
Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier.com/locate/strusafe

Risk-based optimal inspection strategies for structural systems using
dynamic Bayesian networks

Jesus Luque⁎, Daniel Straub
Engineering Risk Analysis Group, Technische Universität München, Germany

A R T I C L E I N F O

Keywords:
Deterioration
Inspection planning
Reliability
Bayesian networks
Optimization

A B S T R A C T

In most structural systems, it is neither possible nor optimal to inspect all system components regularly. An
optimal inspection-repair strategy controls deterioration in structural systems efficiently with limited cost and
acceptable reliability. At present, an integral risk-based optimization procedure for entire structural systems is
not available; existing risk-based inspection methods are limited to optimizing inspections component by
component. The challenges to an integral approach lie in the large number of optimization parameters in the
inspection-repair process of a structural system, and the need to perform probabilistic inference for the entire
system at once to address interdependencies among all components. In this paper, we outline a methodology for
an integral risk-based optimization of inspections in structural systems, which utilizes a heuristic approach to
formulating the optimization problem. It takes basis in a recently developed dynamic Bayesian network (DBN)
framework for rapid computation of the system reliability conditional on inspection results. The optimization
problem is solved by nesting the DBN inside a Monte-Carlo simulation for computing the expected cost asso-
ciated with a system-wide inspection strategy. The proposed methodology is applied to a structural system
subject to fatigue deterioration and it is demonstrated that it enables an integral risk-based inspection planning
for structural systems.

1. Introduction

Deterioration processes in engineering structures lead to a reduction
of service life and can affect the safety of the structures. Accurate
modeling of deterioration remains a challenge today, due to the com-
plexity of the processes and their inherent uncertainties. To address
explicitly the prediction uncertainties, probabilistic approaches are
suitable for deterioration modeling in an engineering context
([21,7,31,45,32,72]).

To reduce the uncertainty in deterioration processes, regular in-
spections are common practice for most engineering structures. An
optimal inspection strategy balances the cost of inspections with the
achieved risk reduction. An inspection strategy defines [8]: (a) what to
inspect for (e.g., thickness diminution due to corrosion or erosion, fa-
tigue cracks), (b) how to inspect (the inspection technique), (c) when to
inspect, and (d) where to inspect (which components). Each combina-
tion of these factors defines an inspection strategy, among which the
optimal one is sought.

Methods for risk-based optimization of inspections on structural
systems have been developed during the past 40 years

[68,69,63,27,52,57,58,38]. The scientific literature also documents
industrial applications of inspection planning on offshore structures,
aircrafts, bridges or ships [51,43,10,22,11,35,6]. The theory and the
applications have focused almost exclusively on the optimization at the
component level, with a simplified treatment of the system [57]. Only
limited research efforts have been directed towards optimization pro-
cedures for entire systems, accounting for the statistical dependence
among the deterioration states of individual structural details
[56,57,54,42,33].

Risk-based optimization of inspection-repair strategies for large
engineering systems is challenging in practice. Firstly, the inter-
dependence among stochastic deterioration processes for all the system
components must be modeled. The two common approaches to such an
integral probabilistic deterioration modeling are random fields
[16,66,53,70,18] and hierarchical models [28,29,44,2,23]. Secondly,
Bayesian updating is required for computing the probability of failure
of all components and the system conditional on a potentially large
number of inspection results. This is a computationally challenging
problem in itself [49]. In the context of inspection planning, these
computations must be performed multiple times for the optimization of
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the inspection strategies. Thirdly, the inspection optimization must
consider system-wide strategies, which – in the general case – leads to a
number of optimization parameters that is exponentially increasing
with the number of components [57].

Bayesian methods enable incorporating information from inspec-
tions into probabilistic deterioration models to quantify the reduction
in uncertainty and to update the reliability estimate [61,26,36,60].
Bayesian Networks (BNs) can facilitate such analyses. BNs have been
applied to engineering risk analysis problems during the last two dec-
ades [64,13,30,9,15,36,12,67,3]. Conditional independence among
model parameters encoded in the graphical structure of the BN can
facilitate the Bayesian updating. In addition, if a process can be re-
presented by discrete random variables (e.g. by discretizing all con-
tinuous random variables), exact inference algorithms can provide fast
and robust solutions to the Bayesian updating. These properties have
been exploited in Straub [54] and Luque and Straub [25], where dy-
namic Bayesian networks (DBNs) are utilized to evaluate deterioration
at the component and system level. Bespoke exact inference algorithms
ensure rapid computation of the conditional probability of system
failure given all inspection results, which is essential for solving the
optimal inspection problem.

In this paper, we propose a heuristic approach to finding the optimal
inspection strategy in structural systems. In contrast to existing
methods, the approach can simultaneously account for system effects
arising from (a) the dependence among the deterioration at different
components, (b) the joint effect of deterioration at multiple components
on the system reliability, and (c) the interaction among inspection costs,
i.e. the reduction in the marginal cost of an inspection if these are
grouped in larger inspection campaigns. This is achieved with the
proposed heuristic approach to the optimization, which enables the
definition of a system-wide inspection plan with just a few parameters.
The optimization criterion is the total expected life-cycle cost, whose
computation is made feasible by a novel two-level approach, in which
the system DBN algorithm of Luque and Straub [25] is nested within a
Monte-Carlo simulation that addresses the uncertainty on the inspec-
tion outcomes. The DBN algorithm allows to compute the conditional
probability of system failure given inspection outcomes.

The proposed methodology is demonstrated and investigated by
application to a Daniels system, an idealized redundant structural
system, whose components are subject to fatigue deterioration.

2. Methodology

2.1. The inspection optimization problem

An inspection strategy for a structural system defines when, where,
what and how to inspect. In general, static inspection regimes are not
optimal; instead, one should account for results from previous inspec-
tions and maintenance activities when deciding upon new inspections.
For this reason, the optimal inspection-planning problem belongs to the
class of sequential decision problems [1,19].

The sequential inspection planning problem is visualized in the
decision tree of Fig. 1. Branches following a circular node represent
random outcomes (e.g. the deterioration state of the system, or the
inspection outcomes) and branches after a square node represent pos-
sible decision alternatives (e.g. if and where to inspect or repair). This
decision tree is equally applicable to single components or entire sys-
tems. When considering systems, the outcome space of the random
variables and the number of decision alternatives increase ex-
ponentially with the number of components. This is one of the main
reasons why previous work on risk-based inspection planning has fo-
cused mainly on individual components.

Solutions to sequential decision problems can be found through the
definition of policies. Here, a policy for a decision at time t defines
where, what and how to inspect and repair, taking into account the full
history of the structure up to t , i.e. past inspection outcomes and repair

actions. The set of policies at all times t is the strategyS . If the policies
are the same for all t , the strategy is stationary [17].

For a structural system with N components subject to deterioration,
the inspection optimization problem of Fig. 1 can be formalized as
follows. The joint deterioration state D of all components is represented
through a probabilistic system deterioration model with random para-
meters XD. Each component can be inspected and/or repaired at dis-
crete times t from 0 to the end of service life T . The strategyS defines
for each component at each time step if and how that component is
inspected and repaired, based on all previous inspection outcomes Z
and the repair history of the structure.

Inspections, repairs and system failure are associated with con-
sequences. These are quantified by the present value of total life-cycle
cost CT in function of the strategyS and the inspection outcomes Z. It
is defined as the sum of the life-time inspection cost CI , repair cost CR,
and failure risk RF :

S S S S= + +C C C RZ Z Z Z( , ) ( , ) ( , ) ( , )T I R F (1)

For a given strategy S and inspection outcomes Z, the inspection
and repair actions are fixed. Hence, SC Z( , )I and SC Z( , )R can be di-
rectly evaluated in function of the cost of individual inspections and
repairs, and the relevant discount rate.

The failure risk RF is defined as:
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where cF is the undiscounted cost of a system failure event, γ t( ) is a
discount factor, Ft is the event of a system failure during time step t , and
ES t, is the system condition at time step t .

The conditional probability = −E Fail ZPr( | )S t t, 0: 1 is the probability of a
system failure up to time t for given inspection outcomes −Z t0: 1. Its
computation is a structural reliability problem, which can be for-
mulated as an integral over all random variables X of the problem
(which include the deterioration parameters XD, but also load para-
meters):

∫= = ⩽− −E Fail Z g x f x xPr( | ) [ ( ) 0]· ( )dS t t S t x Z, 0: 1
Ω

, | t
x

0: 1
(3)

≤g x( ) 0S t, is the limit state function describing system failure up to t ,
∙I [ ] is the indicator function and −fX Z| t0: 1 is the conditional probability

density function of X given inspection outcomes −Z t0: 1.
The solution of Eq. (3) is non-trivial, in particular if the system size

and the number of observations are large. First Order Reliability
Method-(FORM) and sampling-based solutions to this problem are
available [55,60,49]. In inspection planning, the conditional prob-
ability must be evaluated many times, and an efficient and robust so-
lution of Eq. (3) is thus required. For this reason, we apply DBNs to
solve Eq. (3) following Luque and Straub [25].

Because the inspection outcomes Z are random variables themselves
and are not known in advance, the total cost is also a random variable.
If fZ is the probability distribution of the vector of inspection outcomes,
whose support SΩZ( ) depends on the strategy S , then the expected
total life-cycle cost associated with the strategy S is obtained as

∫=C S C S fZ z z zE [ ( , )] ( , ) ( )dT TZ Z
Ω SZ( ) (4)

The optimal strategy S∗ is defined as the one that minimizes the
expected total cost:

S S
S

=∗ C ZargminE [ ( , )]TZ (5)

This optimization is commonly subject to constraints on the
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minimum reliability and the maximum budget for inspections.
The two main challenges in finding the optimal strategy through Eq.

(5) are (a) the large number of possible inspection strategiesS , which
increases exponentially with time steps and number of components
Fig. 1, and (b) the expectation operations in Eqs. (3) and (5). These
challenges are already non-trivial for single components. For this
reason, we first review existing approaches at the component level to
solve the optimization problem defined by Eq. (5) in Section 2.2, before
presenting a solution at the system level Section 2.3. The approach
employs the DBN framework for computing the conditional prob-
abilities = −E Fail ZPr( | )S t t, 0: 1 , which is summarized in Section 2.4.

2.2. Optimization at the component level

Risk-based optimization of inspection planning for individual com-
ponents has been studied extensively [58,38]. In the following, we
briefly review the solutions based on influence diagrams, Markov de-
cision processes, and stationary strategies.

2.2.1. Influence diagrams
An influence diagram (ID) is an extension of Bayesian networks,

which includes decision and utility nodes [17]. An example ID is shown
in Fig. 2.

The ID is a graphical representation of a decision problem, not a
solution method. The classical ID is based on the no-forgetting prin-
ciple, i.e. when making a decision, it is conditional on all previously
available information. The solution of such a general ID therefore faces
the same exponential complexity as described earlier for the decision
tree of Fig. 1. A common approach for approximating the optimal so-
lution is to consider only a subset of the past observations (e.g. the n
most recent ones) at each decision step. This approach is known as
limited memory influence diagram (LIMID) [20,17]. A widely-used al-
gorithm to approximate the optimal solution is the single-policy-up-
dating algorithm [20]. This algorithm considers a strategy S as (lo-
cally) optimal if changing only one its policies (i.e. the set of rules at
only one decision node) does not lead to a better strategy in terms of the
cost function. This approach has been used to estimate the optimal
solution at the component level, e.g. in Nielsen and Sørensen [40] and
Luque and Straub [24]. However, these applications were limited to

simplified deterioration models at the component level, because the
available optimization algorithms require many evaluations of the ex-
pectations in Eqs. (3) and (5), including the solution of conditional
reliability problems.

2.2.2. Markov decision processes
If deterioration can be described by a Markov process, the optimal

inspection problem can be solved by means of Markov decision pro-
cesses (MDPs). Markov chains (discrete time Markov processes) have
been frequently used for modeling deterioration processes in en-
gineering applications [48,34]. Even non-Markovian processes can be
translated into Markov chains by state-space augmentation [54]. MDPs
have been proposed and applied by a series of authors for obtaining the
optimal strategy of engineering components or systems described by
simple deterioration models [62,47].

One distinguishes between fully and partially observable decision
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Fig. 1. Example of a decision tree with deterioration vector Dt,i for all system components, the system performance Es,t (0: safe, 1: fail), inspection and repair
decisions at each time step = ⋯t 1, ,T, and a set of observations Zt,i after each inspection decision. A black dot marks the end of a branch, which corresponds to either
a system failure or the end of service life.
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Fig. 2. Example influence diagram for inspection planning of a single compo-
nent. Circular nodes are random variables, square nodes are decisions and
diamond-shaped nodes are costs. Node Dt represents the component dete-
rioration state at time step t as a function of the previous deterioration −Dt 1 and
a time-dependent parameter Kt ; Ec,t represents the condition (e.g. safe or failed)
of the component; Zt is the inspection outcome; It and Rt are the inspection and
repair decisions; CF,t , CI,t , CR,t are the failure, inspection and repair cost nodes.
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processes, depending on the type of available information. If all para-
meters of the deterioration process are directly observable, the process
is fully observable. This is applicable only to simple, typically empirical
deterioration models. In reality, the full deterioration process is ob-
servable only indirectly or incompletely; partially observable Markov
decision processes (POMDPs) are then applied. The model of Fig. 2 is a
POMDP, in which the state of the component is represented by the three
random variables K D,t t and EC t, and Zt is the (potential) inspection
outcome The partial observability implies that not only Zt, but all past
inspection outcomes ⋯ −Z Z, , t1 1 have an effect on the probability dis-
tribution of K D,t t and EC t, . For this reason, the POMDP is solved by
introducing a so-called belief state, which represents the knowledge of
the decision maker at each point in time, summarizing the past in-
spection history [19].

POMDPs have been used to find the optimal strategy at the com-
ponent level [38,50] and at the system level [42,33], but their appli-
cation to larger systems is still computationally challenging. In addi-
tion, a main limitation of these approaches for their application to
structural systems as considered in this paper is that they cannot handle
problems in which the costs at the system level are a non-linear func-
tion of the costs at the component level. This is however the case when
the failure of the system is described by a structural model in function
of component states.

2.2.3. Heuristic strategies
The most common approach to risk-based inspection planning for

components consists of limiting the set of possible strategies S to a
small number of parametrized stationary strategies, based on simple
heuristics. The two most commonly applied heuristics are briefly
summarized in the following.

2.2.3.1. Probability threshold. The stationary strategy is specified by a
threshold on the probability of component failure pth. An inspection is
required in any time step before the probability of failure (conditional
on previous inspection results) exceeds pth, as illustrated in Fig. 3.

2.2.3.2. Fixed-interval (periodic) inspections. Inspections are performed
at fixed regular intervals tΔ I , e.g. inspections every ten years (Fig. 4).
This approach is commonly used in practice because it is easier to
incorporate into the overall asset integrity management of a structure.

In both heuristics, the repair policy can be fixed in advance. In most
applications, it is required that any identified damage is immediately
repaired. In this case, the optimization of Eq. (5) reduces to finding

either the optimal value of pth or the optimal interval between inspec-
tions tΔ I . Alternatively, it is also possible to add a parameter for the
repair criterion, in which case two optimization parameters have to be
considered [41]. By assuming that a repaired component performs like
a new component, it is possible to reduce the number of evaluations of
the conditional probability of failure of Eq. (3), following Straub and
Faber [58].

It has been demonstrated that heuristic approaches give a good
approximation of the optimal solution in risk-based inspection plan-
ning, with orders of magnitude less computation effort than other ap-
proaches like LIMIDs or POMDPs [40,24]. Fig. 5 shows a comparison
between the optimal inspection strategy of a single component using
LIMIDs and heuristic approaches (periodic inspections and probability
threshold) from a theoretical example investigated in Luque and Straub
[24]. The expected inspection, repair, and failure costs of the optimal
solutions are compared in Fig. 6.

2.3. Optimization at the system level

The identification of the optimal inspection strategy is significantly
more challenging for structural systems than for individual compo-
nents. The number of possible inspection strategies S in Eq. (5) in-
creases exponentially with the number of components, and the com-
putation of the conditional reliabilities in Eq. (3) are much more
demanding. This is because inspection results and deterioration failure
events from the entire structure must be considered in a single integral
computation. Given the difficulties one encounters already in solving
the optimization problem at the component level, it appears that
heuristics are the most promising, if not the only practically feasible,
approach to optimizing inspections at the system level. In the following
Section 2.3.1, we present such a heuristic for the system-level inspec-
tion planning.

Even with a heuristic approach to defining inspection-repair stra-
tegies, to solve the optimization problem at the system level necessi-
tates a computationally efficient and robust algorithm for computing
conditional probabilities of failure (Eq. (3)). The DBN framework de-
veloped in Luque and Straub [25] provides such an algorithm; it is
presented in Section 2.4.

2.3.1. Heuristic strategy at the system level
At the system level, identifying heuristics is less straightforward

than at the component level, mainly because it is not only necessary to
identify the timing, but also the locations of inspections [57].

Fig. 3. Probability of failure of a structural element using the probability
threshold heuristic with = −p 10th

3 and = −p 5·10th
3. An inspection is performed

prior to exceeding the threshold. The probability of failure shown here is
conditional on not having identified any defect in past inspections.

Fig. 4. Probability of failure of a structural element using periodic inspections
every 5 and 10 years. The probability of failure shown here is conditional on not
having identified any defect in past inspections.
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Nevertheless, we find that the heuristics applied at the component level
can be extended to the system level. Our proposed heuristic takes into
account that it is typically cheaper to bundle component inspections in
campaigns and that regular inspection intervals are preferred for or-
ganizational purposes.

The proposed heuristic distinguishes between inspection campaigns
(when to inspect?) and individual inspections (where to inspect?). It
can be summarized as follows:

1. Inspection campaigns are performed at regular time intervals, in
analogy to the fixed-interval heuristic for single components. The
time between regular campaigns is tΔ I .

2. The initial number of inspected components during each inspection
campaign is fixed at nI .

3. The components to inspect during a campaign are determined based
on the value of information (VoI) [46] associated with the compo-
nent inspection, following the idea of Straub and Faber [57]. Exact
computation of the VoI is difficult, hence a proxy must be identified
that provides a similar ranking than the VoI. This is further elabo-
rated for the specific structural system considered in Section 3.4.

4. Whenever the updated system probability of failure exceeds a
threshold value pth, additional inspections must be carried out, ei-
ther within the existing campaign or through an additional inspec-
tion campaign.

5. Repairs are performed according to a fixed repair criterion, e.g., any
identified defect with a size larger than dR is repaired.

Adjustments to these rules can and should be made according to the
operational environment and constraints. In summary, the heuristic
strategySk is a combination of the above stationary rules and is defined
by the following parameters:

- the frequency of regular inspections tΔ I ,
- the failure probability threshold pth,
- the number of components to inspect nI ,
- the repair criterion dR.

The optimal combination of these parameters is found by solving
Eq. (5). This requires the computation of the expected cost associated
with a strategy S = t p n d(Δ , , , )k I th I R .

2.3.2. Computation of the expected cost of a strategy
A Monte Carlo approach is employed to estimate the total expected

life-cycle cost of a strategy Sk defined according to Eq. (4). The ex-
pected value is approximated as

S S∑≈
=

C
n

CZ zE [ ( , )] 1 ( , )T k
s j

n

T k k jZ
1

,

s

(6)

where ⋯z z z{ , , , }k k k n,1 ,2 , s are Monte Carlo samples of inspection out-
comes, and ns is the number of samples. To obtain these samples, one
first generates random samples of the deterioration history of the entire
structure, and then generates random inspection results conditional on
these deterioration histories. The total cost CT is computed according to
Eq. (1).

The number of samples ns required to ensure sufficient accuracy is a
function of the coefficient of variation of the total cost δCT . To ensure a
relative error in the estimate of less than ε with a confidence of −α1 , the
required number of samples is

≥
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

− ( )
n

ε
δ

Φ
s

α

C

1
2

2

T

(7)

In all cases we investigated, the value of δCT was around 1.5. If one
requires a relative error less than 10% (i.e. =ε 0.1) with a confidence of
95% (i.e. =α 0.05), the required number of samples is

≥ =n δ384 864s C
2

T . Typically, the requirements on the accuracy of the
estimated total expected life-cycle cost are not as strict, and a number of
samples in the order of 200 is expected to be sufficient for most prac-
tical applications. Note that the reason for this relatively small number
lies in the fact that the conditional probability of failure is computed
within each MC sample through the DBN.

2.4. DBN framework

A key element in the proposed procedure is an efficient computation
of the updated probabilities of failure at the component and the system
level given inspection results, i.e. a fast solution to Eq. (3). At the
component level, Straub [54] developed a DBN framework for sto-
chastically modeling deterioration processes and updating the failure
probability, which was shown to be efficient and robust. In contrast to
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other Bayesian analysis methods, the DBN combined with exact in-
ference algorithms has the advantage that its performance does not
deteriorate with increasing amount of inspection data. Recently, Luque
and Straub [25] extended this framework to the system level through a
hierarchical definition of the deterioration model parameters. Its main
characteristics are summarized in the following.

The framework developed in Straub [54] enables translating com-
monly employed probabilistic deterioration models into a DBN. The
probability of failure conditional on inspection results is computed by
an adaptation of general purpose inference algorithms for DBNs [37].
The approach requires a discretization of continuous random variables,
but very good accuracy can be achieved for standard deterioration
models [54]. Other researchers have implemented this framework at
the component level [39,71].

The framework by Luque and Straub [25] extends the DBN to the
structural system level, accounting for dependence among deterioration
parameters of different components through a hierarchical approach.
To model the correlation structure among the deterioration parameters,
a set of hyperparameters α is included in the DBN model. These hy-
perparameters are the link among time-independent parameters θ (e.g.
material properties), time-dependent parameters ω (e.g. temperature),
and deterioration state D in all components Fig. 7). Through the hy-
perparameters, any inspection result Z at a component will affect the
reliability estimates of the other components. The system reliability is
evaluated through the binary nodes ES t, (with =E failS t, representing
system failure at time t), in function of the component conditions EC i t, , .

In the DBN model of Fig. 7 there are no links from ES t, to +ES t, 1. This
is an approximation, because a structure that has failed at time t
( =E FailS t, ) will also be in a failed state in year +t 1 ( =+E FailS t, 1 ). The
probability =+E FailPr( )S t, 1 computed with the DBN of Fig. 7 without
these links is therefore an underestimation of the true probability of
failure. However, introducing this link would significantly increase
computational costs of the DBN. The approximation error is small if the
dominant contribution to the probability of system failure is from the

deterioration. This must be checked for a specific application. Alter-
natively, an upper bound to the probability of failure can be obtained
from the DBN by considering the failure events in different time steps as
independent events; this upper bound has been used frequently in the
literature, e.g. [65].

An exact inference algorithm for solving the hierarchical DBN is
available from Luque and Straub [25]. Because of the hierarchical
structure of the model, the computation time increases approximately
linearly with the number of components. The algorithm also facilitates
the use of parallel computation. The following is a short summary of the
algorithm, for details on the method, the reader is referred to [25].

In a first step of the algorithm, for all components the joint prob-
ability distribution of component i is updated with inspection results
from component i, for given hyperparameter values α. In the hier-
archical DBN, the deterioration states are statistically independent
among components for fixed hyperparameters, i.e.

=p d d α p d α p d α( , | ) ( | )· ( | )i t i t i t i t, , , ,1 2 1 2 (8)

for all components = ⋯i i N, 1, ,1 2 with ≠i i1 2. This independence
property can be exploited to parallelize the computations of the con-
ditional probabilities given inspection results for individual compo-
nents in the first step.

In the second step, the joint distribution of the hyperparameters α is
updated with the inspection results from all components. Finally, the
results of the first and the second step are combined to obtain the
probability distributions of all components i conditional on all inspec-
tion results in the system.

To speed up computation, it is possible to partly reuse updated
probability distributions. If the sampled inspection results for a com-
ponent i are identical among two samples j1 and j2, the first step in the
computation can be avoided, and the previously computed probabilities
can be utilized. Additionally, for time steps t prior to the first inspection
campaign, the system reliability will be identical among all samples j
and has to be calculated only once. Further computational savings may
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Fig. 7. Hierarchical DBN system deterioration model [25]. Node Di,t represents the deterioration state of the i-th component at time step t as function of the previous
deterioration −Di,t 1, the time-independent parameter θi,t , and the time-dependent parameter ωi,t ; observations Z i,tθ, , Z i,tω, , and ZD i t, , ; EC i t, , and ES t, represent the
condition (e.g. safe or failed) of the component and the system; α is the set of hyperparameters that links all components.
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be possible for specific cases, e.g. if components have the same dete-
rioration model.

2.5. Summary of the proposed methodology

The proposed procedure for integral optimization of inspections in a
structural system consists of the following steps:

1. Define system-wide inspection strategiesSk through the heuristic of
Section 2.3.1, with optimization parameters tΔ I , pth, nI , and dR. Alter
the proposed heuristic if necessary to account for operational con-
straints.

2. Choose an optimization algorithm to identify the solution of Eq. (5).
The algorithm must be able to handle numerical noise, because the
objective function is evaluated with MCS. Perform steps 3–5 to de-
termine the expected total cost associated with a strategy.

3. For every strategy Sk (i.e. combination of optimization parameter
values), generate ns Monte Carlo samples of inspection outcomes zkj,
where = ⋯j n1, , s. These define the times and locations of inspec-
tions and their outcomes. nS must be chosen sufficiently high (see
Eq. (7).

4. For every strategy Sk and inspection sample zkj:
a. Compute the conditional probabilities of system failure over the

service life (Eq. (3)) by means of the DBN.
b. Compute the failure risk (Eq. (2)).
c. Compute the total cost (Eq. (1)).

5. Estimate the total expected life-cycle cost of each strategy Sk by
means of Eq. (6).

The procedure deals with the two main challenges outlined in the
last paragraph of Section 2.1 by (a) extending the heuristic approach
from the component level to the system level, through the use of sui-
table system-wide heuristics, and (b) by computing the expected risk
and cost through nesting a DBN computation insight a MCS that in-
tegrates over future inspection outcomes.

3. Numerical investigations

The proposed methodology is applied to optimize the inspection-
repair strategy of a Daniels system subject to fatigue deterioration. This
system facilitates the numerical investigation of the effect of system
wide inspection strategies.

3.1. System definition

A Daniels system consists of a set of N load-sharing elements with
independent and identically distributed random capacities Ri,

= ⋯i N1, , , and an external random load L [5]. The system is illu-
strated in Fig. 8 and its parameters are summarized in Table 1. The
Daniels system facilitates studying the characteristics of load-sharing
among the elements in redundant structural systems [14].

The examples presented in this paper are for a system of =N 10

components.
In this study, the components of the Daniel system are affected by

fatigue deterioration (Section 3.2). At the system level, this deteriora-
tion is represented by a binary model, in which the component i either
has its full capacity (prior to fatigue failure) or zero capacity (after
fatigue failure). We neglect any interaction between the extreme load L
and the fatigue deterioration.

Because of the exchangeability of components in the Daniels system,
the system reliability is a function only of the number of components
that have failed because of fatigue, Nf N t, , . The conditional system
failure probability = =E fail N nPr( | )S t f N t, , , is presented in [25].

3.2. Deterioration and inspection model

All components of the Daniels system are affected by a fatigue de-
terioration process D. Based on the case study presented in Straub [54]
and Luque and Straub [25], a simple fracture mechanics based fatigue
model is used to describe the crack depth Di at component i of the
Daniels system at time t :

=D t
t

νC S πD td ( )
d

[Δ ( ) ]i
i e i i

M
, i

(9)

where ν is the stress cycle rate; =S SΔ (E[Δ ])e i i
M

,
i Mi

1
is the equivalent

stress range per cycle with ∙E[ ] being the expectation operator and SΔ i

the stress range per cycle, and Ci, Mi are material parameters.
With Di,0 being the initial crack depth of component i at time =t 0,

an analytical expression for the crack depth at time t is found from Eq.
(9):

= ⎡
⎣

⎛
⎝

− ⎞
⎠

+ ⎤
⎦

−
− −

D t M C S π νt D( ) 1
2

Δi
i

i e i
M M

i
M

M

,
/2

,0
1 /2

(1 /2)
i i i

i 1

(10)

The service life of the structure is discretized in = ⋯t T0, 1, 2, ,
time steps.

To represent dependence of the deterioration process among com-
ponents, a set of hyperparameters =α α α α{ , , }M K D is used to link ma-
terial parameters, stress parameters, and initial crack depths. More
details on the definition of the hyperparameters and their application in
the DBN model can be found in Luque and Straub [25].

The component condition at each time step, EC i t, , , is either safe or
fail. A safe component has its full capacity, whereas a failed component
has zero remaining capacity. The failure event is defined through a
critical crack depth dc as = = ≥E fail D d{ } { }C i t i t c, , , .

The inspection ZD i t, , of the i-th component at time step t has two
possible outcomes: (a) detection, or (b) no detection (of a fatigue
crack). The probability of each outcome is a function of the crack depth
Di t, and is represented here with an exponential probability of detection
(PoD) model with parameter ξ :

⎜ ⎟= = = = − ⎛
⎝

− ⎞
⎠

Z D d d d
ξ

Pr( 1| ) PoD( ) 1 expD i t i t, , ,
(11)

The deterioration state after the inspection, ∗Di t, , is a (stochastic)
function of the deterioration state Di t, before inspection, the inspection
outcome ZD i t, , , and the repair policy. Here, we postulate that all de-
tected cracks are repaired ( =d 0R ), and the condition of a repaired
component is as new. If no crack is found at the inspection, it is simply

=∗D Di t i t( , ) ( , )

EI = 

L 

R1 R2 R3 … RN 

Fig. 8. Daniels system with N elements.

Table 1
Parameters of the Daniels system, following Luque and Straub [25].

Parameter Type Mean Std. deviation Correlation

L Lognormal μL =σ μ0.25·L L
Ri Normal μRi =σ μ0.15·Ri Ri 0
N Deterministic 10
Mean safety factor Deterministic =N μ μ· / 2.9Ri L
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The parameters and random variables of the hierarchical DBN and
deterioration model, the discretization scheme, and the corresponding
influence diagram of the DBN model are presented in Tables 2, 3, and
Fig. 9. The analysis is performed for an anticipated service life time of

=T 40 years.
The effect of the approximation made by omitting links between ES t,

and +ES t, 1 in the DBN is investigated through a MCS analysis for the
unconditional case. We find that the DBN underestimates the prob-
ability of failure by a factor of 2, hence the DBN results are adjusted by
this factor.

3.3. Costs and failure risk

Inspection campaigns have a fixed cost cC independent of the
number of components to be inspected. This is the mobilization cost of
personnel and equipment and the cost of interrupting operations.
Individual inspections and repairs per component have costs cI and cR.
The consequences of system failure are represented by the failure cost
cF . All costs in Eqs. (1) and (2) are discounted to their present value
through the following discounting factor based on the real interest rate
r (i.e. the interest rate after allowing for inflation):

=
+

γ t
r

( ) 1
(1 )t (12)

The ratio of inspection and repair to failure costs can vary sig-
nificantly among different systems. Two cost cases are considered in
this example, summarized in Table 4. The first case corresponds to a
structure with high mobilization costs, such as an offshore structure,
and potentially large consequences of failure. The second case corre-
sponds to a case with lower failure costs relative to the inspection
campaign, and is motivated by the situation of metallic bridge struc-
tures subject to fatigue.

3.4. Optimization

Following Section 2.3.1, the inspection strategy Sk is defined
through the optimization parameters: tΔ I , the time between regular (i.e.
fixed-interval) inspections; pth, the failure probability threshold at
which additional inspections are performed; nI , the pre-defined number
of components to inspect during a campaign; dR, the repair criterion,
which is here set to 0.

The optimization is performed through an exhaustive search among
a discrete set of parameter values according to Table 5.

Following the heuristic, in each campaign the components with the
largest VoI are inspected first. Because of the exchangeability of the
components in a Daniels system, and because the dependence among all
components is the identical (at least a-priori), the VoI is a direct func-
tion of the probability of failure (PoF) of the component. A component
with a higher PoF has a larger impact on the system reliability; it also
has larger uncertainty, hence the learning effect is higher for such a
component. Therefore, components are selected for inspection ac-
cording to their PoF. Because components are repaired upon detection
of a damage, this implies that non-inspected components will be
prioritized.

3.5. Results

Based on Eq. (7), the strategies Sk are evaluated with =n 1000s

samples to compute the associated total expected life-cycle cost through
Eq. (4). (As discussed in Section 2.3.2, a smaller number of samples
would be sufficient for most practical purposes.) Each sample j corre-
sponds to a possible future inspection history zkj. To illustrate the
workings of the algorithm, results for single inspection histories are
presented first, followed by the evaluation and optimization of the total
expected cost. In Section 3.5.3, the results are compared to those ob-
tained with classical component-based inspection planning.

3.5.1. Illustrative results for a single inspection sample
A sample inspection outcome zkj for a strategy Skdefined by
= = =−t p n(Δ 10yr, 2·10 , 3)I T I

5 is summarized in Table 6. Fig. 10
presents the component and system failure probabilities associated with
this inspection history.

The system PoF associated with all 1000 samples of inspection
histories are shown in Fig. 11.

The total life-cycle cost associated with an inspection history is
computed according to Eqs. (1)–(3). For the inspection history of
Table 6 and cost case 1 Table 4, the present value (discounted to =t 0)
of the costs are = + =C 4.51 1.50 6.01I for the inspection campaign and
component inspections, =C 0.63R for component repairs and =R 0.44F

Table 2
Parameters of the DBN deterioration model, following Luque and Straub [25].

Parameter Units Type Mean Std. deviation Correlation

N – Deterministic 10
T year Deterministic 40
ν stress cycles per year Deterministic 5·106

α α α, ,M D K – Normal 0 1
Di,0 mm Exponential 1 1 0.5
Mi,0 – Normal 3.5 0.3 0.6
Mi t, – Function = −M Mi t i t, , 1

Cln i t, corresponding to N and mm Function = − −C Mln 3.34 15.84i t i t, ,
SΔ i t, N Weibull scale parameterKi t, shape parameter =λ 0.8
SΔ e i t, , N Function

= +( )S KΔ Γ 1e i t i t
Mi t

λ
Mi t, , ,

,
1

,

Ki,0 N/mm2 Lognormal 1.6 0.22 0.8
Ki t, N/mm2 Function = −K Ki t i t, , 1

dC mm Deterministic 50
ξ mm Deterministic 10

∙Γ( ): Gamma function

Table 3
Discretization scheme.

Random
variable

Number of
states

Final interval boundaries

αD0, αM , αK 5 −Φ (0: 0.2: 1)1

D[mm] 80 − ∞0, exp{ln(0.01): [ln(50) ln(0.01)]/78: ln(50)},
M[-] 20 − ∞0, ln{exp(2.2): [exp(4.8) exp(2.2)]/18: exp(4.8)},
K [N/mm2] 20 − ∞0, {0.86: (2.83 0.86)/18: 2.83},
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for failure risk. This amounts to a total present value life-cycle cost of
=C 7.08T . The breakdown of these present values over the service life is

shown in Fig. 12. This analysis is repeated for all =n 1000S samples,
enabling the MCS estimation of the total expected life-cycle cost fol-
lowing Eq. (6).

M

K

D

ES,2ES,1

CF,1 CF,2 

k0,1 

m0,1 

d0,1 d1,1

Ec,1,1

Zc,1,1

m1,1 

k1,1

d2,1

m2, 1 

k2,1

… 

… 

… 

Ec,2,1

Nf,1,1 Nf,2,1

I1,1 

CI,1,1 CR,1,1 

Zc,2,1I2,1 

CI,2,1 CR,2,1 

d*
1,1 d*

2,1

K0,1 

M0,1 

D0,1 D1,1

Ec,1,1

Zc,1,1

M1,1 

K1,1

D2,1

M2, 1 

K2,1

… 

… 

… 

Ec,2,1

Nf,1,1 Nf,2,1

I1,1 

CI,1,1 CR,1,1 

Zc,2,1I2,1 

CI,2,1 CR,2,1 

D*
1,1 D*

2,1

KN,0 

MN,0 

DN,0 DN,1

Ec,N,1

ZD,N,1

MN,1 

KN,1

DN,2

MN,2 

KN,2

… 

… 

… 

Ec,N,2

Nf,N,1 Nf,N,2

IN,1 

CI,N,1 CR,N,1 

ZD,N,2IN,2 

CI,N,2 CR,N,2 

D*
N,1 D*

N,2

Fig. 9. Influence diagram of the Daniels system. Nodes M , K , and D are the material parameter, the scale parameter of the stress range distribution, and the fatigue
crack depth with hyperparameters =α α α α{ , , }M K D . I is the inspection decision, ZD is the inspection outcome, and ∗D the crack depth after a possible repair. Ec, Nf ,
and ES are the component condition, the number of failed components, and the system condition. CI , CR, and CF are the inspection, repair, and system failure costs.

Table 4
Inspection, repair and failure cost for two different cases.

Cost Case 1
(offshore structure)

Case 2
(bridge structure)

Inspection campaign, cC 1 1
Component inspection, cI 0.1 0.1
Component repair, cR 0.3 1
System failure, cF 3·104 103

Discount rate, r 0.02 0.02

Table 5
Parameters defining the heuristic strategies.

Parameter Values

Time between campaigns, tΔ I [year] {5, 10}
PoF threshold, pth − − −{2·10 , 6·10 , 2·10 }5 5 4

Number of inspected components, nI ⋯{1, 2, 3, , 10}
Repair criterion, dR 0

Table 6
Sample inspection outcome, for a strategy with regular inspections interval

=tΔ 10I yr, probability threshold = −p 2·10T
5, and =n 3I planned component

inspections per campaign. Additional inspection campaigns at years 17, 19, 27
and 37 are necessary because of a threshold exceedance. In year 17, two ad-
ditional component inspections are required during the campaign because of
the identified defects.

Component Time step of inspection

10 17* 19* 20 27* 30 37*

1 ✓ ✓ ✓

2 ✓ ✓ ✓
3 ✓ ✓ ✓
4 ✗

5 ✓ ✗

6 ✗

7 ✓* ✓ ✓
8 ✓* ✓ ✓
9 ✓ ✓

10 ✓ ✓

✓: Inspected without detection of a crack, ✗: Inspected with detection of a
crack.
* Extraordinary inspection campaign or additional inspected component due

to a threshold exceedance.
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3.5.2. Expected costs and optimal inspection strategy
The expected costs of the strategies defined in Table 5 are shown in

Fig. 13 for cost case 1 and Fig. 14 for cost case 2.
Among the strategies presented here, the optimal strategy for cost

model 1 is to perform an inspection campaign every 10 years with in-
spection of 8 elements, following a probability threshold of −6·10 5. For
cost model 2, the optimal strategy is to perform an inspection campaign
every 10 years with inspection of 3 elements, following a probability

threshold of −2·10 4.

3.5.3. Comparison to component-based inspection planning
For comparison we show the results of a classical component-based

inspection planning for the considered Daniels system. The analysis
follows the procedure outlined in Straub and Faber [58].

Because all components are identical in terms of their probabilistic
deterioration model and their effect on the system integrity, the optimal
inspection plan will be the same for all components a-priori. Fig. 3
shows the component probability of failure associated with different
reliability thresholds and Fig. 4 shows the one associated with periodic
inspections.

To estimate the cost of a component failure, one has to account for
the effect of a component failure on the system reliability. In risk-based
inspection planning, the system redundancy with respect to failure of
component i is typically expressed by the change in the probability of
system failure when removing component i [35,11]. This can be mea-
sured in terms of the single element importance measure [59], which is
defined as

=

−

SEI System failure fatigue failure of component i

System failure no fatigue failures

Pr( | )

Pr( | )
i

(13)

For the considered Daniels system, it is
= − =− − −SEI 4.2·10 6.5·10 3.6·10i

5 6 5.
When computing the component-based optimal inspection plan

with these inputs, the resulting plan is not to perform any inspection.
The reason lies in the underestimation of the consequence of a failure in
the component-based approach. These are estimated as C SEI·F i, which
with cost model 1 results in a component failure cost of

=−3·10 ·3.6·10 1.084 5 , and with cost model 2 in =−10 ·3.6·10 0.0363 5 .
With such low failure consequences, inspections are not cost-effective.
The problem with the SEIi measure is that it neglects the possibility of
two or more simultaneous component failures. For redundant system
this underestimates the true risk, in some cases severely, as shown in
[59].

Table 7 presents the comparison of the total expected life-cycle cost
associated with not performing any inspection with the cost of the in-
spection plan obtained by the proposed system RBI planning. Clearly,
the component-based approach is not suitable to determine optimal
inspection plans for this structural system. It is noted that in practice
such a plan would not be implemented and a minimum number of in-
spections would be performed, based on reliability constraints on the
components. Furthermore, an improved redundancy measure (e.g. fol-
lowing [59]) could provide more realistic estimates of the consequences
of component failures. Nevertheless, the integral system-based optimi-
zation will outperform any purely component-based optimization.
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Fig. 10. Probability of failure of the (a) system and (b) individual components conditional on the sample inspection outcome from Table 6. Point A represents the PoF
before the inspection at =t 17yr; B represents the PoF after inspecting the originally planned components (4, 5, and 6); C represents the PoF after inspecting two
additional components (7 and 8) to comply with the threshold.
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dark curve corresponds to the outcome defined in Table 6 and plotted in
Fig. 10a.
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Fig. 12. Expected present values (discounted to =t 0) of costs for the inspec-
tion outcome from Table 6. The system PoF from Fig. 10a is included as a
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4. Discussion

The proposed framework determines optimal inspection-repair
strategies for structural systems in an integral manner considering in-
terdependences among component deterioration states and among the
information from inspections. It also explicitly includes the interaction

between the reliability of components and the structural system. By
applying the DBN framework to computing the conditional reliability
given inspection results, the method has a computational cost that is
suitable for applications in practice.

To manage the complexity of the decision problem underlying the
optimal inspection planning, the approach employs heuristics for
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defining possible system-wide inspection strategies. The heuristic ap-
proach results in inspection plans that are likely close to but not
identical to the globally optimal plans. Because it is not actually pos-
sible to compute the optimal plan even for simple structures such as the
Daniels system studied in this paper, there is no reference against which
to evaluate goodness of the results. However, the computation of the
expected cost for a fixed strategy is accurate (bare the Monte Carlo
error and approximations in the deterioration model); it is therefore
possible to compare the proposed inspection strategies against any
other proposal.

The results also show that – in analogy to the optimization of in-
spections for components – the total expected life-cycle cost of different
inspection strategies is rather flat around the optimum (see Figs. 13 and
14). For this reason, it is sufficient to restrict the optimization to in-
vestigating a discrete set of values of the optimization parameters,
taking into account operational constraints.

In practice, inspection planning is commonly performed following a
reliability-based rather than risk-based approach, i.e. instead of opti-
mizing the total expected life-cycle cost one aims at minimizing in-
spection and repair cost while ensuring a minimum level of reliability.
The proposed framework is also applicable in this context, by fixing the
probability threshold at the system reliability level, and then optimizing
the number of inspection campaigns and the number of inspections per
campaign. For example, if the minimum reliability is associated with a
probability of structural failure of −10 5 per year, then the optimum
strategies change following Figs. 13 and 14. The advantage of the
proposed approach is also that it correctly computes the system relia-
bility, which component-based inspection planning can get wrong
completely (see Section 3.5.3).

In the numerical investigation presented in this paper, we apply the
framework to an idealized structure and an idealized deterioration
model, which are chosen for demonstration purposes. In real-life ap-
plications, these models will be more sophisticated, which leads to
additional challenges, but does not affect the main findings of this
paper. It is rather straightforward to include more sophisticated dete-
rioration models into the DBN, as long as the number of random vari-
ables in each time step is limited. This can be achieved in most cases by
grouping random variables in the DBN (see [54] for an example). The
extension of the DBN model to more complex structural systems is
discussed in [25] and an application of the system RBI framework to
such a system is presented in [4].

With respect to the optimization procedure, the presented Daniels
system is simplified in that all elements have the same structural im-
portance and the fatigue performance is assumed to be the same for all
elements. This allows using a simple proxy for the VoI, because the
learning potential is a function of the element probability of failure
only. It remains to be investigated what is a good proxy for the VoI in
structural systems whose elements have different degrees of im-
portance. The optimization problem presented in this paper is also
further complicated when deciding among multiple types of inspection
techniques, or when considering structural health monitoring to com-
plement inspections. These aspects are left for future investigation.

5. Conclusions

A framework to determine optimal inspection-repair strategies for
deteriorating structural systems subject to reliability constraints is
proposed. The framework – for the first time – enables a system-wide
optimization, which accounts for (a) the interaction among element
deterioration states, (b) the relation between the reliability of the
structural elements and the structural system, and (c) the effect of in-
formation obtained on one element of the structure on the remaining
elements and the overall system. The framework also enables the use of
state-of-the-art deterioration models for the individual elements. To
tackle the computational challenges associated with this complex pre-
posterior optimization problem, we propose heuristics for planning
inspections, which are informed by practical constraints commonly
encountered in the asset integrity management of engineering struc-
tures. To compute the expected cost of a system-wide inspection
strategy, we nest a dynamic Bayesian network (DBN) algorithm inside a
Monte Carlo analysis that accounts for uncertain inspection outcomes.
The numerical investigation demonstrates the effectiveness of the pro-
posed framework.
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