
Journal of Grid Computing (2021) 19:34
https://doi.org/10.1007/s10723-021-09574-y

Offloading Coalition Formation for Scheduling Scientific
Workflow Ensembles in Fog Environments

Hajar Siar ·Mohammad Izadi

Received: 3 November 2020 / Accepted: 21 June 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Fog computing provides a distributed com-
puting paradigm that executes interactive and dis-
tributed applications, such as the Internet of Things
(IoT) applications. Large-scale scientific applications,
often in the form of workflow ensembles, have a
distributed and interactive nature that demands a dis-
persed execution environment like fog computing.
However, handling a large-scale application in het-
erogeneous environment of fog computing requires
harmonizing heterologous resources over the contin-
uum from the IoT to the cloud. This paper investigates
offloading and task allocation problems for orches-
trating the resources in a fog computing environment
where the IoT application is considered in the form
of workflow ensembles. We called Offload-Location a
mechanism which has been designed to find offload-
ing coalition structure alongside a matching algo-
rithm for allocating the offloaded tasks to fog/cloud
resources. The introduced solution attempts to mini-
mize the execution time and minimize the price paid to
servers for executing the tasks provided that Quality of
Service (QoS) requirements of the ensemble’s dead-
line and budget are retaining. These objectives lead
to maximizing the number of completed workflows of

H. Siar · M. Izadi (�)
Department of Computer Engineering, Sharif University
of Technology, Tehran, Iran
e-mail: izadi@sharif.edu

H. Siar
e-mail: siar@ce.sharif.edu

the ensemble as an ultimate goal. The appropriate per-
formance of this mechanism is studied under different
workflow applications and circumstances.

Keywords Fog computing · Workflow ensembles ·
Offloading · Mechanism design · Coalition games ·
Matching theory

1 Introduction

IoT refers to a diverse ecosystem of connected devices
to the internet. This technology, which has a dis-
tributed and interactive environment, enables execut-
ing large-scale distributed and scientific applications.
A scientific application with large-scale computations
and data analysis includes a sequence of steps to
complete. An essential characteristic of these applica-
tions is that computations and data may distribute in
the execution environment. Also, users need dynamic
interaction with the applications to see preliminary
results on time and construct the application’s contin-
uation. Workflow considers an efficient way to model
and manage the steps of complex, distributed, inter-
active, and scientific applications. It is an important
method to provide a formal and declarative represen-
tation of these applications [11, 22].

IoT services are commonly provide using cloud
computing. However, this computing paradigm has a
centralized model, in which all data are transmitted
to the cloud datacenters for processing and storing.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09574-y&domain=pdf
http://orcid.org/0000-0003-3561-3942
mailto:izadi@sharif.edu
mailto:siar@ce.sharif.edu

 34 Page 2 of 20 J Grid Computing (2021) 19:34

Cloud computing is tackling network bandwidth and
data transmission delay challenges, especially for
delay-sensitive and distributed applications like scien-
tific applications [23, 24]. An IoT environment fol-
lowing the architecture of cloud computing is known
as cloud-centric IoT [8] which faces challenges of
BLURS: bandwidth, latency, uninterrupted, resource-
constraint, and security. However, the distributed and
interactive nature of large-scale workflow-based sci-
entific applications has several challenges with the
limitations of current executing environments. For
example, many large-scale computational problems
need interactions with distributed professors around
the world to verify the results of each step of the
workflow [11].

Many different approaches are studied for extend-
ing cloud computing to a more geographically dis-
tributed model. Among the various concepts, fog
computing gained more attention [8, 23]. Although
some studies use fog and edge computing interchange-
ably, these concepts have several differentiates. Edge
computing employs the edge resources, while fog
computing has a hierarchical-based distributed com-
puting model, harnesses resources from the edge to the
cloud continuum. The closer computation and storage
resources to the end-user are, the greater their geo-
distribution and the lower their computational power
[3, 23, 53]. Fog nodes closing to end-users can reduce
latency noticeably compared to cloud computing [9,
24]. For characterizing fog and cloud computing, we
can say that fog computing support latency-sensitive
and interactive applications, while cloud computing
supports CPU-intensive and delay-tolerant applica-
tions. Although there are some differences between
these two technologies, not only fog and cloud com-
puting are distinct, but also they complement each
other. Using fog nodes can address most of the
challenges of cloud computing [23, 47, 53]. This
distributed network’s heterogeneous resources must
cooperate effectively to achieve the capabilities of
the environment. The orchestrator is a vital compo-
nent in harmonizing the resources from the IoT to the
cloud continuum. Scheduling and assigning the appli-
cation’s tasks to resources is an essential function of
this component. The fog and cloud nodes can lease
their resources to end-users to efficiently execute their
applications. A fog broker, which is often a fog node,
decides IoT applications’ tasks are execute locally or

offload to fog/cloud resources. Hence, task offload-
ing and resource allocation are essential challenges in
scheduling the applications in a fog environment [41,
43, 48].

Although considering the applications in the form
of workflow can model and manage them effec-
tively, there are few studies on workflow scheduling
in fog environments. The literature considered dif-
ferent types of workflow-based applications. Some
large-scale applications consist of multiple workflows
in which each workflow has a specified QoS. Also,
the large-scale application may be represented as a
workflow ensemble, where the combined execution
of workflows generates the desired output. There are
some differences between applications in the form of
workflow ensembles and multiple workflows. Firstly,
the QoS requirements are determined for the ensem-
ble as a whole, not each workflow. So, all workflows
cannot complete necessarily, and an extra objective
compared with multiple workflows is maximizing the
number of completed workflows from the ensemble.
Also, the ensemble’s workflows have a similar struc-
ture, and the differences are in the input data and
workflows’ size. The final difference is the number
of workflows in the ensemble, which is predefined in
most cases [31, 42]. Providing QoS requirements is
an important objective in executing workflow ensem-
bles. The behavior of application is influenced by
various parameters such as time, available budget,
energy, bandwidth, and other parameters. Most of
these criteria are interdependent, such that considering
several parameters in the solution can provide the QoS
requirements efficiently [26, 35, 49].

We proposed a game-theoretic solution using coali-
tion games to address task offloading and allocation
problems for executing workflow ensembles in a fog
environment. The considered system model consists
of multiple IoT, fog, and cloud devices, such that a
set of resources in different tiers are cooperating in
executing the application. To the best of our knowl-
edge, it is the first study that addresses multi-objective
problems of offloading and task allocation for work-
flow ensembles in a fog environment consisting of
IoT-fog-cloud devices. The considered objectives are
minimizing execution time and minimizing monetary
cost of executing the tasks, while the considered QoS
constraints of the ensemble’s deadline and budget
are not violating. Reaching these objectives leads to

J Grid Computing (2021) 19:34 Page 3 of 20 34

maximizing the number of completed workflows of
the ensemble as an ultimate objective. Since cloud
computing’s bandwidth-delay is a motivation for
emerging the fog computing paradigms, a resource
management solution in this environment must con-
sider the communication delay as a vital performance
metric. Previous studies on workflow management [7,
27] emphasize the influence of data demands and data
communications on the execution time, while most
studies did not consider this issue [7]. The current
research considers the data demands and communi-
cation delays for executing the tasks. We defined an
optimization problem for the considered scenario and
applied a game-theoretic approach by determining IoT
devices’ payoff function. A mechanism which we
named Offload-Location is designed to find a coali-
tion of IoT devices that are offloading their tasks
to fog/cloud tiers, and the rest of IoT devices are
executing their tasks locally. Also, we used a many-
to-one stable matching to determine the appropriate
fog or cloud resources for allocating the offloaded
tasks. We have shown the stability of the proposed
Offload-Location mechanism and its time complexity.
We analyzed the performance of the proposed solution
using extensive experiments on benchmark scientific
workflows under different situations.

The structure of this paper is as follows. Section 2
presents a literature review of related works and an
analysis of the mentioned studies. The solution’s con-
siderations are illustrated in Section 3, consisting
of system and application model, problem formula-
tion, and game model. The proposed Offload-Location
mechanism is explained in Section 4. Sections 5 rep-
resent experimental evaluations of the proposed solu-
tion. Conclusion and possible directions for future
works are present in Section 6.

2 Related Works

Generally, there are numerous studies on scheduling
in fog and cloud computing environments. In most of
these studies, the target application is considered as
independent tasks, and the number of works on work-
flow scheduling in fog paradigms is limited [22, 49].
The main difference between task scheduling studies
of independent and dependent tasks is that schedul-
ing of dependent tasks considers dependencies among
tasks in the form of workflows, which results in more

efficient and actual solutions [22, 49]. According to
[14], research studies on orchestration and schedul-
ing in fog environments can classify into two main
groups: network architecture-based schemes and algo-
rithmic schemes. Since the proposed offloading and
task allocation solution is an algorithmic scheme, the
literature study was conducted on algorithmic ones.
Algorithmic schemes categorize into two groups by
considering the optimization objectives: single objec-
tive and multi-objective. We can also classify the
literature into two categories by considering the input
application as independent tasks or dependent tasks
(i.e., workflows). Furthermore, based on Section 1, the
dependent tasks can be assumed as a single workflow,
multiple workflows, or workflow ensembles.

A joint computation offloading and prioritized task
scheduling in mobile edge computing proposed in
[17]. The solution attempts to minimize edge devices’
energy consumption, using a task offloading strategy
and schedule the tasks using a dynamic priority-
based task scheduling. In [46], Tianz and et al. are
designed the independent task scheduling problem
among mobile devices in mobile edge computing as
a potential game. The scheduling solution attempts
to improve resource usage by minimizing delay and
energy consumption in computation offloading and
executing the task. The paper of [25] proposed a game-
theoretic model for offloading and task allocation
of surveillance applications’ periodic tasks in mobile
cloud computing. The offloading solution attempts to
minimize execution time and energy consumption of
mobile devices.

The ability of computation offloading in maximiz-
ing the system utility in fog computing is proved
[43, 54]. The paper of [14] addresses the offloading
problem in mobile edge computing. The considered
environment consists of mobile edge computing base
stations (MEC-BS) such that each MEC-BS provides
services to the mobile terminals under its coverage.
The objective is to improve the utility of end devices
in terms of execution time and energy consumption
while balancing the load of MEC-BS by scheduling
the tasks over multiple MEC-BSs. In [1], the NSGA-
II algorithm is used for allocating independent tasks in
an IoT-Fog-Cloud architecture. This approach attemps
to minimize time and energy consumption for execut-
ing the tasks. In [21] a recursive algorithm is proposed
to optimize offloading and scheduling problems of
independent tasks in fog computing. The paper of [4]

 34 Page 4 of 20 J Grid Computing (2021) 19:34

addresses offloading and scheduling of IoT tasks using
the matching theory. The preferences of fog and IoT
devices are defined considering fog nodes attempt to
minimize their operation cost (i.e., energy consump-
tion) and minimize traffic cost, while IoT devices are
interesting in minimizing the execution time. Offload-
ing and resource allocation problems in a multi-tier
fog network are address in [18]. The solution attempts
to minimize long-term time-average expectation of
power consumption in fog tiers. We consider the
power as energy in analyzing the related works.

The resources of a network do not necessarily have
an incentive to share their powers. For example, a
more powerful device having less load may not have
incentive to share its resources with an overloaded
device with less power. In this case, some mecha-
nisms are needed to motivate the devices. Liu, Y. and
et al. are model the interactions between cloud service
operator and edge servers as a Stackelberg game to
motivate resources to cooperate in the offloading [30].
Zhou. and et al. [56], are designing an auction mech-
anism in mobile edge computing. The mechanism is
forming a shared resource network and an offload-
ing market to motivate mobile devices to share their
resources [56]. The literature study of this research
explained that most of works in motivating resources
are game theory and auction-based [56]. The paper
of [55] is a game-theoretic solution for addressing
computation offloading in vehicular edge computing
using Stackelberg game. The solution uses a multi-
level offloading scheme to determine the optimal
offloading workload of vehicles while not violating
the delay constraints of tasks. Chen and et al. are
introduced a socially trusted collaborative network of
edge resources. This work indicates that collaboration
among edge devices can reduce system costs by about
40 percent [9]

Although there are limited studies on workflow
scheduling in fog computing paradigms, most of
these research studies use meta-heuristic approaches.
Goudarzi and et al. introduced a multi-objective meta-
heuristic technique using a memetic algorithm for
workflow scheduling among IoT-edge-cloud devices
to minimize energy and time consumption. The con-
sidered application is in the form of multiple work-
flows, and QoS constraints did not consider in the
solution [20]. The paper of [52] studied on the
video edge analytics by considering the application

as a workflow. The introduced model is an edge-
first scheme focusing on mobile-edge and edge-edge
layers to minimize the response time. Also, it is
enabling inter-edge collaboration by introducing three
task-placement schemes. The paper of [50] stud-
ies the problem of workflow scheduling for multi-
media applications. It uses a meta-heuristic method
for scheduling the tasks. Also, Blockchain technology
is used for data security and integrity during offload-
ing. Since Blockchain mining is a computationally-
intensive task, this technique must be used rigorously
in resource-limited resources of edge/fog. In [45],
a cloud and edge-aware heuristic is introduced to
schedule multiple real-time workflows in a three-level
architecture with IoT-fog-cloud devices. The schedul-
ing solution attempted to assign CPU-intensive and
latency tolerant tasks to the cloud and assign latency-
sensitive tasks with short running times to fog devices.
In [51] the offloading problem for multiple-workflows
is formulated as a multi-objective optimization prob-
lem that attempts to minimize time and energy con-
sumption. The NSGA-III is used for addressing the
optimization problem.

Since the literature review shows no study on
resource management for workflow ensembles in fog
environments, studies in cloud computing are pre-
sented in this section. Geneaz and et al. have intro-
duced a flexible workflow ensemble scheduling in
[19], using the PSO algorithm. The authors defined
flexibility as changing the objective function and
using the solution in different circumstances. They
mentioned that a mixture of the objective functions
could not be used in their solution, and it is a
single-objective solution. Pietri and et al., in [40] are
investigate resource provisioning problem to schedule
workflow ensembles while the deadline and energy
constraints are satisfied. This study considers energy
constraints besides the deadline or available budget for
scheduling workflow ensembles for the first time. The
paper of [31] is an extension of [40] that addressed
the scheduling problem of workflow ensembles under
constraints of budget and deadline and aiming to
maximize the number of completed workflows.

An analysis of the presented related works shows
in Table 1. The table compares the studies regard-
ing inputs, architecture, approach, and objectives in
the solution. Although the distributive and interac-
tive nature of scientific workflow ensembles demands

J Grid Computing (2021) 19:34 Page 5 of 20 34

Ta
bl
e
1

R
el

at
ed

w
or

ks
an

al
ys

is

G
ao

an
d

M
oh

T
ia

nz
e

et
al

.
Jo

ši
lo

an
d

D
án

X
ie

et
al

.
Y

i
et

al
.

X
u

et
al

.
St

av
ri

ni
de

s
an

d
K

ar
at

za

G
en

ez
et

al
.

Pi
et

ri
et

al
.

M
al

aw
sk

i
et

al
.

Fa
n

et
al

.
X

u
et

al
.

L
iu

et
al

.
Z

ho
u

et
al

.
Z

ha
ng

et
al

.
C

he
n

an
d

X
u

G
ou

da
rz

i
et

al
.

G
ao

et
al

.
G

uo
et

al
.

A
ri

sd
a-

ke
ss

ia
n

et
al

.

A
bb

as
i

et
al

.

[1
7]

[4
6]

[2
5]

[4
9]

[5
2]

[5
0]

[4
5]

[1
9]

[4
0]

[3
1]

[1
4]

[5
1]

[3
0]

[5
6]

[5
5]

[9
]

[2
0]

[1
8]

[2
1]

[4
]

[1
]

In
pu

t
In

de
pe

nd
en

t-
ta

sk
s

�
�

�
�

�
�

�
�

�
�

�
�

Si
ng

le
-

w
or

kf
lo

w
s

�
�

M
ul

tip
le

-
w

or
kf

lo
w

�
�

�
�

W
or

kf
lo

w
-

en
se

m
bl

e
�

�
�

A
rc

hi
te

ct
ur

e
Io

T
�

�
�

�
�

�
�

�
�

Fo
g/

E
dg

e
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
C

lo
ud

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

A
pp

ro
ac

h
H

eu
ri

st
ic

�
�

�
�

�
�

�
M

et
a-

he
ur

is
tic

�
�

�
�

�
�

�
M

ac
hi

ne
-

L
ea

rn
in

g

G
am

e-
th

eo
ry

�
�

�
�

�
�

�

O
bj

ec
tiv

e
T

im
e

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

E
ne

rg
y

�
�

�
�

�
�

�
�

�
�

�
�

�
Pr

ic
e

�
�

�
�

�
�

�
�

�
�

Se
cu

ri
y

�

 34 Page 6 of 20 J Grid Computing (2021) 19:34

the distributed environment of fog computing, Table 1
represents no study on workflow ensemble scheduling
in this environment. Another aspect of this analysis
is that the number of works considering all resources
over the continuum from the IoT to the cloud is lim-
ited, while a solution that employs all heterogeneous
resources in the environment is more efficient. This
analysis confirms that most related studies are consid-
ered multiple objectives in their solution because of
the problem space’s multi-objective nature. Although
the meta-heuristic approaches are easy to design and
implement, they suffer from overhead in time and
memory and convergence to a local optimum.

Game-theoretic approaches apply strategic solu-
tions that enable players to decide the optimal decision
by considering the strategy of other players [28, 36].
In this paper, a game-theoretic method has been pro-
posed for computation offloading and task allocation
among IoT-fog-cloud devices in a fog computing envi-
ronment. The applications are in the form of workflow
ensembles with the QoS constraints of available dead-
line and budget. A coalition game has been designed
to specify the set of IoT devices offloading their task,
and the set of devices execute their tasks locally. The
allocation of offloaded tasks to fog and cloud nodes
is determined using a many-to-one stable matching.
All of the decisions in these procedures are made by
considering the ensemble’s deadline and budget con-
straints and minimizing the execution time and the
price.

3 System and Game Model

This section represents the underlying fog computing
environment, the application model, and problem for-
mulation. Besides, some considerations of the solution
algorithm and the game model are described.

3.1 System Model

The considered three-tier system model consisting
of IoT-fog-cloud devices represents in Fig. 1. We
assumed large-scale scientific applications in the form
of workflow ensembles inputting to IoT devices.
There are predefined QoS constraints for the ensem-
ble, and workflows that do not violate the constraints
are entering to the IoT devices randomly, such that
all tasks of each workflow are inserting to a specific

IoT device with a specified arrival rate. The abbre-
viations of m, e, and c indicate IoT, fog, and cloud
layers, respectively. layer(t) refers to the layer corre-
sponding to the node assigned to task t . For example,
if task t is allocating to a device that is in the fog
layer, then layer(t) = e. We have assumed nm IoT
devices, ne fog servers, and nc cloud servers in the
system. The computation power of resource k rep-
resents by μk where for all μk’s in the same layer,
we have the relations of μm ≤ μe ≤ μc. We have
considered the connections among nodes as a virtu-
ally connected graph, where each node is connected
directly to other nodes. rm,e and re,c represent data
communication rates from IoT to fog layer and from
fog to cloud layer, respectively. Also, re,e and rc,c rep-
resent data communication rates among servers in the
fog layer and servers in the cloud layer, respectively.

Fog and cloud servers receive a price for process-
ing the tasks, which varies due to the heterogeneity of
resources in different layers. We assume that resources
are leased and charged per billing period. The mone-
tary cost of using resource k in each billing period is
considered as cuk; also τe, and τc are billing period
of resources in the fog and cloud layers, respectively.
Since resources in the fog layer have less power than
those in the cloud layer, the price of resources in the
fog layer is less than those are in the cloud layer. A
resource may be idle, while time remains until its next
billing period. This remained time will be considered
in calculating the monetary cost of processing the next
task. If this time is longer than the next task’s response
time, no price will receive. If this remained time is RT

and the estimated response time of ready task t is P
p
k,t ,

then the monetary cost of resource k for processing
this task can be calculated as follows:

ck
t =

⎧
⎨

⎩

0 if RT ≥ P
p
k,t[

(P
p
k,t−RT)

τk

]

cuk if RT < P
p
k,t

(1)

In the above equation, k ∈ [e ∪ c] . If k is a fog or
cloud server, then τk = τe or τk = τc , respectively.

3.2 Application Model

The input application is in the form of workflow
ensembles representing as A = {wi |1 < i < nw}.
Where nw is the number of workflows in the ensem-
ble. Each workflow, which is in the form of a directed
acyclic graph (DAG) of wd

i = (T d
i , Ed

i) enters to a

J Grid Computing (2021) 19:34 Page 7 of 20 34

Fig. 1 System model

specific IoT device d , where T d
i = {ti,j,d |1 < i <

nw, 1 < j < |Ti | , 1 < d < nm} is the vertex set
of wd

i and ti,j,d is task j of workflow i that enters to
IoT device d . The workload size of ti,j,d is represent
as wti,j,d . The set of all tasks of all workflows enter-
ing IoT-device d are define as T d = {T d

i |1 < i <

nw, 1 < d < nm}. Ed
i corresponds to the edge set

of wd
i . An edge of (ui,j,d , vi,j,d) in the graph indi-

cates data dependency between tasks ui,j,d and vi,j,d .
The amount of data must send from the output of
ui,j,d to the input of vi,j,d is represent by duv . In this
case, vi,j,d is a child of ui,j,d and execution of vi,j,d

starts only after completed execution of its parents and

availability of their output data on the resource allo-
cated to this task. If both ui,j,d and vi,j,d are allocate
to a same resource, the data communication delay is
consider as zero. The set of parents of task t represents
as pred(t), and t is said to be ready if pred(t)’s output
data are available on the resource assigned to t [22].

QoS constraints of scientific workflow ensembles
are defining for the ensemble, not each workflow inde-
pendently. Applying these constraints does not neces-
sarily allow completing all workflows, so executing
the maximum number of workflows from the ensem-
ble is desired. Our solution is workflow aware, which
evaluates the executability of input workflows according

 34 Page 8 of 20 J Grid Computing (2021) 19:34

to the current deadline and budget constraints. For
every new task of a workflow, a procedure checks the
required computation and monetary cost for executing
the workflow, and the new workflow can be consid-
ered in the scheduling procedure if these costs are not
higher than the current deadline and budget constraints
of the ensemble.

3.3 Problem Formulation

This section presents a formal representation of the
offloading and task allocation problems for workflow
ensemble scheduling in the defined fog environment.
Each IoT device can execute its ready task locally
or offload it to one of fog or cloud resources. After
choosing the offloaded tasks, both fog and cloud
devices are participating in the task allocation. Hence,
we tackle two problems: which tasks will offload to
fog or cloud servers and how to allocate the offloaded
tasks among servers.

A list of notations used in this section is present in
Table 2. The offloading decision of nm IoT devices
represents using a binary vector of O with the length
of nm such that Od = 1 means IoT device d

offloads its task and Od = 0 means local execu-
tion of the task. The IoT device d is permitted to
offload provided that the sum of computation and
monetary cost of executing the task in the fog or
cloud layer is not bigger than that of local exe-
cution. The allocation decision of offloaded tasks

is represented using a matrix S with the size of
#offloaded-tasks×(ne + nc), such that the rows indi-
cate the offloaded tasks and the columns correspond
to the fog and cloud servers. Each fog or cloud node
r must initialize column �Sr of S, so that for every
offloaded task t if St,r = 1 then, task t allocates to
resource r , otherwise St,r = 0. Each task allocates to
only one resource, so the statement of

∑ne+nc

r=1 St,r =
1 must satisfy. The offloading solution attempts to
minimize the computation and monetary cost of exe-
cuting the tasks provided that the ensemble’s deadline
and budget constraints are not violated. Achieving
these two objectives remains more time and budget,
which leads to maximizing the number of completed
workflows from the ensemble. The computation cost
of resource k in executing task ti,j,d is defined by
the sum of response time and the time needed for
receiving the dependency data of ti,j,d , which is
known as communication delay. The response time
of executing task ti,j,d on resource k is calculated by
formula (2) for both local execution and offloading,
respectively.

p
p
k,ti,j,d

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wti,j,d

μd

, if k = d ∧ Od = 0

wti,j,d

μk

, if k �= d ∧ Od = 1

(2)

We are using formula (3) for estimating the com-
munication delay of executing task ti,j,d on device k

for both cases of local execution and offloading.

ptr
k,ti,j,d

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
u∈pred(ti,j,d) ∧ layer(u) �=m

du,ti,j,d

rlayer(u),m

, if k = d ∧ Od = 0

∑
u∈pred(ti,j,d) ∧ layer(u) �=layer(ti,j,d)

du,ti,j,d

rlayer(u),layer(ti,j,d)

, if k �= d ∧ Od = 1

(3)

So, the computation cost of executing task ti,j,d on
device k evaluates by formula (4).

p
comput
k,ti,j,d

= (p
p
k,ti,j,d

+ ptr
k,ti,j,d

) (4)

We assume IoT devices do not receive any price
in local execution. However, fog and cloud devices

impose a monetary cost for processing, which is
explained in Section 3.1. So, we can evaluate the mon-
etary cost of executing ti,j,d on device k as follows.

pmon
k,ti,j,d

=
{

0 , if k = d ∧ Od = 0

c
ti,j,d
k , if k �= d ∧ Od = 1

(5)

J Grid Computing (2021) 19:34 Page 9 of 20 34

Table 2 List of notations
Notation Definition

D Deadline constraint of the ensemble (second)

B Budget constraint of the ensemble

nm Number of IoT devices

ne Number of fog servers

nc Number of cloud servers

nw Number of workflows in the ensemble

ti,j,d task j of workflow i entering to IoT device d

wti,j,d Workload size of ti,j,d (millions of instructions)

μk Computation power of resource k (millions instructions)

du,v Size of data dependency between tasks u and v (bit)

rlayerm,layerk Communication rate between two devices such that

first device is in a layer that task m allocates to it and

second device is in a layer that task k allocates to it (bit/second)

γ m The weight attribute of monetary cost

γ c The weight attribute of computation cost

τk Billing period of resource k (second)

cuk price of using resource k per billing period

ck
t Received price of resource k for processing task t

O Offloading decision vector of IoT devices

S Task allocation decision matrix of fog and cloud devices

p
comput
k,ti,j,md

Computation cost of executing task ti,j,md on resource k (second)

pmon
k,ti,j,md

Monetary cost of executing task ti,j,md on resource k

According to the above formulations, we have the
following optimization problem.

min
Od,Sti,j,d ,k

nm+ne+nc∑

k=1

nm∑

d=1

nw∑

i=1

|T d
j |

∑

j=1

OdSti,j,d ,k

×
[
γ cp

comput
k,ti,j,d

+ γ mpmon
k,ti,j,d

]
+ (1 − Od)p

comput
k,ti,j,d

(6)

such that

Od ∈ [0, 1] , ∀d = 1, ..., nm (7)

ne+nc∑

k=1

Sti,j,d ,k =1 , Sti,j,d ,k ∈ [0, 1]; ∀i = 1, ..., nw;

j = 1, ..., |T d
i |; d = 1, ..., nm; k = 1, ..., nm

+ne + nc (8)

nm+ne+nc∑

k=1

nm∑

d=1

nw∑

i=1

|T d
j |

∑

j=1

OdSti,j,d ,k × p
comput
k,ti,j,d

+(1 − Od)p
comput
k,ti,j,d

< D (9)

nm+ne+nc∑

k=1

nm∑

d=1

nw∑

i=1

|T d
j |

∑

j=1

OdSti,j,d ,k × pmon
k,ti,j,d

< B (10)

Where γ c and γ m are weight attributes to balance
the computation cost and monetary cost, respectively.
Function (6) is the total cost of executing workflows’
tasks provided that QoS constraints are preserved.
Constraint (7) denotes Od is a binary decision parame-
ter. Constraint (8) ensures that each task ti,j,d allocates
to exactly one resource of fog or cloud. Constraints (9)
and (10) are guarantee that the computation and mon-
etary cost of executing all tasks of all workflows do
not violate the deadline and budget constraints of the
ensemble, respectively.

It is an integer programming problem attempting
to formulate task offloading and allocation of work-
flow ensembles in a fog environment considering the
deadline and budget constraints. The offloading prob-
lem is seeking a group of IoT devices offloading their
tasks while the rest of IoT devices execute their tasks
locally. Function (6) indicates that addressing the task

 34 Page 10 of 20 J Grid Computing (2021) 19:34

offloading problem requires determining the resources
assigned to the offloaded tasks. Since all IoT devices
desire to minimize the computation and monetary cost
of executing their tasks with a global incentive to
maximize the number of completed workflows of the
ensemble, we used a coalition game to address this
problem. Also, stable matching is used for handling
the task allocation problem.

3.4 Coalition Game Model

This section presents the proposed game-theoretic
framework, which uses a coalition game [5, 13,
15, 28, 37] to schedule workflow ensembles in fog
environments regards to the illustrated problems of
offloading and task allocation. Assuming MD =
{md1, md2, · · · , mdnm}, a coalition game is defined
as a tuple of (MD, V) such that MD is the set of
players and V is a real-valued characteristic function

which defines on F ⊆ MD such that V → �+ and
V (Ø) = 0. F ⊆ MD is a coalition, and a partitioning
of the player set is known as coalition structure, which
represents by F . Each player of coalition F receives
a payoff according to the characteristic function. A
coalition game is looking for a coalition structure that
maximizes all players’ payoff.

Our solution, named offloading coalition game, con-
siders the IoT devices as players and seeks an optimal
coalition of players who desire to offload their tasks
as an offloading coalition. Others who do not partici-
pate in the offloading coalition will execute their tasks
locally in the form of local coalitions with exactly one
member. The satisfaction of the deadline and budget
constraints are checking in all cases. Since the def-
inition of coalition games attempt to maximize the
players’ payoff, the defined functions in the offload-
ing optimization problem are used in fraction form to
determine the V (F) according to formula (11).

V (F) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∑

md∈F [γ cp
comput
k,ti,j,md

+ γ mpmon
k,ti,j,md

] , if |F | > 0 and F is a f easible off loading coalition

1

p
comput
md,ti,j,md

, if |F | = 1 and F is a f easible local coalition of md

0 , if |F | = 0

α if F is not f easible

(11)

A coalition of IoT devices is feasible if the com-
putation cost and monetary cost of executing this
coalition’s tasks do not violate the available deadline
and budget, respectively. The parameter of α in the
characteristic function of infeasible coalitions is a neg-
ative and small value, which prevents players from
choosing these coalitions. Equation 11 indicates that it
is necessary to know the resources assigned to tasks to
calculate the coalitions’ characteristic function.

The players participate in a coalition with maxi-
mum profit, and the coalitions define a payoff division
rule to distribute the payoff among participated play-
ers. We are sharing the profit among players equally.
The following division rule is used to evaluate the
payoff of player i in an offloading coalition F .

payoffi = VFi
= VF

|F | (12)

A coalition consists of all players of the game is
known as the grand coalition. The core of a coali-
tion game is a distribution of payoff among players in
the grand coalition such that no player has an incen-
tive to leave the grand coalition [5, 13, 15, 28, 37].
By considering the feasibility constraint in generat-
ing the coalitions, a situation may occur that players
do not have any incentive to form the grand coali-
tion. Assume there are five IoT devices of MD =
{md1, · · · , md5} and the game reached to the offload-
ing coalition of {md1, · · · , md4}. If joining {md5} in
the offloading coalition makes it infeasible, the pay-
off of {md5} will decrease in the grand coalition, and
it has no incentive to join the grand coalition. So the
core of the offloading coalition game is empty. Under
these situations, other techniques are used to find the
optimal coalition and solving the game.

J Grid Computing (2021) 19:34 Page 11 of 20 34

4 Offloading and Allocation Mechanism

4.1 Offloading Coalition Game

We used hedonic games [6] to solve the proposed
offloading coalition game. A Hedonic game defines as
a pair of (I,�) where I is the set of players, and � is
an irreflexive and transitive preference relation defines
over coalition collections. A coalition collection is a
set of disjoint coalitions, and two collections are com-
pared, provided that they have different partitioning on
the same set of players [2, 6]. In the illustrated offload-
ing coalition game, a collection with maximum payoff
is preferred. We define the payoff of a collection as the
summation of its coalitions’ payoff. If payoff(X) is the
payoff of coalition collection X, the preference relation
over coalition collections defines by formula (13).

X � X′ ⇔ payoff (X) > payoff (X′) (13)

Hedonic games are employ two operators of merge
(�m) and split (�s) to exchange the players among
coalitions according to the preferences of coalition
collections [2, 6, 32, 33]. These operations are defined
in formula (14).

merge :
⎧
⎨

⎩

k⋃

j=1

Fj

⎫
⎬

⎭
�m {F1, ..., Fk};

where

⎧
⎨

⎩

k⋃

j=1

Fj

⎫
⎬

⎭
� {F1, ..., Fk}

split : {F1, ..., Fk} �s

⎧
⎨

⎩

k⋃

j=1

Fj

⎫
⎬

⎭
;

where {F1, ..., Fk} �
⎧
⎨

⎩

k⋃

j=1

Fj

⎫
⎬

⎭
(14)

In the offloading coalition game, players’ prefer-
ences specify according to the coalition’s characteris-
tic function of V(F). We defined the merge and split
operations of our offloading coalition game accord-
ing to formulas (15) and (16), respectively. These
operations generate coalition structures according to
the problem’s assumptions. So, the merge operation
permits merging single-member coalitions of local
with the offloading coalition. Also, the split operation

enables splitting the offloading coalition into one or
more single-member local coalitions.

merge :
⎧
⎨

⎩
FO ∪ {

k⋃

j=1

Fj }
⎫
⎬

⎭
�m {FO, F1, ..., Fk}

⇔ V{
FO∪{⋃k

j=1 Fj }
} > VFO

+
k∑

j=1

V (Fj) (15)

split : {FO, F1, ..., Fk} �s

⎧
⎨

⎩
FO ∪

⎧
⎨

⎩

k⋃

j=1

Fj

⎫
⎬

⎭

⎫
⎬

⎭

⇔ ∀ j ∈ {1, ..., k},

∀md ∈ Fj , md ∈ FO; VFO
+

k∑

j=1

V (Fj)

≥ V{
FO∪{⋃k

j=1 Fj }
}

∧ {∃j ∈ {1, ..., k}; V{
FO∪{⋃k

j=1 Fj }
}
∩Fj

+ VFj

> V{
FO∪{⋃k

j=1 Fj }
} ∨ ∃mdi ∈ FO;

× VFO
+

k∑

j=1

V (Fj) > V{
FO∪{⋃k

j=1 Fj }
} } (16)

Where FO is the offloading coalition. The merge
and split are happen provided that the payoff of no
coalition decreases and no player will be unhappy.
The merge occurs when there are one or more play-
ers in local coalitions that will be more profited if
they offload their tasks, or the payoff of the offload-
ing coalition will increase if this/these player(s) join
the offloading coalition. Also, the split happens pro-
vided that one or more players will gain more payoff
when leaving the offloading coalition, or the payoff
of the offloading coalition will increase by removing
one or more players provided that their utilities are not
decreased.

4.2 Task Allocation Matching

The introduced offloading coalition game determines
whether the tasks are executed locally or offloaded
to fog or cloud tiers. However, there is another ques-
tion: how offloaded tasks will assign to the fog or

 34 Page 12 of 20 J Grid Computing (2021) 19:34

cloud resources. We used a many-to-one stable match-
ing [12, 16] for addressing this problem. The stable
matching works on two disjoint sets of players with
a predefined preference list to find a pairing of play-
ers while no player has any preference in leaving
his/her pair. We defined the task allocation matching
over two sets of offloaded tasks and available fog or
cloud resources. The matching attempts to find a pair-
ing of offloaded tasks to resources according to the
preferences.

Since IoT devices prefer minimizing computation
and monetary cost of executing their tasks, the prefer-
ence of offloaded task ti,j,d on assigning to fog/cloud
resource k is defined by formula (17).

prefti,j,d (k) = 1
(
γ cp

comput
k,ti,j,d

+ γ mpmon
k,ti,j,d

) (17)

Since the tasks are demanding to minimize compu-
tation and monetary costs, the preference relation of
offloaded task ti,j,d over two fog/cloud resources of k1

and k2 is defined as follows.

k1 >ti,j,d k2 ⇔ prefti,j,d (k1) > prefti,j,d (k2) (18)

The offloaded tasks are assigned to fog or cloud
resources according to their preferences. When a
resource has more than two requests, it selects a task
with minimum computation cost. So, the preference
function and preference relation of fog/cloud resource
k over two tasks of t1 and t2 represent by formula (19).

prefk(ti,j,d) = 1

p
comput
k,ti,j,d

(19)

t1 >ti,j,d t2 ⇔ prefk(t1) > prefk(t2) (20)

According to the above explanations, the task allo-
cation matching algorithm presents in Algorithm 1.

The proposed Offload-Location mechanism is
shown in Algorithm 2. This mechanism executes by
a fog broker in the fog tier. It starts at lines 3-7 by
considering each IoT device in a local coalition and
calculating their characteristic functions according to
(11); also, the offloading coalition of FO initializes
to an empty set. We considered a matrix of vis-
ited to check all possible combinations of coalitions
during the merge and split operations. The merge pro-
cess (lines 11-22) is started by selecting a random
local coalition FLi

that did not check its merging

Algorithm 1 Task-Allocation Matching.

1: Task-Allocation(OT,SE,SC)
2: Inputs: OT:offloaded-tasks; SE:fog servers; SC:cloud

servers
3: for t=1:OT do
4: Calculate preference list of offloaded-tasks and sort

lists in decreasing order

5: while there is any unmatched offloaded-task do
6: for t=1:OT do
7: if t is unmatched and it’s preference list is not

empty then
8: t propose to it’s top-ranked choice s in the

preference list
9: remove s from preference list of t

10: for s=1:SE+SC do
11: if s has at least two proposals then
12: Calculate preference list of s for her propos-

als and sort them in decreasing order
13: Match s to her top-ranked proposal

possibility with the offloading coalition. Then, the
Task-Allocation algorithm is invoked to determine the
characteristic function of the coalition that attempts to
merge. If the statement of {FO ∪ FLi

} �m {FO, FLi
}

is true, then FLi
merges with FO . The merge pro-

cess repeats until all local coalitions are checked, or
the offloading coalition has the same size as the num-
ber of IoT devices. The split process begins at line
23 by checking all partitioning of FO to a reduced
offloading coalition of F ′

O and single-member local
coalitions. The Task-Allocation matching and (11) are
used to evaluate the characteristic function of the par-
titioned coalitions. It is important to note that the
split process terminates by finding the first split. So if
{F ′

O, FL1 , ..., FL|F̂ | } �s FO is true, then a split takes
place, and the process breaks (line 32). The merge and
split processes are repeating until no merge and split
happen. After allocating tasks to the resources, the
scheduling will be done using first in first out (FCFS)
method.

The next section presents an analysis on the stabil-
ity and time complexity of the proposed mechanism.

4.3 Mechanism Analysis

A coalition game’s mechanism is stable if it converges
to a coalition structure in which no player has an
incentive to leave his/her coalition [36]. To prove the
stability of the proposed mechanism, we must show
the stability of both Task-Allocation matching and

J Grid Computing (2021) 19:34 Page 13 of 20 34

Algorithm 2 Offload-Location mechanism.

1: Offload-Location (T,SE,SC)
2: Inputs: MD: mobile devices; SE:fog servers; SC:cloud

servers; T: ready tasks
3: FO = ø
4: F = FO, FL1 , ..., FLnm

5: for all FLi
do

6: Calculate V(FLi
) for ready-tasks in FLi

∈ F
according to (11)

7: repeat
8: Stop ← T rue

9: for all FLi
∈ F do

10: V isited[FO][FLi
] ← False

11: repeat
12: F lag ← T rue

13: Randomly select FLi
∈ F such that

V isited[FO][FLi
] = F lase

14: V isited[FO][FLi
] ← T rue

15: V (FO ∪ FLi
) = T ask−Allocation({T (FO)∪

T (FLi
)}, SE, SC)

16: if {FO ∪ FLi
} �m {FO, FLi

} then
17: FO ← {FO ∪ FLi

}
18: FLi

← ø

19: for all FLi
∈ F do

20: if not V isited[FO][FLi
] then

21: F lag ← F lase

22: until (|FO | = |MD|) or (flag=True)
23: for all partitions of FO to FO = {F ′

O, F̂ } such that

F ′
O ∩ F̂ = ø ∧ F ′

O ∪ F̂ = FO do
24: {F̂ } ← {FL1 , ..., FL|F̂ | } such that FLi

= {mdi}
25: for all FLi

∈ {F̂ } do
26: Calculate V (FLi

) for ready-tasks in FLi
∈

(F) according to (11)

27: V (FO
′)= Task-Allocation({T (FO

′)},SE,SC)
28: if {FO

′, FL1 , ..., FL|F̂ | } then �s FO

29: FO ← FO
′

30: F = F ∪ {FL1 , ..., FL
F̂
}

31: Stop ← F lase

32: Break
33: until stop = T rue

34: return {FO, FLi
∈ F}

Offload-Location mechanism. According to [12, 16],
a stable matching exists for every marriage market.
Since many-to-one matching is a type of marriage
market, a stable matching exists for the Task-Allocation
matching. For the stability of the Offload-Location
mechanism, we have the following theorem:

Theorem 1 The proposed Offload-Location mecha-
nism results in a stable coalition structure.

Proof The coalition structures generate using merge
and split operations such that at least one player is
happier with the obtained coalition structure, and no
player will be disappointed by choosing this coalition
structure. So, the merge and split operations do not
visit any coalition structure twice. Since the number
of possible coalitions is finite, the proposed Offload-
Location mechanism terminates in a stable coalition
structure.

The time complexity of the proposed mechanism
is analyzed by evaluating the number of merge and
split operations in the worst-case scenario with n IoT
devices. In the worst-case, the merge operation results
in an offloading coalition with the size of n, which
requires the total number of n(n−1)

2 attempts in the
order of O(n2). Also, in the worst-case scenario, the
split operation search over all subsets of an offload-
ing coalition of size n, which is in the order of O(2n).
However, it is essential to note that the worst-case
scenario is improbable in the Offload-Location mech-
anism for both merge and split operations. Since all
coalitions are not feasible, subsequent merges of an
infeasible coalition do not check in the merge opera-
tion. Also, after finding the first split, there is no need
to check other subsets of the offloading coalition, and
the split process terminates. These conditions decrease
the probability of occurring the worst-case scenario
for the merge and split operation significantly.

5 Evaluations

5.1 Simulation Environment

A simulation environment was implemented using
MATLAB to study and analyze the proposed method,
including 10 IoT devices, eight fog servers, and five
cloud servers. The experiments are performed on a
laptop computer with Intel(R) Core(TM) i5 2.5GHz
CPU and 8 GB RAM, and a high-performance com-
puting (HPC) center with up to 80 cores from two
CPU types of Intel(R) Xeon(R) 2.4GHz, and Intel(R)
Xeon(R) 3.33GHzup. We have considered homoge-
neous resources with the same processing power in
each tier; also, one VM is assumed for each server.
Because of the limitation in real benchmarks for fog
environment [34], we have used configurations and
parameters of previous studies. IoT devices’ processing

 34 Page 14 of 20 J Grid Computing (2021) 19:34

power is 500 MIPS, and the processing power of fog
and cloud servers are respectively 8 and 10 times faster
than IoT devices [20]. Each workflow enters to an IoT
device, and local execution of this workflow’s tasks
perform on that particular IoT device. IoT devices do not
receive any price for processing the tasks of their input
workflows. The fog and cloud servers are also in charge
of executing the offloaded tasks received from all IoT de-
vices. However, fog and cloud servers receive a price for
processing the tasks. We assumed fog and cloud servers
are charging for leasing their resources with a price
of 1 and 8 dollars in billing periods of 1 hour, respec-
tively [42]. Since edge/fog servers are closer to the IoT
devices, these devices are communicating in a LAN
environment. However, the cloud servers are far from
IoT devices, so using the WAN protocol. We have con-
sidered the bandwidth of LAN as 2000 Mb and the
bandwidth of WAN as 500 Mb. The nodes of each
fog and cloud tiers have access to each other, and the
intra-bandwidth between fog servers is 4000 Mb, and
the intra-bandwidth between cloud servers is 1000 Mb
[20]. Table 3 represents the parameters of devices in
the environment. Also, the bandwidth parameters of
the network are represented in Table 4.

5.2 Workflow Ensembles

We used four types of scientific workflows in the
form of workflow ensembles from real applications to
investigate the behavior of the proposed method [39].
The Cybershake is a computational study in physics
that uses a set of scientific workflows to calculate the
seismic hazard curves [10]. The Montage is a com-
putational study for generating science-grade mosaics
of the sky. The Montage’s workflows generate a sin-
gle image mosaics individually combining to obtain
a complete image mosaic [38]. The objective of the

Table 3 Setting of devices

IoT Fog Cloud Ref

Number of devices 10 8 5 Goudarzi et al.
[20]

Processing power 500 500*8 500*12 Goudarzi et al.
[20]

Price 0 1$ 8$ Rodriguez and
Buyya [42]

Billing period – 1 hour 1 hour Rodriguez and
Buyya [42]

Table 4 Bandwidth parameters of the network

parameter value Ref.

Bandwidth of LAN 2000 Mb Goudarzi et al. [20]

Bandwidth of WAN 500 Mb Goudarzi et al. [20]

Intra-bandwidth of cloud devices 1000 Mb Goudarzi et al. [20]

Intra-bandwidth of fog devices 4000 Mb Goudarzi et al. [20]

Ligo project [29] is to detect and measure gravitational
waves using Ligo’s workflows. The Sipht [44] is a
bioinformatics project that conducts a comprehensive
search for small untranslated RNAs (sRNAs) that reg-
ulate several processes such as secretion or virulence
in bacteria [10]. Readers are referred to [26] for more
details on the scientific projects and workflows.

These scientific workflows contain many CPU-
intensive and data-intensive tasks with different struc-
tures. Based on the simulation environment’s param-
eters, we will study each application’s behavior using
the proposed method. Our analyzes investigate ensem-
bles that contain workflows with different sizes (i.e.,
different numbers of tasks). For each scientific appli-
cation, workflows with 25, 30, 50, 60, 100 tasks
were considered in the ensembles. We considered two
different types of workflow ensembles for each appli-
cation’s workflows: constant and uniform. A constant
ensemble consists of workflows with a constant size,
and a uniform ensemble of an application includes a
uniform distribution of workflows with different sizes
of that application. We considered the workflow size
of constant ensembles’ workflows is 100. Also, the
ensembles’ predefined size (i.e., the number of work-
flows in an ensemble) is 100. We define the budget and
deadline constraints of ensembles and the minimum
and maximum values of these parameters, follow what
has explained in [31]. The ensemble’s minimum price
is defined according to the minimum price of execut-
ing an individual workflow. The maximum price of
an ensemble is estimated according to the maximum
price of executing all workflows. Also, the minimum
deadline computes according to the minimum time
needed to execute the tasks in the critical path of an
individual workflow, and the maximum deadline eval-
uates by the time needed to execute the tasks in the
critical path of all workflows. After defining the mini-
mum and maximum values of the deadline and budget
parameters, the values will divide into five identical
intervals to evaluate the effect of changing the budget

J Grid Computing (2021) 19:34 Page 15 of 20 34

and deadline parameters on the performance of the
workflow scheduling method.

5.3 Analyzed Methods

We studied the scheduling algorithms’ performance using
three measures: the number of completed workflows
from the ensemble, the execution time, and the mon-
etary cost or price paid for executing the tasks con-
sidering the ensemble’s QoS constraints of deadline
and budget. We considered the number of completed
workflows in evaluating the last two performance
measures because an algorithm with more completed
workflows may consume more time and monetary
cost. The following algorithms are implemented to
analyze the efficiency of the proposed method.

– fog-offloading-coalition (FOC): It is the proposed
method in an IoT-fog-cloud environment that uses
the coalition game to determine the offloading set.

– random-offloading-coalition (ROC): It is the pro-
posed method in an IoT-fog-cloud environment such
that the offloading coalition game is not employ-
ing and the offloading set is determined randomly.

– cloud-offloading-coalition (COC): It is the pro-
posed scheme in an IoT-cloud environment with-
out employing fog devices.

– DPDS [31]: It is an algorithm for cloud provisioning
and scheduling of workflow ensembles in a cloud
environment. In this algorithm, we do not con-
sider the local execution of IoT devices. Also, fog
devices are relinquished. The DPDS had ignored
the communication delay of transmitting data among
tasks, but we have considered this communication
delay in our analysis. This algorithm can assume
as a reference point to analyze the performance of
dynamic ensemble scheduling algorithms.

We named the COC and DPDS as cloud-based techni-
ques that rely on cloud servers to execute the tasks. The
FOC and ROC are also named as fog-based approaches
that employ fog servers besides cloud servers.

5.4 Performance Evaluation

This section compares the algorithms’ functionality
under different ensembles’ sizes. We assume the max-
imum value of the budget and deadline constraints in
the simulations to permit the maximum completion
of workflows. Figure 2 represents the results of three

performance measures for all algorithms and all work-
flow ensembles in two cases of constant and uniform,
and different sizes for the ensembles (10 through 100
workflows). In all plots, the x-axis indicates ensem-
bles’ size. The left y-axis is the number of completed
workflows. The right y-axis is the execution time
or monetary cost of executing workflows within the
ensemble’s deadline and budget constraints.

Figure 2 implies that the studied algorithms’ execu-
tion time and monetary cost increase by incrementing
the ensembles’ sizes. Violating the deadline and bud-
get constraints yields to failure in completing the
workflows of the ensembles. Hence, the number of
completed workflows by an algorithm depends on this
algorithm’s ability to minimize the execution time
and monetary cost. The results of constant ensembles
in all workflows indicate that the proposed scheme
can complete all workflows of the ensemble in both
cases of cloud and fog-based techniques. Because of
the absence of IoT devices in the DPDS and a pol-
icy to overcome the communication delay, offloading
all tasks to cloud servers encounters the bandwidth
challenge. The DPDS cannot complete all ensembles’
workflows even with consuming maximum available
time, except for the Montage’s constant ensembles
with short running time and communication data.

The studied techniques’ overall behavior is almost
identical in constant and uniform ensembles with dif-
ferent applications. The differences are due to varying
workflow structures and the values of running times
and communication data. In constant ensembles, the
FOC and COC are performing better than the ROC.
Simultaneously, the DPDS has the worst performance
in case of execution time and the number of completed
workflows. However, for the Cybershake ensembles,
the COC has a little different behavior. Cybershake
workflows have a short critical path consist of a mix-
ture of data-intensive and CPU-intensive tasks with
high variances. Hence, the bandwidth challenge is
becoming more critical in these ensembles for cloud-
based schemes. So, the COC performance is degrading
with increasing the size of constant ensembles of
Cybershake. Because of offloading the tasks to fog
devices, the ROC outperforms the COC in terms of
execution time by increasing the Cybershake ensem-
bles’ size. Although, it cannot dominate the FOC due
to selecting the offloading coalition randomly. This
result verifies the necessity of selecting the appropri-
ate set of offloaded tasks in the offloading procedure

 34 Page 16 of 20 J Grid Computing (2021) 19:34

Fig. 2 Execution time and monetary cost in terms of the number of completed workflows from the ensemble

to orchestrate the fog computing environment opti-
mally. The results of the ROC scheme’s monetary cost
indicate that the random selection of offloaded tasks
reduces the monetary cost compared to other analyzed
schemes. On the other hand, the DPDS and COC are
paying the maximum price, while the DPDS cannot
complete all workflows in some cases.

In the uniform case, workflows’ size has a remark-
able effect on analyzed algorithms’ behavior so that
only FOC can complete all workflows in all cases.
Although the COC keeps pace with FOC in terms of
execution time in constant ensembles, its performance
is degrading in the uniform case, and it is propor-
tional to that of DPDS. These results confirm the
significant drawback of variances on communication
data of the tasks and bandwidth-delay of WAN on the
performance of an ensemble scheduling approach in

cloud computing. In this case, the execution time and
monetary cost diagrams of the analyzed cloud-based
schemes are coinciding, and there are significant dif-
ferences with the corresponding curves in the FOC,
while the cloud-based techniques can not complete
all workflows from the ensemble. It is indicated that
the execution time and monetary cost of cloud-based
schemes in the uniform case are close to the available
deadline and budget of the ensembles. The observed
behavior of the COC with Cybershake ensembles
is apparent in the uniform case. While the DPDS
attempts to minimize the provisioned cloud servers,
the COC tackle both inter-cloud communication delay
and communication delay between cloud and IoT
devices. So, the performance of the COC degrades
compared to the DPDS in some cases. Nevertheless,
our proposed cloud-based scheme can complete more

J Grid Computing (2021) 19:34 Page 17 of 20 34

Table 5 The number of completed workflows

DPDS COC ROC FOC

Montage constant 100 100 100 100

uniform 30 41 84 100

Cybershake constant 100 100 100 100

uniform 31 38 100 100

Ligo constant 90 100 100 100

uniform 58 65 97 100

Sipht constant 90 100 100 100

uniform 43 56 77 100

workflows, thanks to IoT devices. The ROC’s execu-
tion time is the same as that of cloud-based techniques
while paying the least price compared to all analyzed
schemes, thanks to the random selection of locally
executed tasks. Because of Cybershake workflows’
properties and using the fog devices in the ROC, this
algorithm can complete all workflows of the ensem-
bles and perform better than cloud-based schemes in
terms of execution time and the number of completed
workflows.

Observations on different workflow ensembles
confirm the influence of the structure of input work-
flows on the workflow scheduling approach’s out-
come. The results imply that workflows’ characteriza-
tions, including sizes of tasks’ running time and data
files, and the critical path’s length, affect the algo-
rithm’s behavior. This conclusion is even more critical
in fog computing’s heterogeneous environment, which
employs offloading decision to distribute tasks among
resources over the IoT to the cloud continuum.

Table 5 represents an analysis of the number of
completed workflows using implemented methods.

Fig. 3 The number of completed workflows from the ensembles by varying budget constrains

All schemes of the proposed method complete all
workflows in constant ensembles, with an average
improvement of 5% compared to the DPDS. However,
in uniform ensembles, FOC has significantly better
performance than analyzed schemes. In this case, the
average improvement of FOC from the DPDS and the
COC are 59.5% and 50%, respectively. It confirms the
remarkable effect of using edge/fog nodes in execut-
ing scientific applications. Also, we see an average
improvement of 10.5% from ROC. This result veri-
fies that proper use of fog devices significantly affects
system utilization and establishing end-user require-
ments. No appropriate orchestration of homogeneous
nodes in different tiers of a fog environment may
degrade performance to workflow ensemble schedul-
ing technique in cloud computing.

5.5 Varying Deadline and Budget

Figure 3 represents the number of completed work-
flows from ensembles in the analyzed algorithms for
different budgets. The x-axis shows the considered inter-
vals of the ensemble’s available budget, explained in
Section 5.2. This figure indicates that the number of
completed workflows from ensembles grows by increas-
ing the available budget. The FOC can complete all
workflows from constant ensembles, except in the
Ligo and Sipht ensembles, which have tasks with long
running time and data size. The FOC is the only
scheme completing some workflows from ensembles
with the minimum budget. The COC can complete less
than half of the Montage ensembles in the constant
case, with the minimum budget. It confirms the short
running time of the Montage workflows. Interfering
with the size of workflows in uniform ensembles, the

 34 Page 18 of 20 J Grid Computing (2021) 19:34

Fig. 4 The number of completed workflows from the ensembles by varying deadline constrains

capability of all schemes in completing workflows is
reduced, and it is only the FOC that is robust and has
been able to complete all workflows, except where the
budget is the minimum value. The ROC can compete
with the FOC and execute all workflows in most cases.
It indicates that this method consumes low cost and is
robust in budget constraints; this result also concludes
from Fig. 2.

Figure 4 represents the number of completed work-
flows from ensembles by changing the deadline con-
straints. The x-axis shows the considered intervals of
the ensemble’s deadline, explained in Section 5.2. The
COC can complete all work ows in constant ensem-
bles, confirming that this method is less sensitive to
the deadline constraint than the DPDS. However, the
COC can not complete all workflows in all uniform
ensembles, proving the significant effect of varying
workflows’ size on the workflow ensemble schedul-
ing method’s performance. Except for the minimum
deadline, the FOC can complete all workflows in
constant and uniform ensembles. Although the ROC
had acceptable results in the number of completed
workflows by varying budgets in random ensembles,
this method can not retain its performance when the
deadline varies. This behavior proves from the low
monetary cost and the high execution time of this
method in Fig. 2.

Since cloud servers are powerful, they are less sen-
sitive to deadline constraints. So, we can see COC’s
better performance when the deadline varies com-
pared to changing the budget. The DPDS algorithm
could compete with the COC in terms of the number
of completed workflows by varying the budget. How-
ever, since this technique does not have any solution
in minimizing the execution time, the results degrade
when the deadline varies.

6 Conclusion and Future Works

This study focuses on computation offloading and
task allocation problems to address workflow ensem-
ble scheduling in a fog environment with multiple
IoT, fog, and cloud devices. This work aims to min-
imize the computation cost and minimize the mon-
etary cost of executing the tasks with an ultimate
end of maximizing the number of completed work-
flows, considering the ensemble’s available deadline
and budget. We have formulated this problem as an
integer programming problem and designed a game-
theoretic mechanism to address it. The mechanism
is using coalition games for determining the set
of offloaded tasks and the tasks executing locally.
We are also employing a stable matching algorithm
for assigning the offloaded tasks to fog or cloud
servers.

We analyzed the proposed scheme using differ-
ent scientific workflows under variable circumstances.
The results confirm that employing edge/fog nodes in
the proposed workflow ensemble scheduling method
improved performance in terms of the number of
completed workflows by about 50%. The proposed
mechanism that specifies the offloaded tasks enhances
the number of completed workflows, about 10.5%,
compared to a task allocation algorithm without deter-
mining the optimal set of offloaded tasks. This find-
ing highlights the importance of employing an effi-
cient offloading technique in the performance of the
scheduling procedure. The observations showed the
effect of the structure of input workflows on the
scheduling scheme’s execution time and the monetary
cost. Hence an interesting aspect of extending the cur-
rent study is considering the structure of workflows.
Also, considering the provisioning problem in [31]

J Grid Computing (2021) 19:34 Page 19 of 20 34

suggests extending our model for investigating this
problem.

References

1. Abbasi, M., Pasand, E.M., Khosravi, M.R.: Workload allo-
cation in iot-fog-cloud architecture using a multi-objective
genetic algorithm. J. Grid Comput. 1–14 (2020)

2. Apt, K.R., Witzel, A.: A generic approach to coalition
formation. Int. Game Theor. Rev. 11(03), 347–367 (2009)

3. Aral, A., Brandic, I., Uriarte, R.B., De Nicola, R., Scoca, V.:
Addressing application latency requirements through edge
scheduling. J. Grid Comput. 17(4), 677–698 (2019)

4. Arisdakessian, S., Wahab, O.A., Mourad, A., Otrok, H.,
Kara, N.: Fogmatch: An intelligent multi-criteria iot-fog
scheduling approach using game theory. IEEE/ACM Trans.
Netw. (2020)

5. Bilbao, J.M.: Cooperative games on combinatorial struc-
tures, vol. 26. Springer Science & Business Media, Berlin
(2012)

6. Bogomolnaia, A., Jackson, M.O., et al.: The stability of
hedonic coalition structures. Games Econom. Behav. 38(2),
201–230 (2002)

7. Bryk, P., Malawski, M., Juve, G., Deelman, E.: Storage-
aware algorithms for scheduling of workflow ensembles in
clouds. J. Grid Comput. 14(2), 359–378 (2016)

8. Buyya, R., Srirama, S.N.: Fog and edge computing: princi-
ples and paradigms. Wiley, New York (2019)

9. Chen, L., Xu, J.: Socially trusted collaborative edge
computing in ultra dense networks. In: Proceedings of
the Second ACM/IEEE Symposium on Edge Computing,
pp. 1–11 (2017)

10. Cybershake project. https://strike.scec.org/scecpedia/Cyber
Shake Study 13.4

11. Deelman, E., Gil, Y.: Workshop on the challenges of scien-
tific workflows. Information Sciences Institute (2006)

12. Demange, G., Gale, D.: The strategy structure of two-sided
matching markets. Econometrica: J. Econom. Soc. 873–888
(1985)

13. Driessen, T.S.: Cooperative games, solutions and applica-
tions, vol. 3. Springer Science & Business Media, Berlin
(2013)

14. Fan, W., Liu, Y., Tang, B., Wu, F., Wang, Z.: Compu-
tation offloading based on cooperations of mobile edge
computing-enabled base stations. IEEE Access 6, 22622–
22633 (2017)

15. Ferguson, T.S.: A course in game theory world scientific
(2018)

16. Gale, D., Shapley, L.S.: College admissions and the stabil-
ity of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

17. Gao, L., Moh, M.: Joint computation offloading and pri-
oritized scheduling in mobile edge computing. In: 2018
International Conference on High Performance Computing
& Simulation (HPCS), pp. 1000–1007. IEEE (2018)

18. Gao, X., Huang, X., Bian, S., Shao, Z., Yang, Y.: Pora: Pre-
dictive offloading and resource allocation in dynamic fog
computing systems. IEEE Int. Things J. 7(1), 72–87 (2019)

19. Genez, T.A., Bittencourt, L.F., Sakellariou, R., Madeira,
E.R.: A flexible scheduler for workflow ensembles. In: Pro-
ceedings of the 9th International Conference on Utility and
Cloud Computing, pp. 55–62 (2016)

20. Goudarzi, M., Wu, H., Palaniswami, M.S., Buyya, R.: An
application placement technique for concurrent iot applica-
tions in edge and fog computing environments. IEEE Trans.
Mob. Comput. 1–1 (2020)

21. Guo, K., Sheng, M., Quek, T.Q., Qiu, Z.: Task offloading
and scheduling in fog ran: A parallel communication and
computation perspective. IEEE Wirel. Commun. Lett. 9(2),
215–218 (2019)

22. Hosseinzadeh, M., Ghafour, M.Y., Hama, H.K., Vo,
B., Khoshnevis, A.: Multi-objective task and workflow
scheduling approaches in cloud computing: a comprehen-
sive review. J. Grid Comput. 1–30 (2020)

23. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog comput-
ing: architecture, key technologies, applications and open
issues. J. Netw. Comput. Appl. 98, 27–42 (2017)

24. Huedo, E., Montero, R.S., Moreno-Vozmediano, R.,
Vázquez, C., Holer, V., Llorente, I.M.: Opportunistic
deployment of distributed edge clouds for latency-critical
applications. J. Grid Comput. 19(1), 1–16 (2021)

25. Jošilo, S., Dán, G.: Decentralized scheduling for offload-
ing of periodic tasks in mobile edge computing. In: 2018
IFIP Networking Conference (IFIP Networking) and Work-
shops, pp. 1–9. IEEE (2018)

26. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta,
G., Vahi, K.: Characterizing and profiling scientific work-
flows. Futur. Gener. Comput. Syst. 29(3), 682–692 (2013)

27. Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman,
B., Berman, B.P., Maechling, P.: Data sharing options for
scientific workflows on amazon ec2. In: SC’10: Proceed-
ings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp. 1–9. IEEE (2010)

28. Leyton-Brown, K., Shoham, Y.: Essentials of game theory:
A concise multidisciplinary introduction. Synt. Lect. Artif.
Intell. Mach Learn. 2(1), 1–88 (2008)

29. Ligo project. https://pegasus.isi.edu/application-showcase/
ligo/

30. Liu, Y., Xu, C., Zhan, Y., Liu, Z., Guan, J., Zhang, H.:
Incentive mechanism for computation offloading using
edge computing: A stackelberg game approach. Comput.
Netw. 129, 399–409 (2017)

31. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algo-
rithms for cost-and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. Futur. Gener.
Comput. Syst. 48, 1–18 (2015)

32. Mashayekhy, L., Grosu, D.: A merge-and-split mechanism
for dynamic virtual organization formation in grids. IEEE
Trans. Parall. Distribut. Syst. 25(3), 540–549 (2014)

33. Mashayekhy, L., Nejad, M.M., Grosu, D.: Cloud federa-
tions in the sky: Formation game and mechanism. IEEE
Trans. Cloud Comput. 3(1), 14–27 (2015)

34. McChesney, J., Wang, N., Tanwer, A., de Lara, E., Vargh-
ese, B.: Defog: fog computing benchmarks. In: Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing,
pp. 47–58 (2019)

https://strike.scec.org/scecpedia/CyberShake_Study_13.4
https://strike.scec.org/scecpedia/CyberShake_Study_13.4
https://pegasus.isi.edu/application-showcase/ligo/
https://pegasus.isi.edu/application-showcase/ligo/

 34 Page 20 of 20 J Grid Computing (2021) 19:34

35. Morales, L.E.P.: Efficient support for data-intensive sci-
entific workflows on geo-distributed clouds. Ph.D thesis
(2017)

36. Nisan, N., Ronen, A.: Algorithmic mechanism design.
Games Econom. Behav. 35(1-2), 166–196 (2001)

37. Osborne, M.J., et al.: An Introduction to Game Theory,
vol. 3. Oxford University Press, New York (2004)

38. Montage project. http://montage.ipac.caltech.edu
39. Pegasus project. https://pegasus.isi.edu/application-showcase/
40. Pietri, I., Malawski, M., Juve, G., Deelman, E., Nabrzyski,

J., Sakellariou, R.: Energy-constrained provisioning for
scientific workflow ensembles. In: 2013 International Con-
ference on Cloud and Green Computing, pp. 34–41. IEEE
(2013)

41. Ren, J., Zhang, D., He, S., Zhang, Y., Li, T.: A sur-
vey on end-edge-cloud orchestrated network computing
paradigms: Transparent computing, mobile edge comput-
ing, fog computing, and cloudlet. ACM Comput. Surv.
(CSUR) 52(6), 1–36 (2019)

42. Rodriguez, M.A., Buyya, R.: Scheduling dynamic work-
loads in multi-tenant scientific workflow as a service
platforms. Futur. Gener. Comput. Syst. 79, 739–750 (2018)

43. Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hos-
seinzadeh, M.: A survey on the computation offloading
approaches in mobile edge/cloud computing environment:
A stochastic-based perspective. J. Grid Comput. 1–33
(2020)

44. Sipht project. http://newbio.cs.wisc.edu/sRNA/
45. Stavrinides, G.L., Karatza, H.D.: A hybrid approach to

scheduling real-time iot workflows in fog and cloud envi-
ronments. Multimed. Tools Appl. 78(17), 24639–24655
(2019)

46. Tianze, L., Muqing, W., Min, Z., Wenxing, L.: An
overhead-optimizing task scheduling strategy for ad-hoc
based mobile edge computing. IEEE Access 5, 5609–5622
(2017)

47. Toczé, K., Nadjm-Tehrani, S.: A taxonomy for management
and optimization of multiple resources in edge computing.
Wirel. Commun. Mob. Comput. 2018 (2018)

48. Velasquez, K., Abreu, D.P., Assis, M.R., Senna, C., Aranha,
D.F., Bittencourt, L.F., Laranjeiro, N., Curado, M., Vieira,
M., Monteiro, E., et al.: Fog orchestration for the internet of

everything: state-of-the-art and research challenges. J. Int.
Serv. Appl. 9(1), 14 (2018)

49. Xie, Y., Zhu, Y., Wang, Y., Cheng, Y., Xu, R., Sani, A.S.,
Yuan, D., Yang, Y.: A novel directional and non-local-
convergent particle swarm optimization based workflow
scheduling in cloud–edge environment. Futur. Gener. Com-
put. Syst. 97, 361–378 (2019)

50. Xu, X., Chen, Y., Yuan, Y., Huang, T., Zhang, X., Qi,
L.: Blockchain-based cloudlet management for multime-
dia workflow in mobile cloud computing. Multimed. Tools
Appl. 79, 9819–9844 (2019)

51. Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S.,
Qi, L.: A computation offloading method over big data for
iot-enabled cloud-edge computing. Futur. Gener. Comput.
Syst. 95, 522–533 (2019)

52. Yi, S., Hao, Z., Zhang, Q., Zhang, Q., Shi, W., Li, Q.:
Lavea: Latency-aware video analytics on edge comput-
ing platform. In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, SEC ’17. Association
for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3132211.3134459

53. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali,
F., Niakanlahiji, A., Kong, J., Jue, J.P.: All one needs to
know about fog computing and related edge computing
paradigms: a complete survey. J. Syst. Archit. 98, 289–330
(2019)

54. Yu, J., Buyya, R.: A taxonomy of scientific workflow
systems for grid computing. ACM Sigmod Record 34(3),
44–49 (2005)

55. Zhang, K., Mao, Y., Leng, S., Maharjan, S., Zhang,
Y.: Optimal delay constrained offloading for vehicular
edge computing networks. In: 2017 IEEE International
Conference on Communications (ICC), pp. 1–6. IEEE
(2017)

56. Zhou, B., Srirama, S.N., Buyya, R.: An auction-based
incentive mechanism for heterogeneous mobile clouds. J.
Syst. Softw. 152, 151–164 (2019)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

http://montage.ipac.caltech.edu
https://pegasus.isi.edu/application-showcase/
http://newbio.cs.wisc.edu/sRNA/
https://doi.org/10.1145/3132211.3134459

	Offloading Coalition Formation for Scheduling...
	Abstract
	Introduction
	Related Works
	System and Game Model
	System Model*.2pt
	Application Model
	Problem Formulation
	Coalition Game Model

	Offloading and Allocation Mechanism
	Offloading Coalition Game
	Task Allocation Matching
	Mechanism Analysis

	Evaluations
	Simulation Environment
	Workflow Ensembles
	Analyzed Methods
	Performance Evaluation
	Varying Deadline and Budget

	Conclusion and Future Works
	References

