Alio (il (gawass dey

e 0lnl ol oy90

iranpaper 1=} Downloaded from https://iranpaper.ir

o

https://www.tarjomano.com

(2023) 4:447)
Check for
updates

SN

SN Computer Science
https://doi.org/10.1007/s42979-023-01876-0

ORIGINAL RESEARCH

A Novel Algorithm for Optimal Trajectory Generation Using Q Learning

Manoj Kumar'® . Devendra Kumar Mishra? - Vijay Bhaskar Semwal®

Received: 8 February 2023 / Accepted: 10 May 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract

The current study proposes a unique algorithm for shortest trajectory creation based on q learning. Major issues towards grid
world problem are environment generalization. In Q learning to learn without prior knowledge of the system is based on trial-
and-error interaction using reward and penalty. Every decision contains in the form of look-up table. The decision-making
system train the agent over a series of episodes. In this research paper, we present novel algorithms for optimal trajectory
analysis based on state action using pairs. Performance comparisons with various learning algorithms in the context of tra-
jectory efficiency verses number of episodes and accuracy prediction between number of episodes shows that our proposed
algorithm is better than Q Learning. This approach can be used in autonomous sectors, computer vision, route optimization

along with IoT (internet of things) and distributed systems.

Keywords Q-learning - Shortest trajectory - Decision-making system - Environment - Grid world

Introduction

Agent learning, also known as reinforcement learning, is a
type of machine learning that involves training an agent to
make decisions based on feedback from its environment.
In this paradigm, the agent interacts with an environment,
receives feedback in the form of rewards or penalties for
its actions, and learns to optimize its behavior to maximize
the cumulative reward over time. The agent typically uses
a trial-and-error approach to learn from its experiences,
adjusting its behavior based on the feedback it receives from
the environment. Over time, the agent learns to recognize
patterns in the feedback and develops strategies to maximize

This article is part of the topical collection “Machine Intelligence
and Smart Systems” guest edited by Manish Gupta and Shikha
Agrawal.

P< Manoj Kumar
mannul75@yahoo.com

Devendra Kumar Mishra
dkmishra@gwa.amity.edu

Vijay Bhaskar Semwal

vsemwal @manit.ac.in

Amity University-Gwalior Campus, Gwalior, India
Amity University-Gwalior, Gwalior, M.P., India

3 MANIT, Bhopal, M.P., India

Published online: 14 June 2023

its reward. Agent learning has been used to train machines
to play games, control robots, and navigate complex envi-
ronments. It has also been used in fields such as finance,
healthcare, and transportation to optimize decision-making
processes and improve outcomes [1-3].

An agent that uses reinforcement learning (RL) can per-
ceive their environment and learn the best course of action to
reach their goal. Any action taken by the agent will result in
a feedback signal from the environment known as a reward.
RL is learning to link situations to actions to optimize a
numerical reward signal. The learner [1-5] in RL is a deci-
sion-making agent that acts in the world and is rewarded (or
punished) for doing when attempting to solve a problem.
After several trial-and-error runs, it ought to discover the
ideal course of action: the combination of steps that maxi-
mizes the overall reward [6-9].

The interactions between an agent and its surroundings
are the subject of artificial intelligence research. Multiple
instances that an agent can see, affect through action con-
stitutes an environment. By continuously acquiring new
information and skills, the agent can adapt to changes in its
environment and make better decisions, leading to improved
performance and success in achieving its goals. With scalar
evaluative feedback, RL refers to a group of learning algo-
rithms that aims to approximatively solve random sequential
decision-making tasks [10, 11]. Multi-agent environment has
practical complexity where designing an optimal solution for

SN Computer Science
A SPRINGER NATURE journal

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01876-0&domain=pdf
http://orcid.org/0000-0003-3546-1483
http://orcid.org/0000-0003-0767-6057

% Downloaded from https://iranpaper.ir

447 Page 2 of 17

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

SN Computer Science (2023) 4:447

reward functions becomes quite situational. Then, through
trial-and-error interactions with its environment, the com-
puter learns how to accomplish that objective. At its core,
reinforcement learning involves an agent learning to make
decisions through trial and error, aiming to achieve the high-
est possible reward in a given environment by adapting its
behavior based on the feedback it receives [12—-16].

We describe an RL system as a five-tuple consisting of S,
A, RF, and VF, where S is a set of environmental states, A
is a set of actions the agent can take. The other parts are, in
that order, policy, reward function (RF), and value function
(VF) [17-20]. Robot navigation in uncontrolled environment
is still a complex task. Localization, mapping, and optimiza-
tion in open environments for agent has drawn continuous
effort in trajectory generation and path planning problems
[31].

A policy maps an environmental state and an action the
agent is supposed to do. In other words, the agent must act
per the policy. Finding the best course of action is the aim
of learning. A policy is typically stochastic [21].

A reward function maps an environment's state or state-
action pair to a numeric value referred to as a reward signal.
This is a sign that the state or state-action pair is desirable.
Given that rewards play a vital part in RL systems, atten-
tion must be given to make sure that the reward function
represents the main purpose of the system rather than attain-
ing a sub-goal. A return is a topic that is related in a lot of
ways [22-25]. First, when calculating the present return, it
prioritizes recent benefits over future gains. Second, it ena-
bles the use of a single definition of return for both ongo-
ing tasks with a lengthy life span and episodic tasks that
naturally divide into subsequences with a final state (such
as playing chess). An RL agent's objective is to act [26].
The anticipated return an RL agent can get is defined by the
value function of a specific policy. Two value functions, in
particular are intriguing [27]. The expected return under the
policy, starting from taking action a in state s, is defined as:
Q(s,a)=E[Rt | st=s, at=a] where Q(s,a) is the action-value
function for taking action a in state s, Rt is the return, and
E[Rt | st=s, at=a] is the expected return starting from state
s and taking action a. The notation "[st=s,at=a" is equiva-
lent to writing "st=s, at=a" and represents the indicator
function that takes the value 1 when the condition is true and
0 otherwise. [28]. A method that constantly takes advantage
is greed. The exploration entails acting in a manner distinct
from that of greed. Investigating potential alternatives to
greedy action is the goal of exploration. Exploitation and
exploration are both done via the e-greedy technique. It takes
the greedy action, i.e., exploits, with probability 1—, where it
is a tiny positive number, and with probability e, it chooses
an action at random [29].

Rewords, policy, and Environment are the core four
components of any learning system; an environment is

SN Computer Science
A SPRINGER NATURE journal

represented by a set of states. A decision-maker who per-
ceives and chooses an action for the system is a learning
agent. Currently, temporal difference network (TDN) tech-
niques are used to evaluate RL for control problems like
the grid world. These strategies solve the issue of forecast-
ing time-delayed rewards by computing future rewards.
They serve as a more accurate predictor of future perfor-
mance than sampled (commutative) incentives [30]. The
issue of how an autonomous agent that observes and acts
in its Environment may learn to select the best course of
action to accomplish its objectives is addressed by rein-
forcement learning (RL). When acting in an environment
with a huge search area, the RL offers a general framework
and a number of ways to help it behave better because the
learning process can take a very long time to converge. In
contrast to supervised learning techniques, reinforcement
learning tasks do not give the learner access to the best
action outcome. As a result, the learner must experiment
with changing its policy.

Agent learning can be used in conjunction with human-
oid robots to enable them to learn and adapt to their envi-
ronment. Humanoid robots are robots that are designed
to resemble human beings in terms of their physical
appearance and abilities. Using agent learning techniques,
humanoid robots can learn to interact with humans and
their surroundings more naturally and effectively. Human-
oids walking is driven from human walk called gait anal-
ysis. Gait analysis is combination of stance and swing
phases which is further divided into eight subphases.

For example, an agent learning humanoid robot could
be trained to recognize and respond to human speech, ges-
tures, and emotions, as well as to perform tasks such as
picking up objects, walking, and navigating through obsta-
cles. The robot could also learn to adapt its behavior based
on feedback from its environment, such as adjusting its
walking speed or posture in response to changes in terrain.

Agent learning can also help humanoid robots to
improve their performance over time, as they accumulate
experience and learn from their successes and failures.
This can be especially important in applications where the
robot is required to perform complex or dynamic tasks,
such as healthcare or manufacturing. Overall, the com-
bination of agent learning and humanoid robotics has the
potential to enable robots to become more autonomous,
adaptable, and capable of interacting with humans in a
natural and intuitive way.

Humanoid as agent [33-35] has many core concepts
which makes humanoid agent complex in nature. Trajec-
tory generation and path finding in controlled and dynamic
environments has major challenges such as understanding of
kinematics and kinetics, center of mass (COM), ZMP (zero
moment point), push recovery and many more.

% Downloaded from https://iranpaper.ir

SN Computer Science (2023) 4:447

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

Page3of17 447

Implementation of humanoid walking using Q-learning
for shortest path finding has following steps:

1. Define the environment: define the environment where
the humanoid is walking. This can be a 2D or 3D grid
with obstacles, walls, and the humanoid's starting posi-
tion and target position.

2. Define the actions: define the set of actions the human-
oid can take in each state. For walking, the humanoid
can move in any of the four directions (up, down, left,
right). Each action should have a corresponding reward.

3. Define the Q table: define the Q table, which is a matrix
that contains the Q-values for each state-action pair. Ini-
tialize the Q-values to zero.

4. Train the model using Q-learning: train the model using
Q-learning algorithm, which is a reinforcement learn-
ing algorithm. In each iteration, the humanoid selects
an action based on the Q-values and explores the envi-
ronment. The Q-values are updated using the Bellman
equation.

5. Execute the model: after training, execute the model and
let the humanoid walk to the target position. The path
taken will be the shortest path found by the Q-learning
algorithm.

In this paper we have focused on optimal trajectory gen-
eration based on episodic improvement. We will show agent
learning improves as number of episodes increases. Our pro-
posed learning algorithms results has been achieved using
MATLAB simulator.

Future trends of agent learning [37] is developing multi-
agent environment which is inspired from many agents in
acting environment working together to optimize network
goral. Real example of this learning can be working of
employee in any organization to achieve day to day goals in
system and communicating among themselves for obtain-
ing internal rewards (penalty may be also there). Thus, they
help each other towards achieving global reward for system
(Fig. 1). Multi-agent reinforcement learning (MARL) has its
own complexity and research challenges while dealing with
different sectors like autonomous, computer vision, UAVs
(unmanned vehicle), path planning and trajectory genera-
tions, social networks etc.

Motivation

Optimal trajectory generation is a critical problem in robot-
ics and autonomous systems. It involves planning a path for
a robot or autonomous vehicle that is both safe and effi-
cient, while considering various environmental constraints
such as obstacles, terrain, and dynamic changes. Traditional
methods for trajectory generation can be time-consuming
and may not always produce the best results. However, with

Reinforcement Learning Approaches

Model free

Model based
Value Policy Hybrid = :
Based Based Model Inspired
_ Model Learning
: Policy Gradient Actor-critic
Qlearning o Method RNN Aplierere
SARSA Ac;fert:’c'}?‘c DRL World Model
- Agent
Monte Carlo A2C V,M,C Model
Deep Q A3C
Learning

Fig. 1 Classification of different reinforcement learning approaches
in machine learning [37, 38]. DRL deep reinforcement learning),
RNN recurrent neural network), V, M world model, C controller
model, A2C advantage actor-critic, A3C asynchronous advantage
actor-critic). Empty space shows future unknown algorithms

the advent of ML-RL techniques, new opportunities have
emerged for more efficient and effective trajectory gener-
ation. Humanoid as agent performs daily task which has
repetitive nature. They can be used to pick and drop objects
in limited environments with more accuracy and less time.

Section one describes the introduction about agent learn-
ing, humanoid as agent and reinforcement Q learning. Sec-
tion two contains details about related work done in this
direction. Proposed methodology and learning algorithm
has been discussed in section three while section four gives
result discussion information. Section five will conclude the
whole work and will tell the future scope of it.

Related Works

In recent years several works have been done in the field of
trajectory generation using machine learning. Agent learn-
ing in grid environment have been performed and tested.
This research review focuses on different aspect of path fol-
lowing performance matrix and different critical issues such
as kinematics constraints, dynamic modeling, uncertainty,
multi-objective optimization and real-time performance. We
have done review assessment of last two decades published
papers from different reputed journals and conferences. The
authors [2] aim to develop a new algorithm that can learn
effectively in a dynamic and uncertain environment. The
proposed algorithm combines the Q-learning and SARSA
algorithms to create a swarm-based learning method that
can learn from the experience of individual agents and the
group as a whole. The algorithm is designed to adapt to
changes in the environment and make decisions based on the

SN Computer Science
A SPRINGER NATURE journal

% Downloaded from https://iranpaper.ir

447 Page 4 of 17

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

SN Computer Science (2023) 4:447

behavior of other agents in the swarm. The authors validate
the effectiveness of the proposed algorithm through simula-
tions of a pursuit-evasion game. The results show that the
swarm-based algorithm outperforms the traditional SARSA
method and is more robust to changes in the environment.

Authors [3] have applied new dynamic neural network
to reinforcement learning approach. They have tried to
minimize the effect of look-up Q table and raised point of
different issues in table. Future scope and challenges has
been discussed. Quinn et al. [4] have applied reinforcement
learning to spider as new technology. Paper throws light on
RL applications in vertical search space which is inspired
from Spider. Spider as agent who is searching from initial
website(start) to final page of required (target) website has
been analyzed and search engine called Spider_Engine
has been developed. Comparative results between Spider_
Engine and Nutch (web crawler) showed that Spider_engine
search more documents in less time than Nutch. It was a
good learning example from nature creature.

This paper [5] proposes a novel approach for optimizing
time warp simulation using reinforcement learning tech-
niques. The authors demonstrate the effectiveness of their
approach through experiments on a benchmark simulation
model. Overall, this paper presents an interesting applica-
tion of reinforcement learning in simulation optimization.
Santos-Pata et al. [6] have proposed a unique learning
mechanism inspired from rodent’s path finding in dynamic
environments using vicarious trial and error (VTE) method.
Authors have used space representation and mental travel
using place and grid cells which helps further to move the
agent (rodents) in desired location using reward and penalty
mechanism. This study is helpful in biomimicking the nature
species.

This study [7] proposes learning architecture which is a
combination of imitating learning and reinforcement learn-
ing. System generates internal reward which help to achieve
fast learning than error and trial mechanism. Simulated
experiments of different learning scheme under two major
categories showed that integrative methods are good enough
to accelerate learning than other methods namely simple,
shaping, and supervised learning based on fixed learning
rate, discount factor and reward points. Thus, paper exer-
cised integration learning.

This article [8] focuses on challenges in multi-agent envi-
ronment where partial observation, actions, positions, inter-
communication, and reward distribution is major concerns.
Authors have proposed RL framework which is inspired
from real life task distribution. The approach is evaluated
in several scenarios and shows promising results in terms
of increasing coordination and reducing conflict. However,
the paper lacks a more in-depth analysis of the limitations
and potential drawbacks of the proposed approach. Efroni
et al. [9] have analyzed different RL algo based on trajectory

SN Computer Science
A SPRINGER NATURE journal

feedback reward value. Authors explained that calculating
state-action reward at each visited point like in case of self-
driving car is quite complex and costly. Authors have work
on calculating hybrid optimum trajectory feedback reward
using least square error (LSE). Thompson sampling (TS
with RL) is worth usable in this work. This work is worth
useful to understand TF (trajectory feedback) in practical
scenario.

Authors of paper [10] have applied Q learning in wireless
network area where multiple radio access network (MRAN)
as agents communicate to others to remove blockage and
improve network performance. Proposed algorithm called
DNSA (dynamic network self-optimization) has shown
promising results in terms of less complexity and better
network revenue. This kind of learning scheme can be moti-
vated to apply in radar technology and aviation industry.

Sivamayil et al. in paper [11] have widely covered dif-
ferent application areas where RL has been used. This is
one of the fundamental papers which covers all aspects for
researchers and academies. Paper contains applications of
RL in gaming, robotics, autonomous systems, natural lan-
guage processing (NLP), marketing, finance, energy conser-
vation and many more.

Ulusoy et al. in this [12] assessed performance of differ-
ent machine learning algorithms in simulated environment
called Robocode for single and multi-agent case. Neural net-
work-based proposed architecture had shown superior results
in simulated environment than others. Winning percentage
verses rounds performance has been evaluated and proves
that calculation of reward functions in each node in envi-
ronments can be solve more accurately in neural network-
based approaches. Kormushev et al. [13] have proposed time
manipulation technique which improves learning in RL by
minimizing fault tolerance and provides state exploration
chance in better way than conventional RL algorithms.
Results achieved in simulated environments showed that
time manipulation algorithm has achieved better results in
terms of best trail steps, benchmark trial steps and unique
state visited. This work can be further explored to design
other RL algorithms factors which can help to design better
policy and reward functions.

Shibuya et al. [14] have discussed complex valued neu-
ral network which improves reinforcement learning. This
experimental study investigates the use of eligibility traces
in complex valued reinforcement learning. The authors pro-
vide insights into the benefits and limitations of this tech-
nique, contributing to the advancement of RL algorithms.

Lizotte et al. in this work [15] have done study on lin-
eal programming (LP) especially in case of dynamic pro-
gramming (DP). In LP, importance of value function does
not affect too much except it is useful in primary problem
cases. Authors presents a novel approach to solving Markov
decision processes (MDP) using dual representations. The

=1 Downloaded from https://iranpaper.ir

SN Computer Science (2023) 4:447

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

Page50f17 447

authors introduce a new type of linear program that exploits
the structure of the problem to improve computational effi-
ciency. Their approach is shown to outperform traditional
methods in both synthetic and real-world applications.
Overall, the paper offers valuable insights into the potential
of dual representations for dynamic programming, and its
findings have important implications for the development of
more efficient algorithms in reinforcement learning.

Authors [16] have proposed self-organizing decision
tree which works on split estimation and tree growing
approaches using tree reinforcement learning (TRL). This
method reduces greedy approach on decision tree calcula-
tion by long term inducer estimator. Experiments show that
error rate and tree size has been reduced in proposed method
case than CART (classification and regression tree) using
five datasets mentioned in paper. This work can be good
choice to minimize exploitation and exploration in search
of goal. Article [17] focuses on routing packets efficiently
in dynamic network. Reinforcement learning can be suitable
approaches in dynamic environmental. The use of reinforce-
ment learning (RL) in network routing has shown promise
in adapting to dynamic network changes. RL algorithms
(proposed method) can learn and optimize network routing
policies based on feedback from the network environment.
However, challenges such as scalability and ensuring stabil-
ity and fairness in the network must be addressed to fully
utilize the potential of RL in network routing.

Asgharnia et al. [18] have proposed multi-objective
fuzzy Q learning (MOFQL) to solve such real-world prob-
lems which contains different goals. This approach has
been applied in gaming to achieve goals. Value function
at each state-action pair is computed with fuzzy inference
system (FIS). Temporal difference (TD) did fuzzy rules
update mechanism. This paper draw attention to work in
multi-agent and control system applications. This article
[19] is a review work done by their authors of multi-agent
RL. Authors have identified few problems in this case and
then they figure out their solutions in context of stochastic
gaming world. Bellman’ heritage from simple agent learn-
ing to multi-agent learning has been discussed and explored
critical review on this. The study [20] explores the use of
reinforcement learning mechanisms and common knowledge
fields in heterogeneous agent systems. It proposes a novel
approach to enable agents to learn from their experiences
and interactions with the environment and other agents. The
study provides insights into the potential of this approach
for improving the performance and adaptability of hetero-
geneous agent systems using sensory and behavioral input.
Simulated results shows that learning in common knowledge
field has shown positive aspect of it.

Kaelbling et al. in their work [21] have done survey on RL
related with central concept, hidden Markov model (HMM)
as foundation, discussing tradeoff between exploration and

exploitation, speeding the learning etc. This paper could
be a basic one for beginners to understand mathematical
reinforcement learning models. Low et al. [22] have imple-
mented improved Q-learning path finding algorithm for
mobile robot. Effectiveness of algorithm has been tested
with variable number of obstacles and their performance
has been compared with traditional Q learning. Proposed
algorithm has shown better time complexity than Q-learn-
ing. This work can be further improved with computational
aspect and by creating more complex environments for
multi-agent and muti-objective scenarios.

Path finding in optimal way [23] remains complex topic
in the case of different kind of agents like humanoid, mobile
robot, and any autonomous systems. Authors have proposed
effective Q-learning (EQL) which calculates reward func-
tion closely and exploration and exploitation of optimum
path dynamically. Computation results and analysis show
that computation time and path length has been minimized
in EQL for twelve different environments. This paper [24]
proposes a method for path planning in 3D workspaces for
robot arms using Q-learning and neural networks. The pro-
posed method involves using computer vision to capture the
current state of the environment and then using Q-learning
to select the next best action. The neural network is used to
predict the expected reward for each possible action, improv-
ing the efficiency of the learning process. Overall, the paper
provides an interesting approach to solve the problem of path
planning in 3D workspaces for robot arms.

Wang et al. in this study [25] investigated simulation-
based RL on distributed very large-scale integrated scale
(VLSI) to find optimum size of bounded time. Dynamic
programming connection with RL has been used to find
optimum policy. This work gives options to use RL in auto-
matic chip designing and circuit management. Frank et al.
[26] have proposed RL framework by creating more complex
learning environment called iCub humanoid robot. This was
called curious agent which was planning motion for human-
oid in defined environment. Paper solves artificial curiosity
by checking how much fast agent is learning. Paper is good
enough to learn about path planning and trajectory genera-
tion using RL.

Wen et al. [27] have proposed a novel algorithm called
fuzzy Q-learning (FQL) obstacle avoidance techniques for
humanoid in unknown environment. FQL, Q-learning (QL)
and optimized Q- learning has been compared with Check-
board model. Results of simulation shows that FQL is better
than other traditional RL approaches. Bae, H. et al. in this
article [28] proposed hybrid approach (deep Q learning plus
CNN) to path find problem in multi-agent environment. This
work minimizes communication effect among robots using
convolutional neural network (CNN) with image identifica-
tion. Simulated environment containing C++ and Linux has
shown that invented approach was far better than traditional

SN Computer Science
A SPRINGER NATURE journal

% Downloaded from https://iranpaper.ir

447 Page 6 of 17

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

SN Computer Science (2023) 4:447

Q-learning. Article [29] investigates shaping trend in RL
in terms of reward function, local optimization, global goal
achievement, policy upgradation, preparation for unknown
environment, state-action value and many others influen-
tial parameters which accelerates learning in this domain.
Authors have suggested to improve different aspects in learn-
ing fundamentals.

Authors [30] have focused on solving two major prob-
lems of RL, state-action estimation and selecting best move
in large space of size 2*°. Value function approximation
has shown promising results in simulated environments.
Mahadevaswamy et al. [31] have drawn attention on robot
3D automatics mapping inside home or buildings. Autono-
mous navigation and 3D mapping in path finding and trajec-
tory generation play significant role to learn from mistakes,
trial- error RL basics. Authors [32] have compared query
base learning agent (QA) and temporal difference network
(TDN) based on learning rate, discount rate and memory
usage. Result shows that QA has achieved better result than
TDN in controlled environments. This work can be further
explored using different deep reinforcement learning algo-
rithms with different constraints in multi-agent, dynamic
environment.

Morimoto [33] et al. has proposed bipedal walking for 3
link and 5 link robot simulators. Learning is based on Poin-
care model and selection of actions from computed value
functions. Results showed biped walking before, after and
in middle on using 3-trials of learning. The paper presents
some promising experimental results on a simulated human-
oid robot, showing that the proposed approach can learn to
walk with reasonable performance. However, there are some
limitations to the paper that should be considered. First, the
paper focuses exclusively on simulations and does not pro-
vide any experimental results on a physical robot. While
simulations can be a useful tool for testing algorithms, they
are not always representative of real-world performance.
Therefore, it is important to evaluate the proposed approach
on a physical robot to assess its practicality and robustness.
Raj and Kumar [34] has applied reinforcement learning
to control bipedal walk using inverted pendulum concept.
Double inverted pendulum was tested in simulated environ-
ments for different learning rate, discount rate and action
(clock state wise and anti-clockwise). Limit cycle has been
achieved by achieving pole angle and pole angular velocity
zero. The paper is a valuable contribution to the field of
robotics and can be of interest to researchers and practition-
ers working on bipedal walking control.

Peters et al. [35] have discussed the reinforcement learn-
ing for humanoid robotics where generally they have clas-
sified learning into three major methods (i) greedy method
(ii) vanilla policy gradient method and (iii) natural gradi-
ent method. Authors have proposed natural actor-critic
algorithm which achieves local minima for cost function.

SN Computer Science
A SPRINGER NATURE journal

This algorithm has achieved better results from others in
nonlinear systems of humanoids. Paper is good mathemati-
cal validation to understand all discussed methods. Num-
ber of episodes verses expected reward(J(theta)) has been
evaluated. Zhang et al. in this [36] work have proposed a
learning framework called LORM (learn and outperform
the reference motion) considering different environments
(plains, slope, uneven terrains, and push factor) for biped’s
gait control. Framework has been crafted in all possible way
to optimize humanoid velocity than existing methods on
Darwin-op robot simulator. Two major task was performed
and validated (walking as fast as, tracking specific velocity).
Results shows that tracking velocity rate was more than 95%
while maximum speed with 0.488 m/s was achieved. This
paper is clearly written and good enough to do further work
on this.

Canese et al. [37] have described different challenges
in multi-agent environments. Recent research has already
shifted towards distributed environment which mimics real
environments of different agent communication to each
other to optimize learning policy. Multi-agent reinforcement
learning (MARL) is the future of agent learning. Developing
algorithms in this will be highly applicable in different field
of autonomous and learning sectors. This paper [38] does
systematic review of different reinforcement learning which
are model free and model based. Different current learning
for different applications has been explored and future scope
of meta learning, automated machine learning (AML) and
self-learning discussion has been discussed.

We have done more detailed analysis of related work used
in this paper which covers different algorithms used, type of
learning, functions used and their applications in different
sectors (Table 1). This will further help us to define few
issues and new emerging trends of learning for future used
and have used by research communities.

Research Gap

Reinforcement learning (RL) is a popular technique used
in robotics and control systems to generate trajectories
for agents operating in dynamic environments. The use of
Q-learning in RL has been widely explored in trajectory
generation for various applications, including robotics, con-
trol systems, and game Al. However, there are still some
research gaps in this area that require further investigation.

One of the major research gaps in trajectory generation
using Q-learning is the scalability of the technique. Q-learn-
ing is known to be computationally expensive, and it may
not be suitable for real-time applications that require fast
trajectory generation. Therefore, researchers need to inves-
tigate ways to optimize the Q-learning algorithm to make
it more scalable and efficient for real-time applications [3].

?
LIPS
3 2 3 SJUTeNSUOD
w uonezrundo yoreas ‘red Ure}I9d Ul s)nsal [eqo[S aAd1yde 0} sdjoy
IR S 1] SUTALIP-J[s ‘SWaIsSAs snowouoIny JUSWIUOIIAUS UMoUyun ut Suroen AqiSg paseq onfep juoSe-nny NN panfea xojdwo))
W.m ...Muv uornjerofdxe
§ g 9ords a10[dxe pue uryoIeas AInjrej pIoAe 0}
3 &£ moy smoys Jade orreusos [ear ur pardde
m ST UOTYM SUTUIRS] MAU 0) SPEI] JUSUIUOIIAUD
.W [c1] swojqoid ooueproAe ainfrey ‘Sururen) Ppaje[nwiIs Ul premyoeq pue premioj Suron paseq anfep JuaSe-nn Surured] paseq uone[ndruewr awiy,
W. T doap 10§ s101E[NUUIS
H JIOUJ0 UO AJLISA 0} padu s3[nsay ‘soyoeoidde
mm.,. JOYI0 UBY) 19339(SI TY Paseq (J[10MIau [eInou
E [eroynIe) NNV ey} SMoys yorym s)nsax
[z1] $0110qO1 ‘Furwen QY YO9YO 0} Pasn Sem JOJB[NUWIS IPOI0qOY paseq onfep juaSe-niny TI-NNV
039 93e1aA00 pue Kjroeded [0 ‘syIpIm
-pueq ‘urured| ¢) Jo suId) ur JuruIed| 19))oq
Juswageuew umoys aAey Juade se NV IM Pue (SLINN) (unprioSre uonezrundo
[01] uoneIado ‘10J09s UONEITUNWIIOI[], WQ)SAS UOTIBOTUNWIWIOI[) S[IGOUW [ESIQATU) paseq onfep juaSe-niny -J10s YIomiau orwreukp) VSN-TI
10119 S[e0S SUTUIEI] O} SALIYOER
0} djoy sey ([opow uonisuer} umousun) urjd
Q0BJIAUI X () -ures uosdwoy], pue (4S7) Jo11o arenbs jseq|
[6] a3ejs-nnuw ‘A SWeISAs [onuo0)) UO Paseq Wa)sAs JuTuIea] Joeqpas) 3uons paseq anfeA juaSe-nnu/o[Sul§ WISAS SuTuIes[Jorqpasj A10jo3fer],
(JuoFe) uonezIue3Io I0J pIemaI [eqo[3 (dANOJ) ssedo1d
103098 aadyoe 03 d[oy A[[euy pue pIremal [eurojul UOISIOAP AONIBA 9[qBAIISQO
[8] doueuy pue ‘uoneonp? ‘Surwen AJeroudd o3 sdjoy ylomurey Surured] pasodoid paseq anfep JuaSe-nIn -A[renaed woly yIomourely [PAON
pawioyiad 2q pinoys sjuswIadxe 20
"[NJosn 9q UBD [30q UONEIIWI PUe Ty JO Uon
[ooudrosorg ‘spadig -eISIUI JRY) SOIEXSUOWAP YIoMAWeT) SUuruIed| paseq anjep JuaSe-nnuweSurs QIMO3IYoTe Sutured] pLqAH
[opou (Jo112 pue
SwRIsAs priqAyorg [e11) snotredta) g1, A Sutsn yyed parojdxoun Sururesq
[9] "9ouarosoInau ‘uonezrundo yreq 91ed1Aeu 0} Joqoi d[oy S[[e0 pLIS pue ade[d paseq anfeA juade-nn paxdsur [edurecoddr pue juepoy
Arewndo Sur
[s] HUGINR (Dili(ve) auwn papunoq jo 9z1s wnwndo puy 03 pasn paseq aneA juade o[3urspudde-nnjy -weidord SrweUAp paseq uone[NWIS
PIeMII ‘UOTIOR 9)e)s UO 19)12q Sem SuruIed]
3 Ppaseq-1opids Jey) pamoys sa}Isqam Pajou uo
= 3 [¥1 $o130q01 "FUIpUY yjed uostredwod Juryoreas synN pue 1opidS Ty paseq Adrjod pue anfep (19pids) Juo3e o[3urg (Qurduo yoIeas [eonIoa) pids T
W 4 PaqILIOSOp U9aq Sey (JIomlou
8 & [einau orureuAp) NN Ol JI0M)U [eINdU
= (€] Q0UQIOSOINAU 0qOI JUASIIAU] (LI TIN) PremIofpasy Iokennu jo uoneorddy paseq anfep juaSe-niny ([fomyau TeInau drwreukp) NNQ
%]
= o suoroe jo ‘ou pue saposido Fursn
.m m SJUSWUOIIAUD PLIS ()] X ()] ul Surdueyo st [eo3
.m S Surpuy yyed UOIYM UT QUO JAYJOUR pue paxy SI [eOS3 U0 juage
3 ko [Z] 1s91I0US ‘SON0QOI Q[IQOW ‘PIOUBWINE] UT 9IoUMm SASED YJ0q UT 19))9q ST 03e pasodoid Korjod TeumdQ o1Surs pue juaSe-nnN T urems
B 3
m m SQOUAIRJOY uoneorddy awoonQ UoTOUNJ pIeMay Juady wprIode/sayoerorddy
nwu o
[a) 3z [L€—2] 10m maraar jJo Apmys aaneredwo) | ajqel

iranpaper

A SPRINGER NATURE journal

SN Computer Science

Downloaded from https://iranpaper.ir

iranpaper

Alio (il (gawass dey
EERUAEETEST

https://www.tarjomano.com

(2023) 4:447

SN Computer Science

Page 8 of 17

447

Ty ur parjdde uaeq sey spoyiow

[62] swo[qoid snoNUNUOd pue RIS QIVSIP PUB SNONUNUOD UdamIdq des yoreasay paseq onfep JuaSe-nnuyeSurg T Surdeyg
Surureay b uonipen ueyy synsax
191399 moys uostredwod saposida ‘sojess
[82] sonoqoi ‘Juruueld yred s[eo3 ‘syooda oI] s1ojowrered 20UBWLIONI] paseq anfep juaSe NN NND yiam Surures] b deagq
Suruuerd T Joyio uey) Iayeq sem O eyl punoy
[£7] ed ooueproae o[oelsqo ‘prouewiny pue pazrundo sem woqoid soueproAe 9[9ISqO paseq onfeA juoSe o[Surg (TOH) Surures] O Azzng
PAIOITUOW SeM UIEI] 03 AJISOLIND
pue 20uagI[[u] ‘syuage Ko} woIy RI[un pro juode
[oz] Suruuerd uonow 90qol prouewny -uBwNy 1oy SUTUIRQ[AJR[NUWIS 0) SALN) SIOYINY paseq onep 9[3uls se plouewny qn)I ylomowrely T
swoqoxd Jojernuis 1s[a ur deim own
[s2] uonezrumdQ "SuruSisep ymom) 10y uonnjos wnuwmdo smoys wypriode pasodoi paseq anfeA juade o[3uIg Ty dexm own oandepy
synsor
aatssaxdwr A[oANO9[[00 umoys sey Jururen
uononnsuod (¢ “Ty doop 10} YIoMlou [eIndu pue Jurpuy [eos J0j ur
Ed| AA-TV ‘SisATeue J1eS ‘sprouewiny -uIes]) ‘U010 199[qo J0f uoIsia 1ndwo)) paseq onfep juaSe-nnuw/e[SurS T JF0MIOU [eInou UOISIA Jondwo))
s)Ie
Jo 9ye)s pue s1ojowrered Ajoyes pue dwn uorn
-eyndwos ‘yySuay yyed jo swirey ur Surures[-QO) juagde
[e2] SWAISAS UOT)BIIABU ‘SOT)OQOY I9Y)0 uey) 10139q sem oouewrojrad TOF paoseq onfea snid Ao1jod -T)[nW S& J0qOI A[IqOA (107) Surures[-0) UL
poonpar sem aw} uonelndwo)) "sISed 159)
PAB[NWIS JUSISJIP YIIM PI)S) sem Surured|
poyjew pue d[qe) b azientur o1 (oS[e uoneur| (10qO1 9TIqOW Pa[AAYM
[zl uoneziundo yyed sonoqoI 91O -1od 1omopy) V4 sosn sey yoeoidde pesodoig paseq anfeA Qo1y)) JuaFe o[3uIg Surures[-Q) paaorduy
SJUSWIUOIIAUD
PAJR[NWIS UI $)[NSAI PIPUAXS UMOYS Sy SI[nI Juade
[o2] $O110q01I IO Surures] pasodord uo paseq Surures sjuasy paseq onfep -I[NW SNOJUaS0IIOH T snosuaSoroloy
swarqoxd
SO1ISIZ0] ‘SOTWOU0I? ‘W)SAS uonep UQAIS UT 9AT309[QO N[N 9AJIYOR 0) SI[NSAI
[81] -uowooar aandfqo-nnuw ‘Suren) aanisod umoys sey wyjLiog[e Surured] pasodoirq paseq Aorod snid anfep juade-ninN - (TOA0N) T 2anoalqo-nnuw Azzng
s3uruIea] [euonIper) IAYI0 uey) 193399 S TY
uonezrundo PUE JUSWIUOITAUS PAJE[AWIS UT PAJBN[BAD UISq
[1] [eonewayiewW ‘voneziundo 9Jnoy SeY UONIPUOD LRI} JIWRUAP UT SUTNOI JaORJ paseq anfeA juade-nn Ty Sunnoy
S991) UOISIOAP SIAYIO UBy)
19139q sem o3[e pasodoid ‘peyndwiod usaq sey
Sunndwoos souewoyrod apou yoea je jurod premar pue ooeds yoIeas
[91] Y31y ‘vonezrundo aoeds yoreag 197)2q 193 0} FurUIR] PAseq-uonoONpuI 1], paseq anfeA juaSe-nnu/9[3ulg Surures] 9013 Jurziue3io-j[os
Surwrwerdoid uoneyrofdxa 19139q pue onsifiqeqoid yirm Ty pue (Surwerord
[¢1] Iesur] ‘Sunyew uoIsIop [enuenbag Furures] 1919q aAdyoe 03 sd[ay y1oq T pue J PIseq anfea pue Kd1joq JuaSe-nn oreuAp) 4 01 yoeoidde reng
SQOUAISJIY uoneorddy awoonQ UoTOUNJ pIemay Jjuady wprode/sayororddy

(ponunuoo) | sjqey

SN Computer Science

A SPRINGER NATURE journal

Downloaded from https://iranpaper.ir

iranpaper

Alio (il (gawass dey
EERUAEETEST

https://www.tarjomano.com

447

Page 9 of 17

(2023) 4:447

SN Computer Science

JIOM [9AOU INQLNUOD JOU Op A1) St papnjout jou d1am (1oded marAaI) [8¢€ 17 ‘€T ‘T ‘1] "ou aouaIajoy

[L€]

[9¢]

[s€]

[+€]

[e€]

[ce]

[1€]

[o€]

sonoqol
‘Sw)sAs Jonuod ‘Surures Juady

[01U0d
J1e3 ‘UoTIOWO0] UBWINY ‘PIOUBWNH

$O110qOI proUBWNE

$O110qOI prouewny ‘sIsA[eue jren)

sisA[eue J1es ‘spadrg
unseosaroy
Ioyjeam ‘somjoqor ‘sweqoid [onuo)

Qwioy pue ‘A31o 1rews ‘3ur
-UIR9 JUSTe ‘SUIAISAS SnOWouoINy

Surwresd ‘Sur
-ure] [opow ‘swajqoid uoneziundQ

PISSNOSIP 2IaM $10303s pAje[al pue uonesrddy
‘pazATeue a1om T Jo 2dA) e 1oded sty up paseq Aorjod pue anfep

A[ngssaoons

quop sem FurureaT “woty 9)e[d do- uimreq
ur pa[[onuod st Sunj[em j0qol prouewny
Saomowrerj INJO'T pesodoid jo djoy ayi yipn

PIsSNOSIP U22q SEY Sprouewny

ur Ayiqesrdde aroy) pue paredwod usaq sey
SuruIea] JUSWIOIOJUIRI [RUOTIIPET) JURIPI

yoeordde Aoy sem wny

-npuad pajIoAuT I[qnO(T T Sulsn pajesnsaAur
Juroq st urures] pardsur Sunyfem uewny
SI[NSAI 9SBI MOYS 0) PISN U 9ARY SIO}

-B[NWIIS YUI] QAL PUB 92IY], "}0qO0I JO Surure|
159] 0] JUSWUOIIAUS PAIB[NWIS UT PIYOYO
u99q Sey S[Iel OIWRUAP pue XY Ul 9[pprut

ur pue 19k ‘010§oq paads Sunyiem juarefiq

91es SuruIed[pue sagesn AIOWIW ‘jex

JUNODSIP JO SULId) Ul NI, UBY) 191399 sem VO

SJUQWIUOIIAUD JOOPUT

Joj Surddewr (¢ puejsiopun 0) [nIINIJ sem
Surured pue J[Iing sem wolsAs dew (¢ ‘sonbru
-yo9) Surddew pue uone3iaeu jo d[oy oyl P

poylouwt

112dx9 Jo jonpoid jo djay ay3 yiim uonouny
(premar) anfea dje[nored 03 sdioy o3[e pasodoig

paseq anfep

paseq anjep

paseq Ad1104

paseq anfeA

paseq anfep

paseq Aorjod; anfeA

paseq anfep

juaSe-nnuwr pue J[3urg

j0qoI1
prouewiny se juage 9[3urs

juaSe-nnuy/Q[3ulg

prouewny se juagde 9[3uI§

juade-nn

juaSe-nynui/9[Surg

juade-nnu/a[3urg

Juage-nnA

SUTUIRS] JUSWDIOJUISY

Slomawely (AYOT) uonow
Q0UQIRJAI AU} WI0JI2dINo pue UIed |

SUTUIES] JUSWADIOJUTSY

Sururesy ¢) peseq-wnnpuad s[qnoq

T Paseq [9pON

(VO) Surtures-J[os aseq A1onf)

Surddewr onjoqoy

poyeuwr uonjewrxordde [sAo0N

SOOURIYY

uoneorddy

2WodNO

uonounj premoy

Jjuady

wprode/sayororddy

(ponunuoo) | sjqey

SN Computer Science

A SPRINGER NATURE journal

iranpaper

% Downloaded from https://iranpaper.ir

447 Page 10 of 17

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

SN Computer Science (2023) 4:447

Sensory input

!

Next state

w

Environment

¥

Updates memory
training and testing

Repeat from Starting
step

< Intelligent agent

Targeted Qutput
(Optimal Trajectory)

Fig.2 Block diagram of learning agent for optimal trajectory

We have worked on this research gap to propose optimal Q
learning which is better than Q-learning.

Another research gap in this area is the exploration of
different reward functions [30]. The reward function is a
critical component of Q-learning, and it plays a significant
role in determining the trajectory generated by the agent.

Fig.3 In the grid world of

10x 10, starting from (2, 8), an
Agent moves aiming the goal
at (9, 2). Left: Single path from —7
50 trial. Right: B route of the | | ‘
optimal trajectory to the goal

(A)

SN Computer Science
A SPRINGER NATURE journal

Researchers need to explore different reward functions and
investigate their effects on the trajectory generation process.
This will enable them to identify the best reward function
that can optimize the performance of the agent. Furthermore,
the exploration of deep reinforcement learning (DRL) in tra-
jectory generation [12] is another research gap that needs to
be addressed. DRL is a new area of RL that combines deep
neural networks with RL algorithms to enable agents to learn
complex tasks. Researchers need to explore the use of DRL
in trajectory generation and compare its performance with
traditional RL techniques like Q-learning.

Lastly, the evaluation of trajectory generation algorithms
is an important research gap that needs to be addressed.
Researchers need to develop evaluation metrics that can
be used to assess the performance of trajectory generation
algorithms. This will enable them to compare different algo-
rithms and identify the best algorithm for specific applica-
tions [30, 32].

Overall, addressing these research gaps will help advance
the field of trajectory generation using reinforcement
Q-learning and enable the development of more efficient
and effective trajectory generation algorithms for various
applications. Research community must introduce more real-
istic and optimal algorithm, frameworks and design reward
or penalty functions to handle real-time scenarios.

Research Challenges in Trajectory Generation [37]

Trajectory generation is an important task in reinforcement
learning (RL), where an agent learns to perform a task by
interacting with an environment and receiving feedback in
the form of rewards. The goal of trajectory generation is to
generate a sequence of actions that lead to a high cumula-
tive reward. Here are some research challenges in trajectory
generation in RL:

B)

o

% Downloaded from https://iranpaper.ir

SN Computer Science (2023) 4:447

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

Page 110f 17 447

Exploration—Exploitation Tradeoff (E-E Effect): Tra-
jectory generation algorithms need to balance E-E effect.
Exploration is necessary to discover new and potentially
better actions, while exploitation is necessary to leverage
the information already learned to maximize reward. A chal-
lenge is to find a balance between exploration and exploita-
tion that leads to optimal performance.

Scalability: Many RL tasks involve high-dimensional
state and action spaces, which can make trajectory genera-
tion computationally expensive. Scalability is a significant
challenge in RL trajectory generation, and researchers are
exploring ways to optimize the computational efficiency of
trajectory generation algorithms.

Transferability: Transfer learning is an essential aspect
of RL, where an agent trained in one environment can
leverage its knowledge to perform well in a different but
related environment. Trajectory generation algorithms
need to be transferable across different environments,
which requires generalization and adaptation to new
environments.

Handling uncertainty: RL is inherently uncertain, and
trajectory generation algorithms need to handle this uncer-
tainty to generate robust and reliable trajectories. This
challenge includes modeling and predicting uncertainties
in the environment, such as sensor noise, modeling errors,
and stochasticity in the environment.

Safety and robustness: Trajectory generation algorithms
need to ensure the safety and robustness of the learned
policies. Safety is a critical concern when deploying RL
systems in real-world applications, and trajectory genera-
tion algorithms need to consider safety constraints while
optimizing for reward.

Addressing these challenges requires a combination of
theoretical and practical approaches, including design-
ing new algorithms, developing more efficient computa-
tional methods, and collecting more diverse and realistic
datasets.

Proposed Method and Algorithm

The generalization of the environment and state action (s,
a), which control sensory input during training sessions, are
discussed in this section. We must model different nodes as
states across a specific environment to achieve this goal.
It carried out a random state action and began looking for
options within the four options provided (left, right, up, and
down) to archive a new state. Repeat starting at step one if
the current condition is comparable to the prior state action.
After verifying that the goal has been reached, move on to
the next stage; if not, update the look-up table.

To train the various nodes of the network in a given environ-
ment with the best possible policy rewards and penalties, we
used Q-learns, which has the model-free enhancement study
characteristic. Through numerous trial-and-error interactions,
this agent learns how to behave toward the Marko process opti-
mally. Every iterative process is stored in the provided look-up
table, and during testing, a random value is chosen from the
available actions. All nodes in a particular environment that
uses the Q-learning algorithm train using objective function
approximation (Q function) similar to a satellite state-action
input pair. Sensory input and target output for the specified
challenge is involved in the physical activity during network
training. Based on state-action pair values, the Q-learning algo-
rithm is valued as a reward at the start of the training process.
Classifications of occurrences and repeated knowledge pro-
cesses occur for the nth time in Q learning.

Base Q-Learning [23]: Umbrella Term
for Reinforcement Learning

Q-learning is a type of reinforcement learning algorithm
that learns to make decisions in an environment by trying
different actions and observing the rewards that result from
those actions. Q-learning uses a table called a Q table to
store the expected rewards for each state-action pair, and
uses a function called the Q-function to determine which
action to take in a given state.

SN Computer Science
A SPRINGER NATURE journal

i} - 3/ i Wi cpl -
iranpaper 1=} Downloaded from https://iranpaper.ir hitps:/Avww.tarjomano.com olgaazsdezy L%D}J

e 0lnl ol oy90 .

447 Page 12 of 17 SN Computer Science (2023) 4:447

Steps:

1. Initialize the Q-table with all zeros for each state-action pair.
2. Set the learning rate, gamma, and epsilon values.
3. Repeat for each episode:
3.1 Initialize the environment and set the initial state.
3.2 Repeat for each step in the episode:
i. Choose an action based on the current state and the epsilon-greedy policy.
ii. Take the action and observe the resulting reward and next state.
iii. Update the Q-table value for the current state-action pair using the Q-learning formula
Q(s,a)=Q (s, a) + alpha * (reward + gamma * max (Q (next_state, a)) - Q (s, a))// any time t
iv. Set the current state to the next state.
3.3 Decrease epsilon and alpha values as the number of episodes increases.

4. Use the Q-table to determine the optimal policy for the given environment.

In the Q-learning formula, alpha is the learning rate, which determines the weight given to new information versus
old information, gamma is the discount factor, which determines the importance of future rewards, and max (Q

(next_state, a)) is the maximum expected reward for the next state.

Optimal Trajectory Generation algorithm:

172)
-
(e}
=
@

In a given grid search space, randomly generates the initial state (s,) as input. // $,= {s1, S2, $3,...}
Check for available actions (a,) in search space (Grid)

Select any random action

If action (aj)leads to same as previous state (Sp.1)

then start step one

when the target is achieved

Store iterative values (s, an) in a transient array

Updates transient array ri=ry/*

O ® NN kWD =

Creates (sq+1) state using the state-action, next episode repeats step 1 to step 9

10. Until the objective is accomplished

Pseudo code for proposed algorithms:

Initialize the Q-table with zeros for all state-action pairs
Repeat the following for each episode:
Initialize the state s
Repeat the following until the episode ends:
Choose an action a from state s using an exploration policy
Take the action a and observe the reward r and the next state s'
Update the Q-value for the state-action pair (s, a) in transient array r; using the Q-learning update rule:
Q (s, a) = Q (s, a;) + alpha * (r + gamma * max (Q (s', a")) - Q (s, a))// Sn+1
Assign s to s’ as new state

End Repeat

End Repeat

SN Computer Science
A SPRINGER NATURE journal

iranpaper 1=

Downloaded from https://iranpaper.ir

SN Computer Science (2023) 4:447

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

Page 130f 17 447

Learning Agent for Optimal Trajectory

The proposed framework will fulfill the requirement of a
learning mechanism.

Working Methodology

At very first step, we plan to describe (Fig. 2) surround-
ings and the state input. We refer to the state having a spe-
cific value s. Thus, it is introduced to the state-action pair
throughout training. Currently, we want to develop a training
module. To achieve a new state, we first start with a ran-
dom beginning state and look for actions that can be taken
as environmental input. If the state-action that was previ-
ously taken is equal to the current state, repeat the process
to reach the starting state. Now check the target status; if it
was accomplished, update the following episode. If not, save
the state-action pair (s, a,). Using the state-action pair, create
the following state (s,).

Define the agent as a pair of states and actions. Then
choose the train, which opens a new window with an array
editor network. You can visualize the learned agent at this
point as a Q table. It can also be visualized as a chosen
route or direction. Now we can specify the aim and inputs
using state-action pair (100X 4) for 10X 10 grid world. We
chose Q-learning because it essentially searches for the best
policy without any prior knowledge of the system, which is
a feature of model-free RL. Gaining experience with action
consequences function learning gives agents the ability to
learn to act optimally in Marko domains (function learning
typically saves Q value relative to every state activity in a
look-up table).

The state-action value is gradually updated by the iterative
training algorithm (Q-learning). The agent can be trained as a
state-action pair to estimate a function (Q function). The state
input and target output are essential for the training procedure.
To estimate the state-action pair values using a discount rate-
learning methods use reward function during training to evaluate
state-action value in terms of reward value.

Results Analysis and Comparisons

In this paper, various common trajectory planning tasks
such as obtaining a moving target and avoiding obstacles
by taking viable actions in the grid world problem has been
implemented. Learning accuracy can be evaluated using the
performance of the optimal trajectory algorithm. ET meas-
ures the effectiveness of goal monitoring in the specific goal
position as well as the overall percentage of correctly evalu-
ated training rate [32].

Trajectory efficiency (Et)
Minimum step(j) — Total count step(k)
Total path

= |1- x 100,

where the minimum count step is j and k are the total count
step.

Learn Optimal Trajectory from the Episode

We have implemented trajectory generation of agent in
MATLAB where agent can move one step upward, down-
ward, to the right, or to the left. Impeded by the border of the
grid world, one option is to refrain from taking any action
and instead rely on chance to determine the subsequent
course of action. The agent would keep doing this until the
target is attained. The maximum number of steps should be
determined in relation to the grid world's size. We will now
start by looking at the consequences of an agent's random
action in Fig. 3, indicated below.

The accuracy of the trajectory efficiency with respect to
several episodes is shown below in Table 2. These outcomes
have been compared and presented in Fig. 4.

The learning accuracy of the trajectory algorithm is
over 96.70%, as shown in Table 2, and most of them are
greater than the Q-learning algorithm. As a result of all the
experimental procedures, we observed that the trajectory
algorithm.improves the g-learning method. The optimal tra-
jectory algorithm and the g-learning algorithm have been
compared in this case, and it has been determined that the
trajectory algorithm is superior in terms of target tracking,
learning time, and memory use. Finally, we compare and
present the graph of comparison as shown below.

From above (Fig. 5) it is clear that proposed algorithm is
having better trajectory efficiency than Q-learning.

Based on the table of trajectory efficiency results
(Tables 2, 3, Figs. 6, 7), we can make the following
observations:

(i) Overall, the average trajectory efficiency (Fig. 6)
tends to increase as the number of episodes increases.
The average trajectory efficiency is 75.98% for epi-
sode 1000, 80.40% for episode 3000, 77.68% for
episode 5000, 90.54% for episode 7000, 91.76% for
episode 9000, and 93.56% for episode 11,000.

(i) The performance of the agent varies across trajec-

tories (Fig. 7). For example, trajectory TS5 has the

highest efficiency for episodes 1000, 3000, 7000, and

9000, while trajectory T1 has the highest efficiency

for episodes 7000 and 11,000.

Trajectory TS5 generally performs well across epi-

sodes, with above average efficiency for all but one

(iii)

SN Computer Science
A SPRINGER NATURE journal

o

iranpaper 1=} Downloaded from https://iranpaper.ir

447

Page 14 of 17

, Alin (] s dazs
https://www.tarjomano.com

e 0lnl ol oy90

SN Computer Science (2023) 4:447

@iv)

Table2 Comparison table

episode. This suggests that the agent is able to con-
sistently navigate this trajectory effectively.
Trajectory T1 has lower efficiency for other episodes
except 7000- and 11,000-episode number. This sug-
gests that the agent may be struggling with certain
aspects of this trajectory, or that the rewards in this
trajectory are more difficult to obtain.

v)

(vi)

Trajectory T3 has relatively low efficiency across all
episodes. This suggests that the agent may be having
difficulty navigating this trajectory or obtaining the
rewards it needs to perform well.

Proposed work has shown improvement than existing
work. Through accuracy is not good.

L . f Trajectory For episode For episode For episode For episode ~ For episode For episode
between different episodes for efficiency E=1000 E=3000 E=5000 E=7000 E=9000 E=11,000
optimal trajectory algorithm
T1 59 94.80 79 94.83 79.20 95.71
T2 69.58 66 60 82 93.32 94.82
T3 73.30 64.85 95.76 94.63 72.41 83.60
T4 85 73.65 96.63 82.81 93.91 96.70
T5 93.80 94.95 60.10 86.91 93.23 96.50
Average 75.98% 80.40% 77.68% 90.54% 91.76% 93.56%
Fig.4 Comparison view of dif- Accuracy Percentage
ferent episodes 100
Q0
o 30
Eil.__J 70
E 50
50
il i i i i i i i i i
1000 2000 3000 4000 2 S000 6000 7000 8000 2000 10000 11000
Mumber of Eposides
Fig.5 Performance Comparison Tragectory Efficiency Vs Number of Episodes
graph between optimal trajec- 1 I ' ' ' ' ' —— 9
tory and g-learning algorithm
0.9 b
§ 0.8 —<—— Optimal tragectory algorithm 1
g —#—— Q Learning Algorithm
=
i,
= 0.7 b
e
[5]
=
= 0.6 4
0.5 b
0.4 * ' ' * ! ' * * *
10 15 20 25 30 35 40 45 50 55 60

SN Computer Science

A SPRINGER NATURE journal

Number of Episodes

o

i = i i Ao opl]]
iranpaper "= Downloaded from https://iranpaper.ir htps://www.tarjomano.com ;i:::u:»y lP W

SN Computer Science (2023) 4:447 Page150f 17 447
Table 3 Comparative study of proposed and existing work Conclusion
Method Training accuracy % Reference

In this, research paper focuses on novel algorithm for opti-
QA algorithms 96.20 (32] mal trajectory generation using Q learning based on grid
Proposed algorithm 96.70 world problem. We show that without prior knowledge of
the system agent can make decision over given environment.

Using this method this algorithm is suitable for better deci-

sion making along with optimal trajectory with 96.70%. Pro-

Overall, these results suggest that the agent's performance posed algorithm to learn shortest trajectory path under each

is improving over time, and that its ability to navigate dif- given episodes, repetitive loops in episodes are removed to
ferent trajectories varies. Further analysis would be needed speed up convergence. Based on optimal trajectory algo-
to determine the causes of these variations and to identify rithm, we got better results and accuracy in term of trajec-

ways to improve the agent's performance. tory efficiency over other existing Q-learning algorithm.
Fig.6 Average trajectory effi- H s)
cloncy vorses episede average trajectory efficiency %
100
__e———0
90
]
S 80
w
O 70
o 60
w
% 50
O 40
O
D30
= 20
'_
10
0
0 200 400 600 800 1000 1200
E'=Episode/10
Fig.7 Learning accuracy of H H H s
proposed trajostory algosith Episodic trajectory efficiency
120
100
80
60
40
20
0
E=1000 E=3000 E=5000 E=7000 E=9000 E=11000

For Episode For Episode For Episode For Episode For Episode For Episode

ETl mT2 mT3 T4 mT5

SN Computer Science
A SPRINGER NATURE journal

% Downloaded from https://iranpaper.ir

447 Page 16 of 17

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

SN Computer Science (2023) 4:447

In the future work, we can make optimal trajectory algo-
rithm more effective using combining multiple learners
and other decision techniques as computational sequence
learning. This work can be further extended using different
alternative of Q- table like neural network, function approxi-
mation, hash table and binary tree. Finding optimal trajec-
tory for different agent in different environment based on
different sector will remain challenging in future.

Author Contributions VBS Assistant Professor, MANIT, Bhopal, Mad-
hya Pradesh, India. DKM Assistant Professor ASET Amity University,
Gwalior, Madhya Pradesh, India.

Funding This study is not funded.

Declarations

Conflict of interest On behalf of all authors, corresponding author
states that there is no conflict of interest.

References

1. Ding Z, Huang Y, Yuan H, Dong H. Introduction to reinforcement
learning. In: Deep reinforcement learning: fundamentals, research
and applications. 2020. p. 47-123.

2. lima H, Kuroe Y. Swarm reinforcement learning algorithms based
on Sarsa method. In: 2008 SICE annual conference. IEEE; 2008.
p.2045-2049.

3. Yadav AK, Sachan AK. Research and application of dynamic neu-
ral network based on reinforcement learning. In: Proceedings of
the international conference on information systems design and
intelligent applications 2012 (INDIA 2012) held in Visakhapat-
nam, India, January 2012. Berlin: Springer; 2012. p. 931-942.

4. Quan L, Zhi-ming C, Yu-chen F. The research on the spider of
the domain-specific search engines based on the reinforcement
learning. In: 2009 WRI Global congress on intelligent systems,
vol 2. IEEE. 2009. p. 588-592.

5. Wang J, Tropper C. Optimizing time warp simulation with rein-
forcement learning techniques. In: 2007 winter simulation confer-
ence. IEEE. 2007. p. 577-584.

6. Santos-Pata D, Zucca R, Verschure PF. Navigate the unknown:
implications of grid-cells “mental travel” in vicarious trial and
error. In: Proceedings 5 Biomimetic and biohybrid systems: 5th
international conference, living machines 2016, Edinburgh, UK,
July 19-22, 2016. Springer International Publishing; 2016. p.
251-262.

7. Hamahata K, Taniguchi T, Sakakibara K, Nishikawa I, Tabuchi
K, Sawaragi T. Effective integration of imitation learning and
reinforcement learning by generating internal reward. In: 2008
Eighth international conference on intelligent systems design and
applications, vol 3. IEEE; 2008. p. 121-126.

8. Taniguchi T, Tabuchi K, Sawaragi T. Role differentiation process
by division of reward function in multi-agent reinforcement learn-
ing. In: 2008 SICE annual conference. IEEE. 2008. p. 387-393.

9. Efroni Y, Merlis N, Mannor S. Reinforcement learning with trajec-
tory feedback. In: Proceedings of the AAAI conference on artifi-
cial intelligence, vol 35, no 8. 2021. p. 7288-7295.

10. Feng Z, Tan L, Li W, Gulliver TA. Reinforcement learning based
dynamic network self-optimization for heterogeneous networks.

SN Computer Science
A SPRINGER NATURE journal

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

In: 2009 IEEE Pacific rim conference on communications, com-
puters and signal processing. IEEE. 2009. p. 319-324.
Sivamayil K, Rajasekar E, Aljafari B, Nikolovski S, Vairavasunda-
ram S, Vairavasundaram I. A systematic study on reinforcement
learning based applications. Energies. 2023;16(3):1512.

Ulusoy U, Giizel MS, Bostanci E. A Q-learning-based approach
for simple and multi-agent systems. In: Multi agent systems-strat-
egies and applications. IntechOpen. 2020.

Kormushev P, Nomoto K, Dong F, Hirota K. Time manipulation
technique for speeding up reinforcement learning in simulations.
2009. arXiv:0903.4930.

Shibuya T, Shimada S, Hamagami T. Experimental study of the
eligibility traces in complex valued reinforcement learning. In
2007 IEEE international conference on systems, man and cyber-
netics. IEEE. 2007. p. 1630-1635.

Lizotte D, Wang T, Bowling M, Schuurmans D. Dual representa-
tions for dynamic programming. 2008.

Hwang KS, Yang TW, Lin CJ. Self organizing decision tree based
on reinforcement learning and its application on state space parti-
tion. In: 2006 IEEE international conference on systems, man and
cybernetics, vol 6. IEEE. 2006. p. 5088-5093.

Khodayari S, Yazdanpanah MJ. Network routing based on rein-
forcement learning in dynamically changing networks. In 17th
IEEE international conference on tools with artificial intelligence
(ICTAI'05). IEEE. 2005. p. 5.

Asgharnia A, Schwartz H, Atia M. Multi-objective fuzzy Q-learn-
ing to solve continuous state-action problems. Neurocomputing.
2023;516:115-32.

Shoham Y, Powers R, Grenager T. Multi-agent reinforcement
learning: a critical survey, vol 288. Technical report, Stanford
University. 2003.

Kawakami T, Kinoshita M, Kakazu Y. A study on reinforcement
learning mechanisms with common knowledge field for heteroge-
neous agent systems. In: IEEE SMC'99 conference proceedings.
1999 IEEE international conference on systems, man, and cyber-
netics (Cat. No. 99CH37028), vol 5. IEEE. 1999. p. 469—474.
Kaelbling LP, Littman ML, Moore AW. Reinforcement learning:
a survey. J Artif Intell Res. 1996;4:237-85.

Low ES, Ong P, Cheah KC. Solving the optimal path planning
of a mobile robot using improved Q-learning. Robot Auton Syst.
2019;115:143-61.

Maoudj A, Hentout A. Optimal path planning approach based
on Q-learning algorithm for mobile robots. Appl Soft Comput.
2020;97: 106796.

Abdi A, Ranjbar MH, Park JH. Computer vision-based path
planning for robot arms in three-dimensional workspaces using
Q-learning and neural networks. Sensors. 2022;22(5):1697.
Wang J, Tropper C. Optimizing time warp simulation with rein-
forcement learning techniques. In 2007 winter simulation confer-
ence. IEEE. 2007. p. 577-584.

Frank M, Leitner J, Stollenga M, Forster A, Schmidhuber J.
Curiosity driven reinforcement learning for motion planning on
humanoids. Front Neurorobot. 2014;7:25.

Wen S, Chen J, Li Z, Rad AB, Othman KM. Fuzzy Q-learning
obstacle avoidance algorithm of humanoid robot in unknown envi-
ronment. In: 2018 37th Chinese control conference (CCC). IEEE.
2018. p. 5186-5190.

Bae H, Kim G, Kim J, Qian D, Lee S. Multi-robot path planning
method using reinforcement learning. Appl Sci. 2019;9(15):3057.
Erez T, Smart WD. What does shaping mean for computational
reinforcement learning? In: 2008 7th IEEE international confer-
ence on development and learning. IEEE. 2008. p. 215-219.
Sallans B, Hinton GE. Reinforcement learning with factored states
and actions. J Mach Learn Res. 2004;5:1063-88.

http://arxiv.org/abs/0903.4930

iranpaper 1=

Downloaded from https://iranpaper.ir

SN Computer Science

(2023) 4:447

Alio (il (gawass dey

e 0lnl ol oy90

https://www.tarjomano.com

Page170f 17 447

31.

32.

33.

34.

35.

Mahadevaswamy UB, Keshava V, Lamani AC, Abbur LP,
Mahadeva S. Robotic mapping using autonomous vehicle. SN
Comput Sci. 2020;1:1-12.

Yadav AK, Shrivastava SK. Evaluation of reinforcement learning
techniques. In: Proceedings of the first international conference
on intelligent interactive technologies and multimedia. 2010. p.
88-92.

Morimoto J, Cheng G, Atkeson CG, Zeglin G. A simple rein-
forcement learning algorithm for biped walking. In: Proceedings.
ICRA'04 IEEE international conference on robotics and automa-
tion, vol 3. IEEE. 2004. p. 3030-3035.

Raj S, Kumar CS. Q learning based Reinforcement learning
approach to bipedal walking control. In: Proc. iNaCoMM, Roor-
kee. 2013. p. 615-620.

Peters J, Vijayakumar S, Schaal S. Reinforcement learning for
humanoid robotics. In: Proceedings of the third IEEE-RAS inter-
national conference on humanoid robots. 2003. p. 1-20.

36.

37.

38.

Zhang W, Jiang Y, Farrukh FUD, Zhang C, Zhang D, Wang G.
LORM: a novel reinforcement learning framework for biped gait
control. Peer] Comput Sci. 2022;8: €927.

Canese L, Cardarilli GC, Di Nunzio L, Fazzolari R, Giardino D,
Re M, Spand S. Multi-agent reinforcement learning: a review of
challenges and applications. Appl Sci. 2021;11(11):4948.
Mehta D. State-of-the-art reinforcement learning algorithms. Int
J Eng Res Technol. 2020;8:717-22.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

SN Computer Science
A SPRINGER NATURE journal

o

	A Novel Algorithm for Optimal Trajectory Generation Using Q Learning
	Abstract
	Introduction
	Motivation

	Related Works
	Research Gap
	Research Challenges in Trajectory Generation [37]

	Proposed Method and Algorithm
	Base Q-Learning [23]: Umbrella Term for Reinforcement Learning
	Learning Agent for Optimal Trajectory
	Working Methodology

	Results Analysis and Comparisons
	Learn Optimal Trajectory from the Episode

	Conclusion
	References

