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Abstract

Hepatocellular carcinoma (HCC) currently represents the fifth most common malignancy and 

the third-leading cause of cancer-related death, worldwide, with incidence and mortality rates 

that are increasing. Recently, artificial intelligence (AI) has emerged as a unique opportunity to 

improve the full spectrum of HCC clinical care, by improving HCC risk prediction, diagnosis, and 

prognostication. AI approaches include computational search algorithms, machine learning (ML) 

and deep learning (DL) models. ML consists of a computer running repeated iterations of models, 

in order to progressively improve performance of a specific task, such as classifying an outcome. 

DL models are a subtype of ML, based on neural network (NN) structures that are inspired by the 

neuroanatomy of the human brain. A growing body of recent data now apply DL models to diverse 

data sources – including electronic health record data, imaging modalities, histopathology and 

molecular biomarkers – to improve the accuracy of HCC risk prediction, detection and prediction 

of treatment response. Despite the promise of these early results, future research is still needed to 

standardize AI data, and to improve both generalizability and the interpretability of results. If such 
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challenges can be overcome, AI has the potential to profoundly change the way in which care is 

provided to patients with or at risk for HCC.
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Introduction and Definitions

With a global incidence of approximately 500,000 cases per year, hepatocellular carcinoma 

(HCC) represents the fifth most common malignancy and the third-leading cause of 

cancer-related death, worldwide [1,2]. The vast majority of HCC tumors arise from a 

background of cirrhosis, which in turn is caused most commonly by nonalcoholic fatty 

liver disease (NAFLD), alcohol-related liver disease, or infection from hepatitis B virus 

(HBV) or hepatitis C virus (HCV). Despite recent advances in treatment, including the 

use of Atezolizumab plus Bevacizumab for unresectable HCC, HCC continues to carry a 

grim prognosis, with a five-year survival of just 15%, due to delays in diagnosis and the 

limited efficacy of existing therapies [3,4]. While liver transplantation can be curative for 

HCC in selected cases, this represents a limited and resource-intensive solution, and the vast 

majority of patients are not eligible for transplantation. Thus, identifying novel approaches 

to improve the early diagnosis of HCC and to predict therapeutic response and survival 

among patients with established HCC is of paramount importance.

Due to the broad heterogeneity in HCC risk factors and pathogenesis, established strategies 

for prediction and prognostication are still limited. Recently, artificial intelligence (AI) has 

emerged as a unique opportunity to improve the full spectrum of HCC clinical care, by: (1) 

improving the prediction of future HCC risk in patients with established liver disease; (2) 

improving the accuracy of HCC diagnosis in patients undergoing surveillance imaging or 

liver biopsies; and (3) improving prognostication in patients with established HCC.

AI is a broad field that includes computational search algorithms, machine learning (ML) 

and deep learning (DL) models (Figure 1). ML consists of a computer running repeated 

iterations of models in order to progressively improve performance of a specific task, such 

as classifying an outcome. ML models are designed to improve with time, by incorporating 

additional input training data and thereby optimizing the parameters of an algorithm. 

With time and training, the desired output becomes increasingly accurate. Based on how 

the training process is conducted, ML may be classified as supervised or unsupervised. 

Supervised ML algorithms perform training on a dataset that is labeled in relation to the 

class of interest, and this label is available to the algorithm while the model is being 

created, trained, and optimized. In contrast, unsupervised ML involves training on a dataset 

that lacks class labels, yielding clusters of output data that subsequently require additional 

interpretation.

DL represents a subtype of ML models which are constructed using neural networks 

(NN) inspired by the neuroanatomy of the human brain. NNs consist of a network of 

interconnected computing units – termed “neurons” – that are organized in layers, such 
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that signals travel from the first layer (i.e. input data) to the last layer (i.e. output data) 

after passing through multiple, intervening hidden layers (Figure 2). To train a NN, data are 

divided into a training set and a testing set. The training set characterizes the architecture 

of the network and defines and adjusts the weights between neurons, in order to improve 

classification of the desired output. The testing set then evaluates the utility of the NN 

for identifying or predicting that output. This validation can be conducted internally or 

externally. Internal validation is commonly performed by k-fold cross validation within 

one dataset, by splitting that dataset into k parts and then training k times on k-1 parts, 

and then subsequently testing on the remaining part of the dataset. Between the two 

approaches, external validation is typically considered more robust, as it demonstrates model 

generalizability across populations.

Current limitations of DL approaches include overfitting of data, limited explainability of 

data, and the possibility of poor generalizability, due to the inherent reliance of DL models 

on the size and diversity of their training dataset. In this review, we will outline the rapidly 

evolving role and challenges for AI in the prediction, diagnosis, and prognostication of 

HCC.

AI for predicting incident hepatocellular carcinoma

Several previous case-control and cohort studies have developed predictive models for 

the development of HCC using clinical, demographic and/or laboratory risk factors, 

selected using conventional statistical approaches. However, these models have largely been 

criticized for limited generalizability, modest accuracy, and lack of broad external validity. 

Moreover, HCC risk is notoriously challenging to model because this risk can fluctuate 

widely in an individual over time, and such non-linear changes are difficult to estimate using 

rigid, conventional regression models. Recently, the rapid expansion of available electronic 

health record (EHR) data has provided an opportunity to leverage large-scale, longitudinal 

data elements for automatic feature selection over long-term follow-up, and thereby improve 

HCC risk prediction. To that end, several recent studies have applied AI approaches to 

longitudinal EHR data to improve prediction of incident HCC (Table 1). For example, in 

2013, a supervised ML algorithm was found to have a c-statistic of 0.64 for predicting 

incident HCC in patients with cirrhosis of any etiology, and this significantly outperformed a 

conventional system for HCC risk prediction [5].More recently, another model developed in 

patients with chronic hepatitis C virus (HCV) infection in the U.S. Veterans Administration 

cohort demonstrated an AUROC of 0.759 for incident HCC [6]. In all cases, the models 

constructed by AI approaches significantly outperformed traditional regression models.

It has been posited that improved HCC risk prediction models leveraging AI techniques 

could be used to personalize HCC surveillance strategies by improving risk stratification of 

patients with chronic liver disease. For example, Ioannou and colleagues found that targeting 

patients with the uppermost 51% of their neural network-derived HCC risk score would 

include 80% of patients who would develop HCC within the subsequent 3 years [6]. Such an 

approach could be useful in resource-limited settings that do not have sufficient capacity for 

regular HCC surveillance in all at-risk patients. However, to date, the clinical utility of this 

and other AI-based scores for predicting risk of HCC is unclear, particularly as these data 
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have limited generalizability, given their reliance on the size and diversity of the training 

dataset.

AI for diagnosing hepatocellular carcinoma: radiomics, histopathology and 

biomarkers

Numerous studies have tested the utility of AI for accurately detecting existing HCC, based 

on imaging modalities or biomarkers.

Radiomics: ultrasonography

Current clinical guidelines recommend regular B-mode abdominal ultrasound surveillance 

for identifying HCC in patients with cirrhosis [7–9]. However, ultrasonography has several 

well-described limitations for detecting focal liver lesions, including a high degree of 

dependence on operator experience, equipment quality, and patient body habitus, among 

others. For detection of HCC, the sensitivity of B-mode ultrasonography is only 46–63% 

[9–11]. To address this, several recent studies have tested the ability of AI frameworks to 

improve the accurate diagnosis of focal liver lesions by ultrasonography.

Schmauch and colleagues designed a supervised DL model from a training dataset of 

367 ultrasound images together with the corresponding radiological reports, that could 

identify liver lesions as benign or malignant with a mean AUROC of 0.93 and 0.92, 

respectively [12]. More recently, Yang and colleagues developed and externally validated 

a deep convolutional neural network (DCNN), using a large, multicenter ultrasound imaging 

database from 13 hospital systems. The final model demonstrated an AUROC of 0.92 for 

distinguishing benign from malignant liver lesions, and showed comparable a) performance 

to the judgment of clinical radiologists (diagnostic accuracy, both 76.0%) and b) accuracy 

to contrast-enhanced CT (diagnostic accuracy, both 84.7%) that was only slightly inferior to 

Magnetic Resonance (MRI) (87.9%) [13].

Similar approaches have also been applied to contrast-enhanced ultrasound (CEUS) imaging 

for the detection of HCC. For example, Guo and colleagues recently demonstrated that a DL 

algorithm applied to liver lesions seen by CEUS could increase the sensitivity, specificity, 

and overall accuracy of CEUS for detecting HCC [14]. Others have used AI to apply 

additional pattern recognition classifiers to CEUS DCNN algorithms, to improve diagnosis 

of indeterminate focal liver lesions [15]. However, to date, most prior CEUS studies have 

had small sample sizes and lacked standardized imaging data or external validation cohorts 

to confirm model generalizability across populations.

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)

Another rapidly growing area of research is focused on improved characterization of 

indeterminate liver lesions. In clinical practice, when an abdominal ultrasound shows a 

new liver lesion, a patient typically is referred for further imaging, with contrast-enhanced 

CT or MRI. Based on the fulfilment of specific radiologic criteria, certain liver lesions may 

be considered to have pathognomonic features of HCC, and thus do not require liver biopsy 

for further histological confirmation. However, liver nodules imaged by CT or MRI often 
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demonstrate indeterminate features, for which current recommendations include either liver 

biopsy or close interval follow-up with serial imaging [7,9]. This practice is sub-optimal, 

resulting in numerous imaging studies, patient stress, and the potential for delayed diagnoses 

of liver cancer. For this reason, a growing body of recent literature has explored AI 

approaches to improve risk stratification of indeterminate liver lesions, to facilitate earlier 

and more accurate detection of HCC.

In an early study focused on this issue, Preis and colleagues developed a NN to 

assess focal liver lesions identified by fluorine 18 fluorodeoxyglucose (FDG) positron 

emission tomographic (PET) CT evaluations, together with patient demographics and 

clinical characteristics of 98 subjects, and demonstrated an AUROC of 0.896, which 

outperformed the results of blinded radiologists [16]. Mokrane and colleagues conducted 

a small retrospective study (n=178) of patients with cirrhosis and indeterminate liver 

lesions, for whom diagnostic liver biopsy was recommended. Applying DL approaches, 

the authors constructed a radiomics signature based on 13,920 CT imaging classifiers, that 

achieved an AUROC of 0.70 for distinguishing HCC from non-HCC lesions. Importantly, 

the authors demonstrated that the signature was not influenced by segmentation or by 

contrast enhancement, which adds to its putative generalizability [17]. Another retrospective 

study, by Yasaka et al (n=460) utilized CT imaging classifiers from 3 phases (noncontrast 

enhanced, arterial, and delayed) to construct a 3-layer CNN for distinguishing (a) HCC 

and non-HCC liver cancers from (b) indeterminate liver lesions, hemangiomas and cysts, 

and demonstrated diagnostic accuracy of 0.84 with a median AUROC of 0.92 [18]. More 

recently, Shi and colleagues compared the performance of a triple-phase contrast-enhanced 

CT protocol coupled with a DL model, to a four-phase CT protocol, for distinguishing HCC 

from other focal liver lesions [19]. The authors found that a DL model combined with 

triple-phase CT protocol without pre-contrast yielded similar diagnostic accuracy (85.6%) 

to a four-phase protocol (83.3%; p=0.765). These findings suggest that reducing a patient’s 

radiation dose with a triple-phase CT protocol may not compromise accuracy, and thereby 

brings the field one step closer to optimizing CT protocols for accurately classifying liver 

lesions.

Given the wide variability of radiographic features of the liver and liver lesions, manual 

segmentation for radiomics-based assessments of HCC is both difficult and time-consuming. 

In 2017, the Liver Tumor Segmentation (LiTS) Challenge called upon investigators 

to develop AI-based algorithms for automatically segmenting liver tumors, from a 

multinational dataset of 200 CT scans (130 training, 70 validation scans) [20,21]. All of 

the top-scoring automatic methods used fully convolutional neural networks that separately 

segmented the liver and liver tumors. Segmentation quality was evaluated using Dice scores, 

and the best-scoring algorithm achieved a Dice score of 0.96, whereas for liver tumor 

segmentation the best algorithm achieved Dice scores between 0.67 and 0.70. While these 

findings are promising, there was notable variability in both the imaging characteristics 

of liver tumors and in their annotation, underscoring the need for universal, standardized 

methods for liver tumor segmentation [20,21].

To date, AI has been applied less frequently to MRI imaging of HCC tumors, and given 

the technical difficulty and expense associated with manually designing MRI features, 
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the majority of published studies have been conducted in relatively small populations. 

Nevertheless, a prior study combined clinical data with MRI imaging-based classifiers to 

distinguish HCC from metastases and also from liver adenomas, cysts or hemangiomas, 

and demonstrated a sensitivity of 0.73 for identifying HCC, albeit with a specificity of just 

0.56 [22]. Additionally, Hamm et al developed a NN algorithm that successfully classified 

MRI liver lesions with sensitivity of 92%, specificity of 98%, and an overall accuracy 

of 92% [23]. Zhang and colleagues tested an automated approach to segmentation of 

multi-parameter MRI images in 20 patients with HCC, and demonstrated the feasibility 

of bypassing the time-consuming process of manually-designing MRI based features [24].

More recently, Zhen et al used convolutional neural networks to develop a novel DL system 

that incorporated enhanced MR images, unenhanced MR images and both structured and 

unstructured clinical data, from 1,210 patients with liver tumors, and an external validation 

set (n=201) [25]. This DL system demonstrated excellent performance for classifying liver 

tumors – including HCC – with sensitivity and specificity on par with that observed for 

experienced radiologists. Importantly, this DL model also showed excellent performance 

when combining unenhanced MR imaging with clinical data, suggesting that, with further 

validation, these models also may permit patients to avoid contrast-related complications 

of MRI. Finally, Wang and colleagues recently described a DL model designed to address 

the limited interpretability of AI-based radiomics assessments of HCC [26]. This innovative 

model provides feedback on the relative importance of various radiological input features, 

and thereby serves as an important proof-of-concept, demonstrating that “interpretable” DL 

models could one day be used to improve standardized HCC reporting systems and thereby 

improve clinical outcomes.

To date, published AI algorithms for radiomics assessments of HCC share important 

limitations, including relatively small input datasets, lack of sufficiently large or diverse 

cohorts for robust external validation and lack of standardization of methods or analytical 

tools. It will be important to define the utility of AI-based prediction tools in prospective 

cohorts, and in pooled, large-scale and diverse populations.

Histopathology

Histopathology is a cornerstone in the management of many liver diseases, including auto-

immune hepatitis, and the grading and staging of nonalcoholic steatohepatitis. Although 

non-invasive criteria allow diagnosis of HCC in particular clinical settings, the histological 

examination of tumor samples is often required for masses with atypical features on imaging 

or to rule out a diagnosis of benign primary liver tumor, cholangiocarcinoma (CCA) or 

even metastasis. However, precise histopathological characterization of liver tumors can 

often prove challenging for hepatopathologists, and significant inter-observer disagreement 

may be observed. To address this, several recent studies have applied AI to assist diagnosis 

of liver tumors. Using two large data sets of hematoxylin and eosin stained digital slides, 

Liao et al. used CNN to distinguish HCC from adjacent normal tissues, with Areas Under 

the Curves (AUC) above 0.90 [27]. Kiana et al. developed a tool able to classify image 

patches as HCC or CCA. The model reached an accuracy of 0.88 on the validation set, and, 

interestingly, the authors observed that the combination of the model and the pathologist 
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outperformed both the model alone and the pathologist alone, suggesting that AI tools 

should be used to augment, rather than replace, the conventional histological diagnosis. They 

also showed how a wrong prediction may negatively impact the final diagnosis made by 

the pathologists, underscoring the need to be cautious with AI models aiming at automating 

diagnosis [28].

It has been widely demonstrated that the histological appearance of human cancers, 

including HCC, contain a massive amount of information related to their prognosis and/or 

their underlying molecular alterations [29–31]. In this line, Wang et al. trained a multitask 

deep-learning neural network for automated single-cell segmentation and classification on 

digital slides. This approach allowed the authors to extract quantitative image features 

related to individual cells as well as spatial relationships between neoplastic cells and 

infiltrating lymphocytes. Unsupervised consensus clustering of these features led to the 

identification of 3 subtypes associated with particular somatic genomic alterations and 

molecular pathways [32]. Another study showed that deep learning could predict a subset of 

recurrent HCC genetic defects with AUC ranging from 0.71 to 0.89 [33].

Recent pioneering studies have thus aimed to predict molecular signatures/alterations 

predictive of response to systemic therapies, by the processing of digital slides through NN. 

In gastrointestinal cancers for example, high performance is achieved for the prediction of 

microsatellite instability, a feature strongly associated with sensitivity to immunomodulating 

therapies [34]. Two other pan-cancer studies also demonstrated that NN models were able 

to predict a wide range of molecular alterations or signatures, some of which are related to 

response to particular systemic therapies [35,36]. For HCC, no molecular feature is currently 

used to predict response to the systemic therapies available for patients with advanced 

disease. Sangro et al. however recently reported that responses to the anti-programmed 

death 1 receptor (PD1) antibody nivolumab were more frequently observed in patients with 

tumors showing overexpression of particular immune gene signatures [37]. This was further 

confirmed by Haber et al., who also observed increased sensitivity to immunotherapy in 

HCC with activation of interferon gamma and antigen presentation signaling [38]. Immune 

cells are easily identified by DCNN, and it is likely that deep learning will be able to predict 

this type of gene expression profiles.

Most of these different studies share the same limitations, including the limited number 

of patients, sensitivity to staining protocols and lack of prospective validation. The 

standardization of slide encoding and processing will also be key to allow comparison of 

model performance. Finally, it will be critical to determine how predictions are impacted 

by artifacts such as tissue folds or stains. Automated quality control of slides may help to 

overcome these issues.

Molecular biology and biomarkers

The past two decades have witnessed an explosion in the availability of large, complex data 

sets with genomic and molecular data from bulk tissues and from single cells. Consequently, 

AI algorithms leveraging integrative multiomics approaches have also been designed to 

improve the detection and characterization of HCC tumors. Such integrated algorithms have 
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shown promise for informing disease diagnosis and staging, and for the prediction of disease 

recurrence and therapeutic response [39,40].

As one example, integrated multiomics analyses are increasingly used to assess individual 

variation in key patterns of hepatic gene expression, and to define intra-tumoral 

heterogeneity [41]. Zeng and colleagues constructed a DL model based on RNA-seq defined 

samples, and used those classified features to construct gene expression signatures for 

cancer [42]. The DL-defined autoencoder was found to outperform numerous traditional 

analytical approaches based on principal component analysis (PCA) or top varying genes.

In another study of HCC samples, Chaudhary and colleagues applied supervised and 

unsupervised DL approaches to RNA-seq, miRNA-seq and DNA methylation data, and 

identified two distinct HCC subpopulations with significant survival differences, with a 

C-statistic of 0.68 in the training dataset and 0.67–0.82 in 5 external validation sets [43]. 

This algorithm has subsequently been applied to external HCC cohorts (n=1,494), revealing 

consensus driver genes linked to HCC survival [44]. Future work will need to demonstrate 

the utility of those signatures for informing therapeutic decision making.

Finally, single-cell RNA-seq technologies now permit thousands of single cells to be 

profiled simultaneously and in an unbiased fashion, which holds great promise for 

powerful DL approaches. Single-cell RNA-seq permits the identification of unique cellular 

subpopulations and their transcriptomic profiles, as well as complex gene regulatory 

networks [45]. Within the liver, single-cell RNA-seq has been used to more comprehensively 

elucidate the cellular transcriptomes of nonalcoholic steatohepatitis (NASH) and cirrhosis, 

and to identify novel cell types and cell-cell interactions [46–48]. In HCC, it has permitted 

identification of new subsets of tumor-infiltrating lymphocytes, including clonally expanded, 

exhausted CD8+ T cells and Tregs, and tumor-associated macrophages [49,50]. Collectively, 

these findings are helping to uncover the immunological landscape of chronic liver disease 

and HCC, with unprecedented resolution.

The field of single-cell RNA-seq is still in its infancy and key challenges remain, including 

the variation between methods in terms of data quality and sensitivity, as well as the 

noisiness and incompleteness of data generated [51–53]. Specifically, low-abundance data 

is frequently lost, rendering an expressed transcript undetectable (a phenomenon called, 

“dropout”) [54]. On the other hand, unnecessary amplification of noise risks artificially 

accentuating the significance of less relevant pathways [45]. Several DL-based tools are 

currently available for addressing these issues in single-cell RNA-seq datasets, including 

DeepImpute and SAUCIE, which apply node/gene interaction structures, as well as 

adaptations of Generative Adversarial Networks (GAN), which can generate single-cell 

RNA-seq data and ascertain individual cell types, using neural networks [55–57]. It is hoped 

that further improvements in DL algorithms will help to improve the validity of single-cell 

RNA-seq datasets through imputation, by “denoising” with an auto-encoder that predicts 

genes’ mean, standard deviation and likelihood of dropout, or by streamlining downstream 

analyses of data [55,58].
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New technologies have recently been developed incorporating DL that integrate single-cell 

RNA-seq profiling with epigenetic and proteomic assays, in order to more comprehensively 

profile individual cells [59–61]. Such multiomics approaches have tremendous potential 

utility for uncovering novel biomarkers and therapeutic targets against HCC. However, 

universal, standardized methods and protocols must first be established, and much larger 

datasets will be needed, given that the accuracy of DL algorithms depends upon the size and 

quality of input data. This, in turn, will require collaboration between investigators and the 

sharing of algorithms, approaches and raw datasets.

AI for prognostication in established HCC

The development of robust prognostic scoring systems is key to improve patient risk 

stratification and to plan clinical trials testing neoadjuvant or adjuvant therapies. A DL 

algorithm based on a residual neural network architecture was recently developed in a 

Korean multicenter study to predict HCC recurrence after transplantation. The features 

included age, tumor size, age, and serum levels of alpha-fetoprotein and prothrombin 

induced by vitamin K absence or antagonist-II (PIVKA-II) and the authors showed 

advantages of their model (MoRAL-AI, assessed by c-indices) in their external validation 

cohort, compared to other state-of-the-art predictive models, like the Milan criteria. [62].

The morphological features of HCC have a major impact on patient prognosis, and several 

deep learning algorithms have thus been developed to improve the prediction of HCC 

recurrence/survival from CT scan, MRI or pathological images. Saillard et al. built a model 

based on the processing of HCC digital slides that was able to predict the survival of patients 

with HCC treated by surgical resection with a higher accuracy than scores including all 

relevant clinical, biological and pathological features. Notably, they were validated in a 

series of cases for which slides were stained with different protocols, suggesting that such 

models may generalize well when tested in different clinical centers [63]. A recent study 

from Yamashita et al. confirmed the capability of AI algorithms in predicting outcome 

from digital histologic slides [64]. Lu and Daigle used three state-of-the-art convolutional 

neural networks (VGG 16, Inception v3, ResNet50), pretrained on ImageNet for feature 

extraction from HCC histopathology slides of the TCGA-LIHC cohort, and selected features 

significantly associated with survival through multivariable Cox regression analysis. While 

this again highlights the possibility of outcome prediction from histopathology slides, the 

conclusions are limited by the missing adjustment for other prognostic factors, as well as 

the lack of an external validation cohort [65]. Saito et al. applied classical ML methods to 

handcrafted whole slide image features from a relatively small cohort of 158 HCC patients 

to develop a combined model, predicting HCC recurrence after resection with an accuracy of 

89%. The next step will be to validate those promising results in a larger cohort [66].

An exponentially growing number of studies also investigate the predictive performance 

of MRI or CT scans images. Ji et al. combined several clinical and biological features 

(including serum alpha-fetoprotein albumin-bilirubin (ALBI) grade and tumor margin 

status), and radiomics signatures to assess the risk of HCC recurrence after surgical 

resection [67]. Other authors also aimed to process CT scan or MRI images to predict 

microvascular invasion, cytokeratin 19 expression (progenitor phenotype) or early tumor 
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recurrence [68–71]. Several studies investigated the predictive abilities of AI methods for 

transarterial chemoembolization (TACE) in advanced HCC. Abajian et al. used handcrafted 

radiomics features from MRI images to train logistic regression and random forest models 

to classify patients treated by transarterial chemoembolization (TACE) as responders and 

non-responders. The models achieved a maximal overall accuracy of 78% but revealed the 

potential of ML algorithms in TACE response prediction [72]. Classical machine learning, 

as well as deep learning techniques were used on CT image radiomics features by Liu et al. 

to develop AI-based prognostic risk factors for overall survival. Interestingly, these factors 

were shown to be independently associated with survival; yet, it is important to highlight 

that the study lacked external validation and a simple train-validate-test split approach was 

used, which may limit generalizability [73]. Similarly, Zhang et al.’s DL score, based on a 

DenseNet-121 feature extraction architecture was also derived from CT images of patients 

with HCC treated with TACE plus Sorafenib. The DL score was independently associated 

with overall survival, after controlling for known prognostic factors [74]. Using residual 

convolutional neural networks, Peng et al. trained (562 patients) and externally validated (89 

and 138 patients) an algorithm yielding AUCs of at least 0.94 for prediction of complete or 

partial response and stable or progressive disease after TACE therapy [75]. A single study 

involving ultrasound was further conducted by Oezdemir et al., who extracted handcrafted 

HCC microvascular features from CEUS images to predict response to TACE. The model 

achieved an accuracy of 86%, yet the results need further evaluation due to the small sample 

size (n=36) [76].

Current challenges limiting the use of AI for HCC risk prediction and 

prognostication

Need for standardization of algorithms and software

Although AI holds many promises for the improvement of HCC detection and patient 

stratification, deployment of machine learning algorithms in clinical settings remains very 

rare. The safe translation of deep learning models will indeed require standardization and 

robust evaluation using metrics that would ideally include patient outcomes and quality of 

care, as well as appropriate stakeholder engagement and oversight.

To date, there are no standardized methods for AI-based data analysis or interpretation, 

and no universal approaches to address missing data, which is a fundamental concern in 

large-scale datasets. A significant number of published studies have investigated large series 

of patients with extensive benchmarking against expert performance, but they have been, in 

the vast majority of cases, only retrospective. Further, the performance of these models is 

likely to decrease when assessed prospectively using “real-world” data.

The establishment of consensus guidelines in reporting data from machine learning studies 

is also critical. A group is currently working on the definition of an AI-specific version 

of the STARD checklist (STARD-AI-Standards for Reporting of Diagnostic Accuracy 

Study-AI). These guidelines will aim to improve the completeness and transparency of 

studies investigating diagnostic test accuracy. Other recommendations will be needed for 
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prognostic or theranostic biomarkers. Their performance should finally be compared to 

existing diagnostic, staging and predictive systems.

Need for data sharing / open-source algorithms

As the performance of AI models is highly dependent on the amount of data used for 

training, the availability of large data sets is key to fostering the development of research 

and its future impact on clinical care. To this end, the deposition and sharing of large 

datasets should be encouraged. This includes utilization and sharing of large-scale data from 

electronic health records (EHR) across and between health systems. Moreover, sharing of 

individual-participant data (IPD) from clinical trials or purely academic research studies, a 

clear “ethical and scientific imperative”, has gained increasing traction and is now advocated 

by many scientists and organizations, and would assist in constructing datasets of sufficient 

size and detail to appropriately train and validate AI models [77]. Moreover, a universal, 

standardized method for addressing and analyzing missing data in AI models is necessary, 

and this is particularly important when considering shared datasets. The International 

Committee of Medical Journal Editors has thus implemented a clinical trial data policy 

that requires an IPD sharing statement for manuscripts reporting clinical trials. Although 

several repositories are now able to store IPD and make it available to third parties, the 

rate of sharing remains very low. The main obstacle is likely to be cultural, however other 

issues remain such as patients’ anonymity and residual risk for re-identification, cost of data 

storage/provision, and need for specific consent about sharing. The availability of IPD from 

clinical trials (including imaging and digital slides) testing systemic therapies will however 

be key for the development of AI models able to predict response/survival.

Need for sufficiently diverse populations

To date, cohorts used to develop and train AI models focused on HCC risk prediction, 

diagnosis and prognostication have lacked sufficient racial, ethnic and socioeconomic 

diversity. This is a critical issue, given that the accuracy of AI-based algorithms depends 

upon the validity and size of their input data. Consequently, future studies will need to 

ensure that promising AI-based tools are thoughtfully validated in diverse cohorts that 

include racial and ethnic minorities as well as patients across the complete socioeconomic 

spectrum. This once again underscores the need for sharing of data between investigators 

and across institutions, so that representative cohorts can be constructed.

Examples from other disciplines

Currently, approximately 150 AI based medical devices have been approved by the 

Food and Drug administration. Most of these models were developed for the fields of 

radiology (e.g CT scan image reconstruction or brain MRI interpretation), cardiology (e.g 

electrocardiogram analysis, cardiac monitoring) and ophthalmology (detection of diabetic 

retinopathy). Interestingly the FDA has also very recently granted its first clearance for a 

pathology AI software. The product analyzes digital slides of prostatic biopsies, highlights 

areas that are most likely to contain cancer and flags them for further review by a pathologist 

(https://www.paige.ai/). This landmark approval marks the beginning of a new era in the 

use of AI-assisted diagnostics for pathology, and it is very likely that models aiming to 

assist HCC histological diagnosis/prognosis assessment will also be available. They are 
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particularly needed to assist the distinction of benign vs malignant hepatocellular tumors, 

and also for a more robust and standardized diagnosis of rare pathological entities such as 

combined hepatocellular-cholangiocarcinoma or fibrolamellar carcinoma.

Explaining “the black box” of AI:

A common issue for all existing and future AI applications is to make their decisions 

comprehensible to the user. The term “explainable AI” refers to a particular set of methods 

that allows users to comprehend how the AI models work and make their decisions. It thus 

provides feedback on the most important features involved in the predictions and helps to 

understand the potential biases. This transparency is critical to build up the trust needed 

to convince doctors to rely on these computer-aided devices they might be using in the 

future. The approaches most commonly used in DL consist of extremely complex layers of 

mathematical computation, and it is thus very difficult to gain insights into how the data are 

transformed throughout the whole network.

Explainable AI is however an active field of research and many aim to open the black 

boxes of NNs. The main strands of work are making the networks “transparent”, learning 

the semantics of its different components and finally generating post-hoc explanations. 

Transparency mainly consists of understanding the model structure and its function. 

Semantics of the different network components will provide insights on the meaning of 

particular neurons and the post-hoc explanation finally analyzes why a result is inferred 

(Figure 3) [78].

For example, post hoc explanation of models processing histological digital slides can be 

achieved through the reviewing by a human expert of the image areas associated with the 

highest predictive value. This type of approach was used in the study by Saillard et al., who 

built a model able to predict the survival of patients after resection of HCC. Interestingly, 

reviewing the tumoral tiles associated with a high risk of death showed an enrichment 

in several features (including macrotrabecular-massive subtype, cellular atypia) previously 

shown to be predictive of dismal clinical outcome [63]. These results show that the models, 

at least in part, rely on known histological parameters. The authors also identified a new 

prognostic feature, i.e the presence of vascular spaces. Together, these results underscore the 

importance of human/machine interactions and show that novel hypotheses can be generated 

with type of approaches. Altogether, addressing explainability is a critical issue, and will be 

necessary to: 1) gain the required confidence in AI models outputs, and 2) exploit NN to 

discover key features that may have been previously overlooked.

Future applications of AI: towards tailored clinical trials

Prospective studies are needed to fully demonstrate the potential of AI to improve the 

clinical care of patients with HCC. In other medical areas, several AI-based randomized 

clinical trials (RCT) have already been conducted. As such, in endoscopy, numerous 

RCTs have evaluated the impact of computer-aided systems on physicians’ performance 

in diagnosing intestinal adenoma or indicating blind spots of colonoscopy [79,80]. The 

need to incorporate these new developments prompted the research community to extend 

the widely used SPIRIT and CONSORT guidelines for the use of AI methods in 2020 
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[81,82]. According to ClinicalTrials.gov (https://clinicaltrials.gov/), there are currently 6 

ongoing trials involving AI for the management of HCC. A research group at the University 

of Hongkong is evaluating an algorithm designed to diagnose HCC from computed 

tomography images against the standard procedure of diagnosis, following LI-RADS criteria 

(NCT04843176) [83]. A multicenter study from France is prospectively developing an AI 

algorithm in a non-randomized clinical trial. The research group uses clinical, biological and 

ultrasound data to stratify the risk of HCC emergence in high- and low-risk patients [84].

Treatment with immune checkpoint inhibitors (ICIs) has represented a fundamental 

breakthrough in many cancers [85–87]. In palliative treatment of HCC patients, the 

IMBRAVE-150 trial showed that the combination of Atezolizumab and Bevacizumab had 

a significant survival benefit in HCC patients compared to Sorafenib [3]. However, like 

in many previous trials in distinct entities, it became apparent that not all HCC patients 

benefit from ICI to a similar extent. While there are signals for HCC subgroups with a 

potentially higher benefit (e.g. viral hepatitis versus non-viral liver disease [88]), there is still 

no biomarker in HCC patients that reliably predicts therapy response before or very early 

after starting ICI-therapy. Therefore, there is a significant fraction of patients that will have 

the (low) risk of severe ICI-related toxicity without benefit, thereby having an increased risk 

of tumor progression and decrease of liver function linked with the remarkably high costs 

of ICI therapy. In this setting, AI based response prediction to ICIs would be paramount to 

improve patients’ outcome and reduce health care expenditure.

Generating, training and applying an algorithm could involve a deep net trained on 

histologic data, available e.g. from randomized clinical trials in immunotherapy, and / 

or the combination of different deep nets including histology, radiology, genomic and 

clinical information. Importantly, a deep learning-based algorithm could either be trained 

on data available before therapy start, but it is also possible that AI can extract information 

immediately after therapy initiation. Thus, we may, before the first radiological response 

evaluation, provide early predictions if a patient will benefit or should be switched to 

another therapeutic strategy. Beyond the decision for a proper and ideal first line therapy per 

patient, AI-based decision making could also provide a basis for a fundamental switch in the 

way that treatment changes are implemented into long term palliative treatment of oncologic 

patients. Currently, a successful line of therapy is provided to a patient until radiological 

progression is evident (Figure 4). However, it could be beneficial to establish a tool for 

an early prediction of treatment failure, recommending a switch to another therapy, even 

before a full progression is documented upon imaging. This tool could enable preemptive 

therapy adjustment in the interval between molecular resistance and imaging (Figure 3). AI 

could represent an ideal toolbox, to facilitate such a concept. Similar to a first line decision, 

an algorithm would need to be trained within clinical trials, first proving that radiological 

progression can be reliably predicted, e.g. on an algorithm trained on radiology, but also 

on laboratory values and clinical parameters. Once a proof of concept for an AI algorithm 

is achieved, future clinical trials could compare a possible benefit from early AI-based 

regimen switches to a conventional approach based on pure radiological progression within 

the standard clinical imaging intervals (e.g. six, eight, or twelve weeks).
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While these concepts are still hypothetical, it would be important to have AI based 

algorithms implemented into current and future clinical trials as one important translational 

approach, in order to prove that they are valuable tools to predict responses to first line 

therapy and to predict early progression. To implement these steps, it would be fundamental 

to have access to biological samples and clinical data within large clinical trials, requiring 

the acceptance of these concepts and the access to these data for those clinician scientists 

who are contributing patients to these trials. In this line, collaborative networks based on 

trust and united in the collective aim to improve patients’ outcome need to be implemented 

not only between clinicians but also between industry and clinicians. Nevertheless, it 

is paramount for any model developed and trained within the framework of a clinical 

trial to be thoroughly validated in diverse, real-world patient populations before clinical 

implementation, to address possible biases introduced by the trial’s inclusion criteria. 

Moreover, AI based algorithms and any resultant clinical tools must also be constructed 

with appropriate stakeholder engagement and oversight, to ensure that validated algorithms 

are standardized according to protocol and that they are used in the correct clinical contexts, 

and further that data output are interpreted properly to maximize clinical benefit. Correctly 

interpretating data output from an AI-based clinical tool will in turn require appropriate 

training and awareness efforts, both for the public and for clinical providers.

Conclusion

It is hoped that AI will profoundly change the way we care for patients with HCC. Although 

significant progress has been made during the last decade, improvements in HCC risk 

prediction, diagnosis and response prediction are still critically needed. Several challenges 

remain to fully implement such technologies in clinical practice, including the need to 

develop robust approaches for structured data collection, sharing and storage, and the need 

to demonstrate the reliability and robustness of models. We know that AI can predict a 

very large set of clinically relevant features, and we must also now demonstrate that these 

approaches work in a clinical setting, by comparing model performance to that of available, 

conventional staging systems, and further through the careful design of large prospective 

trials.
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Key Points

• Due to the broad heterogeneity in risk factors for hepatocellular carcinoma 

(HCC) and the lack of established strategies for prediction or prognostication, 

artificial intelligence (AI) has recently emerged as a unique opportunity to 

improve the full spectrum of HCC clinical care.

• AI reflects a broad and rapidly evolving field that includes machine 

learning (ML) and deep learning (DL) computational algorithms, which are 

iteratively repeated, in order to progressively improve model performance and 

classification over time.

• A growing body of research has applied AI approaches to improve HCC 

risk prediction, and to more accurately detect and risk stratify existing HCC 

tumors, based on electronic health record (EHR) data, radiomics approaches, 

and molecular or histopathological biomarkers.

• Key limitations of existing AI algorithms include overfitting of data, limited 

explainability of results, and the possibility of poor generalizability, due to 

the inherent reliance of ML and DL models on the size and diversity of their 

training datasets.

• There remains a great need to standardize and robustly evaluate AI algorithms 

in prospective studies and using large-scale, “real-world” datasets, and further 

to establish consensus guidelines to ensure accurate and comprehensive 

reporting of data from ML and DL studies.
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Figure 1. 
Definitions of Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL)
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Figure 2. General concept of pipelines using neural networks.
Different input data are preprocessed in such a way that they can be used as input values 

for the training of a neural network. The neural network consists of one input layer, multiple 

hidden convolutional and / or multiple fully connected layers extracting features from the 

input data, and one output layer with nodes that refer to different labels. These networks 

can then - among others - be used to classify data or to predict therapy response or survival 

prognosis.
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Figure 3. Explainable Artificial Intelligence: example of pathology.
This virtual model is dedicated to the prediction of the tumor or non-tumor nature of 

images from liver digital slides. The aim of explainability is to better understand, through 

transparency, semantics and explanation, how the model makes its predictions. Transparency 

(1) consists in having an in-depth knowledge of the structure of the neural network and 

the activation status of its different neurons/nodes. Semantics will provide insights on the 

type of objects that results in the activation of particular parts of the network). Finally, 

explanation allows to understand how the association of different features impact the final 

prediction.
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Figure 4. Artificial intelligence could support doctors in decision making in tumor therapy in the 
future.
A) Current oncologic therapy pattern. After an initial first-line therapy, the tumor is evading 

therapy through resistance mechanisms. The following tumor growth is recognized during 

radiologic follow-up leading to therapy adjustment. B) Hypothetical, future, AI-supported 

therapy pattern. Initial, individualized first-line therapy decision, accounting for an AI-based 

recommendation. After an AI algorithm predicts progression of a tumor, doctors decide to 

adjust therapy before the tumor can develop resistance to therapy and grow again.
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Table 1.

Selected Prior Studies Utilizing Artificial Intelligence to Predict Incident Hepatocellular Carcinoma

Author, 
Year

Population AI 
classifier

Validation 
method

N. of HCC 
cases / total N.

Accuracy Sensitivity / 
Specificity

Improvement 
over traditional 
methods

Singal 
AG, 2013

Cirrhosis Random 
Forest

External 
validation 
(HALT-C 
trial)

Training : 41 / 
442
Validation : 88 / 
1,050

C-statistic 
0.64

80.5% (57.9% 
in the training 
set) / 80.7% 
(46.8% in the 
validation set)

Outperformed 
HALT-C model for 
predicting HCC 
(IDI=0.01, p=0.04; 
NRI=0.39, p<0.001)

Reddy R, 
2017

Cirrhosis Artificial 
neural 
network 
(ANN)

N/A Training : 165 / 
6,092

AUROC 0.96 83.6% / 99.9% N/A

Ioannou 
GN, 2019

Chronic 
HCV

Recurrent 
neural 
network 
(RNN)

Training : 
10,741 / 48,151

AUROC 0.759 Proportion 
testing positive 
at 90% : 
sensitivity 
=0.663

Outperformed 
conventional 
logistic regression 
models

Nam JY, 
2020

Cirrhosis 
(HBV) on 
entecavir

Deep neural 
network 
(DNN)

External 
validation

Training : 86 / 
424
Validation set : 
N=316

C-statistic 
0.719 (training 
set) ; 0.782 
(validation)

Outperformed 
numerous 
conventional 
algorithms (PAGE-
B, CU-HCC, 
ADRESS-HCC and 
THRI; all p<0.001)

An C, 
2021

General 
population 
(Korea)

Random 
forest

Internal 
validation

Training : 
1,799 / 331,694
Validation : 
390 / 85,692

C-statistic 
(validation) 
0.857
AUROC 0.873

71.8% / 88.4% N/A

Abbreviations : N., number ; HCC, hepatocellular carcinoma ; AI, artificial intelligence ; AUROC, area under the receivor operating curve ; IDI, 
integrated discriminatino index ; NRI, net reclassification index ; HBV, hepatitis B virus ; HCV, hepatitis C virus
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Table 2.

Selected Prior Studies Utilizing Artificial Intelligence for Hepatocellular Carcinoma Prognostication

Author, 
Year

N of HCC 
cases

AI algorithm Validation 
method

Input data Test statistics Highlight

Abajian A, 
2018

36 Logistic 
regression, 
Random forest

Internal 
leave-one-out 
cross 
validation

Magnetic 
resonance images 
and clinical data

Accuracy: 78%
Sensitivity: 
62.5%
Specificity: 
82.1%

Prediction of TACE response 
Successful implementation 
of AI methods for the 
combination of clinical and 
imaging data

Ji GW, 2019 Training: 210
Validation: 
107
internal 153
external

RSF/MRMR External 
Validation

Computed 
tomography 
images and 
clinical data

C-statistic: 
0.73

Prediction of HCC 
recurrence after resection; 
outperformed conventional 
outcome prediction scores, 
e.g. BCLC stage

Nam JY, 
2020

Training: 349
Validation: 
214

Residual neural 
network

External 
validation

Clinical data C-statistic: 
0.75
Sensitivity: 76 
%
Specificity: 
46%

Prediction of HCC 
Recurrence after LTX; 
outperformed conventional 
recurrence prediction scores, 
e.g. Milan-criteria

Saillard C, 
2020

Training: 194
Validation: 
328

Artificial neural 
network

External 
validation

Digitized 
histopathology 
slides

C-statistic: 
0.78

Survival prediction 
after HCC resection; 
Outperformed conventional 
clinical, biological or 
pathological parameters

Peng J, 
2020

Training: 562
Validation: 
227

Residual 
convolutional 
neural network

External 
validation

Computed 
tomography 
images

AUC: >0.95 Prediction of TACE response 
First study to predict 
complete/partial response 
and stable/progressive 
disease showing good 
accuracy

Oezdemir I, 
2020

36 Distance 
weighted 
discrimination 
method

Internal 
leave-one-out 
cross 
validation

Contrast-
enhanced 
ultrasound images

Accuracy: 86%
Sensitivity: 
89%
Specificity: 
82%

Prediction of TACE 
response First study showing 
the proof of concept 
for AI methods using 
ultrasonography images

AUC, area under the curve; AI, artificial intelligence; HCC, hepatocellular carcinoma; LTX, liver transplantation; MRMR, maximum relevance 
minimum redundancy; RSF, random survival forest; TACE, transarterial chemoembolization;
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