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62 Parallel Robots

At the displacement level, the closure of each kinematic loop can be expressed in the
vector form as

AB — AA + ABi — BB, fori=1,2,...,n, (3.1)

in which m and ﬁt can be easily obtained from the geometry of the attachment points
in the base and in the moving platform. Let us define vector a; = A_)Az in the fixed frame

{A}, and b; = ﬁt in the moving frame {B}. Furthermore, g, = m is defined as the limb
variable, which indicates the geometry of the limb, and generally includes the active and
passive limb segments. Hence, the loop closure can be written as the unknown pose vari-
ables p, and R, the position vectors describing the known geometry of the base and the
moving platform, a; and b;. Furthermore, the limb vector g, is only known from the kine-
matic equation of the limb together with the readouts of the position sensors located at the
different joints of that limb. Therefore, one may write the loop closure equations as follows:

p=ai+q;,—Rb; fori=1,2,...,n (3.2)

These equations are the main body of kinematic analysis. For an inverse kinematic prob-
lem, it is assumed that the moving platform position p and orientation R are given and
the problem is to solve the active limb variables. Hence, from the above equations the
passive limb variables must be eliminated to solve the inverse kinematic problem. This
analysis is usually straightforward and results in a unique solution for the limb variables,
even for redundant parallel manipulators. However, the inverse solution is not straight-
forward, and usually numerical methods are used for forward kinematic solution. In the
proceeding sections, the inverse and forward kinematic analysis of three case studies are
elaborated in detail.

3.3 Kinematic Analysis of a Planar Manipulator

In this section, the kinematics of a planar parallel manipulator is discussed in detail. In
this analysis, the mechanism kinematic structure is described first and then the geometry
of the manipulator is elaborated. Next, the inverse and forward kinematic analyses of the
manipulator are worked out in detail. In order to verify the formulations, in Section 3.3.5,
the simulation results for computation of inverse kinematics and forward kinematics of the
manipulator are presented, and the accuracy of a numerical solution to forward kinematic
problem is verified.

3.3.1 Mechanism Description

The architecture of a planar 4RP R parallel manipulator considered here is shown in
Figure 3.3. In this manipulator the moving platform is supported by four limbs of an iden-
tical kinematic structure. Each limb connects the fixed base to the manipulator moving
platform by a revolute joint (R), followed by an actuated prismatic joint (P), and another
revolute joint (R). Hence, the total structure of the manipulator is 4RP R. The kinematic
structure of a prismatic joint is used to model either a piston-cylinder actuator at each
limb, or a cable-driven one. In order to avoid singularities at the central position of the
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FIGURE 3.3
The schematics of a 4RP R parallel manipulator.

manipulator, the limbs are considered to be crossed: Complete singularity analysis of the
mechanism is presented in Section 4.6.2.

As shown in Figure 3.3, A; denotes the fixed base points of the limbs, B; denotes point
of connection of the limbs to the moving platform, L; denotes the limbs’ lengths, and «;
denotes the limbs” angles. The position of the center of the moving platform G is denoted
by G = [x¢, yc], and orientation of the manipulatormoving platform is denoted by ¢ with
respect to the fixed coordinate frame. Hence, the manipulator possesses three-degrees-of-
freedom X = [xg, yg, ¢], with one-degree-of-redundancy in the actuators.

3.3.2 Geometry of the Manipulator

For the purpose of analysis and as illustrated in Figure 3.4, a fixed frame O: xy is attached
to the fixed base at point O, the center of the base point circle which passes through A’s.
Moreover, another moving coordinate frame G: UV is attached to the manipulator moving
platform at point G. Furthermore, assume that point 4; lies at a radial distance of R4 from
point O, and point B; lies at a radial distance of Rp from point G in the xy plane, when the
manipulator is at a central location.

In order to specify the geometry of the manipulator, let us define 64; and 6p; as the
absolute angles of points A; and B; at the central configuration of the manipulator with
respect to the fixed frame O. The instantaneous orientation angle of B;’s is defined as

¢i = ¢ + 931" (3-3)
Therefore, for each limb, i =1, 2, 3,4, the positions of the base points A; are given by

Ai =[Racos(@a), Rasin(@4)]". (3.4)

3.3.3 Inverse Kinematics

For inverse kinematic analysis, it is assumed that the position and orientation of the mov-
ing platform X = [xG, y, ¢]" is given and the problem is to find the joint variables of the
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FIGURE 3.4
Kinematic configuration of the 4RP R planar manipulator.

manipulator, L = [L1, Ly, L3, L4]T. From the geometry of the manipulator, as illustrated in
Figure 3.4, the loop closure equation for each limb, i =1, 2,3,4, may be written as,

4G = AB ~GB, (3.5)

Rewriting the vector-loop closure componentwise,

xc — x4 = Ljcos(a;) — Rp cos(¢;), (3.6)
Ye — Yai = Ljsin(a;) — Rp sin(¢;), (3.7)

in which «;’s are the absolute limb angles. To solve the inverse kinematic problem,
it is required to eliminate «;’s from the above equations and solve L;’s. This can be
accomplished by reordering the above equations as,

L;cos(aj) = xg — x4 + Rp cos(¢;) (3.8)
L;isin(o;) = yg — yai + Rp sin(¢;). (3.9)

By adding the square of both the sides of Equations 3.8 and 3.9, the limb lengths are
uniquely determined as follows:

' 1/2
=[x — x4 + Rp cos@))? + (¥ — v + Ry sin(@)?] . (3.10)
Furthermore, the limb angles «;’s can be determined from the following equation:
oj = Atan2 [(yc — yai + Rp sin(¢;)), (xc — xai + Rp cos(¢i))]. (3.11)

Hence, corresponding to each given manipulator location X = [xG,yG,d)]T, there is a
unique solution for the limb lengths L;’s, and limb angles «;s.




