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1. Introduction

Water turbidity (TU) among other water variables has been used for a long time as an indicator of water quality in rivers,

streams, and lakes freshwater ecosystems (Zolfaghari et al., 2020), and also for monitoring water contamination and

guiding pollution control (Gu et al., 2020). The concentration of TU in water comes from the high concentration of the

suspended solids caused by watershed runoff (Park et al., 2017), and it is often used as an indicator of the intensity of light

scattering (Gelda et al., 2009; Gelda and Effler, 2007). The water clarity and transparency are measured and evaluated using

the turbidity which is related to the scattering of light (Al-Yaseri et al., 2013). A high concentration of TU in freshwater can

cause serious problems and lead to a deterioration of the water quality that can cause serious health problems, affecting the

metabolic activity and leading to a significant increase in the net sedimentation rate (Gelda et al., 2013). In a study con-

ducted in the Niulan River, China, it was demonstrated that high levels of turbidity were originated from three sources

namely; interflows and underflows caused the sudden spikes, strong mixing caused by the floods, and the very low settling

velocity of the very fine incoming sediments (Zhang and Wu, 2020). In addition, it was reported that the higher the TU

concentration in water, the higher the esthetic impairments manifested (Gelda and Effler, 2007). River TU is highly cor-

related to river discharge (Q) and the relation between TU and Q is a complex and dynamic process (Mather and Johnson,

2014). Water TU can be measured directly using in-situ sensors and calculated using various indirect methods based on the

application of different kinds of models. Over the years, several models have been developed and proposed for predicting

TU and mainly based on the artificial intelligence paradigms or remote sensing data.

Rajaee and Jafari (2018) applied several machine learning for predicting daily river TU in the Blue River at Kenneth

Road, Overland Park, Kansas, United States. The authors used the standard artificial neural network (ANN), gene

expression programming (GEP), and the decision tree (DP) approaches. In addition, the proposed models were applied

combined with the discrete wavelet transforms (DWT) for improving the model’s accuracy. Based on the correlation coef-

ficients, the explanatory variables were composed of turbidity and river discharge (Q) measured at several previous lag

times. From the obtained results, the authors demonstrated that the best accuracy was achieved using the wavelet-gene

expression programming (WGEP), compared to the wavelet-ANN (WANN) and wavelet-decision tree (WDT). In another

study, Liu and Wang (2019) compared the multiple linear regression (MLR) and the GEP models in predicting water tur-

bidity measured at two reservoirs located in Taiwan: the Tseng-Wen and Nan-Hwa reservoirs. The authors have developed

the predictive models based on the satellite imagery obtained from the Landsat 8 satellite, and in total four inputs were

selected namely, the spectral wavelength band 2 (450–510nm, blue), band 3 (530–590nm, green), band 4 (640–
670nm, red), and band 5 (850–880nm). From the obtained results, the GEP model worked best compared to the MLR

model. Zounemat-Kermani et al. (2020) used several machines in predicting river TU in Brandywine Creek, Pennsylvania,
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United States, namely the online sequential extreme learning machine (OS-ELM), the ANN, the classification and

regression tree (CART), the group method of data handling (GMDH), and the response surface method (RSM) models.

The proposed machine learning models were developed using several predictors, i.e., Q, precipitation (P), water pH, sus-

pended sediment (SS), dissolved oxygen (DO), and water temperature (TE). From the obtained results, they reported that

the best accuracy was obtained using the OSELMmodel, while the CART was the worst model. Gu et al. (2020) proposed a

new model for river TU retrieval using the random forest regression model (RF). The authors selected 13 bands from the

hyperspectral remote sensing data obtained by the Google earth engine (GEE) and the model was called RFE-GEE. To

demonstrate the superiority of the proposed RFE-GEE model, they compared its accuracy with those of RF, broad learning

system (BLS), bidirectional ELM (BELM), support vector regression (SVR), deep belief network, extreme learning

machine (ELM), and stacked selective ensemble-backed predictor (SSEP) models. From the obtained results, they reported

that the high accuracy was obtained using the developed RFE-GEE which ensured a 15.4% gain taking into account the

mean squared error (MSE). Allam et al. (2020) proposed the use of the Landsat 8 surface reflectance (L8SR) for predicting

TU in the Ramganga River, India. The proposed algorithm achieved a good correlation between in situ measured and cal-

culated river TU with R2�0.760.

Najah et al. (2013) compared two artificial neural network models namely the MLPNN and the radial basis function

neural networks (RBFNN) for predicting river TU measured in the Johor River Basin located in Johor state, Malaysia. The

two models were developed and compared using only the total dissolved solids (TDS), and the results showed that the

RBFNN (R2 � 0.80) was more accurate compared to the MLPNN (R2 � 0.64). Mather and Johnson (2016) combined three

input variables namely river Q, P and air temperature (TE) for forecasting daily River TU 3 days in advance. The empirical

even model was developed using data from two USGS sites and acceptable accuracy was obtained. Tsai and Yen (2017)

used the group method of data handling algorithm (GMDH) for forecasting river TUmeasured at the ChiahsienWeir and its

upper stream in Taiwan. By combining the Q, P, and TU measured at the previous lag, they demonstrated that GMDH

(R � 0.975) was more accurate than the stepwise regressive (SGMDH) (R � 0.965) and achieved high accuracy. In a

recently published paper, Teixeira et al. (2020) compared MLPNN and the fuzzy inference system (FIS) in predicting river

TU using theQ and the area of the watersheds (A). According to the obtained results, the FIS model was more accurate with

Nash-Sutcliffe efficiency (NSE) of 0.860 for the validation dataset. In the same context, Iglesias et al. (2014) has proposed a

new modeling strategy for modeling river TU in the Nalón river basin, Northern Spain. The proposed approach used the

so-called synergistic variables which were obtained by the multiplication two well-known variables: conductivi-

ty � ammonium, conductivity � pH, conductivity � dissolved oxygen, and so on. It was demonstrated that the new syn-

ergistic variables contribute significantly to the improvement of the model’s performances.

According to the literature review discussed earlier, it is clear that several attempts have been done for providing general

frameworks for the river water TU modeling, and models based on machine learning were the most reported tools. While it

was shown that river TU can be predicted very well using a combination of several water variables, we believe that

the introduction of new working methods based on the use of fewer predictor will be a very promising area of research

and the development of new modeling strategy can help in improving our understanding of the river TU modeling. In

addition, the use of hybrid models based on the combination of standalone machine learning and several metaheuristics

algorithms can help in improving the models performances. Consequently, the objective of this study is to introduce a

new kind of machine learning models called bat algorithm optimized extreme learning machine (Bat-ELM) for predicting

daily river turbidity using only river discharge. The Bat-ELM was compared to the feedforward artificial neural network

(FFNN), and the dynamic evolving neural-fuzzy inference system (DENFIS) models.

2. Study area and data

The study area for this investigation was composed of four USGS stations, two of them located in the Sprague River,

Oregon, United States, and the two other stations in the Clackamas County, Oregon, United States. The selected stations

were: (i) USGS 11497500 at Sprague River near Beatty, Klamath Basin, Oregon, United States (Latitude 42°26051.900,
Longitude 121°14018.700 NAD83), (ii) USGS 11501000 at Sprague River near Chiloquin, Klamath Basin, Oregon, United

States (Latitude 42°35003.500, Longitude 121°50054.000 NAD83), (iii) USGS 14210000 at Clackamas River at Estacada,

Oregon, United States (Latitude 45°1800000, Longitude 122°2101000 NAD27), and (iv) USGS 14211010 at Clackamas River

near Oregon City, Oregon, United States (Latitude 45°2204600, Longitude 122°3403400 NAD27). The location of the study



FIG. 1 Location map showing the four USGS stations selected for modeling river turbidity.
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area shows the four USGS station in Fig. 1. The data from these four selected stations were used to build machine learning

models for estimating river turbidity measured at a daily time scale, as a function of the river discharge. The length of the

data set varied form one station to another ranging from 990 to 6684 patterns, and the detail for each station was provided in

Table 1. For each station, the dataset was randomly divided into two subgroups: one for the calibration period (70%) and the

rest (30%) for validation. Table 2 reported the mean, maximum, minimum, standard deviation, coefficient of variation

values, and the coefficient of correlation with TU, i.e., Xmean, Xmax, Xmin, Sx, Cv, and R, respectively.
TABLE 1 Period of records for the USGS stations selected for Modeling River turbidity.

Station Begin date End date Total patterns Incomplete patterns Final patterns

USGS 1497500 01/11/2007 31/12/2015 2983 1993 990

USGS 11501000 16/11/2007 02/09/2020 4675 711 3964

USGS 14210000 01/07/2001 03/09/2020 7005 321 6684

USGS 14211010 01/06/2002 03/09/2020 6670 229 6441



TABLE 2 Summary statistics of water quality variables for the four stations.

Variables Subset Unit Xmean Xmax Xmin Sx Cv R

USGS 11497500 Sprague River near Beatty, Klamath Basin, Oregon, United States

TU Training FNU 7.306 47.700 1.900 7.376 1.010 1.000

Validation FNU 6.937 45.600 1.900 6.843 0.986 1.000

All data FNU 7.196 47.700 1.900 7.221 1.003 1.000

Q Training Kcfs 313.386 1500.000 82.600 264.966 0.845 0.503

Validation Kcfs 310.379 1520.000 82.800 270.773 0.872 0.531

All data Kcfs 312.486 1520.000 82.600 266.653 0.853 0.510

USGS 11501000 Sprague River near Chiloquin, Klamath Basin, Oregon, United States

TU Training FNU 7.239 78.400 0.500 8.614 1.190 1.000

Validation FNU 7.407 63.700 0.500 8.483 1.145 1.000

All data FNU 7.290 78.400 0.500 8.575 1.176 1.000

Q Training Kcfs 477.993 4430.000 100.000 482.665 1.010 0.548

Validation Kcfs 501.307 4380.000 101.000 531.828 1.061 0.562

All data Kcfs 484.984 4430.000 100.000 497.999 1.027 0.552

USGS 14210000 Clackamas River at Estacada, Oregon, United States

TU Training FNU 2.225 75.400 0.000 4.692 2.109 1.000

Validation FNU 2.524 78.300 0.000 5.575 2.209 1.000

All data FNU 2.314 78.300 0.000 4.975 2.149 1.000

Q Training Kcfs 2540.357 24800.000 589.000 2252.682 0.887 0.740

Validation Kcfs 2635.124 28900.000 601.000 2371.804 0.900 0.746

All data Kcfs 2568.781 28900.000 589.000 2289.388 0.891 0.741

USGS 14211010 Clackamas River near Oregon City, Oregon, United States.

TU Training FNU 3.088 100.000 0.000 6.390 2.069 1.000

Validation FNU 3.144 93.800 0.000 6.814 2.167 1.000

All data FNU 3.105 100.000 0.000 6.520 2.100 1.000

Q Training Kcfs 3270.327 27500.000 630.000 3115.037 0.953 0.784

Validation Kcfs 3265.621 32600.000 624.000 3312.813 1.014 0.811

All data Kcfs 3268.915 32600.000 624.000 3175.539 0.971 0.793

Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation; R, coefficient of correlation with TU; TU, water turbidity;
Q, discharge; FNU, Formazin Nephelometric Unit; Kcfs, thousand cubic feet per second.
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3. Methodology

3.1 Feedforward artificial neural network

Artificial neural networks (ANN) are widely used for solving a large number of problems in the area of water resources

management and now becoming a successful tool for tackling complex and nonlinear problem (Olyaie et al., 2017; Mehr

and Nourani, 2018; Hrnjica et al., 2019; Matouq et al., 2013). The success of the ANN in comparison to other regression

models was primarily due to their ability to adapt and to be flexible in extracting the nonlinear relationship between vari-

ables using a learning process (Haykin, 1999). There is a large number of the ANN architecture; however, the FFNN is the
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most and widely used model in the literature. As the name suggests, the FFNN is composed of several layers: input layer,

hidden layers, and output layer, and generally only one hidden layer is adopted, and the available information

spreads through the network from the input to the output layer. The input layer contains the independent variables

(x1, x2, x3, …, xi), the hidden layer is composed of several neurons determined by trial and error, and each one receives

the all input variables (xi) multiplied by their respective parameters (the weights), use a summation function and added

one bias to the results. The output of each hidden neuron was produced using an activation function, generally the sigmoidal

function. Finally, the output layer sums the weighted output of the hidden neurons and uses a linear transfer function to

provide the final output response. The weights and biases of the ANNmodels will be adjusted during the training process to

minimize a cost function, generally the sum of squares error calculated as the differences between the measured and pre-

dicted value. The well-known and widely used training algorithm is the back propagation (Haykin, 1999).
3.2 Dynamic evolving neural-fuzzy inference system

Evolving neural-fuzzy inference systems are intelligent models with high similarity with the classical neuro-fuzzy

approaches for which the linear and nonlinear parameters were adopted in an online manner, more precisely; the nonlinear

parameters were governed by the kind of partition of the input-output space (Škrjanc et al., 2019). DENFIS is the most

relevant evolving system introduced during the last decade (Kasabov and Song, 2002) and is mainly based on the so-called

evolving clustering method (Heddam and Kisi, 2020; Kasabov et al., 2008). From a computational point of view, the

DENFIS model can be run in two manners namely the online and the offline. The first the version is based on the online

training method and the model is called DENFIS_ON, while the second method is based on the offline training method and

the model is called DENFIS_OF (Kasabov and Song, 2002; Kasabov et al., 2008). The triangular fuzzy membership func-

tions are used for both online and offline DENFIS models:

m xð Þ ¼ mf x, a, b, cð Þ ¼

0, x � a
x� a

b� a
, a � x � b

c� x

c� b
, b � x � c

0: c � x

8>>>>><
>>>>>:

(1)

where b is the value of the cluster center on the x dimension, a ¼b�d�Dthr and c¼b+d�Dthr, d¼1.2 � 2; the distance
threshold value, Dthr, is a clustering parameter (Kasabov and Song, 2002; Kasabov et al., 2008; Heddam et al., 2018).

During the last few years, DENFIS models have been applied for solving several engineering problems, and more details

related to its application can be found in Adnan et al. (2021), Sebbar et al. (2020), Heddam and Kisi (2020), Heddam et al.

(2018), Kisi et al. (2019a,b). The MatLab software for DENFIS can be found in https://kedri.aut.ac.nz/areas-of-expertise/

data-mining-and-decision-support/neucom.
3.3 Bat algorithm optimized extreme learning machine

Single hidden layer feedforward neural network (SLFN) is the most and relevant ANN model proposed during the last

decades, not only regarding its simplicity, i.e., having only one hidden layer, but also in regards to its robustness, high

precision, and universal approximation capability.With the invention of the back-propagation training algorithm, the SLFN

had become famous (Hornik et al., 1989; Hornik, 1991). From a computational point of view, the back-propagation is used

for iteratively updating all SLFN parameters (i.e., weights and biases) from the input to the output layers, bringing the total

number of updated parameters high, and in some cases (i.e., large data set) the training process become very slow and suffer

from the overfitting problem. In order to meet these challenges, a new training algorithm called extreme learning machine

(ELM) was arriving (Huang et al. 2006a,b), such that the weights between the input and hidden layer are obtained directly

and do not need to be updated during the training process, which is called the random generation of the hidden nodes, while

those linking the hidden to the output layers were analytically determined. According to Huang et al. (2006a,b), SLFN with

N hidden layer nodes can be expressed as follows:

Yj ¼
XN
i¼1

bic wi � xj + bi

� �
j ¼ 1,…M (2)

https://kedri.aut.ac.nz/areas-of-expertise/data-mining-and-decision-support/neucom
https://kedri.aut.ac.nz/areas-of-expertise/data-mining-and-decision-support/neucom
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whereM is the number of training simple, N is the number of hidden nodes, wi is a single input to hidden layers weight,C is

the activation function, bi is hidden to output layers weights, bi is the hidden nodes biases, xj correspond to the input vari-

ables matrix. The mathematical formulation of the ELM approach could be described as:

Hb ¼ T (3)

whereH is the hidden layer output matrix, b is the weight matrix of the output layer, and T is the expected output matrix (Liu
et al., 2020a; Cheng et al., 2020).

Several metaheuristics training algorithms have been proposed during the last few years for improving the training

process of the ANN and ELM models, among them: genetic algorithm (GA), particle swarm optimization (PSO), bee

colony (ABC) optimization algorithm, Ant Colony Optimization (ACO), differential evolution (DE), and cuckoo search

algorithm (CSA). In the present study, an efficient optimization method called Bat optimization was introduced to optimize

the ELM model and described later.

The Bat optimization algorithm introduced by Yang (2010) is a metaheuristics approach belonging into the category of

swarm intelligence models, and it was inspired by the behavior by which the bats seek their prey with a special sense ( Jaddi

et al., 2015). The main idea behind the bat algorithm is mainly based on the echolocation capability and social behavior of

the bat population (Xie et al., 2019). From a computational point of view the bat algorithm possesses the following three

idealized rules (Shekhar et al., 2020; Liu et al., 2020b):

(i) The echolocation is used by the bats as a method to calculate and to know the relative distance from a food source and

obstacles in an unknown way.

(ii) In order to search the prey, an initial velocity Vi should be randomly assigned at a starting position Xi. The bats fly at

the same relative velocity for different times due to different initial distances, using a fixed frequency fi ranging
between two limits fmin and fmax, varying wavelength l and the loudness or sound intensity A0. According to the

level of proximity to the target, the bat automatically adjusts the wavelength and pulse rate accordingly.

(iii) Ranging from a maximum (A0) to a minimum (Amin), the loudness of the pulse should be adjusted accordingly.

The output of this iterative process is achieved according to a series of iterations according to a large number of avail-

able solutions, in which the loudness and pulse rate were updated in response to the received accepted solution. Conse-

quently, the frequency, velocity, and position values of any bat member are calculated as follow (Gangwar and Pathak,

2020):

f i ¼ f min + f max � f minð Þb (4)

Vt
i ¼ Vt�1

i + Xt�1
i � Xt

best

� �
f i (5)

Xt
i ¼ Xt�1

i + Vt
i (6)

where b ranging is a random number ranging from 0 to 1, fi ranging from fmin to fmax denoted as the frequency and used for
controlling the step length (i.e., the step and range) of the bat movement, and it corresponds to a range of wavelengths [lmin,

lmax], and Xbest is the global best solution. During the iteration process, the updated solution is calculated a follow (Gangwar

and Pathak, 2020):

Xnew ¼ Xold + eAt (7)

where e is a random number ranging between zero and one [0, 1], and At represents the average value of Bats loudness at the
time t. Flowchart of the developed Bat-ELMmodel is shown in Fig. 2. The MatLab code of the Bat algorithm can be found

in https://fr.mathworks.com/matlabcentral/fileexchange?q¼Bat+algorithm.
3.4 Multiple linear regression

Using the MLR method, one dependent variable Y (in our study the river turbidity) is linked or correlated with several

predictor variables xi, using the following equation (Luu et al., 2021):

Yi ¼ b0 +
XK
i¼1

bixi + ei (8)

where b0 is the intercept, bi were the partial regression coefficients for each predictor and the e is the residual.

https://fr.mathworks.com/matlabcentral/fileexchange?q=Bat+algorithm
https://fr.mathworks.com/matlabcentral/fileexchange?q=Bat+algorithm
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3.5 Performance assessment of the models

In the present chapter, the performances of the proposed models were evaluated using: coefficient of correlation (R), Nash-
Sutcliffe efficiency (NSE), mean absolute error (MAE), and root mean square error (RMSE) are calculated as follow:

MAE ¼ 1

N

XN
i¼1

| TU0ð Þi � TUp

� �
i
|, 0 � MAE < +∞ð Þ (9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

TU0ð Þi � TUp

� �
i

h i2vuut , 0 � RMSE < +∞ð Þ (10)
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NSE ¼ 1�

XN
i¼1

TU0ð Þi � TUp

� �
i

h i2
XN
i¼1

TU0ð Þi � TU0

� �2

2
66664

3
77775, �∞ < NSE � 1ð Þ (11)

R ¼
1
Ν

XN
i¼1

TU0ð Þi � TU0

� �
TUpð Þ

i
�TUP

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ν

Xn
i¼1

TU0ð Þi � TU0

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ν

Xn
i¼1

TUpð Þ
i
�TUp

� �2s
2
66664

3
77775, �1 < R � +1ð Þ (12)

In which, N is the number of data, TU0, TUp, TU0, TUp are the measured, predicted, mean measured, and mean predicted
river water turbidity, respectively.

4. Results and discussion

As stated above, the goal of our study was the prediction of river turbidity at four rivers located in the United States. For this

purpose, four machine learning models were developed and compared according to two scenarios: (i) using the river dis-

charge (Q) and the periodicity (i.e., year, month, and day) numbers, and (ii) using only river discharge. The RMSE,MAE,R,
and NSE, respectively, were calculated during the training and validation phases separately, and the obtained results were

further analyzed using graphical representations. Overall, at the four stations, the river TUwere poorly estimated using only

river Q compared to the estimation achieved using Q and the periodicity, and the Bat-ELM showed the best correlation

among all proposed models over the four stations. Detailed results for each station are discussed hereafter.

4.1 USGS 1497500 station

The numerical results of daily river TU prediction at the USGS 1497500 station using the four machine learning models are

illustrated in Table 3. According to Table 3, using only the Q as an input variable, the DENFIS_O2, DENFIS_F2, FFNN2,

and Bat-ELM2 models exhibit small variations during the validation phase, and none of them was able to correctly and

accurately predict TU concentration. The RMSE and MAE values ranging from 5.593 to 6.230 and 3.256 to 3.575, respec-

tively, show the poor models performances during the validation stage. The NSE and R values were very low and do not

exceed 0.331 and 0.576, respectively. However, inclusion of the periodicity guaranteed a significant improvement in the

models performances for all proposedmodels. The river TU retrieved has a NSE coefficient of no<0.660 for all models and

the R values were superior to 0.827. In addition, the RMSE andMAE values were no more than 3.99 and 2.26, respectively.

These results imply that the four machine learning models have been able to predict the river TU very accurately by the

inclusion of the periodicity. Overall, the best accuracy was obtained using the Bat-ELM1 with R and NSE of 0.972 and

0.936, respectively, versus 0.905 and 0.770 for FFNN1, and 0.850 and 0.708 for DENFIS_O1, significantly higher than the
TABLE 3 Performances of different River Turbidity models at the USGS 11497500 station.

Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Bat-ELM1 0.984 0.968 1.314 0.894 0.972 0.936 1.731 1.155

Bat-ELM2 0.596 0.355 5.919 3.684 0.576 0.331 5.593 3.256

DENFIS_O1 0.924 0.593 4.704 2.948 0.850 0.708 3.694 2.023

DENFIS_O2 0.916 0.364 5.876 3.630 0.530 0.170 6.230 3.575

DENFIS_F1 0.842 0.657 4.316 2.425 0.827 0.659 3.992 2.258

DENFIS_F2 0.573 0.294 6.191 4.044 0.564 0.278 5.809 3.503

FFNN1 0.979 0.959 1.490 0.964 0.905 0.770 3.276 1.787

FFNN2 0.638 0.408 5.673 3.563 0.500 0.225 6.018 3.468
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FIG. 3 Scatterplots of measured against calculated Turbidity at the USGS 11497500 station.
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weakest performances obtained using the DENFIS_F1 model with R and NSE values of 0.827 and 0.659, respectively,

which is still largely less than the other three models. In addition, the Bat-ELM1 improves the FFNN1, DENFIS_O1,

and DENFIS_F1 by 47.16% and 35.37%, 53.14% and 42.19%, and 56.64% and 48.85% reduction in terms of RMSE

and MAE, respectively. Clearly, Bat-ELM1, FFNN1, and DENFIS_O1 were more accurate compared to DENFIS_F1,

and Bat-ELM1 further improves the river TU estimation. Fig. 3 shows scatterplot of river TU values calculated by

DENFIS_O1, DENFIS_F1, FFNN1, and Bat-ELM1 models compared with in situ measurement. A first look at the results

reveals high-to-moderate agreement between calculated and measured data by all four algorithms. However, it may seem

that the Bat-ELM1 possess the high accuracy with very low scattered data, followed by the FFNN1, the DENFIS_O1 in the

third place, while the high scattered data were obtained using the DENFIS_F1.
4.2 USGS 11501000 station

River TU estimation at the USGS 115001000 using the four machine learning models are compared to the in situ measured

data in Fig. 4 for the validation dataset. For both Bat-ELM1 and FFNN1 models, simulated TU fall generally along the one

to one line against in situ measurements with less scattered data and the superiority of the Bat-ELM1 is obvious; however,

the DENFIS_O1 and DENFIS_F1 worked equally with slight difference, and they are less accurate compared to Bat-ELM1

and FFNN1 with large scattered data. Quantitative measures of all river TU comparisons are shown in Table 4 in terms of

RMSE,MAE, NSE, and R values. From Table 4, estimated river TUwas poorly correlated with in situ measured data for the

models based only on river discharge. The four machine learning models have low NSE and R values ranging from 0.384 to
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FIG. 4 Scatterplots of measured against calculated Turbidity at the USGS 11501000 station.

TABLE 4 Performances of different River Turbidity models at the USGS 11501000 station.

Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Bat-ELM1 0.941 0.885 2.921 1.582 0.937 0.877 2.972 1.748

Bat-ELM2 0.685 0.469 6.273 3.217 0.699 0.488 6.069 3.295

DENFIS_O1 0.868 0.705 4.680 1.836 0.867 0.746 4.271 2.174

DENFIS_O2 0.720 0.478 6.224 2.984 0.656 0.384 6.657 3.617

DENFIS_F1 0.877 0.764 4.187 2.101 0.871 0.754 4.206 2.250

DENFIS_F2 0.677 0.458 6.340 3.338 0.702 0.490 6.054 3.408

FFNN1 0.981 0.963 1.667 1.103 0.899 0.802 3.773 2.376

FFNN2 0.725 0.525 5.933 3.050 0.664 0.437 6.362 3.436



Bat algorithm optimized extreme learning machine Chapter 2 49
0.490 and from 0.656 to 0.702, respectively, and none of the models possess a NSE value greater than 0.50. In terms of

errors metrics, the obtained RMSE and MAE were very high ranging from 6.054 to 6.657 and from 3.408 to 3.617, respec-

tively. The difference in models performances between scenario 1 and 2 is apparent and the significant contribution of the

periodicity in the improvement of the models accuracy was completely clear for which the NSE and R value are somewhat

larger and the RMSE and MAE values are somewhat small. The RMSE and MAE of the Bat-ELM1 and FFNN1 were

improved by 51.03% and 46.95%, 40.69% and 30.85%, respectively. In addition, the RMSE and MAE of the DENFIS_O1

and DENFIS_F1 were improved by 35.84% and 39.89%, 30.53% and 33.98%, respectively. The most significant

improvement was achieved using the Bat-ELM1 for which the RMSE had dropped from 6.069 to 2.972, while the

MAE value was decreased from 3.295 to 1.748, respectively. In addition, an increase in the NSE and R values is to be

expected: the R spiked to almost 0.937 compared to 0.699 (25.40% improvement) obtained using only the river discharge,

while the NSE value rose by 44.36% (0.488–0.877). The improvement on models accuracies was attributed to the intro-

duction of the periodicity as input variable combined the discharge. Finally, comparison between the models accuracy

revealed the superiority of the Bat-ELM1, followed by the FFNN1, while the two DENFIS models have typically the same

performances. For comparison, Bat-ELM1 decreased the RMSE and MAE values of the FFNN1, DENFIS_O1, and

DENFIS_F1 by 21.23% and 26.43%, 30.41% and 19.60%, and 29.34% and 22.31%, respectively.
4.3 USGS 14210000 station

Table 5 shows the numerical results obtained at the USGS 14210000 station using the machine learning models described

above. During the validation phase, the minimum RMSE and MAE of the second scenario (i.e., using only Q) are given as
well as the NSE and R values, showing the superiority of the Bat-ELM2 model, while the FFNN2, DENFIS_O2, and

DENFIS_F2 exhibit relatively the same level of accuracies, for which statistical measurement of error, i.e., RMSE and

MAE showed a range of 3.185–3.753, and 1.244–1.334, respectively, with larger errors values obtained by the FFNN2

(RMSE¼3.753, MAE¼1.334).

From Table 5, it can be seen that the errors index calculated using the Bat-ELM2 are generally the lower one with RMSE

andMAE of 3.185 FNU and 1.245 FNU, respectively. Across the two scenarios with and without the periodicity, scenario 1

having the Q and the periodicity as input variables show better performances over the four machine learning models, with

measurement errors (i.e., RMSE and MAE) significantly reduced. The RMSE varies from 3.396 at worst to 2.456 at best,

and the MAE varies from 1.299 at worst to 1.117 at best. Quantitative comparisons for all models in the form of RMSE,

MAE, R, and NSE values between observed and simulated values reported in Table 5 revealed that a significant percentage

improvement was achieved using the Bat-ELM1 in comparison to the FFNN1, DENFIS_O1, and DENFIS_F1 models. The

Bat-ELM1 increased R and NSE values by 9.24% and 23.43%, and decreased RMSE and MAE values by 25.21% and

14.01%, respectively, in the validation phase, compared to the FFNN1 model. In addition, The Bat-ELM1 decreased

the RMSE and MAE values by 27.68% and 7.76%, and increased R and NSE values by 11.97% and 28.14%, respectively,

in the validation phase, compared with DENFIS_O1 model. Finally, the Bat-ELM1 was more accurate compared to

DENFIS_F1 showing a significant decrease of the RMSE and MAE by 25.213% and 14.011%, respectively.
TABLE 5 Performances of different River Turbidity models at the USGS 14210000 station.

Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Bat-ELM1 0.850 0.723 2.469 1.109 0.898 0.806 2.456 1.117

Bat-ELM2 0.831 0.691 2.607 1.042 0.821 0.674 3.185 1.245

DENFIS_O1 0.808 0.594 2.989 1.160 0.802 0.629 3.396 1.211

DENFIS_O2 0.835 0.664 2.718 0.959 0.799 0.623 3.420 1.244

DENFIS_F1 0.898 0.804 2.075 0.901 0.807 0.646 3.318 1.241

DENFIS_F2 0.821 0.674 2.677 1.040 0.790 0.625 3.415 1.277

FFNN1 0.901 0.812 2.036 0.935 0.822 0.653 3.284 1.299

FFNN2 0.856 0.733 2.424 0.996 0.771 0.547 3.753 1.334
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FIG. 5 Scatterplots of measured against calculated Turbidity at the USGS 14210000 station.
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The comparisons between simulated and in situ measured TU are given in Fig. 5 in terms of scatterplot. The agreement is

very good for Bat-ELM1 with R2 determination coefficient always above 0.80, and the data were less scattered in com-

parison to the other three models for which the data were largely scattered with an R2 approaching 0.670.

4.4 USGS 14211010 station

At the USGS 14211010 station (Table 6), for the four developed models, it can be concluded that both during the training

and the validation phase, results showed that the inclusion of the periodicity as input variable has a marked effect on the

performances of the models. During the validation phase, it is clear from the obtained results that using only the river dis-

charge as input variable, the performances of FFNN2, Bat-ELM2, DENFIS_O2, and DENFIS_F2 models were relatively

similar with slight superiority in favor to DENFIS_F2. An analysis of the statistical indices shows that the R and NSE values

are in the range of 0.824–0.852 and 0.679–0.726. Similarly, the RMSE and MAE range from 3.56 to 3.86 FNU and from

1.338 to 1.407, respectively. From Table 6, it is clear that the inclusion of the periodicity improves the performances of both

models. Using the periodicity and Q as input variables, the best Bat-ELM1 model had RMSE¼2.626, MAE¼1.161,

R¼0.923, and NSE¼0.851, and surpasses all other models in terms of accuracy. Scatterplot of calculated versus measured

river TU are given in Fig. 6. Finally, the performances of the models were evaluated and compared in terms of boxplot

(Fig. 7) and Taylor diagram (Fig. 8) showing the superiority and the high performances of the Bat-ELM1 compared to

the all developed models.



TABLE 6 Performances of different River Turbidity models at the USGS 14211010 station.

Models

Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Bat-ELM1 0.934 0.872 2.289 1.145 0.923 0.851 2.626 1.161

Bat-ELM2 0.837 0.700 3.500 1.385 0.844 0.708 3.682 1.430

DENFIS_O1 0.867 0.727 3.336 1.289 0.862 0.739 3.480 1.422

DENFIS_O2 0.869 0.747 3.216 1.313 0.837 0.698 3.744 1.338

DENFIS_F1 0.931 0.867 2.329 1.062 0.847 0.704 3.705 1.226

DENFIS_F2 0.880 0.774 3.039 1.317 0.852 0.726 3.564 1.345

FFNN1 0.945 0.893 2.093 1.031 0.827 0.638 4.097 1.249

FFNN2 0.891 0.793 2.904 1.303 0.824 0.679 3.862 1.407
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FIG. 6 Scatterplots of measured against calculated Turbidity at the USGS 14211010 station.
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FIG. 7 Box-plots of measured and calculated river turbidity (TU: RFU) for the four USGS stations. Boxes are generated using validation dataset illus-
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FIG. 8 Taylor diagram of river turbidity (TU: RFU) illustrating the statistics of comparison between the proposed models at the four USGS stations.
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5. Conclusions

As a key water quality variable, river turbidity is of great concern in a large number environmental, water resources, and

hydrological studies. In this study, first, a robust model for predicting the river TU using only river discharge was fitted and

the obtained results were low to moderate. Next, a nonlinear model between the river TU, discharge, and the periodicity

(i.e., day, month, and year numbers) was established using a new hybrid machine learning model (i.e., Bat-ELM). Then, the

proposed model was applied and tested using data collected at four USGS stations. And finally, the estimation provided by

the Bat-ELMwas compared to those achieved using two kinds of machine learning models namely the FFNN and DENFIS

models. The new method introduced in the present study (Bat-ELM) made a good to excellent work, and an excellent pro-

gress in modeling the river TU was achieved. Therefore, the new method was defined as the best and the useful method for

the estimation of the river TU. The overall accuracy of prediction was significantly improved by the inclusion of the peri-

odicity and the correlation coefficient between the measured and predicted river TU reached 0.97, and the corresponding

RMSE was 1.731. However, when the model was examined without the inclusion of the periodicity and using only the river

discharge, the performances of the Bat-ELM were not the greatest and in some cases, it was surpassed by the DENFIS

models. Results obtained in the present study encompass an encouraging record of progress and achievement by the

use of the machine learning models, and can be applied using data from other stations. Future work should be emphasized

on performances of the proposed models using other input variables and future researches should be encouraged. Also, the

obtained results in the present chapter seem to be interesting and the overall merits of the proposed hybrid Bat-ELM

highlighted. Having seen that, the Bat-ELM surpasses all of the FFNN and DENFIS models at the four stations has lead

us to conclude that the idea of hybridizing machine learning, i.e., the ELM is very promising and should be used for the

other machine learning models.
References

Adnan, R.M., Liang, Z., Parmar, K.S., Soni, K., Kisi, O., 2021. Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS

using hydroclimatic data. Neural Comput. Applic. 33 (7), 2853–2871.

Allam,M., Khan, M.Y.A., Meng, Q., 2020. Retrieval of turbidity on a spatio-temporal scale using Landsat 8 SR: a case study of the Ramganga River in the

Ganges Basin, India. Appl. Sci. 10 (11), 3702. https://doi.org/10.3390/app10113702.

Al-Yaseri, I., Morgan, S., Retzlaff, W., 2013. Using turbidity to determine total suspended solids in storm-water runoff from green roofs. J. Environ. Eng.

139 (6), 822–828. https://doi.org/10.1061/(ASCE)EE.1943-7870.

Cheng, K., Gao, S., Dong,W., Yang, X.,Wang, Q., Yu, H., 2020. Boosting label weighted extreme learningmachine for classifyingmulti-label imbalanced

data. Neurocomputing 403, 360–370. https://doi.org/10.1016/j.neucom.2020.04.098.

Gangwar, S., Pathak, V.K., 2020. Dry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy

composites using hybrid improved bat algorithm and ANN. Mater. Today Commun. 25, 101615. https://doi.org/10.1016/j.mtcomm.2020.101615.

Gelda, R.K., Effler, S.W., 2007. Modeling turbidity in a water supply reservoir: advancements and issues. J. Environ. Eng. 133 (2), 139–148. https://doi.

org/10.1061/(ASCE)0733-9372(2007)133:2(139).

Gelda, R.K., Effler, S.W., Peng, F., Owens, E.M., Pierson, D.C., 2009. Turbidity model for Ashokan Reservoir, NewYork: case study. J. Environ. Eng. 135

(9), 885–895. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000048.

Gelda, R.K., Effler, S.W., Prestigiacomo, A.R., Peng, F., Effler, A.J., Wagner, B.A., et al., 2013. Characterizations and modeling of turbidity in a water

supply reservoir following an extreme runoff event. Inland Waters 3 (3), 377–390. https://doi.org/10.5268/IW-3.3.581.

Gu, K., Zhang, Y., Qiao, J., 2020. Random forest ensemble for river turbidity measurement from space remote sensing data. IEEE Trans. Instrum.

Meas. https://doi.org/10.1109/TIM.2020.2998615.

Haykin, S., 1999. Neural Networks a Comprehensive Foundation. Prentice Hall, Upper Saddle River, UK.

Heddam, S., Kisi, O., 2020. Evolving connectionist systems versus neuro-fuzzy system for estimating total dissolved gas at forebay and tailwater of dams

reservoirs. In: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation. Springer, Singapore, pp. 109–126, https://doi.org/

10.1007/978-981-15-5772-9_6.

Heddam, S.,Watts, M.J., Houichi, L., Djemili, L., Sebbar, A., 2018. Evolving connectionist systems (ECoSs): a new approach for modeling daily reference

evapotranspiration (ET0). Environ. Monit. Assess. 190 (9), 516. https://doi.org/10.1007/s10661-018-6903-0.

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4 (2), 251–257. https://doi.org/10.1016/0893-6080 (91)

90009-T.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366. https://doi.org/

10.1016/0893-6080 (89)90020-8.
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