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Abstract
A dual-core photonic crystal fiber sensor using the surface plasmon resonance phenomenon has been demonstrated for a 
wide range of refractive index sensing. The proposed structure has a dual core with finite holes filled with air in the clad-
ding section and four sides of C-shaped plasmonic layer arrangements. The gold metal layer is a plasmonic layer with  TiO2 
dielectric layer. Simulation work is performed on COMSOL Multiphysics simulation software to determine the optimized 
structural parameters for efficient sensing performance. This sensor is compatible with analyte samples of refractive index 
(RI) range of 1.21–1.39. The value of maximum wavelength sensitivity is obtained 35,000 nm/RIU for an analyte sample 
RI 1.38–1.39 with an average sensitivity of 6368 nm/RIU and amplitude sensitivity is observed at 373  RIU−1 for the analyte 
sample of RI 1.38. The proposed PCF sensor reveals the wavelength resolution (R) of 2.85 ×  10−6 RIU and the figure of 
merit (FOM) value of 259  RIU−1 for an analyte sample of RI 1.38. Due to the long range of analyte detection, this sensor 
has the potential to be developed as a sensor for biochemical and biomedical sensing applications as well as the detection of 
different organics containing fluorine.
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Introduction

Surface plasmon resonance (SPR) is an emerging technol-
ogy in the different sensing fields, which is a label-free and 
real-time technique [1]. Sensor with SPR technology has 
widespread applications in the area, such as bioimaging [2], 
environmental monitoring [3], and food monitoring [4]. This 
phenomenon is a collective oscillation of free electrons  (e−) 
at the metal and dielectric interface due to interlinkage with 
evanescent waves. In the earlier stage of SPR technology, a 
prism-based SPR sensing method was developed. The first 
method was named the Otto configuration, in which there 
is a prism and then an air gap followed by a metal layer 
arrangement. The light strikes on the prism base at an angle 

(θ) larger than the attenuated total reflection angle ( �ATR ) 
for excitation of surface plasmon wave (SPW). Improving 
this Otto configuration, Kretschmann used a conducting 
(metal) layer in contact with a prism in his setup and kept 
it in direct contact with the unknown analyte sample. Now, 
when (p-polarized) light falls at the prism metal interface at 
an angle (θ ≥�ATR ), an evanescent wave is generated, which 
excites quanta known as surface plasmon moving parallel 
to the surface. When the power and frequency of the eva-
nescent wave match the power and frequency of the surface 
plasmon wave (SPW), resonance occurs. This peculiar fre-
quency is known as resonance frequency, and the phenom-
enon is called surface plasmon resonance [5]. Although this 
prism-based SPR setup improved sensitivity, it was a costly 
device with a bulky size with limited mechanism [6]. So, we 
need to find an alternative to this arrangement, and conven-
tional optical fibers were looked upon for this purpose. Con-
ventional optical fibers have mechanical stability for sensing 
with low confinement losses. Still, there was an issue with 
removing the outer jacket of fiber chemically or physically to 
bring the core directly into contact with the sensing region, 
which makes it fragile. Also, optical fiber lacks tuning 
parameters, limiting its application in different fields [7]. 
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Photonic crystal fibers (PCFs) have become an emerging 
option for conventional optical fiber due to their flexible 
shape, different tunable geometrical parameters, and mini-
mum size. PCFs are a single-material fiber (usually fused 
silica) that have a solid core with finite air holes available 
in a cladding zone that makes a suitable condition of total 
internal reflection (TIR), and this kind of fiber is known as 
solid core photonic crystal fiber [8]. Results obtained from 
PCF structures are far better than conventional optical fiber 
regarding confinement loss and sensitivity [9]. Two kinds 
of sensing mechanisms are available to utilize PCF sensors.

The first sensing mechanism is an internal coating–based 
sensing mechanism in which a plasmonic nanolayer is pol-
ished around an air hole of the cladding and an analyte is 
filled inside this air hole [10, 11]. Some research papers have 
been reported using internal coating–based sensing mecha-
nisms [12, 13]. Rifat et al. have announced an internal coat-
ing approach–based sensor having maximum wavelength 
sensitivity (WS) obtained 3000 nm/RIU for a sample of 
refractive index (RI) range 1.46–1.49, and a maximum reso-
lution R = 2.4 ×  10−5 RIU [10]. In this mechanism, cleaning 
the air hole every time to fill different analytes again is a 
challenging task in actual practice. Coating the air holes with 
plasmonic material with uniformity is also tricky. So, due to 
these imperfections seen in the first mechanism, we move 
forward to the second mechanism, which is known as the 
external coating sensing mechanism. The plasmonic layer is 
coated on the outermost portion of the PCF structure so that 
it can be directly touched with the analyte, which is needed 
to be sensed [14–16]. Paul et al. have worked on the external 
coating–based mechanism and earned maximum wavelength 

sensitivity (WS) of 11,700 nm/RIU for a sample RI range of 
1.33–1.41 [17]. Based on the fabrication process, detection, 
and operating method, this mechanism is easier and more 
comfortable than the previous one, so we have used this 
external coating sensing mechanism for our research [18].

Our study has presented a photonic crystal fiber with 
dual core (DC-PCF). Our PCF sensor has focused on an 
extended range of RI 1.21 to 1.39 analytes, from lower ana-
lyte (RI) to higher analyte (RI). As mentioned above, we 
have chosen an external coating–based sensing mechanism 
because of its easy implementation and fabrication process. 
Gold is used as a plasmonic metal layer with a nanolayer of 
 TiO2 cemented between the gold layer and PCF. The whole 
simulation work of our proposed sensor is performed on 
COMSOL Multiphysics version 6.0, where several simula-
tions are performed to find the best geometrical parameters 
like air hole size, pitch size, the width of gold material, and 
the thickness of  TiO2. Variations of confinement loss with 
the air hole, plasmonic (gold) layer width, and adhesive 
 TiO2 layer width are invigilated. This proposed structure 
has great potential in different fields, such as biomedical and 
biochemical, to detect low to high RIs.

Structural Design and Theoretical Model

The cross-section display of the proposed sensor struc-
ture is mentioned in Fig. 1. We have structured a semi-
circular dual-core-based PCF with a proper opening to 
create a channel for interaction of evanescent wave to 
SPP mode at metal–dielectric interface. We are dealing 

Fig. 1  A cross-section view 
of the proposed PCF sensor 
structure
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with dual-core-based PCF with different sizes of air holes 
introduced in the cladding zone. There is a central hole 
between two cores of radius ra = 0.4�m . Two holes are 
presented at both sides of the central hole with a radius 
rb = 1.8�m , and other holes are presented in the cladding 
section with a radius rc = 1.0�m and rd = 1.5�m . The air 
holes with cores in structured dual-core PCF form a hex-
agonal lattice structure. We have considered co-ordinate 
values according to hexagonal lattice design in the simula-
tion. Four sides of PCF are cut in a C-shape where lamina-
tions of the titanium dioxide  (TiO2) nanolayer and a plas-
monic layer of gold (Au) are performed. In our proposed 
sensor structure,  TiO2 behaves as an adhesive layer for 
sensing performance enhancement. The width of the  TiO2 
layer and plasmonic layer of gold (Au) is tTiO2

= 20nm and 
tAu = 50nm , respectively.

Fused silica is one of the best materials for PCF back-
ground, so we have chosen it as the background material for 
our proposed structure, and refractive index of fused silica 
is specified by following Sellmeier's equation [19]:

where n(�) is the refractive index (RI) of the back-
ground material (fused silica) depending on wavelength. 
Terms A1,2,3 and B1,2,3 are the Sellmeier constants, where 
A1 = 0.6961663 , A2 = 0.4079426 , and A3 = 0.8974794 , 
and  B1 = 0.0684043�m2  ,  B2 = 0.1162414�m2  ,  and 
B3 = 9.896161�m2.

The Drude–Lorentz model has been adopted in our work 
to compute a frequency-based refractive index (RI) of plas-
monic gold material, and its dispersive relation is given by 
the following equation [20]:

where nAu is the index of refraction of gold (Au), and the 
parameter �∞ = 5.9673 is called permittivity at a higher 
frequency and angular frequency expression � = (

2∗pi∗c

�
) , 

where c (= 3 ×  108 m/s) and λ denote the light speed and 
wavelength, respectively. The term damping frequency and 
plasma frequency is symbolized by �D and �D with values 
�D = 100.03THz and �D = 13,280.14 THz , respectively. 
The weighting factor is termed as Δϵ = 1.09. Terms denot-
ing the strength of oscillator and spectral width of the Lor-
entz oscillator are ΩL = 4084.51 THz and ΓL = 658.85 THz, 
respectively.

Titanium dioxide  (TiO2) is stacked between PCF clad-
ding and the plasmonic layer to improve the analyte inter-
action, and RI of  TiO2 is calculated from the given below 
equation [20]:

(1)n2(�) = 1 +
A1�

2

�2 − B1

+
A2�

2

�2 − B2

+
A3�

2

�2 − B3

(2)

n2
Au
(�) = 5.9673 −

�2

D

� ×
(

� + j�D
) −

Δ� × Ω2

L
(

�2 − Ω2

L

)

+ j�ΓL

Here, A, B, and C are constant and given by A = 5.913

, B = 2.441 × 10
7 , and C = 0.803 × 10

7 with wavelength (λ) 
regulated in a micrometer. To examine the characteristics of 
the proposed PCF structure, confinement loss is the crucial 
factor and it is given by [21]

In the above formula, Im
(

neff
)

 represents the imaginary part 
of the effective mode index and �o is the wavelength of the light 
incident. The complete setup of proper working of our PCF 
sensor using an optical light source, single-mode fiber, and the 
optical spectra analyzer (OSA) is depicted in Fig. 2. Numeri-
cal investigation and simulation of our PCF sensor structure 
are conducted using the finite element method (FEM), and 
simulation is performed in COMSOL Multiphysics version 6.0 
[22]. In this method, the complete cross-section of the sensor is 
disunited into microscopic triangular elements called mesh ele-
ments. Using Maxwell's equation, coupled partial differential 
equations are solved to determine the longitudinal components 

(3)n2
TiO2

= A +
B

(�2 − C)

(4)

Confinement loss
(

�loss
)

= 54.575 ×
Im

(

neff
)

�o
× 10

4(dB∕cm)

Fig. 2  The setup of the proposed PCF sensor

Fig. 3  Dispersion characteristics plot of core mode (black color) and 
SPP mode (blue color) for the analyte refractive index n

a
= 1.36 , with 

r
a
= 0.4�m , r

b
= 1.8�m , r

c
= 1.0�m , r

d
= 1.5�m , t

Au
= 50nm  , 

t
TiO2

= 20nm
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of the magnetic field and electric fields. To absorb the electro-
magnetic radiation at the outer surface, a perfect match layer 
(PML) is applied, and the width of this PML is kept around 
10% of the fiber width [23].

Result and Discussion

In the simulation process, when (p-polarized) EM-wave 
starts to pass through the PCF core, the longitudinal part 
of the electric field reaches the plasmonic layer and gen-
erates an evanescent wave. This wave generates the core 

mode along with the SPP mode of PCF, and the dispersion 
characteristics of both modes are displayed in Fig. 3. It is 
understandable from the above figure that moving toward 
a red-shift in wavelength coupling strength between core 
mode and SPP mode becomes more assertive and reaches 
its peak value at a fixed wavelength termed as resonance 
wavelength. Then, it gets weakened after this peak point. 
At this resonance wavelength, the real part of the effective 
mode index of core mode and the real part of the effective 
mode index of SPP mode match, and the maximum amount 
of power is transported from core to SPP mode, named as 
confinement loss [21].

The next task is altering the geometrical parameters of 
the PCF sensor. We have performed simulations several 
times to determine the best geometrical parameter for our 
PCF sensor structure. Figure 4 disposes of the confine-
ment loss with wavelength for the variations of the radius 
of the central hole (ra) from 0.40 to 0.50 µm, and the con-
finement loss peaks have a red-shift because escalating air 
hole size coupling potency between core and SPP modes 
increases as a consequence of increment in Re ( neff  ) of 
SPP mode [24].

Disturbing air hole size in the cladding segment 
rb = 1.8 − 2.6�m and rc = 1.0 − 1.5�m , the confinement 
loss spectrum has a downfall as depicted in Fig. 5. This 
happens because raising the size of these air holes makes it 
difficult for light to reach from the core to SPP modes and 
weakens the coupling between the two modes mentioned 
above [25]. Confinement loss spectra remain approxi-
mately stable with the extreme air hole radius (rd) variations 
rd = 1.50 − 1.70�m , as shown in Fig. 6.

The worthy change is observed with a variation of the 
gold (Au) layer and the sticky layer of  TiO2. Figure  7 

Fig. 4  Spectra of confinement loss for the central hole radius (r
a
) 

alterations from 0.40 to 0.50  µm, with r
b
= 1.8�m,  r

c
= 1.0�m

, r
d
= 1.5�m, t

Au
= 50nm, t

TiO2
= 20nm

Fig. 5  Spectra of confinement loss for the variations of air hole radius a  r
b
= (1.8 − 2.6)�m and b  r

c
= (1.0 − 1.5)�m with r

a
= 0.4�m

, r
d
= 1.5�m, t

Au
= 50nm , t

TiO2
= 20nm
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indicates that the confinement loss reduces from 60.10 to 
53.56 dB/cm for varying the width of the (Au) metal layer 
(tAu) from 50 to 60 nm with a step size of 5 nm and the 
analyte RI (na) of 1.36. It happens for the reason that on 
escalating the width of the gold metal layer, high damping 
loss occurs, resulting in poor penetration of the electric field 
inside the analyte [26]. Remarkable beneficiation was made 
by a sticky nanolayer of  TiO2 [26]. Cementing this  TiO2 
nanolayer (working as a catalyst) between PCF and plas-
monic layer enhances the coupling strength between core 
and SPP modes. Hence, the confinement loss peak goes up 

from 60.10 to 80.11 dB/cm with increasing the thickness of 
 TiO2 from tTiO2

= 20 − 30nm , as mentioned in Fig. 8.
The salient key parameter of the PCF sensor is known as 

wavelength sensitivity (WS), and it is given by [27]

Here, �peak is the resonance wavelength for a particular 
analyte RI. Our PCF structure is compatible with detect-
ing a wide range of analytes RI na = 1.21 − 1.39 . We 
observe that the confinement loss peak value enhances 
with increasing analyte refractive index because cou-
pling becomes stronger between the core mode and SPP 
mode with an increasing refractive index of the analyte 
[28]. The maximum wavelength sensitivity (WS) value is 
35,000 nm/RIU for analyte RI 1.38–1.39, and the average 
wavelength sensitivity is 6368 nm/RIU for analyte sample 
RI 1.21–1.39. The distribution of the confinement losses 
for the variations of the analyte sample RI (na) 1.21 to 1.39 
is displayed in Fig. 9.

Another excellent tool to measure the term sensitivity of 
our sensor is amplitude sensitivity ( SA ), which is homog-
enous to the wavelength sensitivity technique. It is a more 
cost-productive method than the wavelength sensitivity 
(WS) method because spectrum proficiency is unnecessary 
like the wavelength sensitivity (WS) method, and all meas-
urement is performed at a defined wavelength. The ampli-
tude sensitivity ( SA ) is specified by the equation [29]

(5)Wavelength Sensitivity
(

S�
)

= Δ�peak∕Δna(nm∕RIU)

(6)

Amplitude sensitivity
(

SA
)

= −
1

�
(

�, na
) ×

��
(

�, na
)

�na
RIU−1

Fig. 6  Spectra of confinement loss for the variations of air hole 
radius r

d
= (1.5 − 1.7)�m with r

a
= 0.4�m, r

b
= 1.8�m , r

c
= 1.0�m , 

t
Au

= 50nm , t
TiO2

= 20nm

Fig. 7  Spectra of confinement loss with variable (Au) layer thick-
ness with the analyte RI n

a
= 1.36 with r

a
= 0.4�m,  r

b
= 1.8�m

, r
c
= 1.0�m , r

d
= 1.5�m , t

TiO2
= 20nm

Fig. 8  Spectra of confinement loss for the variations of  TiO2 layer 
width with the analyte RI n

a
= 1.36 with r

a
= 0.4�m,  r

b
= 1.8�m,   

r
c
= 1.0�m , r

d
= 1.5�m , t

Au
= 50nm
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where �
(

�, na
)

 is the net loss depth at a particular analyte 
RI and ��

(

�, na
)

 is the difference in confinement loss value 
for two nearby analytes’ RIs at a particular wavelength (λ). 
The obtained value of amplitude sensitivity for our pro-
posed sensor structure is 373  RIU−1 for the analyte sample 
RI na = 1.38, as depicted in Fig. 10.

A key feature to estimate the performance of the PCF 
sensor is its resolution, given by the following equation [30]:

Considering the spectrometer resolution Δ�min = 0.1nm , 
we observe the maximum resolution R = 2.85 ×  10−6 RIU 
and the order of detection precision up to  10−6 means that 
the slightest change of order  10−6 can be detected for the 
analyte RI changes. A summary of the performance of PCF 

(7)Resolution(R) =
Δ�min

S�
= Δna × Δ�min∕Δ�peakRIU

sensor work for effortless visualization is mentioned in 
Table 1. An extensive contrast of our proposed PCF sensor 
for the long-range analyte RI with other recently reported 
PCF RI sensor structures on the basis of their wavelength 
sensitivity are charted in Table 2.

Full-width half maxima (FWHM) is a crucial parameter 
used to compute our PCF sensor structure's figure of merit 
(FOM). A high value of FOM for a proposed PCF sensor 
structure indicates high performance and possible practical 
realization. The following equation gives the term FOM [31]:

We have analyzed the sensitivity and FWHM for a par-
ticular analyte RI. For analyte RI 1.38, the sensitivity value 
is 35,000 nm/RIU and FWHM is 135.31 nm; putting these 

(8)FOM =
Sensitivity(S�)

FWHM
(RIU−1)

Fig. 9  Spectra of confinement loss for the variations of the analyte RI n
a
 = 1.21 to 1.39 with r

a
= 0.4�m, r

b
= 1.8�m, r

c
= 1.0�m, r

d
= 1.5�m,  

t
Au

= 50nm , t
TiO2

= 20nm
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values in Eq.  (8), we get the FOM value of around 259 
 (RIU−1) for our PCF sensor structure, as depicted in Fig. 11.

Since our proposed PCF sensor structure has an exten-
sive analyte RI range na = 1.21 − 1.39 detection, it may be 
applied in different fields such as biomedical, biochemical, 
and other chemicals. Our sensor can be implemented to 
see the different types of organics which contain fluorine 
and have a low refractive index value ( na < 1.30 ) such as 
2,2,2-trifluoroethyl trifluoroacetate ( na = 1.2812 ), trif-
luoroacetic acid ( na = 1.2850 ), and 1,1,1,3,3,3-hexafluoro-
2-propanol ( na = 1.275 ) [30]. Nowadays, a significant 
issue in the medical field is detecting the cancer cell early 
for appropriate treatment. Several cancer cell tissues, such 
as cervical cancer, blood cancer, breast cancer, adrenal-
gland cancer, and skin cancer, are reported for different 
types of cancer cells [37]. Their refractive index lies in the 
range of 1.36–1.39 , and our proposed sensor structure is 

designed for this analyte range detection. A pregnancy test 
based on the refractive index can also be performed using 
our proposed PCF structure. The refractive index of urine 
can be tested by putting a few drops of urine sample in the 
sensing area of our sensor. The general urine examination 
(GUE) test results show that all other factors remain the 
same such as glucose level, protein level, and uric acid. 
The detection of RI of the urine sample is most beneficial 
because the urine RI increases during pregnancy, and this 
increment is due to pregnancy hormone [38]. The next 
application of the proposed sensor structure in the row is 
alcohol detection by varying its concentration in water. 
The refractive index of water with 0% alcohol is 1.333. 
The refractive index of water mixed with alcohol var-
ies from 1.3384, 1.3450, 1.3550, and so on for changing 
the concentration of alcohol in water, such as 10%, 20%, 
30%, and so on, respectively [39]. So, this range can easily 

Fig. 10  The amplitude sensitivity variations for the analyte RI n
a
 = 1.21 to 1.39 with r

a
= 0.4�m,  r

b
= 1.8�m,  r

c
= 1.0�m,  r

d
= 1.5�m,   

t
Au

= 50nm , t
TiO2

= 20nm
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be identified with the help of the proposed PCF sensor 
because of its compatibility with this detection range.

Figure  12 represents the variations of the reso-
nance wavelength with the analyte RI na = 1.21 − 1.39 
and its third-order polynomial fitting. Correlation 
between the analyte RI and resonance wavelength 
( �res ) for polynomial fitting is given by the equation 
y = intercept + (B1 × x1) + (B2 × x2) + (B3 × x3) . In this 
equation, the y-axis represents the resonance wavelength 
(�res) and the x-axis represents the analyte RI. The values 
of intercept represented by B1, B2, and B3 are mentioned in 
Fig. 12. It is clear from the figure that the statistical value 

of R2 is 0.98293, which indicates the better fitting arrange-
ment for our PCF sensor. PCF can be fabricated by several 
well-defined available technologies where a macroscopic 
preform of the desired shape is modulated and then drawn 
on microscopic scale fiber.

The available technologies for this task are extrusion 
[40], injection molding [41], sol–gel method [42], and 
stack-and-draw process [43]. Among these available tech-
nologies, the stack-and-draw method for PCF fabrication is 
the most promising, fast, clean, and cost-effective technol-
ogy. This process has a few steps; the first step is fabrica-
tion, where capillaries of desired diameters are fabricated. 

Table 1  The performance of our 
PCF sensor for analyte RI range 
n
a
= 1.21 − 1.39

Sample RI Wavelength
(nm)

Res. peak 
shift (nm)

Wave. sens
(nm/RIU)

Amp. sens
(RIU−1)

Sensor resolution Figure 
of merit 
(RIU−1)

1.21 1780 20 2000  − 40 5.00 ×  10−5 43
1.22 1800 20 2000  − 43 5.00 ×  10−5 42
1.23 1820 20 2000  − 46 5.00 ×  10−5 27
1.24 1840 20 2000  − 49 5.00 ×  10−5 27
1.25 1860 40 4000  − 52 2.50 ×  10−5 48
1.26 1900 20 2000  − 62 5.00 ×  10−5 22
1.27 1920 40 4000  − 71 2.50 ×  10−5 41
1.28 1960 20 2000  − 63 5.00 ×  10−5 19
1.29 1980 40 4000  − 69 2.50 ×  10−5 40
1.30 2020 40 4000  − 74 2.50 ×  10−5 34
1.31 2060 60 6000  − 81 1.67 ×  10−5 50
1.32 2120 40 4000  − 89 2.50 ×  10−5 36
1.33 2160 60 6000  − 100 1.67 ×  10−5 41
1.34 2220 80 8000  − 114 1.25 ×  10−5 59
1.35 2300 75 7500  − 138 1.33 ×  10−5 47
1.36 2375 105 10,500  − 173 9.52 ×  10−6 65
1.37 2480 140 14,000  − 281 7.14 ×  10−6 78
1.38 2620 350 35,000  − 373 2.85 ×  10−6 259
1.39 2970 – – – – –

Table 2  The performance 
comparison of our PCF sensor 
with the recently reported PCF 
sensor

Reference Model structure Analyte RI range Wave. sens
(nm/RIU)

Amp. sens
(RIU−1)

Wave. 
resolution 
(RIU)

[30] D-shape PCF sensor 1.30–1.38 4250 NA 2.35 ×  10−5

[32] Open channel PCF sensor 1.33–1.40 7000 594 1.43 ×  10−5

[33] Broad-range PCF sensor 1.35–1.40 10,000 1115 2.00 ×  10−5

[34] D-shape PCF sensor 1.33–1.39 11,500 230 8.7 ×  10−6

[35] High perf. PCF sensor 1.29–1.34 13,800 2380 7.24 ×  10−6

[36] Arc-shape PCF sensor 1.32–1.37 14,100 109 9.17 ×  10−6

Our work Dual-core PCF sensor 1.21–1.39 35,000 373 2.85 ×  10−6
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Then, in the second step, they are stacked according to the 
required core cladding structure. After this process, the 
preform is extracted as microstructure rods and finally to a 
fiber in the last step. This process continues to repeat until 
we get the desired structure shape and parameters (diam-
eter of fiber, air hole size, pitch) of the proposed PCF sen-
sor. The subsequent work in sensor fabrication is to coat 
a plasmonic layer of gold and an adhesive layer of  TiO2. 
There are some approved technologies for the deposition 
of nanolayers, such as wet-chemistry deposition, thermal 
evaporation, and radiofrequency sputtering [44]. However, 
these methods undergo intense surface roughness due to a 
lack of uniformity of the nanolayer. That is why the chemi-
cal vapor deposition (CVD) method is better than the tech-
nologies mentioned above [45].

Fig. 11  The distributions of FOM and FWHM for analyte RI 
( n

a
) variations from 1.21 to 1.39, with r

a
= 0.4�m,  r

b
= 1.8�m,   

r
c
= 1.0�m, r

d
= 1.5�m, t

Au
= 50nm , t

TiO2
= 20nm

Fig. 12  Variation of resonance 
wavelength and polynomial fit 
with the analyte RI changes
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Conclusion

We have put forward the surface plasmon resonance 
phenomenon–based dual-core PCF sensor for detecting 
wide-range analyte RI of 1.21 to 1.39. The beauty of our 
simulation work of the proposed design is to reveal the 
sensing performance for long-range analyte RI. It provides 
a maximum wavelength sensitivity of 35,000 nm/RIU for 
analyte RI 1.38 to 1.39 and maximum amplitude sensitivity of 
373  RIU−1. The wavelength resolution is the order of  10−6 for 
analyte RI. The figure of merit is observed with the maximum 
value of 259  RIU−1, which reveals the degree of performance 
of the proposed sensor. Regression analysis from polynomial 
curve fitting provides the maximum value of R2 of 0.98293. 
Fabrication has become more accessible and fast due to the 
availability of recently developed technologies like the stack-
and-draw method. From an application point of view, the 
proposed PCF sensor has the potential to work in different 
fields, such as biomedical and biochemical, for the detection 
of low refractive index range chemicals. The proposed PCF 
sensor may be utilized to reveal the stimulating application 
for pregnancy and alcohol tests.
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