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1 Multivariate Gaussian random variables

Generate for N = 100, 1000, 10000 samples of a multivariate gaussian variable
X = (X1, X2) with µ = (1, 2), Σ = diag(1, 4). Plot the scatterplots of the
generated samples for the three values of N .

Plot the histograms for X1 and X2. Can you recognize distribution of the
corresponding random variable? Justify your answer taking into account the
theory on gaussian random variables.

Repeat for Σ given by:
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Explain what you see

2 Bayesian estimation of 2D Gaussian random
variables

Note: For solving this, you need to find somewhere the adequate formulas. In
the class we only explained the 1D case, and very briefly the multidimensional
case. You are in a Master now.

We want to estimate the location of an static point located at point (2, 3).
We measure N = 10 samples of the location of the point. The measure error
has a known variance-covariance matrix given by:

Σ =

[
1 0
0 1

]
(2)

Generate N = 10 samples of our reading. Draw the scatter plot.
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Estimate µ. Use a uniform prior for µ. Draw 3-D plot of the likelihood and
posterior distributions.

Repeat, but assuming now a gaussian prior for µ with different values of
the mean µ0 and variance-covariance matrix Σ0. Draw also 3-D plots for these
priors.

3 Metropolis-Hastings Monte Carlo simulation
of a multinomial distribution in a simplex

Note: you can use your own code or use the code I’ve wrote and that you can
find in the raco. I’m not a great python programmer, sorry .

We want to estimate the posterior distribution p(θ|y) and predictive proba-
bility p(yn+1 = 1|y) of a multinomial distribution. In this case there are closed
expressions for these distributions, but we want to use MCMC.

For the auxiliary Markov-process that generates candidate next states, we
start using a uniform distribution: Q(θ, θ′) = constant for all values of θ′ in the
simplex, and Q(θ, θ′) = 0 for θ′ outside the simplex. For generating samples
fomr such uniform distribution we use Dirichlet((1, 1, 1, .., 1)).

Run for T = 100, 1000, 10000 the corresponding M-H simulation for different
values of y, for instance:

y = [2/7, 1/7, 4/7],

y = [2/15, 1/15, 1/15, 1/15, 1/15, 2/15, 1/15, 0, 2/15, 1/15, 3/15].

Plot the obtained histograms for the averages of the marginals of the pos-
terior E(θi|y) and the predictive probability p(yn+1 = 0|y). Include also in the
plots the true values of the estimated parameter.

For computing η, the acceptance probability η = min(1, p∗(θ′|y)
p∗(θ|y) , in the code

I use
η = min(1, exp(log(p∗(θ′|y))− log(p∗(θ|y))),

why?.

This choice of Q has a clear problem: it generates too many candidates that
are not taken (i.e. the rejection rate in the algorithm is too high). Explain why.

Think in another distribution for Q. In the code in the raco you can find a
distribution I’ve tried. It seems to work, explain why. What is the meaning of
the parameter h?. Try with h = 1, 0.1, 0.001 and explain the results.
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