modes (Mesa and Ortega 2001). However, ridership is not only a function
of the distance to the line, but also of the design of the network (Gendreau et al.
1995). A better measure is the predicted trip coverage which can be measured
by origin-destination surveys, coupled with traffic equilibrium models. Potential
users are mainly interested in reducing their travel time. A secondary objective
of the passengers is to transfer between lines as little as possible. Of course this
can be included into a more general and difficult to measure concept of comfort
or generalized cost. Finally, the third group, that of construction and operating
companies, is mainly concerned with fixed and variable construction and operating
costs and revenues.

An existing rapid transit network can be evaluated by means of network measures
and indicators, but the same measures can also be used to evaluate potential
networks, in particular those resulting of the process of combining corridors. To
this end graph theory is a useful tool. Furthermore, these measures can be used
as objective functions or as constraints in mathematical programming models.
Musso and Vuchic (1988) have developed some network topology indicators
such as circle availability, network complexity and connectivity. They have also
considered service measures and utilization indicators. Laporte et al. (1997) have
also measured the efficiency of rapid transit networks via the passengers/network
and passengers/plane measures. For example, these authors have shown that in a
circular city, triangle and cartwheel designs are preferable to star designs (Fig. 22.2)
in terms of connectivity and travel directness.

Gattuso and Miriello (2005) provide a comparative analysis of 13 existing metro
networks with respect to 10 indicators. Other indicators such as regularity, service
availability, punctuality and reliability can be found in UITP (2011). Nowadays,
the values of some of these indicators are often presented in the technical reports
of operating companies. Whereas most of the early research on indicators and
measures concerns the description and efficiency of the networks with respect to
different topological indicators, in recent years we have witnessed the emergence of

a b c

Fig. 22.2 Three basic metro designs. (a) Triangle. (b) Cartwheel. (c) Star
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new indices based on the assessment of transportation networks from the angle
of complex network theory and robustness. In accordance with the glossary of
the IEEE (1990), robustness can be defined as the degree to which a system or
component can function correctly in the presence of invalid inputs or stressful
environmental conditions. In the case of rapid transit networks planning, future
ridership is an uncertainty input variable which also depends on the travel times
of alternative transportation modes.

Another issue affecting robustness lies in the disturbances of normal operations.
The paper of De-Los-Santos et al. (2012) considers robustness from the angle of
passengers in the presence of disruptions. The auxiliary function applied to define
robustness measures is the total transit time of passengers. Two cases are considered.
In the first case, passengers affected by the disruption have to wait for the failure
to be repaired or have to take an alternative route in the same network. In the
second case, the operator provides a bus-bridge service. An example for the Madrid
commuter system illustrates the applicability of the robustness indices developed by
the authors.

Over the past 15 years there has been an increased research interest in the
structural properties of the networks representing complex systems, which is
interesting for understanding the functioning of these systems. One of the most
cited examples in the scientific literature is that of transportation networks and,
in particular, metro networks. The concept of small-world phenomenon comes
from sociology. The corresponding networks are an intermediate class between
regular networks (with equal-degree nodes) and random networks (edge-generated
by a given probability). Small-world networks are highly clustered, like regular
networks, but they have a low average shortest path length between pairs of nodes
(Watts and Strogatz 1998). Let G D .V;E/ be a graph and let dij; vi ; vj 2 V be
the topological distance between vi and vj (the minimum number of edges in a
path between vi and vj ). Then the characteristic path length L and the clustering
coefficient C are defined as

L D 1

jV j.jV j � 1/
X

i¤j
dij; and C D 1

jV j
X

vi2V
Ci ;

where Ci is the number of edges in Gi D .Vi ; Ei /, the subgraph of the neighbors of
vi , divided by the maximum possible number jVi j.jVi j � 1/=2.

In order to adapt these concepts to metric networks and to overcome some
indetermination, the average length of shortest paths and clustering coefficients were
substituted by global and local efficiency (Latora and Marchiori 2001):

Eglob.G/ D 2

jV j.jV j � 1/
X

i<j

1

dij
; and Eloc.G/ D 1

jV j
X

vi2V
Eglob.Gi /;

where Gi is the subgraph of neighbors of vi .
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In small-world networks it is easy to travel both at the local and at the
global levels. Since such networks are tolerant against disruptions, they are robust.
However, metro networks have been shown not to be robust at the local level.
Nevertheless, networks of direct connections, where there exists an edge between
all pairs of stations for which passengers do not need to transfer to other line,
may be seen as small world networks (Sen et al. 2002; Seaton and Hackett 2004).
Other papers dealing with efficiency, robustness, vulnerability and small-world
phenomenon of metro networks are those of Latora and Marchiori (2002), Criado
el al. (2007), Derrible and Kennedy (2010), Barbadillo and Saldaña (2011) and
Zhang et al. (2013). The paper by Roth et al. (2012) also deserves a mention. These
authors consider the dynamics of the largest metro networks and prove that they
converge to a unique network shape.

A new approach to the study of the connectivity of metro networks and thus
their robustness is grounded in the concept of hypergraphs and their associated
linear graphs. Given a collective transportation network made up of a set of lines
fL1; : : : ; Llg, whereLi D fsi1; : : : ; sili g is the set of stations of lineLi , the associated
hypergraph is the pair H D .V .H/;E.H//, where V.H/ is the set of all stations,
and the hyperedge setE.H/ D fL1; : : : ; Llg consists of the station sets of the lines.
The associated linear graph is L.H/ D .fL1; : : : ; Llg; E.L.H///, where the edge
setE.L.H// is the set representing the transfer stations. In Barrena et al. (2013) the
indices defined above are extended to collective transportation networks in order
to allow them to extract information on the easiness of transfer and to compare
different metro networks from this viewpoint. In that paper, the notions of clustering,
characteristic path length, local efficiency and global efficiency are extended to
hypergraphs and are applied to the comparison of several metro networks.

22.3 Location of Rapid Transit Networks: Models
and Algorithms

Construction projects for rapid transit networks can be classified into three groups:
those in which a single line is planned from scratch (Metro de Granada 2013), those
in which several lines are planned from scratch and simultaneously (for example,
Sociedad del Metro de Sevilla 2001), and those in which an existing network is to
be extended, which corresponds to a conditional network design problem (Metro de
Lisboa 2014).

22.3.1 Location of a Single Alignment

The problem of locating an alignment for a rapid transit system lies within the area
of location of dimensional structures either in a discrete or in a continuous space
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(Mesa and Boffey 1996; Díaz et al. 2004), more precisely that of locating paths and
networks. Cast in the framework of graph theory, the problem is to select a path
between two nodes (which could be fixed a priori) and some of the intermediate
nodes to be stations, in order to optimize an objective function subject to certain
constraints. In the continuous setting, the problem is that of selecting a straight-
line, a broken line (polygonal segment) or a curved segment and some points on it.
If the rapid transit line is planned to be at grade, it is almost always necessary to
work with a discrete setting, but if the network is to be constructed underground,
then a mixed network-continuous space fits better. Here we consider the problem
of locating a path and the points on it, leaving the case of locating the stations on
a given alignment to Sect. 22.4. Therefore, the decision variables of the problems
considered in this section are those of the coordinates of the stations and of the links
connecting adjacent stations.

In order to realistically model the problem of locating an alignment, it is
necessary to consider several features in addition to those encountered in covering-
path problems (Current et al. 1985). These include interstation spacing constraints,
competition or intermodality with other means of transportation, demand allocated
to pairs of points instead of single points, etc. The early paper of Gendreau et al.
(1995) proposes a simple algorithmic approach to the problem of locating a transit
line, but without any computational implementation. To our knowledge, Dufourd
et al. (1996) provide the first real attempt to solve the problem of locating a
transit line taking into account maximum and minimum station interspacing and the
number of allowed stations to be located. In that paper, the objective is to maximize
the population covered by the stations. This is computed by using several levels of
catchment with the use of the Manhattan or `1 metric. The authors solve the problem
by means of tabu search. The paper by Bruno et al. (1998) incorporates the more
realistic criterion of maximizing trip coverage, as opposed to population coverage.
In order to introduce real-world features into their model, the authors consider a
private mode of transportation competing with the bimodal pedestrian-public transit
mode. Each mode uses its respective network and the demand is assigned to the
mode with the least travel cost. The problem consists of computing non-dominated
solutions with respect to cost and trip coverage objectives. Bruno et al. (2002)
consider the same model as in Dufourd et al. (1996), except for the use of the `2
metric instead of the `1 metric for interstation distances. They develop a heuristic
consisting of two phases: the construction of the path and the iterative improvement
of it. This heuristic is shown to produce better solutions in less time than the tabu
search approach of Dufourd et al. (1996).

A similar approach was used in Laporte et al. (2005) to solve the more complex
problem of maximizing trip coverage in the presence of an alternative mode of
transportation. Instead of considering a binary variable to decide to which mode the
demand pair should be allocated, the authors use a continuous variable representing
the distribution of the demand between each mode, according to a logit function
which depends on the difference between travel times (or costs) of both modes.
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Finally, in order to avoid possible damage to historical building a modified
anticenter path location problem is used in Laporte et al. (2009) to design a metro
line as far away as possible from some patrimonial buildings to be protected.
The problem is solved with the help of a Voronoi diagram constructed around the
protected sites.

22.3.2 Rapid Transit Network Design

We now consider the problem of locating a rapid transit network from scratch, as
well as the problem of extending an already located network. The first attempt at
modeling and solving the general rapid transit network design problem is presented
in the paper by Laporte et al. (2007), which provides a computationally tractable
approach consisting of three stages. The first is the selection of key stations,
which are the main attraction points: railway or bus stations and airports, hospitals,
university campuses, large stores and commercial centers and densely populated
areas far away from the central area of the city, etc. The second stage is to connect
the key stations to form a core network. Finally, the intermediate stations are located
on the alignment resulting from the second stage. In the same paper, a linear
integer programming model aiming at maximizing the trip coverage is used in order
to solve the core network design problem in presence of an alternative mode of
transportation. Later, Marín (2007) relaxed some restrictions on the lines. In his
model the number of lines and the extremes of them are not fixed.

With the aim of modeling the user’s behavior, Marín and García-Ródenas (2009)
introduced a logit function in order to distribute the travelers between the rapid
transit and private modes. In order to maintain the linear character of the program,
they consider a piecewise linear interpolation of the logit function. In the paper
of Escudero and Muñoz (2009) the problem is decomposed into two stages. The
first one consists of determining the infrastructure network, and the second one
determines the lines.

A methodological contribution to modeling and solving the transit network
design problem can be found in Gutiérrez-Jarpa et al. (2013). These authors take
into account the fact that the rapid transit networks are composed of line segments
which often have to be constructed within broad corridors. These segments are
later assembled into lines. The authors apply two criteria: minimizing construction
cost and maximizing origin-destination traffic capture and computed Pareto-optimal
solutions.

A multi-period capacity expansion problem was studied in Marín and Jaramillo
(2008). In this paper the lines to be opened in each period are determined by
taking into account an objective function which is a combination of community,
passenger and operator oriented objectives. Since the general problem cannot be
solved exactly, a heuristic procedure is designed to solve it.

Other approaches to solve the mathematical programming model for rapid
transit network design problems are based on Benders decomposition (Marín and
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Jaramillo 2009), genetic algorithms (Wang and Lin 2010) and simulated annealing
(Kemanshani et al. 2010). Line configuration with assignment of passengers is
studied in Guan et al. (2006). Finally, a recent line of research deals with network
robustness aspects. Several ways of treating robustness have been studied: through
the application of game theory (Laporte et al. 2010), by providing alternative routes
to be used in case of a disruption (Laporte et al. 2011), through the concept of
recoverable robustness (Cadarso and Marín 2012), and by the application of a
GRASP to infrastructure railway network design problem (García-Archilla et al.
2013).

22.4 Location of Stations

The problem of locating stations is different in the case of locating a network from
scratch than in the case of extending an already existing network. In the first case,
several locations attract large volume of passengers and are obvious candidates for
stations. The remaining stations must then be located with the help of analytical
tools. Assuming that the alignments of the network are given, the problem of
efficiently locating the stations arises. The first objective for the community and
one of the most important ones for the operating company is to attract as many
travelers as possible. To this end, in technical projects the population living in a
circle centered at each station is used as an approximation. However, since walking
distances are not Euclidean, this is a rough measure for the station attractiveness.
In their paper, Laporte et al. (2002) use census tracts coupled with information
on population density to estimate the actual walking distances. Different levels of
attraction are applied in order to obtain a better estimation of the population covered
(see Fig. 22.3). For each given location of the stations in a corridor, line coverage is
subsequently defined. In that paper, given a discrete set of potential sites for stations,
optimal locations are obtained by maximizing the line coverage with the help of an
ad hoc defined acyclic graph and a longest-path algorithm.

Fig. 22.3 Concentric
catchment areas around a
station intersecting with a
census tract

alignment

census tract
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However, the estimation of future ridership cannot only be based on line coverage
since it depends not only on the location of the stations of the line, but also on
the overall location of the network. In their paper, De Cea et al. (1986) use origin-
destination pairs for computing the total population affected by an improvement of a
transportation network. In Laporte et al. (2005), trip coverage is analytically defined
and used to compute the network coverage as a good estimate of future ridership.
The objective of minimizing the total travel time of passengers was introduced
in Vuchic and Newell (1968). These authors considered the case of a population
concentrated in a specified area and commuting to a central point. Their aim was to
determine an optimal interstation spacing, while taking access time, kinematics of
trains, dwell times and intermodal transfer times into account.

There exist a number of papers dealing with the location of new stations on
general railway lines. Here we will highlight some of them. Hamacher et al.
(2001) studied a problem in which the objective is to maximize the saving in
passenger travel time when introducing new stations. Schöbel (2005) considered
the maximization of coverage and the minimization of the number of new stations
as bicriteria problems. Gross et al. (2009) presented two models combining the
number of stations and the distances to them. In the first one, the objective is to
minimize the number of new stations assuming that the demand is covered within a
predefined distance. The second problem is NP-hard and consists of minimizing the
sum of distances from the demand points to the closest (old or new) station under the
constraint that the number of new stations is bounded above. They have considered
two environments for each problem (a planar space with an `1 metric, and a network)
thus giving rise to four cases. For each case, they have identified a polynomial
complexity dominating set for the new stations. Körner et al. (2012) have dealt
with the problem of locating two new facilities in a mixed planar-network space so
that the number of trips between each pair of demand points is maximized. In this
paper it is assumed that an alternative mode of transportation exists. The authors
have analyzed the cases of segments and tree-networks and have also designed
polynomial time algorithms. For the case of more than two facilities to be located
on a segment, the big-cube-small-cube method has been shown to be efficient. In a
very recent paper by Carrizosa et al. (2013), the kinematics of the trains are taken
into account in order to minimize the total travel time when a given number of new
stops are located, as well as the total travel time of traversing all edges, subject to
the coverage of all demand points.

22.5 Conclusions

The design of rapid transit systems is a complex process which involves the
participation of many players. These projects are fraught with high costs and
uncertainty. Formulating models and designing algorithms for such problems is
difficult since the objectives and constraints are not as well defined as in many
operational research problems. Analytical techniques can be employed to assist
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decision making or to solve some specific subproblems, but human judgment and
intervention remain critical in the planning process. Over the past 20 years we
have witnessed a number of important methodological advances in the area of
rapid transit location planning. Several quality indices have been developed and
mathematical models of increasing realism have been proposed, some of which can
be solved directly by off-the-shelf solvers or by powerful heuristics. We expect to
see in the near future models and algorithms capable of integrating operational and
tactical considerations when solving the problem at the strategic planning level.
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Chapter 23
Districting Problems

Jörg Kalcsics

Abstract Districting is the problem of grouping small geographic areas, called
basic units, into larger geographic clusters, called districts, such that the latter are
balanced, contiguous, and compact. Balance describes the desire for districts of
equitable size, for example with respect to workload, sales potential, or number of
eligible voters. A district is said to be geographically compact if it is somewhat
round-shaped and undistorted. Typical examples for basic units are customers,
streets, or zip code areas. Districting problems are motivated by quite different
applications ranging from political districting over the design of districts for schools,
social facilities, waste collection, or winter services, to sales and service territory
design. Despite the considerable number of publications on districting problems,
there is no consensus on which criteria are eligible and important and, moreover, on
how to measure them appropriately. Thus, one aim of this chapter is to give a broad
overview of typical criteria and restrictions that can be found in various districting
applications as well as ways and means to quantify and model these criteria. In
addition, an overview of the different areas of application for districting problems
is given and the various solution approaches for districting problems that have been
used are reviewed.

Keywords Districting criteria • Political districting • Sales territory design •
Service districting

23.1 Introduction

Most problems discussed in this book focus on the location of facilities: where to
locate, how many to locate, when to locate, which type to locate, etc. However,
although the driving force is the location of facilities, equally important is the second
aspect of location problems that is usually not mentioned explicitly: the allocation of
customers to facilities. Even if this task is trivial in many classical location problems
like the p-median or the p-center problem (see Chaps. 2 and 4), only after deciding
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about allocations can we evaluate a given facility configuration and, thus, try to find
the optimal one. Hence, the allocations have a fundamental impact on the location
of facilities and different rules of allocation will result in different evaluations of the
same facility configuration. The aim of districting problems is now the other way
around: we first find allocations—or, more generally, determine which customers
should be served together—and then, if necessary, we find locations for the facilities
serving the customers.

In general, districting is the problem of grouping small geographic areas, called
basic units, into larger geographic clusters, called districts, in a way that the latter
are acceptable according to relevant planning criteria. Typical examples for basic
units are customers, streets, or zip code areas. Depending on the practical context,
districting is also called territory design, territory alignment, zone design, or sector
design. Three important criteria are balance, contiguity, and compactness. Balance
describes the desire for districts of equitable size with respect to some performance
measure for the districts. Depending on the context, this criterion can either be
economically motivated, for example, equal sales potentials, workload, or number
of customers, or have a demographic background, for example, the same number of
inhabitants or eligible voters. A district is called contiguous if it is possible to travel
between the basic units of the district without having to leave the district. Finally,
a district is said to be geographically compact if it is somewhat round-shaped,
undistorted, and without holes. Contiguous and compact districts usually reduce the
travel time of the person responsible for servicing the district. Unfortunately, a rigid
and concise mathematical definition of contiguity and compactness is often difficult
and strongly depends on the available data. In addition, for each district often the
location of a “facility” is either given or should be sought. This facility can be a
branch office, a depot, or the home address of a sales person. Figure 23.1 shows an
example of a districting plan for streets and for zip code areas.

Districting problems are motivated by quite different applications ranging from
political districting over the design of districts for schools, social facilities, waste
collection, or winter services, to sales and service territory design. Looking at
the literature, it is striking that only few authors consider the districting problem
independently from a practical background. Therefore, the aim of this chapter is to

Fig. 23.1 An example of a districting plan for streets and for zip-code areas
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give a broad overview of typical criteria and restrictions that can be found in the
various districting applications as well as ways and means to quantify and model
these criteria. As most districting applications have a strong spatial component, it is
natural to integrate the algorithms into a Geographic Information System (GIS).
In a modern GIS, users can access and utilize the rich variety of maps, spatial
databases, and geographical objects available to appropriately mark out the problem
and display the solutions, see also Chap. 19.

The rest of the chapter is organized as follows. The next section reviews the
broad range of districting applications and identifies and motivates the different
planning restrictions. In Sect. 23.3, basic notations are introduced. The next section
discusses the most common criteria found in districting applications and discusses
possible approaches to quantify these criteria and to incorporate them into districting
models. Finally, Sect. 23.5 presents an overview of the different solution techniques
for solving districting problems.

23.2 Applications

There are four major areas of application for districting problems: political district-
ing, sales territory design, service districting, and distribution districting, and this
section provides a comprehensive but non-exhaustive overview. But before we start,
we mention a first “application” in the context of facility location that derives from
the problem of aggregating demand points for location problems with the aim of
reducing the complexity of the problem. Simchi-Levi et al. (2003) formulate the
following guidelines (among others): aggregate demand points for 150–200 zones,
make sure each zone has an approximately equal amount of total demand, and place
aggregated points at the center of the zone. These guidelines read as a classical
districting problem.

23.2.1 Political Districting

Political districting is the problem of dividing a governmental area, such as a city or
a state, into constituencies from which political candidates are elected. Basic units
typically correspond to census tracts, which are given as polygons, and the districts
to the electoral constituencies. In general, the process of redistricting has to be
periodically undertaken to account for population shifts. The length of these periods
varies from country to country, e.g., in New Zealand every 5 years, in Canada and
the U.S. every decade (after each census). In the past, political districting has often
been flawed by manipulation aiming to favor some particular party or to discriminate
against social or ethnic minorities. Since the responsibility for approving state and
local districting plans usually falls to elected representatives, plans are likely to be
shaped implicitly, if not overly, by political considerations, e.g., to keep them in
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power. A famous case arose in Massachusetts in the early nineteenth century when
the state legislature proposed a salamander-shaped electoral district in order to gain
electoral advantage. The governor of the state at that time was Elbridge Gerry, and
this practice became known as gerrymandering. See Lewyn (1993) for an interesting
description of gerrymandering cases.

To avoid political interference, many states have set up a neutral commission
to determine political boundaries satisfying a number of legislative and common
sense criteria. Depending on the country or jurisdiction involved, these criteria
may be enforced by legislative directive, judicial mandate, or historical precedent.
However, there is no consensus in political science, law, or geography on which
criteria are legitimate for the districting process, i.e., satisfy the neutrality condition.
Moreover, it is often unclear how they should be measured (Williams 1995). One
important issue at stake is population equality. To respect the principle of “one
man-one vote”, i.e., every vote has the same power, all districts should contain
approximately the same number of voters, i.e., be balanced. In the U.S., population
equality has been deemed by the courts to be very important, and as a result,
the total deviation of congressional districts from perfect balance was less than
1 % after the last census in 2000 (Webster 2013). In other countries, the allowed
deviations are usually higher (Handley and Grofmann 2008). Two other important
criteria always being mentioned are contiguity and compactness which both aim
at preventing gerrymandering. While contiguity is generally undisputed and easy
to verify, this is not the case for compactness. There is a broad discussion on how
to quantify this criterion adequately (Horn et al. 1993), and whether it is relevant
in the first place because an algorithm will never gerrymander on purpose as long
as it is does not use political data (Garfinkel and Nemhauser 1970). Moreover, if an
adequate minority representation is sought for, this may sometimes only be achieved
through non-compact districts (Dixon 1968). Other—often disputed—criteria are
the conformity to administrative boundaries, e.g., cities or counties, the preservation
of communities of interest, socio-economic homogeneity or a fair representation
of minority voters across the districts, the similarity with the previous electoral
districts, or the consideration of topological obstacles, like mountain ranges, lakes,
or rivers (cf. George et al. 1997; Parker 1990; Bozkaya et al. 2011). An excellent
review on typical criteria for political districting and their eligibility is given in
Webster (2013).

When discussing automated procedures in the literature, it is always noted that
they are non-partisan and neutral as long as they do not use political data and, hence,
prevent gerrymandering. However, even if the computer does not gerrymander on
purpose, it may still do it accidentally, precisely because no political data is taken
into account. Therefore, Puppe and Tasnádi (2008) recently introduced the notion
of an (ex post) unbiased districting plan. In such a plan the number of districts won
by each party respects the relative strength of the party in the population as close
as possible. They focus on game theoretical aspects of the problem; see also Nagel
(1965). However, one has to do a careful weighing up to avoid forthright politically
biased criteria that lead, in spirit, to gerrymandering.
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23.2.2 Sales Territory Design

The important but expensive task of designing sales territories is common to
all companies that operate a sales force and need to subdivide the market area
into regions of responsibility that are each attended to by one or more sales
representatives. According to Zoltners and Sinha (2005), approximately every tenth
full-time employee in the U.S. is working as a field and retail sales person and
the expenditure for them is more than three trillion dollars every year. Territories
with low sales potential, intense competition, or too many small accounts lead to
low morale, poor performance, a high turnover rate, and an inability to assess the
productivity of individual territories. Therefore, well-planned decisions enable an
efficient market penetration and lead to decreased costs and improved customer
service and sales. Zoltners and Sinha (2005) “guestimate” that a good territory
alignment can increase sales by 2–7 % compared to an average alignment. In the
related literature, districts are predominantly called territories and districting is
termed territory alignment or territory design.

In the classical problem, the task is to assign a given set of (prospective) customer
accounts, each with a fixed market potential, to the individual members of the sales
force such that each customer has a unique representative and each sales person
faces equitable workload and travel time and has an equal income opportunity in
terms of incentive pay (Zoltners and Sinha 2005). Thus, basic units correspond to
accounts and are usually given as points. Concerning the travel time, if a sales person
visits each customer every day, then the travel time is proportional to the length of
a TSP tour. However, the workload of districts is usually balanced over 2–4 weeks
and some customers may have to be visited only once during this time whereas
others require weekly service. Moreover, customers may have time windows, tours
may include overnight stays, and so on, which makes the actual computation of the
travel times almost impossible. Hence, in most cases one has to rely on estimates.
Typically, a sales person is exclusively responsible for all customers within a specific
geographic region. However, in large companies sometimes a sales person is only
responsible for a certain product segment or accounts of a particular size within his
region. In such cases, sales territories may overlap. For practical examples of sales
territory design see Fleischmann and Paraschis (1988), Zoltners and Sinha (2005),
López-Pérez and Ríos-Mercado (2013).

Three classical sales districting criteria are again balance, contiguity, and com-
pactness. In contrast to political districting, typically more than one performance
measure has to be balanced, for example workload and sales potential. A district
with comparatively many small accounts or customers with low sales potential will
yield lower sales and, hence, lower incentives for the responsible sales person than a
district with an equitable workload but only high potential accounts. This disparity
will lead to discontent among the sales persons and, in the long run, lower sales for
the company. Having said that, only few authors consider more than one balancing
criterion: Deckro (1977), Zoltners and Sinha (1983), Ríos-Mercado and Fernández
(2009). Contiguous districts are desired to obtain clearly defined geographic areas



600 J. Kalcsics

of responsibility and, together with compactness, to reduce the unproductive travel
time of the sales force. Unfortunately, as basic units are typically points, it is not
clear how to assess contiguity. Moreover, it is important to point out that the desire
for compact districts is born out of necessity because the actual travel times are
usually impossible to determine efficiently. The hope is that geographically compact
and contiguous districts result in smaller travel times on a day-to-day basis than non-
compact and/or non-contiguous districts.

As the main goal of most companies is to maximize profit, several authors
relax the assumption that the sales potential of customers is fixed. Instead, they
propose an integration of time-effort allocation and territory design methods to
increase profit while maintaining the equitable workload criterion (cf. Lodish 1975;
Glaze and Weinberg 1979; Zoltners and Sinha 1983). These models not only assign
customers to sales people but also determine how much time should be invested
in the customer. Some authors even object that equity is not the primary goal for
most companies. Instead, the aim should be to maximize profits, regardless of
any balancing aspect (Skiera and Albers 1994; Drexl and Haase 1999). However,
in practice sales persons are typically reluctant to implement such detailed call
plans resulting from pure profit maximizing approaches (Zoltners and Sinha 2005).
Moreover, designing territories is a mid- or even long-term decision whereas time-
effort allocation is an operational problem that is influenced by weather (espc. in
the beverage industry), sales promotions, etc. Thus, these two problems should be
addressed separately.

Often, the number of districts to be designed is predetermined by the designated
sales force size (Fleischmann and Paraschis 1988). If the size is not self-evident,
methods based on the total workload involved in covering the entire market
compared to the available time per sales person can be used. Another possibility
is to follow the “decreasing returns” principle and add sales persons to the sales
force as long as the expected increase in profit exceeds the expected increase in
costs (Howick and Pidd 1990; Zoltners and Sinha 2005).

As sales persons have to visit their territories regularly, their home-base, e.g.,
office or residence, is an important factor to be considered in the alignment process.
However, there is no consensus as to whether predetermined locations should be
kept or be subject to the planning process. On the one hand, most sales persons have
strong preferences for home-base cities. Hence, such locations should be respected
or determined prior to the alignment to socialize them with the sales management
(Zoltners and Sinha 2005). On the other hand, addresses and sales personnel
frequently change and the management often does not want sales persons residences
to overly influence the definition of territories (Fleischmann and Paraschis 1988).

23.2.3 Service Districting

The problem of designing service districts appears in various contexts. One area of
applications focuses on social facilities, like hospitals or public utilities. Sometimes
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districts are needed to define for each inhabitant which facility he should visit to
obtain service, for example for preventive medical examinations, or to determine
areas of responsibility of home-care visits by healthcare personnel, like nurses or
physiotherapists. The goal is to determine contiguous districts that have a good
accessability with respect to public transportation and have an equitable workload
based on service and travel time or account for a high capacity utilization of the
social facility (cf. Minciardi et al. 1981; Blais et al. 2003; Benzarti et al. 2013).

A second field of applications deals with providing service to streets. A classical
problem concerns the design of districts for postal or leaflet delivery. Instead of
considering each household separately, districts are composed of whole streets.
Thus, basic units correspond to streets and each basic unit typically has two
attributes: the times required to traverse the street with and without providing
service. The task is to partition the streets into a given number of districts such
that the required delivery time is approximately the same for all districts and
does not exceed the working time restriction of the deliverer. The delivery time is
proportional to the length of a Chinese postman tour through the district, which can
be computed efficiently. Moreover, the delivery districts should be contiguous, incur
little deadheading, and should not overlap, i.e., be geographically compact (Bodin
and Levy 1991; Butsch et al. 2014). A common characteristic of these applications is
that the deliverer either walks through his district on foot or goes by bike so that one-
way streets are no hindrance. If a street is too wide or has too much traffic to serve it
in a zig-zag pattern, then each side of the street is modeled as a separate basic unit. A
similar problem arises in the context of meter reading in power distribution networks
(Silva de Assis et al. 2014). Closely related are districting problems for solid waste
disposal, salt spreading, and winter gritting (Hanafi et al. 1999; Muyldermans et al.
2002; Lin and Kao 2008). The criteria are almost identical to postal delivery. The
only differences are that vehicles typically have to respect one-way streets and have
difficulties making U-turns, and that their tours have to include a depot, e.g., to drop
off waste or refill salt. All these aspects make the computation of the travel times
more difficult. Other applications deal with the design of patrol districts for police
cars and primary response areas for ambulances, where the districts additionally
should have an average response time and/or incident arrival rate below a given
threshold (Baker et al. 1989; D’Amico et al. 2002; Xu and Yum 2010).

Other applications deal with the problem of assigning residential areas to schools
(Ferland and Guénette 1990; Schoepfle and Church 1991). Criteria to be taken
into account are capacity limitations and an equal utilization of the schools,
maximal or average travel distances for students, good accessability, and ethnic
balance. Another aspect is to decide which students should walk to school and
which should take the school bus. Districting problems also occur in electric
power networks. According to Bergey et al. (2003), the World Bank regularly
faces the challenge of helping developing countries to move from state owned,
monopolistic electric utilities to a more competitive environment with multiple
electricity service providers. At that, they face the task of partitioning the physical
power grid into economically viable districts (distribution companies). The main
aim is to determine non-overlapping and contiguous districts with approximately
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equal revenue potential (to foster competition) which are compact over a geographic
region (to be easier to manage and more economical to maintain).

23.2.4 Distribution Districting

Another important field of applications is the design of pickup and delivery districts
in logistics. Typically, such problems are modeled and solved as vehicle routing
problems. However, if there exists considerable uncertainty in the demand of
customers, several authors propose a two-phase approach that first builds the pickup
and delivery districts and then does the routing on a day-to-day basis. This conforms
with the well-known “cluster first–route second” paradigm for vehicle routing
problems. Hence, basic units correspond to potential customers, given as points,
and the task is to partition the set of customers into districts, one for each driver,
such that the districts satisfy certain planning criteria. A first advantage of these
fixed customer assignments is that the driver becomes familiar with his district.
This, in turn, increases the driver’s performance since he becomes quicker at finding
customer addresses, localizing offices within buildings as well as organizing his
routes (Zhong et al. 2007). A second advantage is that customers become familiar
with their drivers, which increases customer satisfaction (Jarrah and Bard 2012).
These advantages however have to be carefully weighed against flexible customer
assignments on a daily basis which enable the planner to maximize the driver
utilization and minimize the routing costs (Zhong et al. 2007).

Concerning the criteria for the districting process, districts should be contiguous
and compact, and the workload should either be balanced or at least not exceed a
given upper bound, e.g., the driver working time. The workload includes the service
time at the customers and typically also an estimate of the average travel time within
the district and to a centralized depot (Galvão et al. 2006; Haugland et al. 2007;
Zhong et al. 2007; Jarrah and Bard 2012; Lei et al. 2012).

A final application concerns the establishment of a distribution center which
involves a considerable level of risk due to its enormous start-up investment and
volatile customer demand patterns. One way of reducing this risk is to avoid both
overcrowding and, especially, underutilization of centers by balancing the allocation
of customers to them (Zhou et al. 2002).

23.3 Notations

This section introduces notations for the main components of districting problems.
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23.3.1 Basic Units

A districting problem comprises a set J D f1; : : : ; ng of basic units, sometimes
called sales coverage units, basic areas, or geographical units. Each basic unit
represents a geometric object in the plane: a point, e.g., a geo-coded address, a
line segment, e.g., a street, or a polygonal area, e.g., a zip code area, county, or
predefined company trading area. The distance between two basic units i; j 2 J is
denoted as dij D d.i; j /. Typical examples for dij are Euclidean (cf. Fleischmann
and Paraschis 1988) or road distances (cf. Ríos-Mercado and Salazar-Acosta 2011).
The latter have the advantage that they can properly reflect obstacles like rivers
or mountain ranges. For non-point objects, distances are either computed between
representative points, e.g., the midpoint of a street or the centroid of a polygon, or
as the surface-to-surface distance.

Moreover, one or more quantifiable attributes, called activity measures, are
associated with each basic unit. Typical examples are service times, estimated sales
potential, or number of voters. Sometimes, they also include an estimate of the travel
time for visiting the basic unit (Jarrah and Bard 2012). The activity measures are all
assumed to be deterministic. Let wqj denote the q-th activity measure of basic unit
j 2 J , 1 � q � Q, where Q is the number of different attributes to be considered.
If Q D 1, the superscript is usually omitted.

If explicit neighborhood information is given for the basic units, then G D
.V;E/ denotes the neighborhood or contiguity graph where vj 2 V corresponds
to j 2 J and fvi ; vj g 2 E iff basic units i and j are neighboring. The length of
edge fvi ; vj g is dij. Finally, N.j / � V denotes the set of basic units adjacent to
vj 2 V .

23.3.2 Districts

A district Dk , 1 � k � p, is a subset of basic units, where p is the total number
of districts. The number of districts can either be fixed in advance, e.g., the number
of political districts to create or the number of available nurses for elderly care, or
be subject to planning, e.g., the minimal number of salespersons required to service
all customers or the minimal number of patrol cars to ensure a certain response
time. The q-th activity measure of a district is the sum of the activity measures of
its basic units, i.e., wq.Dk/ D P

j2Dk wqj . For Q D 1, w1.Dk/ is simply called
the size of the district. Note that sometimes the size also includes an estimate of
the (expected) travel time. However, as travel times are represented through the
compactness criterion, we refrain from including them and just mention when this
may change things.

In some applications the location ck of a facility is associated with each district
Dk . This may be some predefined site, e.g., a hospital providing preventive medical
care, or be an outcome of the districting process, e.g., the optimal location of a sales
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office. In districting, this location is called the center of the district. One has to
be aware of the ambiguity with the notion of a center in location theory, which is
something different, see Chap. 4. Typically, the center coincides with a basic unit,
i.e., ck 2 J . A predetermined set of centers is denoted by Jc .

Finally, a districting plan D is defined as a set of p districts D D fD1; : : : ;Dpg.

23.3.3 Problem Formulation

The districting problem can now informally be described as follows: Partition all
basic units J into a number of p districts that satisfy the planning criteria of balance,
compactness, and contiguity and, if required, locate a center within each district.
Unfortunately, in contrast to many other optimization problems, there does not
exist the mathematical model for districting problems. This is mainly due to the
considerable ambiguity on how to quantify the different planning criteria and in the
motivation and relevance of some of them.

23.4 Districting Criteria

This section presents an overview over typical criteria employed in districting
problems and various ways and means to quantify them. In the following, a measure
for a criterion applied to a single district (the whole districting plan) is termed a local
(global) measure. Moreover, if not explicitly stated otherwise, let Q D 1.

23.4.1 Complete and Exclusive Assignment

In most cases, each basic unit is assigned to exactly one district, i.e., the districts
define a partition of the set J of basic units:

D1 [ � � � [ Dp D J and Dl \ Dk D ;; 1 � l; k � p; l ¤ k :

The requirement of exclusive assignment is sometimes also termed integrity. For
political districting, these criteria are obvious. In sales territory design, unique allo-
cations result in transparent responsibilities for the sales force avoiding contentions
and allowing the establishment of long-term customer relations.
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23.4.2 Balance

This criterion is one of the trademarks of districting problems. It expresses the desire
for districts of equitable size with respect to the activity measure(s). In political
districting, this criterion is employed to ensure the “one man–one vote” principle,
and in sales territory design to avoid districting plans with large discrepancies in
terms of workload, sales potential, or travel time.

Due to the discrete structure of the problem and the integrity assumption,
perfectly balanced districts can generally not be accomplished. There exist different
approaches in the literature to quantify imbalance and to incorporate the criterion
into the districting process. The most common local measure is based on the relative
deviation of the district size w.Dk/ from the mean district size 	 D w.J /=p:

bal.Dk/ D
ˇ̌
ˇ̌w.Dk/� 	

	

ˇ̌
ˇ̌ ; 1 � k � p

(cf. Forman and Yue 2003; Ríos-Mercado and Fernández 2009; Silva de Assis et al.
2014). The larger this deviation is, the worse is the balance. A districtDk is perfectly
balanced, if bal.Dk/ D 0. If the district sizes also contain a solution dependent
performance measure, like travel times, then this affects 	 and the balance of
one and the same district may be different in different districting plans. Another
approach concedes a priori a certain relative deviation ˛ > 0 from perfect balance
and only measures the imbalance exceeding this threshold (Bodin and Levy 1991;
Bozkaya et al. 2011)

bal.Dk/ D 1

	
maxfw.Dk/ � .1C ˛/	; .1 � ˛/	 � w.Dk/; 0g ;

i.e., the district is balanced if its size is between this lower and upper bound. Instead
of determining the bounds based on the mean district size, they are sometimes
directly motivated by the application, e.g., the working time restrictions of the
mailman or the sales potential required to ensure a decent living for the sales person.

Using these local measures, the global balance of a districting plan is then
typically computed as the maximal balance of a district

balmax.D/ D max
kD1;:::;p bal.Dk/ :

Less common are the sum over all districts (Bozkaya et al. 2003; Bodin and Levy
1991) or a convex combination of both (Butsch et al. 2014):

balsum.D/ D
pX

kD1
bal.Dk/ and balcv.D/ D � balsum.D/C .1� �/ balmax.D/ ;
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with � 2 .0; 1/. The convex combination alleviates some of the weaknesses of
balsum and balmax. The latter does not take into account the balance of all districts
and sometimes yields rather poor solutions on average whereas the former allows a
few highly unbalanced districts to be compensated by some well-balanced districts.
A different global approach computes the range of district sizes (Tavares-Pereira
et al. 2007)

balrng.D/ D max
kD1;:::;p w.Dk/� min

kD1;:::;p w.Dk/ :

23.4.2.1 Mathematical Modelling

In districting models, there is no clear trend on whether to treat balance as a hard
constraint (Hess et al. 1965; Fleischmann and Paraschis 1988; Zoltners and Sinha
2005) or to include it in the objective function (Blais et al. 2003; Ricca and Simeone
2008; Silva de Assis et al. 2014). In the former case, the size of each district is
required to lie between a given lower and upper bound. Some authors even do both
(Bergey et al. 2003; Salazar-Aguilar et al. 2013b). All of the above measures easily
give rise to linear expressions.

23.4.3 Contiguity

Almost all districting approaches require districts to be contiguous. In political
districting, this criterion should prevent gerrymandering. For the other types of
applications, contiguous districts reduce the day-to-day travel distances for sales
persons, delivery vans, snow ploughs, mailmen, etc. Unfortunately, a rigid and con-
cise mathematical formulation of contiguity is difficult for basic units representing
points.

23.4.3.1 Graph-Based Measures

If basic units are lines or polygons, it is easy to derive explicit neighborhood
information. For example, two zip-code areas are neighboring if they share a
common border, or two streets if they meet in a crossroad. In the former case,
sometimes an additional requirement is the existence of a direct road connection
between the two basic units. In general, two basic units are called neighboring, if
their geometric representations have a nonempty intersection. This information is
stored in the neighborhood graph G D .V;E/, and a district is contiguous if the
basic units of the district induce a connected subgraph in G.

If basic units are represented by points, e.g., customer addresses, it is not
clear how to assess contiguity. Over the years, different surrogate definitions for
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contiguity have been proposed. One approach is based on proximity graphs to
estimate the adjacency of points. One such graph is the Gabriel graph, in which
two nodes vi and vj are connected by an edge if and only if the disc with antipodal
points vi and vj does not contain any other node in its interior (Gross and Yellen
2003). A second approach to construct a contiguity graph is based on the Voronoi
diagram (Lei et al. 2012). Two basic units are defined to be adjacent, iff their Voronoi
cells have a common link within the smallest axis-parallel rectangle enclosing all
basic units (for a definition of Voronoi diagrams and cells see Aurenhammar et al.
2013). A third construction of the proximity graph is to start with a complete graph
and then sequentially go over all edges and delete for two intersecting edges in the
planar representation of the graph the longer or more costly one (Haugland et al.
2007). All three graphs are planar. Moreover, by definition the Gabriel graph is a
subset of the Voronoi-based graph.

Example 23.1 An example for these three proximity graphs for a point set with
26 basic units is depicted in Fig. 23.2. The Gabriel graph defines the most strict
neighborhood relation. The graphs obtained by Lei et al. (2012) and Haugland et al.
(2007) are fairly similar. The main difference is that the latter typically establishes
more adjacencies along the boundary of the convex hull of the point set. Just by
looking at the graphs it is difficult to decide which one is more suitable.

a b

c d

Fig. 23.2 Three different approximate contiguity graphs. (a) Point set of basic units. (b) Gabriel
graph. (c) Voronoi-based graph. (d) Non-crossing edges graph
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Finally, if the underlying road network is given, yet another possibility is to define
two basic units as being adjacent, if the shortest path between the two does not
contain another basic unit.

23.4.3.2 Geometric Measures

If no neighborhood information for basic units is given or can reasonably be derived,
an alternative is to determine the overlap between the districts. For example, by
computing the convex hull ch.Dk/ around each districtDk and defining a district to
be contiguous if no basic unit of another district lies in its convex hull, i.e., ch.Dk/\
ch.Dl / D ;, 8 l ¤ k (Kalcsics et al. 2005; Jarrah and Bard 2012). One advantage
of this approach is that convex districts usually prevent the crossing of routes of
different districts, a characteristic that typically implies inefficient routes.

23.4.3.3 Mathematical Modelling

In districting models, contiguity is always treated as a hard constraint (except in
Hanafi et al. 1999). One possibility to include it in a mathematical programming
formulation is the following: Let ck 2 Jc be the predetermined center of district k
and S � J n fN.ck/[ fckgg be a subset of basic units that are not adjacent to ck . If
all elements of S are assigned to k, i.e., S � Dk , then at least one basic unit not in
S that is adjacent to an element of S must also be assigned to k:

X

j2Si2S N.i/nS
xkj �

X

j2S
xkj � 1 � jS j 8S � J n fN.ck/ [ fckgg ;

where xkj is 1 if j 2 J is assigned to district k and 0 otherwise (Drexl and Haase
1999). The drawback of this formulation is, that it requires an exponential number
of constraints (although it gives naturally rise to a cut generation approach, Ríos-
Mercado and López-Pérez 2013). A second possibility that only needs a linear
number of constraints is based on network flow constraints. Each basic unit has
one unit of supply, and the district centers act as sinks. District k is contiguous iff
there exists a flow from its basic units to ck that only passes basic units in Dk :

X

i2N.j /
fji �

X

i2N.j /
fij D xkj 8 j 2 J n fckg

X

i2N.j /
fij � .n � 2/ xkj 8 j 2 J n fckg

X

i2N.ck/
fi;ck � n � 1;
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where fij is the flow from basic unit i to j and fck;j D 0, 8 j 2 N.ck/ (Shirabe
2009).

A simpler approach is to require that each district is a subtree of a shortest
path tree T .ck/ rooted at the district center ck , where the edge lengths typically
correspond to road distances or are all assumed to be 1. Then, for each basic unit
j of district k, at least one of the adjacent basic units i 2 N.j / that immediately
precedes j on some shortest path to the center ck also has to be included in the
district:

xkj �
X

i2Sj
xki 8j 2 J n fckg ;

where Sj D fi 2 N.j / j i immediately precedes j on some shortest path from
j to ckg (Zoltners and Sinha 1983; Mehrotra et al. 1998). Although this excludes
some contiguous districts, these are unlikely to be compact, as they typically have
large protrusions or indentations, or contain enclaves.

It is straight forward to extend all of the above constraints to the case where
the choice of district centers is part of the optimization. For geometric contiguity
measures obviously only informal mathematical formulations can be derived.

Remark 23.1 Only few authors try to derive approximate neighborhood graphs
for point-like basic units. The majority simply does not consider contiguity at all
and tries to obtain districts with little overlap through an appropriate compactness
measure, see also Example 23.3.

23.4.4 Compactness

A district is said to be geographically compact if it is somewhat round-shaped and
undistorted. The motivation for compact districts is almost identical to ensuring
contiguity: to prevent gerrymandering or to reduce the day-to-day travel distances
within the districts. Although being a very intuitive concept, a rigorous definition
of compactness does not exist and, moreover, strongly depends on the geometric
representation of basic units. In the context of political districting, typically mea-
sures based on the shape of districts are employed whereas in sales and distribution
districting, distance-based measures are predominant. In the following, the most
common ones for both approaches are presented.

23.4.4.1 Geometric Measures

If basic units are given as polygons, geometric approaches based on the area or
perimeter of a district can be used to quantify compactness. Two common local
measures are the Reock and Schwartzberg tests. The former calculates the ratio
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of the district area to the area of the smallest enclosing circle, while the latter
determines the ratio of the districts perimeter length to the circumference of a circle
with equal area

cmp.Dk/ D A.Dk/

�r2enc

and cmp.Dk/ D P.Dk/

2
p
� A.Dk/

;

where A.�/ and P.�/ denote the area and the length of the perimeter, respectively,
of a district and renc the radius of the smallest enclosing circle (Young 1988). For
the Reock (Schwartzberg) test, larger (smaller) ratios indicate greater compactness.
Other measures relate the activity of a district with the total activity of all basic
units within the smallest enclosing circle (Ricca and Simeone 2008) or determine
the ratio of the squared diameter of a district and its area (Garfinkel and Nemhauser
1970). A common global measure for the compactness of a districting plan is based
on the length of the boundary between districts, i.e., the total length of the perimeter
of the districts in the interior (Bozkaya et al. 2003; Lei et al. 2012)

cmp.D/ D
pX

kD1
P.Dk/� P.J / :

Short inter-district boundaries typically result in compact districts. Numerous other
measures have been discussed in the literature. Unfortunately, none of them is
comprehensive; some fail to detect districts that are obviously noncompact, others
assign a low rating to visibly compact districts (Niemi et al. 1990; Horn et al. 1993;
Williams 1995).

To use geometric measures for basic units representing points or lines, one can try
to give “shape” to the districts, for example through the smallest enclosing rectangle
or circle, or through the convex hull. Instead of the convex hull, one can also use �-
shapes, which are polygons enclosing the point set that can provide a better fit to the
points than the convex hull (Duckham et al. 2008). However, much more common
are the following, distance-based measures:

23.4.4.2 Distance-Based Measures

Distance-based measures are used predominantly in applications where people
have to travel within the districts, e.g., sales- or mailmen. This confers with the
motivation of compact districts in these applications: to reduce the day-to-day travel
times. Moreover, in these applications basic units typically represent points or lines,
making geometric measures unapplicable in the first place. The most common group
of local measures is based on the sum of distances between the center of a district
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a b

Fig. 23.3 Districting plans for two center-based compactness measures without contiguity.
(a) Districts for cmpud.�/. (b) Districts for cmpwd2 .�/

and its basic units. Variations exist in whether the distances are weighted with
activity measures or not (w/u) and whether distances are squared or not (d2/d)

cmpud.Dk/ D
X

j2Dk
dck;j cmpud2 .Dk/ D

X

j2Dk
d2ck ;j

cmpwd.Dk/ D
X

j2Dk
wj dck ;j cmpwd2 .Dk/ D

X

j2Dk
wj d

2
ck;j

(Bard and Jarrah 2009; Bergey et al. 2003; Hess and Samuels 1971; Zoltners and
Sinha 2005). The second and forth measure are also known as the (weighted)
moment of inertia (Hess et al. 1965). Although the four local compactness measures
follow the same idea, the resulting districts may look considerably different as the
following example shows.

Example 23.2 Consider a point set of n D 75 basic units that has to be partitioned
into p D 5 districts, each having a predetermined center. The allowed relative
deviation in terms of balance from the mean district size 	 is 5%, and contiguity
is not explicitly imposed. Figure 23.3 shows the resulting districting plans that
minimize the sum of the two center-based compactness measures cmpud.�/ and
cmpwd2 .�/ over all districts. The enlarged icons represent the district centers.

Having in mind that compactness acts as a proxy for travel times, the most natural
measure is cmpud.�/. However, we observe that there is a considerable overlap in
the districts for this measure, especially between the districts represented by the
diamond and pentagon shaped basic units. A much better visual separation is instead
obtained for the weighted squared distance, cmpwd2 .�/, even if some district centers
now lie outside their actual district (again, diamonds and pentagons). A large overlap
between districts typically yields less efficient routes for sales persons. To underline
this observation, we determine for each district the TSP tour through all basic units,
including the center. The total lengths of the TSP tours for the two districting plans
are: 92.78 and 73.56. The travel distances for the weighted squared distance are
20% smaller than for cmpud.�/. The results for cmpwd.�/ and cmpud2 .�/ in terms of
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a b

Fig. 23.4 Districting plans for two center-based compactness measures with contiguity.
(a) Districts for cmpud.�/. (b) Districts for cmpwd2 .�/

overlap and travel distances are between the other two measures, with the former
being slightly better.

The situation is different if we try to enforce contiguity. Assume that an approxi-
mate neighborhood graph has been computed using the approach in Haugland et al.
(2007). Using the contiguity constraints of Shirabe (2009), the resulting districting
plans for cmpud.�/ and cmpwd2 .�/ are shown in Fig. 23.4. The separation between
the districts for cmpud.�/ is clearer than before. However, even if the total length of
the TSP tours reduces considerably (from 92.78 to 81.15), the districts consisting
of the diamond, pentagon, and square shaped basic units are still distorted and will
receive little approval from planners. (The square shaped district is connected since
there exists an edge along the top of the point set.) For cmpwd2 .�/ the overlap is not
much different from the previous plan, and the total travel distance even slightly
decreased to 72.97. The main difference is that the centers are now all included in
their districts, if only at the boundary.

This example illustrates the considerable differences between districting plans
for different compactness measures and the influence of contiguity constraints.
However, this is just a single example, and the observations cannot be generalized
without further testing. Also, the length of a TSP tour is just an indicator for travel
distances, as a sales person may not visit all customers on a single day.

The fact that squared distances produce compact but non-contiguous districts
for fixed centers has been observed several times in the past (Hojati 1996;
Schröder 2001). An important factor influencing the shape of districts is the spatial
distribution of the district centers. If they are spread evenly, the differences between
the measures in terms of district overlap will decrease, see Example 23.3. However,
this uneven distribution is not unusual as sales force residences often concentrate
in certain areas, e.g., larger cities, and sometimes even have the same address. Also
the threshold for the allowed balance deviation has an impact on the compactness of
solutions. The smaller the threshold value is, the larger the overlap between districts
will get.

Instead of taking the sum, one could also take the maximum for each of
the center-based measures (cf. Elizondo-Amaya et al. 2014; Ríos-Mercado and
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Fernández 2009; Muyldermans et al. 2003). However, this leaves considerable
freedom for assignments below the maximal distance and typically increases the
overlap. A slightly different approach is based on the maximal pairwise distance
and the weighted sum of pairwise distances

cmpmpw.Dk/ D max
i;j2Dk; i¤j

dij cmpspw.Dk/ D
X

i;j2Dk; i¤j
wi wj dij

(Ríos-Mercado and Salazar-Acosta 2011 and Blais et al. 2003, respectively).
In case of measures based on the sum (maximum) of distances, the global

compactness of a districting plan is then usually also computed as the sum
(maximum) over all districts. But sometimes also a sum-max combination is used
or a convex combination of sum and max (Muyldermans et al. 2003; Silva de Assis
et al. 2014; Butsch et al. 2014).

23.4.4.3 Mathematical Modelling

The majority of districting models has compactness as an objective function to
be optimized. In addition, sometimes the maximal distance between a basic unit
and its district center or between two basic unit of the same district is restricted
(Benzarti et al. 2013). The appeal of distance-based measures is that they easily
give rise to linear or, in case of pairwise distances, quadratic expressions. Therefore,
these measures are sometimes also used for polygonal basic units, even if geometric
measures could have been applied (Ríos-Mercado and Fernández 2009).

23.4.5 District Center

Strictly speaking, determining district centers is in most cases not an optimization
criterion in itself. However, several measures for contiguity and compactness rely on
district centers. Thus, if no centers are predefined for the districts, seeking district
centers is part of the optimization process. Typically, a district center is the basic
unit of the district that minimizes the respective compactness measure. But also the
(weighted) center of gravity can be used to determine a district center. Note however
that this center usually does not coincide with a basic unit, which is problematic if
distance computations are based on road networks.

23.4.6 Other Criteria

There are a few other criteria for districting problems that are included from time to
time in districting models. For example, for re-districting problems the changes in
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allocation from the old to the new districting plan should be kept small (Silva de
Assis et al. 2014). Especially in sales territory design, customers often have a
preferred sales representative by whom they want to be serviced or vice-versa,
i.e., customers have banned salesmen (cf. Ríos-Mercado and López-Pérez 2013).
Another criterion concerns the number of districts. Typically, p is predetermined
such that, for example, the expected workload in a district neither exceeds the
working time restriction of a deliverer nor renders him underutilized. If however
travel times within a district account for a large portion of the total working time,
then it is not always possible to fix p a priori since travel times strongly depend on
the shape of districts, i.e., their compactness. Therefore, sometimes p is a design
criterion (cf. Muyldermans et al. 2003).

23.5 Solution Approaches

As with most optimization problems also for districting many different solution
approaches have been proposed in the literature over the years. These approaches
can roughly be divided in those that utilize a mathematical programming model and
those that depend merely upon heuristics. Among the former, location-allocation
and set partitioning methods have been discussed. The latter mainly focus on
geometric algorithms, simple construction methods, and classical meta heuristics,
like Tabu Search, GRASP, and Simulated Annealing. This section will present only
a rough overview and description of the most common approaches. Detailed reviews
can be found in Kalcsics et al. (2005) and Ricca et al. (2013).

23.5.1 Location-Allocation Methods

The first mathematical programming approach was proposed by Hess et al. (1965)
for political districting. They had the idea to model the problem as a capacitated
p-median facility location problem (see also Chap. 3). Basic units correspond to
customers and their activity measure to their demand. The facilities to be located
are the district centers, and the capacity of the facilities is chosen in such a way that
the districts obtained by solving the problem are well balanced. Candidate locations
for the facilities are all basic units. For an allowed relative deviation ˛ > 0 of the
district size from the mean district size 	, the formulation of Hess et al. (1965) is

minimize
X

i;j2J
wj d

2
ijxij (23.1)

subject to
X

i2J
xij D 1 8 j 2 J (23.2)
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X

j2J
wj xij � .1� ˛/	yi 8 i 2 J (23.3)

X

j2J
wj xij � .1C ˛/	yi 8 i 2 J (23.4)

X

i2J
yi D p (23.5)

yi ; xij 2 f0; 1g 8 i; j 2 J; (23.6)

where xij D 1 if basic unit j is assigned to basic unit i , 0 otherwise, and
yi D 1 if basic unit i is selected as district center, 0 otherwise. The objective
function (23.1) maximizes the compactness of the districts using the center-
based measure cmpwd2 .�/. Constraints (23.2), together with the integrality con-
straints on the xij-variables, model the unique and exclusive assignment criterion.
Constraints (23.3) and (23.4) restrict the balance of the districts. Finally, Con-
straints (23.5) ensure that exactly p basic units are selected as district centers. As a
result, all basic units allocated to the same basic unit i constitute a district with the
basic unit as its center, i.e., there is a one-to-one correspondence between centers
and districts. Note that the centers are just required to evaluate district compactness
and have no meaning in itself.

Unfortunately, due to its NP-hardness, the practical use of this formulation is
limited to instances with a few hundred basic units, which is rather small for
typical sales districting problems. To this end, Hess et al. (1965) propose to use
Cooper’s location-allocation heuristic to solve the problem. In this heuristic, the
simultaneous location and allocation decisions of the underlying facility location
problem are decomposed into two independent phases, a location and an allocation
phase, which are alternatingly performed until a satisfactory result is obtained. In
the location phase, a set Jc of district centers is determined. A fairly simple and
commonly used method is to solve in each district resulting from the last allocation
phase a single facility location problem with the respective compactness measure
as objective function (cf. Fleischmann and Paraschis 1988; George et al. 1997).
To obtain an initial set of centers, one can determine new centers based on the
solution of a Lagrangean subproblem (Hojati 1996). Alternatively, one can use any
of the heuristics for the (uncapacitated) p-median problem or one of the heuristics
mentioned below.

Once the centers have been fixed, the allocation phase determines a balanced
assignment of basic units to district centers. This can be done by fixing yi D 1 for all
i 2 Jc in the above formulation. With present-day computers and MIP solvers, the
resulting problem can be solved optimally even for large instances with 10,000 basic
units or more within a short time. Even in the presence of contiguity constraints,
several thousand basic units can be assigned in reasonable time (Ríos-Mercado
and López-Pérez 2013). Alternatively, the allocation problem can be modeled as
a minimum cost network flow problem allowing more flexibility for measuring and
optimizing the balance and compactness of districts (George et al. 1997).
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a b

Fig. 23.5 Illustration of one iteration of the location-allocation procedure. (a) Location phase:
new districts centers. (b) Allocation phase: new districts

Example 23.3 Consider again the example depicted in Fig. 23.3, but assume now
that the district centers are flexible and the current ones are just a starting point.
Based on the districting plan for the measure cmpwd2 .�/, the new centers that
minimize cmpwd2 .�/ over each district are shown on the left-hand side in Fig. 23.5.
The subsequent allocation phase yields the new districts shown on the right-hand
side. The districts are visually much more compact and there is no overlap between
the convex hulls of the districts.

In former times, when the exact solution of the allocation problem was unattain-
able for larger instances, the assignment problem was solved heuristically. Setting
the tolerance ˛ to zero and relaxing the integrality constraints on the assignment
variables, i.e., xij 2 Œ0; 1�, the resulting linear program is a classical transportation
problem that can be solved efficiently using specialized network algorithms.
However, solving the relaxed problem yields districts that are perfectly balanced
but usually assign portions of basic units to more than one district, i.e., 9 i; i 0 2 Jc ,
i ¤ i 0, j 2 J , such that xij; xi 0j > 0. Such basic units are called splits. For an
optimal basic feasible solution of the transportation problem, it is easy to prove that
there are at most p � 1 splits (Hojati 1996). To restore the integrity of basic units,
it is necessary to round for every split its fractional variables to one (one variable)
or zero (the other variables). This yields disjoint districts but destroys their perfect
balance. A simple split resolution rule is to assign a split to the district (center) that
“owns” the largest share of the split (Hess and Samuels 1971). However, if there
are just few basic units per district, this rule may produce very unbalanced districts.
An optimal split allocation with a minimal maximal percentage deviation can be
obtained in polynomial time by using tree partitioning methods; unfortunately, the
problem of finding a split resolution with a minimal total deviation is NP-hard; see
Schröder (2001) for details.
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23.5.2 Set-Partitioning Models

As districting is essentially a partitioning problem, classical set partitioning
approaches can be used to solve the problem. In a first step, balanced, contiguous,
and compact candidate districts are generated in a heuristic fashion. In a second step,
districts are selected from the set of candidates to optimize the overall balance of the
district plan (Garfinkel and Nemhauser 1970; Mehrotra et al. 1998). Unfortunately,
only small instances can be solved optimally with this approach. An advantage
compared to location-allocation methods is however that almost any criterion can
be applied on the generation of candidate districts.

23.5.3 Computational Geometry Methods

A very simple but efficient solution approach for basic units representing points
is the successive dichotomies strategy (Kalcsics et al. 2005). The main idea is to
recursively subdivide the problem geometrically using lines into smaller and smaller
subproblems until an elementary level is reached, where the problem can be solved
efficiently. Hence, the basic operation is to partition a subset J 0 of basic units into
two subsets J 0

l and J 0
r by drawing a line within this set of points. Given a number

of line directions, for each direction the position of the line is determined in such
a way that the two resulting subproblems are best balanced. For every direction,
the line is evaluated by a convex combination of its balance and its compactness
(evaluated through the length of inter-district boundaries), and the best line is then
used to divide the problem into two subproblems. This procedure is repeated until
every subset corresponds to a single district. The strategy quickly determines a well-
balanced districting plan with no overlap between districts. However, as it does
not explicitly account for (road) distances, the resulting districts sometimes lack
compactness. Moreover, it is difficult to include neighborhood information. Instead
of using lines, other geometric concepts can be used. Alternatively, the process of
subdividing a point set J 0 can be modeled and solved as a 2-facility location problem
(Salazar-Aguilar et al. 2013a).

Example 23.4 Consider again the example in Fig. 23.3 and assume that the district
centers are flexible. Figure 23.6 shows the districting plan obtained with the
successive dichotomies algorithm using horizontal, vertical, and diagonal lines.

Another approach is based on weighted Voronoi diagrams on networks (for a
definition of weighted Voronoi diagrams see Aurenhammar et al. 2013). Assume
that the neighborhood graph G is given. For center-based measures the most
compact solution is obtained by assigning each basic unit to the closest center. If
the distances fdck;j j ck 2 Jcg are unique for each j 2 J , then each district
will also be connected. However, the resulting districts are often far from being
balanced. To overcome this drawback, the idea is to modify the distances dck;j
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Fig. 23.6 Districting plan
with the successive
dichotomies algorithm

between basic units and centers in such a way that assignments to overly large
districts are “penalized” and allocations to too small districts are “stipulated”. There
are basically two options to modify distances. The first adds a real-valued weight
rk 2 R to each distance dck;j (Zoltners and Sinha 1983) and the second multiplies
dck;j by a positive weight rk 2 R

C (Ricca et al. 2008). Hence, basic unit j 2 J
is closer to center ck than to center cl 2 Jc if dck;j C wk < dcl ;j C wl or
wk dck ;j < wl dcl ;j , respectively. Increasing (decreasing) the weight for a specific
center ck while keeping the other weights unchanged, will reduce (increase) the
number of basic units assigned to ck under the closest assignment rule and thus
reduce (increase) the size of the district. To obtain balanced districts, the weights
have to be updated iteratively until a satisfactory result is obtained. During the
update, care has to be taken because some districts may turn out empty under
additive weights or become disconnected for multiplicative weights if the weights
are too uneven. For details on the update procedures see Zoltners and Sinha (1983)
and Ricca et al. (2008). The partitions of the graph induced by these weights are
the so-called additively and multiplicatively weighted Voronoi diagrams. Note that
the approach using additive weights is in fact a Lagrangean relaxation where the
balancing constraints have been relaxed.

Most districting problems are solved using discrete models. However, these
problems (and a number of other logistics problems as well) can be converted into
problems with continuous demand functions. Continuous demand approximations
models are based on the spatial density and distribution of demand rather than on
precise information on every demand point. Given continuous approximations, one
can for example use Voronoi diagrams to compute or to smooth existing districts
(Galvão et al. 2006), or determine perfectly balanced districts (Carlsson and Delage
2013).

23.5.4 Construction Methods

There exist several easy approaches for constructing a districting plan from scratch.
One of the most popular ones is based on the multi-kernel growth methodology first
introduced in Vickrey (1961). The general idea of this methodology is to select
a certain number of basic units as “seed centers” and then assign to each seed
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neighboring basic units in order of decreasing distance until the desired district size
is reached. Variations exist with respect to the selection of seeds, whether districts
grow simultaneously or sequentially around the seeds, and how to deal with enclaves
of unassigned basic units which typically occur at the end of this greedy process
(Bodin and Levy 1991; Williams 1995; Mehrotra et al. 1998; Bozkaya et al. 2003).
The resulting districting plans are not always connected or balanced and typically
serve as a starting point for a meta heuristic.

A different approach treats each basic unit initially as a single district and then
merges iteratively pairs of districts until the prescribed number of districts is reached
(Deckro 1977).

23.5.5 Meta Heuristics

There exists a wide range of meta heuristics that have been applied to districting
problems: Simulated Annealing (D’Amico et al. 2002), Tabu Search (Ricca and
Simeone 2008; Bozkaya et al. 2003), GRASP (Ríos-Mercado and Fernández 2009;
Salazar-Aguilar et al. 2013b), and Genetic algorithms (Forman and Yue 2003;
Bergey et al. 2003; Bação et al. 2005), just to name a few. A major advantage
of these methods is their flexibility to include almost any practical criterion and
measure for the design of districts.

23.6 Conclusions

Despite the large number of publications, it is striking that only few authors consider
the districting problem independently from a practical background. Moreover, there
is no consensus on which criteria are eligible and important and, on how to
measure them appropriately. Thus, instead of devising yet another (variant of a)
meta heuristic for a districting model with yet another measure for compactness
or additional constraint, research should foremost concentrate on a common and
generic framework for districting problems. And it should try to categorize the
suitability of criteria and measures based on the availability of data, the geometric
representation of the basic units, and the different types of applications.
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Chapter 24
Location Problems Under Disaster Events

Maria Paola Scaparra and Richard L. Church

Abstract Facility systems may be vulnerable to a disaster, whether caused by
intention, an accident, or by an act of nature. When disrupting events do occur,
services may be degraded or even destroyed. This chapter addresses problems of
disruption associated with facility based service systems. Three main questions
often arise when dealing with a possible disaster: (1) how bad can it get? (2) is
there a way in which we can protect our system from such an outcome? and (3) is
there a way in which we can incorporate such issues in our future designs and plans?
This chapter addresses each of these main questions with respect to several classic
location problems. Specifically, it discusses recent location models under disaster
events along three main streams of research: facility interdiction, facility protection,
and resilient design.

Keywords Interdiction • Protection • Reliability

24.1 Introduction

Although Murphys law (if anything can go wrong, it will) does not always come
true, it seems at least important to address what might go wrong when designing
and operating infrastructures, such as service systems and supply chains. Whether
intentional or accidental, disasters can render a system inoperable or inefficient for
quite some time. For example, in 2011, flooding in Thailand was considered to be
the worst in 50 years. This event disrupted supply chains around the world from
computer storage disk manufacturing to cars. In that flood, a production facility for
Honda was closed for more than 3 months, and a financial analyst estimated that
floods would reduce profits at Toyota, Nissan, and Honda by more than a combined
Y35bn (Soble 2011). Harm can also be intentional and simple. For example, a
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10-day labor strike at the ports of Los Angeles and Long Beach had such an impact
on some retailers in 2002 that it took 6 months before supply chains fully recovered
(Reid and Gorman 2012). In response some retailers reduced their reliance on one
port and one set of shipping routes, to where they now utilize multiple shipping
routes and multiple ports to ensure that product flows will not be totally disrupted
by one event. In Sacramento, CA, a fire started by an arsonist destroyed a railroad
trestle in 2007. Trains that normally used this route had to detour more than 100
miles until the trestle was replaced (Peterson and Church 2008). In exerting a
level of control and force, a drug cartel in 2013 bombed 18 electrical stations in
Michoacan, one of the largest states in Mexico (Casey 2013). This event caused a
blackout that affected more than half a million people for 15 h. As a final example of
intentional disruption, snipers in April 2013 opened fire on a substation supplying
power to Silicon Valley, California, and knocked out 17 giant transformers, nearly
bringing the entire area to a complete blackout. U.S. Officials have stated that this
was the most significant incident in domestic terrorism involving the grid that has
ever occurred. In an unreported U.S. government analysis, researchers found that
knocking nine key substations out of 55,000 substations on a scorching summer day
could result in a coast-to-coast blackout (Smith 2014) and it is believe that protecting
100 key substations would be enough to mitigate such an attack. This gives credence
to addressing the question of what is critical to protect. Overall, addressing such
potential risks when designing and operating a system of facilities may lead to more
resilient and efficient systems.

Facilities and associated transport networks are key elements in any production,
supply, and service system. Traditional modeling approaches for facility location
problems are based upon the assumption that systems will operate as designed.
Virtually all modern textbooks on modeling production and supply systems ignore
the problem of disruption when optimizing the location of a set of facilities. Church
et al. (2004) demonstrated that a given deployment of facility resources, although
optimal, could be significantly disrupted in service efficiency, while other close-to-
optimal configurations were relatively resilient when subject to the same level of
disruption. This work and the work of Snyder and Daskin (2005) were instrumental
in establishing a need to handle facility reliability and vulnerability explicitly.
Because of this there has been an increased interest in modeling the fragility of
networks and facility systems over a wide range of possible events from natural
disasters to intentional strikes.

Research in facility disruption is new and evolving. There are three major
problems of interest. The first one is: how much impact can be expected? This
problem involves the search for the most critical elements of a system, that is, those
facilities which when removed from operation impact the system the most. The
second important question is: how can such impacts be averted? One way of averting
a crisis may be to fortify facilities against disaster. This may mean something simple
like providing backup generators for power or providing enough security that it will
ward off a would-be attacker. It could also mean moving the facility to a nearby site
that is less vulnerable to something like flooding. The third main question is: how
might facilities be configured so that the resulting system is both efficient in service
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delivery and resilient when disrupted? This last question deals with the design of
a new system, whereas the first two questions deal with an existing system. All of
these are major issues and are addressed in this chapter.

The main optimization models developed to answer these questions can be
classified as follows:

I. Interdiction models. These models identify vulnerabilities of service/supply
systems and quantify the impacts of potential losses of key components on a
system ability to provide efficient service.

II. Protection models. These models optimize the allocation of protective resources
among the facilities of already existent systems.

III. Design models. These models are used for planning new service and supply
systems which are secure and resilient to disruptions.

In this chapter, we will provide a description of the seminal models in each class and
outline how these models have then been further developed and extended to capture
the additional complexities and interdependencies characterizing real service and
supply systems. The description of the models is paralleled by a brief description of
the solution methodologies which have been proposed for solving them.

The reminder of this chapter is organized as follows. Section 24.2 introduces
the notation used throughout the chapter. Interdiction, protection and design models
are described in Sects. 24.3, 24.4 and 24.5, respectively. In Sect. 24.6, we highlight
future trends in modeling location problems under disaster events. Some conclusive
remarks are finally provided in Sect. 24.7.

24.2 Notation

In the following description of location models under disruption, we assume that
the reader is already familiar with the classic location problems introduced in the
previous chapters (e.g., median, covering, fixed-charge and hub location problems).
Here we briefly summarize the main notation used throughout the chapter.

Inputs

I D Set of potential locations for the facilities, indexed by i
J D Set of customers, indexed by j
F D Set of facilities in an existing system
dj D Demand of customer j
cij D Unitary cost for serving customer j from facility i
Nj D Set of facilities covering customer j (Nj � I )
p D Number of facilities to be located
r D Number of facilities to be interdicted
b D Number of facilities to be protected
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Decision variables

yi D
�
1 if a facility is located at site i
0 otherwise

si D
�
1 if a facility located at i is interdicted
0 otherwise

zi D
�
1 if a facility located at i is protected
0 otherwise

xij D
�
1 if the demand of customer j is supplied from facility i
0 otherwise

uj D
�
1 if customer j is covered before disruption
0 otherwise

vj D
�
1 if customer j is covered after disruption
0 otherwise

24.3 Identifying Critical Facilities: Interdiction Models

Interdiction models date back a few decades and were originally designed to assess
the impact of losing critical links in transportation networks for military applications
(see, for example, Wollmer 1964 and Wood 1993). The first interdiction models
within the facility location literature were introduced by Church et al. (2004)
to identify the most critical facility assets in median and covering systems. The
first problem, called the r-Interdiction Median Problem (r-IMP), can be seen as
the antithesis of the p-median problem and aims at identifying the best set of r
facilities to remove, among the existing ones, in order to maximize the overall
demand-weighted cost for serving the customers from the remaining facilities
(these are referred to as non-interdicted facilities). Similarly, the r-Interdiction
Covering Problem (r-ICP) can be seen as the antithesis of the maximal covering
problem and involves finding the subset of r facilities, which when removed,
minimizes the total demand that can be covered within a specified distance or
travel time. In essence, both models identify the subset of facilities whose loss
has the greatest impact on service delivery, where the impact is measured either
in terms of cost increase or in terms of lost coverage to mirror two different service
protocols.
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24.3.1 The r-Interdiction Median Problem

In addition to the notation introduced in Sect. 24.2, the mathematical formulation
of r-IMP requires the definition of the set Tij D fk 2 F jdkj > dijg defined for
each facility i 2 I and customer j 2 J . Tij represents the set of existing sites that
are farther than i is from demand j . The r-IMP can be formulated in the following
manner:

maximize
X

i2F

X

j2J
dj cijxij (24.1)

subject to
X

i2F
xij D 1 8j 2 J (24.2)

X

i2F
si D r (24.3)

X

k2Tij

xkj � si 8i 2 F; j 2 J (24.4)

xij 2 f0; 1g 8i 2 F; j 2 J (24.5)

si 2 f0; 1g 8i 2 F: (24.6)

The objective function (24.1) maximizes the demand-weighted total cost after the
interdiction of r facilities. Constraints (24.2) ensure that each customer is assigned
to a facility after interdiction. Constraints (24.3) stipulate that exactly R facilities
are to be interdicted. Constraints (24.4) force each customer j to be assigned to
its closest non-interdicted facility. Namely, this set of constraints prevents each
customer j from being assigned to facilities which are further than facility i , unless
facility i is interdicted. Finally, constraints (24.5) and (24.6) represent the binary
restrictions on the assignment and interdiction variables, respectively. Note that the
structure of the problem guarantees that there is always one optimal solution in
which all the xij variables are binary, so that the integrality restrictions on these
variables can be relaxed.

In the above model the parameter r , i.e., the number of facilities that are lost
simultaneously in a particular event, is chosen as a metric of possible disruption.
In other words, r is used to capture the possible extent of a disruptive event: small
values are usually associated with low-impact but possibly frequent events, whereas
larger values are associated with disruptions which may affect a large number of
assets. Given the difficulty of estimating this parameter precisely, an analyst would
normally solve each model over a range of facility losses, r , in order to capture
the range of possible impacts to system operations. Using a loss parameter r makes
sense in modeling worst case disruptive scenarios due to natural events; however, in
a case of intentional disruption one may want to consider the fact that each facility
may require different amounts of resources to be completely disabled. For this type
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of case, one might want to cast disruption as a budget constrained process (see
for example Losada et al. 2012b). However using an interdiction budget requires
information that may be completely hidden from the system operator, including the
costs of striking and the available budget itself. The use of cardinality constraints
such as (24.3) can be seen as a surrogate to knowing exact budget values of the
interdictor.

The r-IMP can be cast as an integer linear programming model which can be
solved with general-purpose integer programming software. The above formulation
of the r-IMP can be streamlined by consolidating redundant assignment variables
under special proximity conditions. The resulting variable reduction of this consoli-
dation mechanism, which was initially proposed by Church (2003) for the p-median
problem, can be substantial. Scaparra and Church (2008a) report reductions of up to
80 % of the initial number of variables. The same authors also analyze and compare
different formulations of the closest assignment constraints (24.4) to identify the
most efficient formulation for the r-IMP. Although other approaches could be
devised to solve the r-IMP, including decomposition methods or heuristics, solving
the streamlined model by commercial software is usually quite effective, even for
problem instances of significant size.

Clearly, the r-IMP makes some simplifying assumptions which may limit its
practical applicability. For instance, it assumes that every strike or disruption is
successful and always results in a complete impairment of the affected facility.
In reality, the chances of losing a facility following a natural disaster or a man-
made attack are based upon some probability. Church and Scaparra (2007a)
introduced a probabilistic version of r-IMP where an attempted interdiction is
successful only with a given probability. The same authors also show how to
build a reliability envelope for identifying the range of possible impacts associated
with losing one or more facilities. Losada et al. (2012b) further extended this
probabilistic r-IMP by assuming that the probability of impairing a facility depends
on the intensity of the disruption or on the amount of offensive resources used
in the attack. In a further extension, Lei and Church (2011) address the issue
of interdiction when not all demands are served by their closest facility after a
disruption.

The r-IMP also assumes no restrictions on the facilities capacity, thus implying
that after a disruption, the unaffected facilities have enough combined capacity
to supply all the demand. This may not be a realistic assumption as most real
supply systems usually operate with capacity limits. The capacitated version of the
r-IMP can be found in Scaparra and Church (2012). Another interesting variation of
the r-IMP which considers capacity restrictions is the partial interdiction problem
introduced by Aksen et al. (2012). In this model, an interdicted facility may preserve
part of its capacity; the capacity loss due to interdiction is commensurate to the
intensity of the attack and the unmet demand after interdiction can be outsourced at
some cost.
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24.3.2 The r-Interdiction Covering Problem

The r-Interdiction Covering Problem (r-ICP) can be stated mathematically as
follows:

minimize
X

j2J
dj vj (24.7)

subject to vj � 1 � si 8j 2 J; i 2 Nj \ F (24.8)
X

i2F
si D r (24.9)

vj 2 f0; 1g 8j 2 J (24.10)

si 2 f0; 1g 8i 2 F: (24.11)

The objective function (24.7) minimizes the amount of customer demand which
is covered after interdiction. Constraints (24.8) stipulate that a customer j must be
covered unless all the facilities that currently cover it (i.e., the facilities in Nj \ F )
are interdicted. Constraints (24.9) force the number of facilities to be eliminated to
equal r . The last two sets of constraints (24.10) and (24.11) are binary restrictions
on the coverage and interdiction variables. Note that the binary integer restrictions
are only needed for the si variables whereas the vj variables automatically take on
binary integer values in any optimal solution.
r-ICP instances of considerable size can generally be solved by commercial opti-

mization packages without the need of resorting to more sophisticated approaches
or heuristic techniques (Sevaux et al. 2015). Clearly, the same problem variations
that have been considered for the r-IMP may be developed for the r-ICP so as to
capture additional features such as probabilistic failures, capacity restrictions, and
partial interdiction.

24.3.3 Other Interdiction Models

Although our focus so far has been on interdiction models for median and covering
systems, an interdiction model counterpart can be devised for virtually every facility
location problem proposed in the literature. As an example, Lei (2013) proposes the
Hub Interdiction Median Problem which identifies the most critical hub facilities in
hub–and–spoke systems.
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24.4 Hardening Facilities: Protection Models

Interdiction models are a valuable tool for assessing facility criticality and worst-
case scenario losses in case of disruption. However, it can be easily demonstrated
that securing those facilities that are identified as the most critical in an optimal
interdiction solution does not necessarily result in the most effective protection
strategy (Church and Scaparra 2007b). Interdiction is a function of what is protected
and this interdependency must be captured explicitly into a modeling framework
to guarantee that limited protective resources are allocated in an optimal way.
Most of the facility protection models existing in the literature incorporate an
interdiction model as a tool for evaluating worst-case losses in response to protection
plans. These models are expressed mathematically as bilevel optimization programs
(Dempe 2002) which emulate a game played between a system defender (the leader)
and a system attacker or interdictor (the follower). In this bilevel structure, the upper
level problem involves decisions on which facilities to harden, whereas the lower
level problem identifies which unprotected facilities to attack to inflict maximum
damage.

In the following, we show how the model presented for the r-IMP in the previous
section can be embedded within a protection model to optimize security investments
in median systems (Scaparra and Church 2008a).

24.4.1 The r-Interdiction Median Problem with Fortification

The bilevel formulation of the r-IMP with Fortification (r-IMPF) is as follows.

minimize H.z/ (24.12)

subject to
X

i2F
zi D b (24.13)

zi 2 f0; 1g 8i 2 F; (24.14)

where

H.z/ D max
X

i2F

X

j2J
dj cijxij (24.15)

s.t. si � 1 � zi (24.16)

(24.2) – (24.6):

The leader objective (24.12) is to minimize the highest possible level of demand-
weighted service cost, H , following the disruption on r facilities by allocating b
protective resources (24.13). The worst-case cost H is computed in the follower
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problem, which is simply the r-IMP problem defined in Sect. 24.3 with the addi-
tional constraints (24.16). These constraints, which link the upper level protection
variables and the lower level interdiction variables, prevent the interdiction of any
protected facility.

It is important to note that in the above model protection resources can be cast
with a budget constraint and facility varying protection costs (Aksen et al. 2010). It
is also possible to add the costs of protection as a an additional term in the objective,
where the costs of protection and costs of worst case operation are simultaneously
minimized. In either case (as formulated or as an added objective term), one would
generally want to solve a series of such problems in order to determine tradeoff
curves of system impacts versus protection resources. The above form can be
used to identify both supported and unsupported non-dominated solutions whereas
the latter will be effective in solving for only supported non-dominated solution.
In any case, one would want to understand exactly what protection provides in
terms of reducing impacts of interdiction as compared to the added costs of
protection.

Bilevel programs are generally very difficult to solve (Moore and Bard 1990),
especially when integer variables appear in both levels and when the upper
level variables parametrize the feasible region of the lower level problem, as it
is the case in r-IMPF. Common approaches to solve bilevel integer programs
include reformulation into single level problems and decomposition methods.
Examples of casting r-IMPF as a single level problem can be found in Church
and Scaparra (2007b) and Scaparra and Church (2008b). However, these sin-
gle level models require a complete enumeration of all the possible ways of
interdicting r out of the jF j existing facilities and therefore become quickly
intractable as the value of the parameters jF j and r increases. Scaparra and
Church (2008a) propose an implicit enumeration algorithm to solve the bilevel r-
IMPF. The approach is based upon the observation that an optimal protection plan
must include at least one of the critical facilities identified by solving a simple
r-IMP. The recursive use of this property allows a significant reduction of the
number of protection strategies that must be evaluated in an enumeration scheme.
To date, this algorithm remains one of the most effective methods for solving
this type of protection/interdiciton models and has been successfully applied to
problems in different settings as well (e.g., the network protection models in
Cappanera and Scaparra 2011).

Since its appearance, the r-IMPF has spurred a significant amount of research
and several different variants to the original problem have been proposed in the
literature. As an example, Liberatore et al. (2010) introduced a stochastic version
of r-IMPF where the number of possible losses r is uncertain, to reflect the fact
that the extent of a disruption is usually not known with certainty. In a follow
up paper, Liberatore and Scaparra (2011) compared the model proposed for the
above stochastic problem with two regret-based models to identify robust protection
strategies in uncertain environments.

Aksen et al. (2010) proposed a budget-constrained version of the r-IMPF with
flexible capacity expansion. In particular, they replaced the cardinality constraint
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(24.13) with a budget constraint and assume that the facilities have different protec-
tion costs and flexible capacity (i.e., the capacity can be expanded to accommodate
the demand of customers previously assigned to interdicted facilities).

Another interesting variation of the r-IMPF is the problem investigated by
Liberatore et al. (2012), which optimizes protection plans in the face of large
area disruptions. The problem includes capacitated facilities, partial interdiction
(interdiction reduces the amount of demand that can be served by a facility) and
correlated disruptions (when a facility is hit, nearby facilities are affected as well).
The problem was formulated as a tri-level program, and solved by dualization
integrated in the implicit enumeration algorithm devised by Scaparra and Church
(2008a) for the r-IMPF.

All the problems cited so far are static which means that they do not consider
the effect of disruptions over time. In reality, disrupted facilities may have different
recovery times and the duration over which system operations are degraded should
be considered when modeling worst-case disruption scenarios. To redress this
shortcoming, Losada et al. (2012a) proposed a different protection model for median
systems where protection does not necessarily prevent facility failure altogether, but
speeds up recovery time following a potential disruption. The resulting model also
incorporates the possibility of multiple disruptions over time and is solved using
three different decomposition approaches.

An underlying assumption of the r-IMPF and all its variations is that protection
is always successful and, therefore, protected facilities are never interdicted in a
worst-case scenario. Bricha and Nourelfath (2013) relaxed this assumption and
proposed a model where a protected facility is immune to disruption only with a
given probability. The initial model was then extended to consider protection against
concerted attacks by multiple interdictors.

Whereas most of the focus has been on protection models for median systems,
Zhu et al. (2013) proposed a game theoretical model to identify optimal defense
strategies for an uncapacitated fixed-charge location model. In this model, the
defender has several investment strategies (or levels of investment) available and
aims at minimizing the expected damage to the systems along with the protection
expenditure. Similarly, the interdictor can choose different attack levels on each
facility and aims at maximizing a utility function, which combines damage and
attack expenditures.

24.5 Planning Robust Systems: Design Models

Hardening existing facilities can be an effective way of mitigating the impact of
facility failures. An alternative approach is to incorporate the risks of potential
failures in the initial design of a system by identifying location strategies which
are both cost-efficient and robust to external disruptions. Several studies have
demonstrated that significant improvements in reliability can often be obtained
without significant increases in operating costs (Snyder and Daskin 2005).
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Location models for planning reliable systems can be broadly grouped into two
main categories which reflect different risk attitudes of the decision maker: risk-
averse and risk-neutral.

24.5.1 Planning for a Risk-Averse Designer

The models in this category identify location strategies for coping with the worst
case in terms of facility loss or disruption. They therefore capture the perspective
of a risk-averse decision maker and are suitable for hedging against deliberate
disruptions and strategic risks. These models typically embed an interdiction model
in a multi-level structure where the upper-level model identifies the optimal location
of the facilities, whereas the lower-level model endogenously generates worse-case
scenario losses.

We illustrate how such location-interdiction models can be formulated by
presenting the Maximal Covering Location-Interdiction Problem (MCLIP). The
idea is to couple the classical Maximal Covering Location problem with the r-ICP
presented in Sect. 24.3 to identify the location of p facilities which maximizes a
weighted combination of (1) the initial coverage and (2) the minimum coverage
level following the loss of the most critical r facilities (O’Hanley and Church 2011).

The MCLIP model can be formulated as follows:

maximize ˛
X

j2J
djuj C .1 � ˛/H.y/ (24.17)

subject to
X

i2I
yi D p (24.18)

X

i2Nj
yi � uj 8j 2 J (24.19)

yi 2 f0; 1g 8i 2 I (24.20)

uj 2 f0; 1g 8j 2 J; (24.21)

where

H.y/ D min
X

j2J
dj vj (24.22)

subject to
X

i2I
si D r (24.23)

vj � yi � si 8j 2 J; i 2 Nj (24.24)

si 2 f0; 1g 8i 2 I (24.25)

vj 2 f0; 1g 8j 2 J: (24.26)



634 M.P. Scaparra and R.L. Church

The upper level objective (24.17) is to maximize the weighted sum of covered
demand before and after interdiction by locating p facilities (24.18). The demand
covered before interdiction is determined by constraints (24.19), whereas the worst-
case demand-weighted coverage after interdiction, H.y/, is computed in the lower
level problem (24.22) – (24.26). This is a simple modification of the r-ICP problem
(24.7) – (24.11), where constraints (24.8) are replaced by (24.24). These constraints
state that customer j must be covered after disruption (vj D 1/ unless all the open
facilities covering customer j are interdicted.

Bilevel location-interdiction problems such as the MCLIP are even more difficult
to solve than the protection-interdiction problems discussed in Sect. 24.4 and some
efficient approaches devised for protection models, such as the implicit enumeration
algorithm for r-IMPF, are not applicable to them. In O’Hanley and Church (2011),
the MCLIP is solved by a decomposition method using supervalid inequalities.

Another example of location/interdiction models can be found in Parvaresh
et al. (2012) for p-hub median problems. In this case, the bilevel model is solved
heuristically via simulated annealing and tabu search.

Note that design and protection decisions may be coupled within the same
modeling framework. Examples of risk-averse design models including the option
of hardening some of the facilities to be located can be found in Aksen et al. (2011),
Aksen and Aras (2012) and Shishebori and Jabalameli (2013).

24.5.2 Planning for a Risk-Neutral Designer

In this class of models, facilities are assumed to fail at random and the objectives
typically deal with expected costs or performances.

Although the first paper to consider unreliable facilities which fail with a given
probability appeared more than a couple of decades ago (Drezner 1987), a renewed
interest in this type of problems has only emerged more recently with the reliability
problems investigated by Snyder and Daskin (2005): the Reliability p-Median
Problem (RPMP) and the Reliability Fixed-Charge Location Problem (RFLP). Both
problems aim at locating a set of facilities so as to minimize the costs incurred by
the system when all the facilities are operational and the expected transportation
costs after facilities failures.

In the RPMP model, each open facility may fail with the same fixed probability
� , failures are independent and several facilities can fail simultaneously. If customer
j is not served by any facility, either because all open facilities fail or because it is
too costly to receive service by the closest operational facility, the system incurs
a lost-sale cost per unit of demand. To model this situation, the set I of potential
locations for the facilities is augmented with a dummy emergency facility. Let m
be the cardinality of the augmented set jI j and the index of the emergency facility.
The emergency facility m never fails and has unitary service cost cmj to customer
j . As facilitym is forced to open, pC 1 facilities must be located instead of p as in
standard p-median problems.
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To formulate RPMP, the following assignment variables are defined:

xijl D
�
1 if customer j is assigned to facility i at level l
0 otherwise

The idea behind the RPMP formulation is that each customer is assigned to
facilities depending upon their operational status. Accordingly, several assignment
levels can be associated with each customer. Level-0 assignments are those made
to primary facilities that serve the customers under normal circumstances. Level-l
assignments (l > 0) are those made to alternative facilities that can serve a customer
if the l closer facilities have failed.

The RPMP model is as follows.

minimize
X

j2J
dj

pX

lD0

2

4
X

i2Inm
cij�

l .1 � �/xijl C cmj�lxmjl

3

5 (24.27)

subject to
X

i2I
xijl C

l�1X

tD0
xmjt D 1 8j 2 J; l D 0; : : : ; p (24.28)

pX

lD0
xijl � 1 8i 2 I; j 2 J (24.29)

xijl � yi 8i 2 I; j 2 J; r D 0; : : : ; p (24.30)
X

i2I
yi D p C 1 (24.31)

ym D 1 (24.32)

yi 2 f0; 1g 8i 2 I (24.33)

xijl 2 f0; 1g 8i 2 I; j 2 J; l D 0; : : : ; p: (24.34)

The objective function (24.27) minimizes the demand-weighted expected trans-
portation and lost-sales costs. These are computed as a function of the assignment
variables by taking into account that each customer j is served by its level-l facility
i if the l closer facilities have failed, which occurs with probability �l , and facility
i has not failed, which occurs with probability 1 � � for each i 2 I n m and
with probability 1 if i D m. Constraints (24.28) state that each customer j must be
assigned to some facility at each level l , unless j has been assigned to the emergency
facility at level t < l . Constraints (24.29) prevent the assignment of a customer to a
given facility at more than one level. Constraints (24.30) prohibit the assignment
to facilities which are not open, whereas constraint (24.31) state that exactly p
facilities must be opened in addition to the emergency facility, which is forced to be
open by constraint (24.32). Constraints (24.33) and (24.34) are standard integrality
constraints (note that the integrality constraints on the assignment variables xijl can
be relaxed).
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The original RPMP model presented in Snyder and Daskin (2005) is slightly
more general than model (24.27) – (24.34) in two aspects: (1) some of the facilities
may be considered completely reliable and (2) the objective is to minimize the
weighted sum of normal costs and expected failure costs. The authors show that
by varying the weights of the resulting bi-objective model, one can generate a
trade-off curve for identifying good compromise solutions. This type of analysis
demonstrates that large reductions in failure costs can often be attained with only
minor increases in operation costs.

The Reliability Fixed-Charge Location Problem, which we do not report for the
sake of brevity, can be formulated in a similar way to RPMP. Both problems can be
tackled by Lagrangian relaxation (Snyder and Daskin 2005). Efficient metaheuristic
approaches have also been devised for RPMP by Alcaraz et al. (2012), which report
very good results for large scale instances.

One of the major limitations of this structure for reliability models is that it
relies on the assumption that all facilities fail with the same probability. Without
this assumption, calculating expected transportation costs becomes significantly
more complicated due to the need of expressing probability products using high-
degree polynomials. Site-dependent probabilities were considered for the first time
by Berman et al. (2007) but the resulting model is highly non-linear and is only
solved heuristically. Several attempts at modelling heterogeneous facility failure
probabilities using a linear mixed integer program have appeared in recent years
(see for example Cui et al. 2010 and Lei and Tong 2013). Particularly noteworthy
is the probability chains linearization technique proposed by O’Hanley et al. (2013)
for solving the RPMP with site-dependent probabilities. The technique, which is
general and can be extended to other model classes as well, is based on the idea
of using a specialized network flow structure for evaluating compound probability
terms. Empirical experiments indicate that this technique is quite effective in solving
reliability models of significant size.

Other important issues in modeling location problems with unreliable facilities
are correlation and informational uncertainty. Correlation concerns the extent to
which the failure of one facility affects the operational status of other facilities.
In many real situations neighboring facilities may be exposed to similar hazards
and, therefore, fail simultaneously. Examples of models with correlated disruptions
can be found in Li and Ouyang (2010) and Berman et al. (2013). Informational
uncertainty relates to the information available to customers about the operational
state of the facilities. It is clear that optimal location patterns and optimal service
costs may differ if customers do not have prior information about the state of the
facilities and must travel to different facilities before they can receive service. The
role of information in reliable facility design is analyzed in Berman et al. (2009) and
Berman et al. (2013).

Finally, as for the bilevel design models discussed in the previous section,
location and hardening decisions can be combined into a probabilistic design model
for identifying reliable and cost-efficient configurations of hardened and unhardened
facilities (see, for example, Lim et al. 2010 and Li et al. 2013).
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24.5.2.1 Scenario-Indexed Models

When the uncertainty associated with disruptions can be captured by a finite
set of scenarios, we can resort to scenario-indexed models. Within the context
discussed in this chapter, such models are an alternative way for writing two-
stage stochastic mixed integer programs. The non-anticipative first-stage decisions
concern the location of the facilities and are made in the presence of uncertainty
about the realization of future disruption scenarios. The second-stage (recourse)
decisions, which are conditional to the first-stage decisions, involve the assignment
of customers to facilities in response to specific disruption scenarios.

Below we show a scenario-indexed model for the p-median problem, where the
objective is to minimize the expected service cost over all failure scenarios. Let ˝
be the set of disruption scenarios such that ai! D 1 if facility i fails in scenario !.
The probability that scenario ! occurs is denoted by �! . The assignment decision
variables are defined for each scenario as follows:

xij! D
�
1 if customer j is assigned to facility i in scenario !
0 otherwise

The scenario-indexed model is then:

minimize
X

!2˝
�!
X

i2I

X

j2J
dj cijxij! (24.35)

subject to
X

j2J
xij! � .1 � ai!/yi 8i 2 I; ! 2 ˝ (24.36)

X

i2I
xij! D 1 8j 2 J; ! 2 ˝ (24.37)

X

i2I
yi D P (24.38)

yi 2 f0; 1g 8i 2 I (24.39)

xij! 2 f0; 1g 8i 2 I; j 2 J; ! 2 ˝ (24.40)

The objective function (24.35) minimizes the demand-weighted expected cost
across all scenarios. Constraints (24.36) prevent the assignment of customer j to
facility i in scenario ! if either i is not open or if it is open but not available in
scenario !. Constraints (24.37) guarantee that each customer is assigned to some
facility in every scenario. The remaining constraints are standard cardinality and
integrality constraints.

The expected performance criterion used in problem (24.35)–(24.40) yields
solutions that may perform poorly in certain scenarios. Solutions which are effective
no matter what scenario is realized can be obtained by incorporating robustness
measures into the model. An example is the ˇ-robustness measure introduced by
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Snyder and Daskin (2006). Let z�
! be the optimal cost for scenario !. By adding the

following constraint

X

i2I

X

j2J
dj cijxij! � .1C ˇ/z�

! 8! 2 ˝; (24.41)

it is possible to generate least-cost solutions whose relative regret in each scenario
is no more than ˇ, for a given ˇ � 0.

The ˇ-robustness measure has been used in Peng et al. (2011) to design
reliable multi-echelon supply chain networks. Other risk measures to generate
robust solutions in scenario planning models include the ˛-reliable minimax regret
(Daskin et al. 1997) and the ˛-reliable mean-excess regret (Chen et al. 2006). In
˛-reliable minimax models, the maximum regret is computed only over a subset
of scenarios, called the reliability set, whose total probability is at least ˛. The ˛-
reliable mean-excess regret, which is closely related to the conditional value-at-risk
(CVaR) objective of portfolio optimization (Rockafellar and Uryasev 2000), further
extends the ˛-reliable concept by ensuring that solutions perform reasonably well
even in the scenarios which are not included in the reliability set. Typically, the
objective function of these models minimizes a weighted sum of the maximum
regret over the reliability set and the conditional expectation of the regret over the
scenarios excluded from the reliability set. Although these measures have not been
explicitly used in facility location problems with disruptions, their application is
quite straightforward and certainly deserves future investigation.

When uncertainty can be captured by a finite set of scenarios and a scenario-
indexed model can be considered, it is easy to modify the model in a way that the
models discussed in Sect. 24.5.2 cannot. As an example, capacity restrictions can be
easily modeled by replacing constraints (24.36) with

X

j2J
dj xij! � .1 � ai!/qiyi 8i 2 I; ! 2 ˝; (24.42)

where qi is the capacity of facility i .
Partial disruptions can also be captured by simply redefining ai! as the pro-

portion of facility i capacity which is lost in scenario ! to model the case where
disruptions only reduce the capacity but do not completely disable a facility.

One major drawback of scenario-indexed models is that they can become very
large if there are many scenarios (consider for example all the possible ways in
which subsets of facilities can fail). To obviate this difficulty, the scenario space
can be approximated using sampling techniques such as Sample Average Approx-
imation (Kleywegt et al. 2002). Another alternative is to construct the scenario set
empirically by using historical data or expert judgement. As an example, Rawls and
Turnquist (2010) use a scenario planning approach to optimize facility locations and
emergency resource stockings in the face of natural disasters. In their case study, the
scenarios of concern are constructed by using historical records from a sample of
15 hurricanes.
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24.6 Future Trends

The research to date on facility location problems with disruption, although
groundbreaking, is still evolving. The impetus for such work has come from
disasters such as 9/11, the Fukushima nuclear power plant destruction in Japan,
and the more recent power disruption in Michoacan, Mexico. As such problems
are often represented as a two person game (defender-attacker) or a three person
game (defender-attacker-defender), they can be quite mathematically complex and
difficult to solve. Because of this, work is needed to expand the range of problem
sizes that can be addressed by such model structures.

The work discussed here is based upon the simplest of service systems involving
the p-median and maximal covering problems. Although these problems and
extensions can be used in many system designs, lifeline systems such as electrical
generation and transmission, water supply and distribution, and communication
networks of switches and lines, all present a level of complexity that has yet to
be addressed in an efficient and comprehensive way. Systems are interconnected
in many ways. A failure (or an attack) of one system component may lead to the
failure of another. Such cascading failures have been documented in electrical and
communication systems. In addition, the failure of an electrical system component
may render a portion of a communication system inoperable. Connections between
such systems have still to be adequately modeled as well. In addition, most models
capturing disruption ignore the temporal component. Few have addressed the
possible duration of a disrupting event as well as how best to cope with it and restore
the initial operational level. This too, is an area where more research is needed.

Facilities are but one component in a production and distribution system. Recent
flooding in Thailand demonstrated that inventories for key parts, like those for
computer disk drives, could be disrupted to the extent that the retail price for
storage drives almost doubled for a short period of time. Fully addressing such
vulnerabilities requires the modeling of facility production and inventory levels
simultaneously.

There are two principal ways in which resilient design has been approached:
scenario based with robust optimization, and bilevel optimization. Work is needed
to test the efficacy of each approach. For example, can a small number of scenarios
be used to adequately define and couch possible outcomes as compared to the use
of a bilevel optimization problem involving a defender-attacker? In addition, can
simulation models be used in an efficient manner to identify system vulnerabilities?
Further, it is important to develop better models to estimate risk.

Finally, the models developed to date to handle interdiction, fortification and
reliable design are far more complex than their base-level counterparts, adding a
level of computational difficulty that is a new research area. But, one must ask
the question: can simpler models be developed which adequately address such
uncertainties?
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24.7 Conclusions

This chapter has reviewed the research that has evolved over the last decade
concerning facility disruption. Disruptions can be thought as arising out of intention
(e.g., terrorism), by accident, or by a natural disaster. It has covered three main
areas of related research: models of facility interdiction, combined models of
facility interdiction and protection, and models of resilient design. These models
are designed to address the three basic questions that concern systems planners
and operators when facing reality: (1) how much can a service system be degraded
in its efficiency when disrupted; (2) how might resources be allocated to protect
against such possible events; (3) how might a new system be designed so that it is
naturally resilient? Although past work has been based principally on the application
of such models using hypothetical data, they have demonstrated that small changes
in levels of protection can be effective at improving a system’s ability to cope with
a disaster. Further, it has been shown that equal if not better facility deployment
results when taking into account possible levels of disruption (whether intentional
or natural). Ignoring disaster may come at a cost that is too high when compared to
addressing such possibilities in operation (interdiction/fortification) and design. In
fact, the value in modeling for disruption is that one can capture levels of impact
and determine whether to ignore them or make system adjustments. This area of
research is still evolving and future work is needed in applying such concepts to a
wide range of lifeline systems, including power generation and distribution, food
production and distribution, and water supply systems.
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