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ABSTRACT 
 
 

Design and Scale-Up of Production Scale Stirred Tank Fermentors 
 
 

by 
 
 

Ryan Z. Davis, Master of Science 
 

Utah State University, 2009 
 
 

Major Professor: Dr. Heng Ban 
Department: Mechanical and Aerospace Engineering 
 

 

  In the bio/pharmaceutical industry, fermentation is extremely important in 

pharmaceutical development, and in microbial research.  However, new fermentor 

designs are needed to improve production and reduce costs of complex systems such as 

cultivation of mammalian cells and genetically engineered micro-organisms.  

Traditionally, stirred tank design is driven by the oxygen transfer capability needed to 

achieve cell growth.  However, design methodologies available for stirred tank 

fermentors are insufficient and many times contain errors.  The aim of this research is to 

improve the design of production scale stirred tank fermentors through the development 

of dimensionless correlations and by providing information on aspects of fermentor tanks 

that can aid in oxygen mass transfer. 

 This was accomplished through four key areas.  Empirical studies were used to 

quantify the mass transfer capabilities of several different reactors.  Computational fluid 

dynamics (CFD) was used to assess the impact of certain baffle and impeller geometries.  
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Correction schemes were developed and applied to the experimental data. Dimensionless 

correlations were created from corrected experimental data to act as a guide for future 

production scale fermentor design.  The methods for correcting experimental data 

developed in this research have proven to be accurate and useful.  Furthermore, the 

correlations found from the corrected experimental data in this study are of great benefit 

in the design of production scale stirred tank fermentors.  However, when designing a 

stirred tank fermentor of a different size, further experimentation should be performed to 

refine the correlations presented. 

(114 Pages)  
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CHAPTER 1 

INTRODUCTION 
 

 Fermentation can be defined as the metabolism of sugars by microorganisms.  

The term is used by microbiologists to describe any process for the production of a 

product by means of the mass culture of a microorganism [1].  Fermentation has been 

practiced worldwide since ancient times in the processing of many familiar food products 

[2].  However, since WWII fermentation has spread to more applications and is now used 

in many areas [1].  The modern biotechnology era can be traced to the mid-1970s with 

the developments of recombinant DNA and hybridoma technologies.  Thus far, the most 

prominent applied impact of these technologies has been the successful development of 

biotech-derived therapeutic agents – the biopharmaceuticals [3].   

 In the Bio/Pharmaceutical industry today, fermentation is extremely important in 

the development of pharmaceuticals and health products, and in microbial research.  To 

achieve cell growth this industry relies heavily on stirred tank reactors (STRs) which 

introduce nutrients and oxygen into various medias in order for cells to survive and grow.  

The design and scale-up of STRs is typically performed via experimental means due to 

the complex nature of cell kinetics and mass transfer in these applications.  The design of 

STR‟s generally begins with obtaining lab scale results from laboratory scale fermentors.  

A particular operating or equipment variable is then held constant to scale the system [4] 

[5].  These variables can include specific power input, impeller tip speed, mixing time, 

mass transfer, or a combination of these.  There are many theories as to which of these 

variables is the most important and thus which to hold constant in the scaling process.  

Extensive research has been done to prove that some of these variables should be scaled.  
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Thus far, different researchers have not reached a consensus as to which variable(s) 

should be held constant [6, 7, 8, 9]. 

 Results from practice show that new reactor designs are needed to improve 

production of complex systems such as cultivation of mammalian cells and genetically 

engineered micro-organisms [6].  With the recent surge in production of bio-fuels there is 

an anticipation of an increase in the market for cell cultivation.  This surge will be 

supported with improved fermentor design.  With these improvements in fermentor 

design, several industries (i.e. bio-fuels, pharmaceuticals, genetic engineering, etc.) will 

be able to increase production and reduce costs which will, in turn, benefit the economy. 

 Stirred tank design is difficult because of the highly experimental approach used 

by researchers.  The most difficult part of the design is matching the fermentor capability 

to the oxygen demand of the fermentation culture [10, 11].  Some general guidelines have 

been offered on how to improve mass transfer in stirred tank reactors.  In addition some 

correlations have been formed to provide predictions on stirred tank performance.  

However, the guidelines offered do not provide information on how different aspects of 

the tank (i.e. impeller and baffle geometry) specifically effect oxygen transfer in stirred 

tanks.  The correlations offered do not provide a wide enough range of tank sizes, power 

inputs or gas flow rates to be useful to more than just a handful of people.  In addition, 

the experimental methods used by researchers in this area are not well documented.  This 

means that errors could exist in the data due to probe response times and unsteady state 

measurements. 

 This research has improved the design process of stirred tank fermentors by 
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developing dimensionless correlations.  In addition the efficacy of different baffle and 

impeller types in STRs were assessed.  This was accomplished through four key areas.  

First, empirical studies were used to quantify the mass transfer capabilities of several 

different reactors; second, computational fluid dynamics (CFD) was used to assess the 

impact of certain baffle and impeller geometries; third, correction schemes were 

developed and applied to the experimental data; and fourth, dimensionless correlations 

were created to act as a guide for future production scale fermentor design. 
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CHAPTER 2 

LITERATURE REVIEW 
 

Biological Reactors 

 

Fermentation Technology 

 Biological reactors vary in technical sophistication from the primitive banana leaf 

wrappings to modern, highly automated, machines.  Common fermentors used in today‟s 

industry include the following: tray fermentors, static bed/tunnel fermentors, rotary disk 

fermentors, rotary drum fermentors, fluidized beds, agitated tank fermentors, and 

continuous screw fermentors [3].  One of the most common fermentors used on a large 

scale, and the type this thesis is concerned with, is the agitated/stirred tank fermentor.  

The stirred tank fermentor can be divided into two subsets: the bioreactor, which is used 

for mammalian cells, and the fermentor which is used for bacteria, yeasts, and algae.  The 

bioreactor is typically utilized when growing cells that are sensitive to shear and have less 

of an oxygen demand.  The fermentor is typically used for cells that are more robust, 

tolerant of high shear rates and have higher oxygen demands. 

 

Mass Transfer in Stirred Tank Fermentors 

 The oxygen demand of the cells in stirred tank fermentors plays a vital role in cell 

culture and growth.  For this purpose, fermentors typically employ a sparge located near 

the bottom of the tank to introduce air into the media.   Fermentors also employ one, or 

several, impellers to provide bubble break up and bulk mixing of the media.  Since the 

organisms used in fermentation generally have a large oxygen demand, the sparge and 
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impellers of a fermentor are typically designed with mass transfer in mind.  During the 

aerobic bioprocess oxygen is transferred from a gas bubble into a liquid phase and 

ultimately to the microbe that uses the oxygen to survive and grow.  The transport of 

oxygen from air bubbles to these cells can be represented by a number of resistances as 

shown in Figure 1. 

 According to the two film theory [13], the flux through the gas film and the liquid 

film can be modeled as the product of the driving force and the mass transfer coefficient: 

𝐽 = 𝑘𝐺 𝑝𝐺 − 𝑝𝑖 = 𝑘𝐿 𝐶𝑖 − 𝐶𝐿  (1) 

In this equation, the subscript G, L and i represent the gas, the liquid and the interface 

between the two respectively [12]. 

 

 
Figure 1: Schematic showing the resistances to oxygen mass transfer in the aerobic 

bioprocess. (Taken from Gomez and Ochoa 2008 [12]) 
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 Since the interfacial concentrations are not directly measureable, we can consider 

the overall mass transfer coefficients and Equation (1) can be written as: 

𝐽 = 𝐾𝐺 𝑝𝐺 − 𝑝∗ = 𝐾𝐿 𝐶
∗ − 𝐶𝐿  (2) 

where C
*
 is the oxygen saturation concentration according to Henry‟s law (p

*
=HC

*
.)  

Combining Equations (1) and (2) we obtain the following relation: 

1

𝐾𝐿
=

1

𝐻𝑘𝐺
+

1

𝑘𝐿
 (3) 

 Since oxygen is only slightly soluble in water (H>>1) it is commonly accepted 

that the overall mass transfer coefficient is equal to the local mass transfer coefficient (i.e. 

KL=kL).  From this we can find the oxygen mass transfer rate per unit of reactor volume 

by multiplying the overall flux by the gas-liquid interfacial area per unit of liquid volume, 

a: 

𝑁 = 𝑎 ∙ 𝐽 = 𝑘𝐿𝑎 ∙  𝐶∗ − 𝐶𝐿  (4) 

Due to the difficulty of measuring kL and a separately, usually the product kLa is 

measured as a lumped term and characterizes the mass transport from gas to liquid [12].  

The volumetric mass transfer coefficient, kLa, is often used as a quantitative measure of 

fermentor performance [14]. 

 

Stirred Tank Design and Scale-Up 

 

Stirred Tank Design Guidelines 

 Stirred-tank fermentors typically follow general guidelines in order to optimize 

mixing and reduce power requirements.  Extensive research has been performed to give 

guidelines on sizing of stirred tank fermentors and their components.  However, none of 



7 

these guidelines are absolute; rather they are meant to direct the basic geometric design of 

stirred tank fermentors while other factors are held constant.  These guidelines are 

outlined in the following paragraphs. 

 Impellers: The ratio of the impeller diameter to the diameter of the tank (di/dt) 

should be between 0.3 and 0.5.  In the case of using radial flow impellers the ratio should 

be approximately 0.3.  If the impellers are too small they will not generate enough fluid 

movement, whereas if they are too large they require much more power and become less 

efficient [15].  Typically stirred tank fermentors employ Rushton turbines using either a 

single impeller or a set of impellers for tank mixing.  Recent developments in impeller 

design have led to the use of several different types of impellers (e.g. Smith, He3, A320, 

Intermig) [16].  Even though these new types of impellers claim to produce better mixing 

and have less power consumption, typical fermentors only employ standard Rushton 

turbines. 

 Impeller Spacing: The spacing between impellers should be 1.0di to 2.0di, where 

di is the diameter of the impeller. In addition, the bottom-most impeller should be located 

1.0di from the bottom of the tank [15, 17].  If the impellers are spaced too close together 

(less than 1.0di) the power imparted to the fluid can get as low as 80% of that obtained 

from proper spacing.  On the other hand, if the impellers are spaced too far apart the fluid 

does not experience adequate mixing [17].  Thus, the number of impellers can be 

determined from the following equation: 

𝐻𝐿 − 𝑑𝑖

𝑑𝑖
> 𝑛𝑖 >

𝐻𝐿 − 2𝑑𝑖

2𝑑𝑖
 (5) 

where HL is the height of liquid in the vessel and ni is the number of impellers [17].  
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However, this is assuming all the impellers are spaced equally between the bottom of the 

tank and the liquid surface.  As stated before, the bottom-most impeller is usually spaced 

one impeller diameter from the tank bottom, and the upper-most impeller is spaced 1.5 or 

more impeller diameters from the liquid surface. 

 Baffling: Stirred tank fermentors generally use baffles because of the need to 

disrupt the bulk fluid flow in the tank.  Bioreactors do not need this disruption.  In most 

cases, four flat baffles on 90° centers are used and have a width of .08dt to .10dt, where dt 

is the diameter of the tank [15].  For low-viscosity flows baffles are attached directly to 

the wall of the tank, but for moderate to high-viscosity flows baffles are set a small 

distance away from the wall [18].  While the flat, four-baffle configuration is most 

common, other sizes, shapes and number of baffles have been researched, but only on a 

limited basis [19]. 

 Tank Height: The height to diameter ratio of the tank is typically between 2.0 and 

3.0; however, taller tanks (up to HL/dt=4.0) have been used to reduce the power 

requirement of the impellers [20].  Typical tanks also employ a dish-shaped bottom to 

enhance mixing and prevent dead zones. 

 

Empirical Design and Scale-Up of Stirred  

Tank Fermentors 

 Design and scale-up of stirred tank fermentors are largely based on empirical 

data.  Some research suggests that the design of stirred tanks should be based on mixing 

time, while others claim it should be based on the specific power input [21].  Others 

argue it should be based on impeller tip speed [22].  A few researchers have suggested 
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dimensionless number correlations be used for reactor scale-up and design [12].  Scale-up 

strategies usually maintain one of these factors constant, along with kLa, and base the rest 

of the design as close to the preceding design criteria as possible [21, 22].  Many of these 

strategies are used to design fermentors; however, none can accurately define what 

advantages one scale-up strategy has over others. 

 

Challenges in Design and Scale-Up 

 The most difficult task in tank design is getting the fermentor capability to match 

the oxygen demand of the fermentation culture [10, 11].  When designing a stirred tank 

fermentor, the main concern is providing sufficient oxygen to the cells without exceeding 

any limits of shear or power consumption.  For example, it is possible to obtain higher 

values of kLa by simply increasing the impeller speed.  However, this causes a great 

increase in impeller tip speed which can damage the organisms because of the increased 

shear.  The increase in tip speed also creates an exponential increase in power 

consumption which can make the fermentation uneconomical.  In order to avoid these pit-

falls, correlative models can be used by imposing limits on power consumption and 

impeller tip speed.  With this, the rest of the tank can be designed to match the oxygen 

demand of the organisms being fermented. 

 

Computational Fluid Dynamics (CFD) 

 

CFD History and Uses 

 Computational fluid dynamics is one of the branches of fluid mechanics that uses 

numerical methods and algorithms to solve and analyze problems that involve fluid 
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flows.  Flow fields are discretized into small nodes and the finite volume technique is 

used to calculate fluid flows in and around complex geometries.  CFD codes were 

originally developed as codes to analyze the potential flow around 2-D airfoils as early as 

the 1930‟s.  However, computer speed and power was not sufficient to calculate 3-D 

codes until the 1960‟s when numerous panel codes were developed to analyze airfoils.  

Since the 1960‟s CFD codes have been adapted to meet almost any type of fluid flow 

application and are used in almost every industry that deals with complex fluid flow [23].  

Because of the expense and expertise involved in performing CFD analyses it has 

traditionally only been used in research applications to design and analyze complex 

flows.  However, because of availability of commercial codes and technology advances, 

CFD is spreading rapidly into the commercial sector. 

 

CFD Analyses Used in the Design and 

Scale-Up of Stirred Tank Fermentors 

 

 The first instances of CFD being used in fermentor development came about 

through studying the steady-state flow field.  Using a visualization of the flow field 

researchers could study how the media in the tank interacted with the various geometries 

within the tank.  One of the first developments utilizing this technique was impeller 

design.  Around 1990 several papers were published on flow field computation and the 

development of different types of impellers with experimental verification [16, 24].  

These studies modeled several different shapes and sizes of impellers to show how the 

fluid flow was affected in stirred tanks.  The goal of these studies was to find impellers 

that produced equal mixing capability for less power consumption compared to the 
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traditional Rushton type impeller.  These studies all verified the flow field computation 

using Laser Doppler Velocimetry or Particle Image Velocimetry and stated that 

computational predictions will not eliminate the need for experimental validation of a 

proposed design.  Complex physical phenomena, such as two phase flooding, free-surface 

waves, and air entrainment can arise in mixing equipment and are unlikely to be 

accurately predicted given the enormous complexity of such flows [24, 25]. 

 Another early development in CFD analysis of stirred tank fermentors was 

calculating mixing times for different tank configurations.  By injecting neutrally buoyant 

particles into the flow field and calculating the time to reach homogeneity, stirred tanks 

can be quantitatively compared to one another [16, 26].  The mixing time of stirred tanks 

has been used to model the effectiveness of not only mixers, but also STRs where mass 

transfer is an important design factor.  Several studies have shown that reactors which 

produce faster mixing times will have better mass transfer rates and reaction kinetics than 

reactors with slower mixing times [27, 28]. 

 Many fermentors involve sparging air into the reactor to feed the reaction taking 

place.  Accordingly, recent computational studies of STRs have been focused on 

modeling bubbles within the flow field.  The earliest of these studies aimed at predicting 

how bubbles affect the flow field [29, 30].  Even though they are few in number, recent 

studies attempt to show how the mass transfer from the bubbles is affected by impeller, 

baffle, and tank geometries [31].  Being able to quantify the mass transfer capabilities of 

a stirred tank fermentor using only CFD is the ultimate goal.  To date these technologies 



12 

are still unproven, so the CFD used in this field is still largely based on mixing time 

calculations. 

 

Empirical Correlations Used in the Analysis of 

Stirred Tank Fermentors 

 

Dimensionless Correlations 

 Dimensionless number correlations are used in several fields of engineering (i.e. 

heat transfer, fluid flow, etc.) where geometries make it difficult or impossible to find an 

analytical solution or where scaling of the system is required.  In this study both of these 

conditions apply.  The impellers, baffles, and tank shape take part in complex fluid flows 

that are impossible to predict analytically, which makes it necessary to create empirical 

correlations that help calculate the parameters needed in stirred tank design. 

 Normally dimensionless correlations for stirred tank reactors come as a Sherwood 

number correlation of the following form: 

𝑆𝑕 = 𝑓(𝑅𝑒, 𝑆𝑐, 𝑃𝑒) (6) 

𝑅𝑒 =  
𝜌𝑉𝑑

𝜇
 (7) 

𝑆𝑐 =  
𝜇

𝜌𝐷
 (8) 

𝑃𝑒 =  
𝑉𝑑

𝐷
 (9) 

 

Equation (6) shows that the Sherwood number is given as a function of the Reynolds 
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number (Re), Schmidt number (Sc), and the Peclet number (Pe).  Even though this is not 

always the case, all dimensionless number correlations used for stirred tank fermentors 

do relate an equation of tank inputs to a dimensionless number associated with kLa [7, 32, 

33, 34].  These correlations serve to predict kLa values for a given tank geometry.  Few 

dimensionless number correlations have been published to date.  Those that have include 

vastly different ranges of power input, gas flow rate and tank geometry.  This wide range 

of correlations, since they are few in number, serve very little purpose in providing 

accurate kLa values unless they are used for very specific tank geometries [12]. 

 

Errors in Empirical Data 

 It has been shown that kLa estimates can be biased by the probe response time of a 

dissolved oxygen probe [35].  This error particularly occurs if the inverse of kLa is of the 

same or lesser order as the response time of the electrode [12].  This is generally the case 

for highly aerated fermentation vessels with traditional dissolved oxygen probes.  Thus, 

the response time of a dissolved oxygen probe is one of the largest sources of error in kLa 

determination.  A correction to the traditional probe response is required to determine 

correct oxygen transfer values. 

 Accurate kLa determination by the unsteady-state method is also affected by a 

transient volume rise due to gas hold-up.  The volumetric mass transfer coefficient, kLa, 

is meant to be a steady-state measurement of the mass transfer in a reactor.  However, 

when air is sparged into the tank, the liquid volume rises due to gas hold-up.  Even if the 

duration of this transient state is much less than the duration of the dissolved oxygen 

measurement, it still has the possibility of introducing error into the calculation of kLa.  
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Due to the lack of publication in this area it is likely this phenomenon has never been 

researched. Its study, however, will enhance the understanding of mass transfer in stirred 

tanks and reduce the error introduced into mass transfer calculations. 

 

Errors in Dimensionless Correlations 

 The errors discussed in the previous section are of great importance to the validity 

of dimensionless correlations that have already been developed.    In the reports where 

these correlations are presented usually there is no mention of how the data was collected 

[7, 12, 22, 32, 33].  This leads us to believe that there is a possibility of errors in the data.  

For this reason, existing correlations will be examined to determine if they are useful in 

stirred tank design.  If the existing correlations do not correlate with new data, new 

correlations (or new coefficients for existing correlations) will need to be developed.  
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CHAPTER 3 

OBJECTIVES 
 

 The overall goal of this project was to develop tools to enhance the design process 

of production scale fermentors.  The specific objectives were to: 

 Determine how different impeller and baffle geometries affect the mass 

transfer and mixing of a stirred tank fermentor. 

 Examine the possibility of a correlation between mixing time and mass 

transfer in a stirred tank fermentor. 

 Create a method for correcting data obtained from a dissolved oxygen probe 

that has a long response time. 

 Develop a technique for correcting data obtained during the transient volume 

rise of the unsteady-state kLa measurement technique. 

 Develop a dimensionless correlation that is able to accurately predict kLa 

values for different geometries of production scale fermentor tanks. 

  



16 

CHAPTER 4 

PROCEDURE 
 

Experimental Setup 

 

 The tests for this study were carried out in a 250 L stirred tank with a dish shaped 

floor.  The tank was 66 inches tall and 18.625 inches in diameter giving it a 3:1 height to 

diameter ratio for the working volume.  The tank was made of clear plastic acrylic so as 

to have the ability to observe flow patterns in the tank while conducting experiments.  

Five probe holes were built into the side of the tank to allow the dissolved oxygen sensors 

to pass through into the liquid.  The impellers used in these studies had a diameter of 

either 6.0 or 6.25 inches. This gives impeller diameter to tank diameter ratios of .32 and 

.36.  Rushton, Smith, Lightnin A320 and Chemineer He3 impellers were all used in this 

study.  These impellers are pictured in Figure 2 through Figure 5.  The bottom-most 

impeller for each configuration was placed 6.0 inches from the bottom of the tank and the 

upper-most impeller was placed 10.0 inches from the ungassed liquid surface.  The 

remaining impellers were spaced evenly between these two.  The system schematic and 

the tank, with impeller and probe locations, are pictured in Figure 6 and Figure 7. 

 These experiments studied the effect of having three or four impellers on the drive 

shaft.  As mentioned earlier, commercial fermentors do not always follow published 

guidelines for impeller spacing.  For the 3 and 4-impeller configurations the impellers 

were spaced 19.5 and 13.0 inches apart, respectively.  To prevent bulk fluid movement, 

four baffles on 90° centers were placed in the tank.  Three types of baffles were tested. 
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 Figure 2: Rushton turbine impeller. 

 

 

 
 Figure 3: Smith turbine impeller. 
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 Figure 4: He3 axial flow impeller. 

 

 

 
 Figure 5: A320 axial flow impeller. 
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Figure 6: Schematic of test tank setup. 

 

 
Figure 7: Picture of test tank with dimensions of impellers and probe locations. 
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The first type is a more traditional flat baffle measuring 1.55 inches tall standing straight 

out from the tank wall.  This baffle was spaced .25 inches off the wall as to follow 

traditional baffle design.  The second type of baffle was one of two semi circles 

protruding from the tank wall with radii of either .75 inches or 1.5 inches.  The third type 

of baffle studied was exactly like the flat traditional type baffle, only with a simulated 

plastic film draped over the baffle.  A list of configurations that will be used and what 

studies they were used in are provided in Table 1 and Table 2. 

 

 Table 1: 3-Impeller Tank Configurations and in Which Studies They Were Used 

Impeller 

Configuration 

Baffle 

Configuration 

Experimental 

Determination 

of kLa 

CFD: 

Steady-State 

Calculation 

CFD Mixing 

Time 

Calculation 

Dimensionless 

Correlation 

He3 

He3 

Rushton 

Flat Yes Yes Yes No 

He3 

He3 

Smith 

Flat Yes Yes Yes Yes 

He3 

He3 

Smith 

Lg. Round No Yes Yes No 

A320 

A320 

Rushton 

Flat Yes Yes Yes No 

A320 

A320 

Smith 

Flat Yes Yes Yes Yes 

Rushton 

Rushton 

Rushton 

Flat No Yes Yes No 

Rushton 

Rushton 

Rushton 

Sm. Round No Yes Yes No 

Rushton 

Rushton 

Rushton 

Lg. Round No Yes Yes No 
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Table 2: 4-Impeller Tank Configurations and in Which Studies They Were Used 

Impeller 

Configuration 

Baffle 

Configuration 

Experimental 

Determination 

of kLa 

CFD: 

Steady-State 

Calculation 

CFD: Mixing 

Time 

Calculation 

Dimensionless 

Correlation 

Rushton 

Rushton 

Rushton 

Rushton 

Flat Yes Yes Yes Yes 

Rushton 

Rushton 

Rushton 

Rushton 

Film Yes Yes Yes No 

Smith 

Smith 

Smith 

Smith 

Flat No Yes Yes No 

Smith 

Smith 

Smith 

Smith 

Lg. Round No Yes Yes No 

He3 

Rushton 

Rushton 

Rushton 

Flat No Yes Yes No 

He3 

He3 

Rushton 

Rushton 

Flat No Yes Yes No 

He3 

Smith 

Smith 

Smith 

Flat No Yes Yes No 

He3 

He3 

Smith 

Smith 

Flat No Yes Yes No 
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Experimental Determination of the Volumetric 

Mass Transfer Coefficient: kLa 

 

 There are several techniques for determining the volumetric mass transfer 

coefficient.  All of the techniques have advantages and disadvantages, but when 

measuring kla the most common, and usually the most accurate, is the unsteady-state 

method [36]. For this method first the water in the tank is deoxygenated by sparging 

nitrogen until the dissolved oxygen (DO) in the tank reaches below 10% of the saturation 

level.  Then air is reintroduced into the tank through the sparge at a known mass flow rate 

while the DO is monitored over time.  This is monitored until the oxygen reaches close to 

85% of the saturation level.  Equations (10) through (12) describe the calculation of kLa. 

𝑑𝐶𝐴𝐿

𝑑𝑡
= 𝑘𝐿𝑎 𝐶𝐴𝐿

    − 𝐶𝐴𝐿  (10) 

𝑘𝐿𝑎 =

𝑙𝑛  
𝐶𝐴𝐿
    − 𝐶𝐴𝐿1

𝐶𝐴𝐿
    − 𝐶𝐴𝐿2

 

𝑡2 − 𝑡1
 

(11) 

 

In these equations CAL is the dissolved oxygen concentration in percentage of saturation, t 

is time, 𝐶𝐴𝐿
     is the final DO concentration and CAL1 and CAL2 are the DO concentrations at 

times t1 and t2, respectively.  When several dissolved oxygen concentration points have 

been collected over time, Equation (4) applies [37]: 

𝑙𝑛 𝐶𝐴𝐿
    − 𝐶𝐴𝐿 = −𝑘𝐿𝑎𝑡 (12) 

Figure 8 illustrates the oxygen concentration over time during unsteady-state testing for 

determination of kLa. 
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Figure 8: Graphical representation of the dissolved oxygen concentration during the 

unsteady-state test. 

 

 For the configurations outlined in Table 1 and Table 2 the unsteady-state method 

was used to give kLa values which serve as a quantitative comparison of the tanks.  

The volumetric mass transfer coefficient was determined at several points throughout 

the tank to give a volume-averaged mass transfer coefficient for each configuration.  

This data was used to empirically derive the dimensionless correlations.  It also 

assisted in assessing the mass transfer capabilities of specific impellers and baffles. 

 

Computational Fluid Dynamics Calculations 

 

Setup of CFD Models 

 The second tool used in this study to enhance reactor design was computational 

fluid dynamics (CFD).  The entire basis of CFD is formed on discritizing a fluid volume 
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into cells and using a finite difference technique to approximate fluid properties in each 

of those cells.  This general discritization is referred to as “meshing” or “creating a 

mesh.”  There are several software packages used for meshing, but for this study the 

program “Gambit” was used.  Gambit functions as both a solid modeling tool and as a 

meshing tool.  It can also import certain types of solid models and create meshes from 

those models. 

 The models for this research were created in Solid Works® and imported into 

Gambit as Step files.  Once the models were imported, they were slightly modified (i.e. 

removing fillets) to assist in the meshing process and the mesh was created for the fluid 

volume in the tank.  The head space in the tank was not modeled; rather, a pressure outlet 

boundary condition was used, which allows mass to flow in and out across the boundary.  

Gambit was also used to apply boundary conditions to the surfaces and interior regions of 

the volume being meshed.  These meshes were then exported for use in the CFD package 

FLUENT.  An example of the mesh around a Rushton impeller is given in Figure 9. 

 For this study a 3D mesh using tetrahedral cells was used.  The mesh was created 

by specifying the node spacing on the surfaces of the tank, baffles and impellers.  All of 

the surfaces of the impellers were specified with 0.05 inch spacing. The surfaces of the 

rotating reference frame, the baffles and the impeller shaft were specified with 0.2 inch 

spacing.  The node spacing of the tank walls and the interior of the tank was specified at 

1.0 inch intervals.  However, the “pave” and “tgrid” features were used when meshing 

which adapt the spacing as the mesh approaches surfaces with more nodes.  Using less 

dense grids caused divergence in calculating the solutions.  For several of the calculations  

Reza Davoodi
Highlight
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Figure 9: Rotating reference frame mesh surrounding a Rushton turbine impeller. 

 

a polyhedral mesh was used to decrease computation time.   Figure 10 and  Figure 11 

show the tetrahedral and polyhedral meshes, respectively. 

 Grid convergence and time step convergence tests were performed and shown to 

not affect the results of mixing time or velocity profiles.  Figure 12 shows an example of 

the residuals over iterations for the A320-A320-Smith configuration; most of the 

configurations converged in a similar way.  All of the models created for this study were 

run for 3000 iterations or more and the residuals on each of them converged to within one 

order of magnitude of each other.  The continuity always converged to a point between 

10
-3

 and 10
-4

.  The turbulent kinetic energy and the x, y, and z-velocities converged to  

10
-5

 +/- one half order of magnitude.  The turbulence dissipation rate (epsilon) converged 

to 10
-4

, or very close to it in every case. 

 CFD uses the pressure flow field to calculate the velocity formation, which can be 
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 Figure 10: Picture of the tetrahedral mesh. 

 

calculated using a pressure-based or a density-based approach.  Historically speaking, the 

pressure-based approach was developed for low-speed incompressible flows, while the 

density-based approach was mainly used for high-speed compressible flows [38].  Both  
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 Figure 11: Picture of the polyhedral mesh. 

 

solvers employ a similar discritization process, but different approaches to linearize and 

solve the discretized equations.  Although both solvers have recently been reformulated 

to accommodate both types of flow, it is more reliable to use the pressure-based solver 

for incompressible flows, which was used in this study. 
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 Figure 12: Residuals from the Steady-State A320-A320-Smith configuration. 

 

 There are four methods used by FLUENT to couple the velocity and the pressure 

fields: SIMPLE, SIMPLEC, PISO, and the Coupled Algorithm.  SIMPLE and SIMPLEC 

are generally used for steady-state calculations while PISO and the Coupled Algorithm 

are used in unsteady (transient) calculations.  PISO is generally used with non-uniform or 

highly skewed grids while the Coupled Algorithm is generally used for uniform grids 

because of its large memory usage.  For this study the steady-state and transient solutions 

were calculated.  Many of the impellers used cause a high skewness to the grid because 

of the curvature of the impeller blades.  Because of this, the SIMPLE solver was used for 

the steady-state calculation, and the PISO solver was used for the transient. 

 FLUENT allows the user to choose the discritization scheme for the convection 
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terms of each governing equation.  Each term can be solved using the First-Order 

Upwind, Second-Order Upwind, Quick, or Power Law schemes.  The First-Order 

Upwind scheme is less accurate than the Second-Order, but it can provide more stability 

in computation.  The First-Order Upwind scheme also creates more artificial diffusion 

than the higher order schemes.  The QUICK scheme is second-order accurate, and 

combines the central differencing scheme and the second-order upwinding scheme.  

However, when a hexahedral mesh is not used, the QUICK scheme uses second-order 

upwinding only [38].  Each convection term for this study was evaluated according to 

Table 3.  It should be noted that First-Order upwinding was used for the tracer fluid 

diffusion.  This does create more artificial diffusion than the second-order schemes; 

however, case studies of stirred tanks have shown to be unstable when second-order 

schemes are used, as was the case here. 

 

Table 3: Discritization Schemes Used in the Diffusion Terms 

of the CFD 

CONVECTION TERM DISCRITIZATION SCHEME 

Momentum Second-Order Upwind 

Turbulent Kinetic Energy Second-Order Upwind 

Turbulent Dissipation Rate Second-Order Upwind 

Tracer Fluid Diffusion First-Order Upwind 

Transient Formulation First-Order Upwind 

 

 Modeling turbulence is difficult in CFD simulations.  There are many different 

theories on how turbulence is formed and how it dissipates. There are also multiple 

techniques within each theory to model the turbulence.  The turbulence formulations that 

are applicable to this study are: k-ε, k-ω, k-kl-ω, SST, Reynolds Stress, and Spalart-
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Allmaras.  The most commonly used models for stirred tank mixers are the k-ε, and 

Reynolds Stress models.  The Reynolds Stress model allows multiple inputs for turbulent 

kinetic energy and turbulence length scale which makes it very precise to each particular 

case, but it is also very complicated.  The Reynolds Stress formulation requires user 

inputs that are usually only accessible through physical testing of the system.  Also it 

requires much more computation time when calculating the solution, and can become 

unstable.  The k-ε model, however, requires less computation and fewer inputs.  In the k-ε 

model the turbulent kinetic energy k, and its rate of dissipation, ε, are obtained from the 

following transport equations: 

𝜕

𝜕𝑡
 𝜌𝑘 +

𝜕

𝜕𝑥𝑖

 𝜌𝑘𝑢𝑖 =
𝜕

𝜕𝑥𝑗

 (𝜇 +
𝜇𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑗

 + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜖 − 𝑌𝑀 + 𝑆𝑘  (13) 

𝜕

𝜕𝑡
 𝜌𝜖 +

𝜕

𝜕𝑥𝑖

 𝜌𝜖𝑢𝑖 =
𝜕

𝜕𝑥𝑗

 (𝜇 +
𝜇𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥𝑗

 + 𝐶1𝜖

𝜖

𝑘
(𝐺𝑘 + 𝐶3𝜖𝐺𝑏) − 𝐶2𝜖𝜌

𝜖2

𝑘
+ 𝑆𝜖  (14) 

In these equations, Gk represents the generation of turbulent kinetic energy due to the 

mean velocity gradients and Gb represents the generation of turbulent kinetic energy due 

to buoyancy.  As seen in these equations, the turbulence calculations are very 

complicated and require several user defined constants to model the turbulence correctly.  

However, it is still much less complicated than the Reynolds Stress model.  The constants 

required for the k-ε formulation have been computed for several stirred tank applications 

and are widely available in the literature. 

 In order to decrease computation time and increase the accuracy of the standard k-

ε model, the realizable k-ε model utilizes a new formulation for turbulent viscosity and 

turbulent dissipation rate.  The term „realizable‟ is used to denote that the model satisfies 
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certain mathematical constraints on the Reynolds stresses, consistent with the physics of 

turbulent flows [38].  The realizable k-ε model was chosen for this study because it 

provides superior performance (both in accuracy and computation time) for flows 

involving rotation (impellers), and more accurately predicts the spreading rate of both 

planar and round jets (for possibly including an air sparge in future research) [38]. 

 Another important aspect of turbulence is how the computation is integrated to the 

wall.  The near-wall modeling significantly impacts the fidelity of the solution, as walls 

are the main source of mean vorticity and turbulence [38].  Experiments have shown that 

the near-wall region can be largely subdivided into three layers: the viscous sublayer, the 

interim layer and the fully-turbulent layer [38].  The first two layers occur at y
+
 values of 

less than 60, where y
+
 is defined by Equation (15). 

𝑦+ =
𝜌𝑢𝑡𝑦

𝜇𝑡
 (15) 

 Fluent uses two approaches to modeling this “near-wall” region.  The wall 

function approach bridges the viscosity-affected region between the wall and the fully-

turbulent region.  The near-wall approach enables the viscosity-affected region to be 

resolved with a mesh all the way to the wall.  The approach used in this study is a hybrid 

of these two models called “Enhanced Wall Treatment”.  The enhanced wall treatment is 

a near-wall modeling method that combines a two-layer model with enhanced wall 

functions.  As such, the enhanced wall treatment can be used with coarse meshes, as well 

as fine meshes [38].  Pictures of the y
+
 values are shown in  Figure 13 and Figure 14. 
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 Figure 13: Graphical representation of y

+
 values around a Rushton impeller. 

 

 
Figure 14: Graphical representation of y

+
 values around the walls of the 

stirred tank. 
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 To have a moving boundary in a CFD calculation FLUENT uses two types of 

meshes to simulate movement: the “Rotating Reference Frame” and the “Moving Mesh” 

formulations.  The rotating reference frame model uses a section of the fluid that is 

rotating to simulate the impeller moving through the fluid.  Instead of the impeller 

actually moving, there is a small volume of fluid located just around the impeller labeled 

as a moving reference frame (MRF).  When the fluid within the MRF comes in contact 

with a surface it acts as if it were moving, while the other nodes within the MRF do not.   

The fluid velocities within that rotating reference frame are continually transformed 

according to the impact of the impeller and a solution is converged upon.  The moving 

mesh technique is a little more complicated.  It uses the FLUENT solver to move 

boundaries and/or objects and to adjust the mesh accordingly [38].  This does seem to 

give more accurate results in certain cases; however, the computation time is 

exponentially increased, and the solver becomes unstable when using this method. For 

this project the rotating reference frame was chosen for two reasons.  First, it is generally 

accepted as accurate by those who do research in the fermentor/stirred-tank mixing 

community [24, 25, 26, 27, 39].  Secondly, it has saved possibly hundreds of hours of 

computation time. 

 

CFD Results Obtained 

 For each tank configuration presented in section 4.1, two outputs were calculated.  

First, the steady-state flow field was calculated and visually displayed to identify “dead 

zones” where the fluid was not moving or mixing very well.  These pictures of the flow 

field gave information on how each impeller moves fluid through the tank.  This aided in 
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determining the effectiveness of different impellers in their mixing capability. 

 The second output from the CFD is a mixing time for each configuration.  After 

the steady-state formulation was calculated, the simulation was changed to a transient 

formation and a tracer fluid was introduced into the tank.  The volume fraction of tracer 

fluid was monitored at several locations in the tank, according to Figure 15, and the 

mixing time was calculated as the time when 90% of homogeneity was reached.  A 

contour plot of mass fraction of tracer fluid is shown at the mixing time of the four-

Rushton configuration in Figure 16.  These mixing times were compared with the 

experimental kLa data to explore the possibility of a correlation between the two.  Several 

configurations of tanks were then modeled that were not experimentally tested in order to 

give a more complete test matrix of tank configurations. 
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Figure 15: Schematic of tracer fluid probe locations used in the numerical mixing time 

studies. 
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Figure 16: Contour plot of the mass fraction of tracer fluid for the four-Rushton 

impeller configuration. 
 

Correction for Probe Response Time 

 

 An accurate probe response time correction must account for all time constants in 

the probe.  A typical galvanic dissolved oxygen probe consists of a gas-permeable 

membrane and an electrolyte fluid that leads to an anode and cathode, which measure the 

resistance in the electrolyte fluid.  Two time constants should be used to represent both 

the time required for the oxygen to dissolve through the gas-permeable membrane, and to 

dissolve through the electrolyte fluid.  Although the first-order correction approach is 

widely used [12, 35, 39, 40] for probe time response correction, it does not account for 

both time constants.  A correction model which includes both time constants is needed 
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for accurate kLa determination. 

 In order to correct for a slow probe response time, a dissolved oxygen probe 

system can be compared to a spring, mass, damper system.  Newton‟s second law can be 

used to describe a single degree of freedom spring mass damper system as follows: 

1

𝑔𝑐
 𝑚  

𝑑2𝑠

𝑑𝑡2
  + 𝜁𝑑  

𝑑𝑠

𝑑𝑡
 + 𝑘𝑠 = 𝐹(𝑡) (16) 

Even though a dissolved oxygen probe does not look or work the same as a spring-mass-

damper system, the responses of the two systems are identical [24].  Equation (16) can be 

further simplified by using a time constant, τ.  The time constant represents the 

displacement (s) through a medium.  The equation for the time constant is given below: 

𝜏 = 2𝑚/𝜁𝑑𝑔𝑐  (17) 

 

This comparison to a spring, mass, damper system will be referred to throughout the rest 

of this paper as the second-order model.  

 The second-order model described can be applied to systems containing two time 

constants. Beckwith et al. [24] apply Equations (16) and (17) to a temperature probe with 

two time constants.  The temperature probe, in this case, has a jacket around it. The two 

time constants represent the time it takes the temperature to diffuse through the jacket and 

through the probe.  The two time constants for a typical galvanic dissolved oxygen sensor 

could represent the time required for the oxygen to dissolve through the gas-permeable 

membrane and through the electrolyte fluid.  Applying the equation given by Beckwith to 

a dissolved oxygen probe yields the equation given below: 
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𝜏1𝜏2

𝑑2𝐶𝑚

𝑑𝑡2
+  𝜏1 + 𝜏2 

𝑑𝐶𝑚

𝑑𝑡
+ 𝐶𝑚 = 𝐶 (18) 

Notice that if either of the time constants were zero, the equation would revert to a first-

order time response model.  Because the second-order model for probe time response, as 

presented in Equation (18), accounts for both sources of lag time, it is theoretically more 

accurate than the traditional first-order model.   

 To use the second-order model for probe response correction, the two time 

constants must be determined.  An artificial step function in dissolved oxygen can be 

created to determine the time constants in Equation (18).  To achieve this, the response of 

the dissolved oxygen probes can be fit to the general solution for a step response. 

𝐶𝐿 − 𝐶𝑚

𝐶𝐿 − 𝐶𝑜
=  

𝜁

𝜁 − 1
 𝑒−𝑡/𝜁𝜏2 −  

1

𝜁 − 1
 𝑒−𝑡/𝜏2  (19) 

It should be noted that this general solution is for a step response; if the dissolved oxygen 

of the surrounding medium is changing, this solution becomes invalid and one must 

revert to Equation (18) where CL is the forcing function.  The use of a step function leads 

to the determination of the two time constants needed to correct for probe response time.   

 Once the time constants are known, the derivatives from Equation (18) must be 

determined.  For the case of fermentors, the forcing function is not known and the 

solution must be computed by approximating the differentials in Equation (18).  

Numerical approximations of the derivatives can be used, as outlined by Chapra and 

Canale [25]. 

𝑓 ′ 𝑥𝑖 =
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖−1)

2𝑕
 (20) 
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𝑓"(𝑥𝑖) =
𝑓 𝑥𝑖+1 − 2𝑓 𝑥𝑖 + 𝑓(𝑥𝑖−1)

𝑕2
 (21) 

 

 Before data correction can be applied to dissolved oxygen data, the time constants 

for the probe must be determined.  To accomplish this, the probes were subjected to a 

dissolved oxygen step response. Each probe was allowed to reach equilibrium in a beaker 

containing water with 0% oxygen-saturation.  Next the probe was immediately 

transferred to a beaker containing water with 100% oxygen-saturation.  The measured 

values of the probe, which represent the probe‟s response to the oxygen step function, 

were recorded electronically.  This was repeated several times for each probe.  Each 

recorded data set was fit to the general solution for a step response shown in Equation 

(19).  This was accomplished by writing a program that used a guess-and-check sub-

routine to find the values of the time constants.  The time constants of all the probes were 

then averaged to give approximate time constants for all the probes.  For the second-order 

model, the time constants are 1.582 and 23.748 seconds for τ1 and τ2, respectively.  These 

newly acquired time constants can be used for probe response correction.     

 To examine the validity of the second-order probe response correction method, 

the two time constant correction model was applied to data from the oxygen step 

function.  Examining the corrected response and how closely it mimics a step response 

shows the effectiveness of the correction.  The low error produced by this process 

validates the use of such correction methods on oxygen mass transfer data.   

 Since the use of a second-order model was now validated, the effective range of 

the model was determined.  To accomplish this, three separate oxygen mass transfer 
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scenarios were examined.  Based on the findings of Phillichi and Stenstrom [20], it was 

expected that the error in kLa estimation would increase as the value of true kLa 

increased.  Three separate oxygen mass transfer scenarios were examined where low, 

medium, and high oxygen mass transfer coefficients were expected.  These differences in 

kLa were expected based on differences in mixing speed and gas flow rate.  The low, 

medium, and high tests were performed according to Table 4.  The oxygen mass transfer 

testing was performed with the experimental setup described in section 4.1 of this thesis. 

 

Correction for Transient Volume Rise 

 

 To explain the volume rise in an STR an analytical approach was used to identify 

how the bubbles act throughout the tank, and how those bubbles affect the dissolved 

oxygen measurement.  The derivation also shows how to correct for dissolved oxygen 

data obtained during a test where a transient volume rise occurs.  This analytical 

derivation and the ensuing correction are found in the results section of this report. 

 

Dimensionless Correlations 

 

 In their paper on gas/liquid mass transfer in stirred vessels, Schlüter and Deckwer  

 

Table 4: Impeller Speeds and Gas Flow Rates Used 

for the Low, Medium, and High kLa Values for 

Testing 

Range of kLa 

expected 

Impeller Speed 

(rpm) 

Gas Flow Rate 

(lpm) 

Low 250 140 

Medium 300 170 

High 450 170 
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[26] propose that kLa is not dependent upon geometric constraints, but rather on specific 

power input and gas flow rate.  As a nondimensional approach to solving for kLa they 

propose the following equation: 

𝑘𝐿𝑎  
𝜈

𝑔2
 

1/3

= 𝐶  
𝑃/𝑉

𝜌 𝜈𝑔4 1/3
 
𝑎

 
𝑞

𝑉
 
𝜈

𝑔2
 

1/3

 

𝑏

 (22) 

The constants C, a, and b in Equation (22) are solved for different tank geometries.  

Schlüter and Deckwer determine these constants for two tank configurations.  One tank is 

agitated with 3 Rushton impellers, while the other is agitated with 4 Intermig impellers 

[26].  The results are tabulated in table Table 5. 

 Schlüter and Deckwer report that these numbers are for a stirred vessel with a 

height to diameter ratio of 2:1, a power range of 0.5 ≤ P/V ≤ 16 kW/m
3
 and a flow rate 

range of 0.0038 ≤ q/V ≤ 0.027 s
-1

[26].  They do not, however, report on how changing the 

geometry of the tank affects the constants of Equation (22).  Even though the constants 

for this equation have not been determined for all tank or impeller types, this is the most 

recently published dimensionless correlation for stirred tank fermentors. 

 Nishikawa et al. [27] report that a similar correlation can be derived using the 

geometries of the tank and impellers, the physical properties of the liquid and the power 

input according to the following equation: 

𝑘𝐿𝑎 ∙ 𝑑𝑡

𝐷𝐿
= 0.368  

𝜌𝑁𝑑𝑖
2

𝜇
 

1.38

 
𝜇

𝜌𝐷𝐿
 

0.5

 
𝜇𝑉𝑠
𝜎

 
0.5

 
𝑁2𝑑𝑖

𝑔
 

0.367

 
𝑁𝑑𝑖

𝑉𝑠
 

0.167

 
𝑑𝑖

𝑑𝑡
 

0.25

 
𝑃

𝜌𝑁3𝑑𝑖
5 

0.75

 (23) 

Nishikawa however, does not report over which ranges of impeller speeds and gas flow 

rates this equation is valid.  Equation (23), unlike Equation (22), does allow  
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Table 5: Constants Used for Equation (22) 

 C a b 

3-Rushton 7.94x10
-4

 0.62 0.23 

4-Intermig 5.89x10
-4

 0.62 0.19 

 

compensation for different geometries and thus has the possibility of not having to use 

different coefficients for different tank and impeller geometries. 

 The experimental data found earlier in this study was correlated to Equations (22) 

and (23) to determine how accurately the Schluter and Nishikawa correlations predict 

kLa.  To determine the power delivered to the fluid for each of these equations the 

commonly used power number equation was used. 

𝑃 = 𝑁𝑃𝑛𝜌𝑁3𝑑𝑖
5
 (24) 

 In this equation NP is the empirically obtained power number for the impellers as 

proposed by Post and by Vasconselos et al. [28, 29].  Since there are several varying 

methods for determining the gassed power and Equation (24) is commonly used, the un-

gassed power consumption was used for this study.  Power delivered to the fluid and air 

sparged into the tank was varied to explore how each of these parameters affects the mass 

transfer capability of the tank.  Power delivered to the fluid for this study ranged from 

6.6W to 253.2W, and air sparged into the tank ranged from 2.33 m
3
/s to 3.33 m

3
/s. 

 New correlations were developed by fitting the experimental results of kLa 

measurement, as outlined in Table 1, to the Schluter and Nishikawa equations and 

changing the equations‟ coefficients.  The coefficient values which produced the least 

error when compared to the actual experimental data were selected for use in the new 

correlation. 
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CHAPTER 6 

RESULTS AND DISCUSSION 
 

Probe Response Correction 

 

 Before a correction can be applied to dissolved oxygen data, the time constants 

for the probe must be determined.  To accomplish this, the probes were subjected to a 

dissolved oxygen step response. Each probe was allowed to reach equilibrium in a beaker 

containing water with 0% oxygen-saturation.  Next the probe was immediately 

transferred to a beaker containing water with 100% oxygen-saturation.  The measured 

values of the probe, which represent the probe‟s response to the oxygen step function, 

were recorded electronically.  This was repeated several times for each probe.  Each 

recorded data set was fit to the general solution for a step response shown in Equation 

(19).  This was accomplished by writing a program that used a guess-and-check sub-

routine to find the values of the time constants.  The time constants of all the probes were 

then averaged to give an approximation of the time constants.  For the second-order 

model, the time constants are 1.582 and 23.748 seconds for τ1 and τ2, respectively.  These 

time constants can be used for probe response correction. 

 To examine the validity of the second-order probe response correction method, 

the two time constant correction model was applied to data from the oxygen step 

function.  Examining the corrected response and how closely it mimics a step response 

shows the effectiveness of the correction.  The results of applying the step function to the 

probes with the ensuing correction are shown in Figure 17.  The average error between 
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the step function and the corrected step response was found to be 4.05%.  As shown in 

the figure, the measured values slowly rise to saturation due to the time response of the 

probe.  The corrected values, however, rise suddenly at the beginning of the experiment 

and are maintained at saturation.  This sudden rise, which closely matches the step 

response, suggests that the second-order time response model used to correct the data is 

satisfactory.  The small “bumps” in the corrected values between the 50 and 60 second 

marks are most likely due to minute errors in the experimental data that are exaggerated 

when performing the numerical differentiations. 

 Since the use of a second-order model was now validated, the effective range of 

the model was determined.  To accomplish this, three separate oxygen mass transfer 

scenarios were examined.  Based on the findings of Phillichi and Stenstrom [20], it was 

expected that the error in kLa estimation would increase as the value of true kLa 

  

 
Figure 17: Graph of dissolved oxygen probe response to a step function.  The hollow and 

solid squares represent the measured and corrected values, respectively.    
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increased.  Three separate oxygen mass transfer scenarios were examined where low, 

medium, and high oxygen mass transfer coefficients were expected.  These differences in 

kLa were expected based on differences in mixing speed and gas flow rate.  The low, 

medium, and high mass transfer rates were performed according to Table 4. 

 The second-order time response model was used to correct data obtained from the 

three kLa tests shown in Table 4.  The results, shown in Figure 18, indicate that the 

corrected curves reach saturation much faster than the measured curves.  This observation 

suggests that oxygen mass transfer rates calculated from raw dissolved oxygen 

measurements are under-estimating the true oxygen mass transfer potential of the system.  

This assumption was confirmed by calculating the overall oxygen mass transfer 

coefficient, or kLa, for each curve.  These values, as presented in Table 6, also suggest 

that the percent increase of oxygen mass transfer due to probe response time correction is 

dependent on the oxygen mass transfer rate itself.  That is, the effect of the correction 

factor on kLa increases as kLa itself increases.  

 

Table 6: kLa Values for Three Different Scenarios That Were 

Calculated Using Measured and Corrected Data Points 

 
Low 

 
Medium 

 
High 

Measured 93.6 
 

115.2 
 

176.4 

Second-Order 234 
 

306 
 

651.6 

Difference 150% 
 

165.6% 
 

269.4% 
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Figure 18: Graph of dissolved oxygen response during three separate oxygen transfer rate 

determination tests.  The graph shows measured and corrected values, represented by 

hollow and solid markers, respectively.  The low, medium, and high tests are represented 

by circle, diamond, and triangle markers, respectively. 

 

Transient Volume Rise Correction 

 

 To explain the volume rise in the reactor two possible models are presented in this 

study.  The first model assumes that the bubbles move as a front up through the tank.  

The second model assumes that the bubbles are evenly dispersed throughout the tank and 

the bubble density increases until a steady state is reached at time t0.  These two models 

are illustrated in Figure 19 and Figure 20, respectively. 
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Figure 19: A transient volume rise model in which bubbles travel as a front through the 

tank until steady-state is reached. 

 

 
Figure 20: A transient volume rise model in which bubbles are evenly distributed 

throughout the tank and increase in density until steady-state is reached. 
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 In order to accurately describe these conditions the governing equation for mass 

transfer was used and analytically solved for each of the transient cases. 

𝑉 𝑡 
𝑑𝐶

𝑑𝑡
= 𝑕𝑚 ∗ 𝐴 𝑡 ∗  𝐶∗ − 𝐶(𝑡)  (25) 

Equation (25) is similar to Equation (10), except that volume and surface area terms are 

considered unsteady-state values that change with time.  The investigation of the two 

possible transient volume models will increase our understanding of their effect on 

dissolved oxygen measurement. 

 The study of the two scenarios gave an understanding of what is taking place in 

the actual test tank.  The resulting analysis of the analytical derivations showed that one 

equation can be used to model both scenarios.  It also revealed a manner in which 

corrections could be made to existing kLa data. 

 The first scenario, presented in Figure 19, allows us to assume that the bubbles 

travel as a front through the tank. Following this assumption, V(t) in Equation (25) is the 

volume of liquid that contains bubbles,  A(t) is the total surface area of all the bubbles, 

and hm is the mass convection coefficient. A volumetric mass convection coefficient can 

then be defined as: 

𝑘𝐿 =
𝑕𝑚

𝑉(𝑡)
 (26) 

Next, α and β are introduced to describe the volume and surface area increase. 

𝑉 𝑡 = 𝛼 ∗ 𝑡        𝑡 < 𝑡0 (27) 

𝑉 𝑡 = 𝑉0            𝑡 > 𝑡0 (28) 
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𝐴 𝑡 = 𝛽 ∗ 𝑡       𝑡 < 𝑡0 (29) 

𝐴 𝑡 = 𝐴0            𝑡 > 𝑡0 (30) 

Making these substitutions into Equation (25) gives the following result: 

𝛼𝑡
𝑑𝐶

𝑑𝑡
= 𝑕𝑚𝛽𝑡 𝐶∗ − 𝐶(𝑡)  (31) 

After separating variables and integrating, 

− ln 𝐶∗ − 𝐶 =
𝑕𝑚𝛽

𝛼
𝑡 + 𝐶1 (32) 

When the initial conditions are applied (at t = 0, C = 0), 

𝐶

𝐶∗
= 1 − 𝑒−

𝑕𝑚 𝛽
𝛼

𝑡
 (33) 

However, Equation (33) only applies when t < t0.  When t > t0 the following equation 

applies. 

𝐶

𝐶∗
= 1 − 𝑒

−
𝑕𝑚 𝐴0𝑡0

𝑉0
 
𝑡
𝑡0

−1+
𝛽𝑉0
𝛼𝐴0

 
 (34) 

In Equation (34) A0 is the surface area of all the bubbles in the tank at steady-state and V0 

is the volume of the tank at t = t0.  Equation (33), which describes the first model, is valid 

before steady-state occurs and will be compared to a similar equation for the second 

model. 

 The second model assumes that the bubbles are spread evenly throughout the 

tank.  As time progresses, the bubbles gradually become denser until the amount of air 

leaving the tank equals the amount of air entering the tank.  The assumption in this model 

indicates that the volume change is negligible and thus V0 is used instead of V(t).  The 
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same derivation procedure as in the first model was used to develop Equations (35) and 

(36). 

𝐶

𝐶∗
= 1 − 𝑒

−
𝑕𝑚 𝛽
𝑉0

𝑡2

        𝑡 < 𝑡0 (35) 

𝐶

𝐶∗
= 1 − 𝑒

−
𝑕𝑚 𝐴0

𝑉0
𝑡
        𝑡 > 𝑡0 (36) 

Note that Equation (35) is the same as Equation (33) if you make a substitution for α 

according to Equation (27). 

 To analyze the two transient models, they must be compared to the steady-state 

model.  The steady-state model represents the hypothetical response if there were no 

transient volume rise.  This solution is given by the following: 

𝐶

𝐶∗
= 1 − 𝑒

−
𝑕𝑚 𝐴0

𝑉0
𝑡
 (37) 

 To study the effect of transient volume rise on kLa measurement, Equations (33) 

and (35) were compared to Equation (37).  This was done by graphing Equation (37) 

(Steady-State DO concentration) against Equations (33) and (35) (Transient DO 

concentration) for several values of α and β.  The plots were used to study the effects of 

changing α and β.  These plots were then used to calculate the expected kLa for both 

scenarios (steady-state and transient).  Upon inspection of the plots created, it was 

decided that the effect the transient period had on kLa calculation was not due to changes 

in α or β.  The effect, rather, was based on how many data points used to calculate kLa 

fell within the transient period (0 < t < t0).  The plots were compared for differing values 

of α and β to show a lack of correlation between these variables and the effect on kLa 
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computation.  Regression curves were computed to explain how the kLa calculation was 

affected. 

 To model the data the geometry of the reactor described in section 4.1 was 

assumed.  The transient increase was assumed to be between 18 and 45 liters rise in 

volume over a period of 8 to 10 seconds, which was observed during kLa testing.  The 

average bubble size was assumed to be between 1 and 5 mm.  Using these numbers α is 

assumed to have a range of: 0.29 < α < 0.42 while β is assumed to have a range of: 1.0 < 

β < 1900.  For constant β, α showed a 40% increase in calculated kLa over the range: 0.29 

< α < 0.42.  For constant α however, β showed an 1800% increase in kLa over the range: 

100 < β < 1900.  This shows that for a constant volume of air, if the bubble size becomes 

smaller (i.e. more surface area) the kLa will increase dramatically.  However, an increase 

in air volume will not cause so great a change in kLa. 

 The models generated from differing  and β indicate that the increase in kLa 

measured from the transient data is dependent on how many data points fall within the 

transient time period.  This is shown in Figure 21, where the following definitions are 

used: 

Pk =
kLat − kLass

kLass
 (38) 

Pdp =
# of data points within ttrans

# of data points used for linear interpolation
 (39) 

In these equations kLat is the kLa measured from the transient model and kLass is the kLa 

measured from the steady-state model.  Equation (40) is the polynomial fit to the curve 

shown in Figure 21. 
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Figure 21: Increase of kLa versus number of data points used in linear interpolation. 

 

Pk = .7502Pdp
4 − 3.4760Pdp

3 + 2.9137Pdp
2 + .0495Pdp  (40) 

 The peak in this curve is caused by an interesting phenomenon.  The slope of the 

linearized points changes as more and more erroneous points are used in the linearization.  

However, as the number of points gets larger, the slope of the linearized points gets 

closer and closer to the slope of that of a line with no erroneous points.  This is shown in 

Figure 22. 

 When using the unsteady-state method, calculating kLa becomes more accurate 

when more data points are used in the line fit.  By assuming the data is continuous and 

ranges from 0% to 95% oxygen saturation, a correlation can be made to show how kLa is 

affected by this transient period.  A new variable, t95, is defined as the time required to 

reach 95% oxygen saturation.   
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Figure 22: Graph of simulated data points for a kLa test.  The square points represent data 

from a test with an 8-second transient period.  The circles represent data from a test with 

no transient period.  The solid lines show line fits using 20%, 30%, 70%, and 80% of the 

transient points in the line fit. 

 

The mass transfer coefficient can be substituted into Equation (37) to yield the following: 

𝐶

𝐶∗
= 1 − 𝑒−𝑘𝐿𝑎𝑡  (41) 

The final conditions, t=t95 and 
𝐶

𝐶∗ = .95, can be applied to get Equation (42). 

𝑡95 =
−ln⁡(.05)

𝑘𝐿𝑎
 (42) 

Substituting Equation (42) into Equation (39) gives an equation for the percent of time 

contained within the transient period. 
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Pdp =
𝑡𝑡𝑟𝑎𝑛𝑠

𝑡95
=

𝑡𝑡𝑟𝑎𝑛𝑠 𝑘𝐿𝑎

−ln⁡(.05)
 (43) 

In this equation ttrans is the time of the transient period.  As shown from Equation (43) the 

time of the transition period can have a great affect on how much the data varies from the 

steady-state model. 

 As shown in Figure 23 the true value of kLa and how many data points are used to 

make that calculation predict the percent error.  The error in calculated kLa can range 

from 0% to 43% if a transient volume increase is involved.  The transient volume rise 

correction is applicable to any kLa measurement technique that involves a volume rise 

during data collection due to increased suspended gas bubbles. 

 

Figure 23: Percent increase versus actual kLa for different values of kLa and t95. 
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Experimental Testing of kLa and How it Correlates 

to Mixing Time 

 

 The experimental testing, outlined in Table 1 and Table 2, was performed at two 

air flow rates: 140 and 170 liters per minute.  Each test gave an average kLa value for the 

tank and several of the tests were repeated to give more accurate results.  The results 

obtained from this testing, along with the standard deviations and number of tests 

performed, are outlined in Table 7.  The standard deviation was calculated as the standard 

deviation found between the repeated tests performed. 

 

Table 7: Average kLa Values with Standard Deviations and Number of Tests Performed 

Impeller 

Configuration 

Impeller 

Size (in) 

Baffle 

Type 

Number of 

Tests 

Performed 

kLa 

140 lpm St. Dev. 170 lpm St. Dev. 

He3 

He3 

Rushton 

6.0 

flat 1 239 -- 329 -- 6.0 

6.0 

He3 

He3 

Smith 

6.0 

flat 1 368 -- 430 -- 6.0 

6.25 

A320 

A320 

Rushton 

6.0 

flat 1 285 -- 354 -- 6.0 

6.0 

A320 

A320 

Smith 

6.0 

flat 1 511 -- 367 -- 6.0 

6.25 

Rushton 

Rushton 

Rushton 

Rushton 

6.0 

flat 3 362 44.2 415 63.2 
6.0 

6.0 

6.0 

Rushton 

Rushton 

Rushton 

Rushton 

6.0 

film 6 608 127 786 87.0 
6.0 

6.0 

6.0 
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 From this data it is hard to tell which of the different geometries creates better 

conditions for mass transfer.  The A320-A320-Smith configuration, for example, gives a 

very good kLa of 511 at the lower gas flow rate, but a rather average kLa of 367 for the 

higher gas flow rate.  Comparing the three-impeller configurations that use the same 

radial flow impeller gives us better understanding of the difference between the A320 and 

He3 impellers.  At the lower air flow rate the A320-A320-Rushton and He3-He3-Rushton 

configurations give kLa values of 285 and 239, respectively.  At the higher gas flow rate 

they give values of 354 and 329, respectively.  Since these values do not show significant 

differences from each other, we can assume that neither the He3 nor the A320 impeller 

has an advantage over the other one.  When we compare the A320-A320-Smith and He3-

He3-Smith configurations we notice that one performs better at the lower gas flow rate 

and one performs better at the higher gas flow rate.  This gives us no insight into whether 

or not there is a significant difference in performance between the A320 and He3 

impellers.  The configuration that does give a significant difference at both air flow rates 

is the four-Rushton configuration with film-covered baffles. 

 To gain more insight on these and other configurations numerical studies were 

used to calculate mixing times.  The mixing times are outlined in Table 8 and Table 9. 

 Some research shows a correlation between mixing time and mass transfer in 

STRs.  Yu et al. [28] show that 3D numerical models can predict mixing times that 

directly correlate to the mass transfer coefficient in mammalian cell cultures.  However, 

these studies only correlate different mixing speeds and gas flow rates for one specific 

tank.  They do not include different types of impellers, baffles, or tank sizes.  In addition,  
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Table 8: Mixing Times for the Three-Impeller Configurations 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec) 

He3 

He3 

Rushton 

6.0 

6.0 

6.0 

Flat 16.0 

He3 

He3 

Smith 

6.0 

6.0 

6.25 

Flat 15.8 

He3 

He3 

Smith 

6.0 

6.0 

6.25 

1.5” Semi-

Circle 
18.3 

A320 

A320 

Rushton 

6.0 

6.0 

6.0 

Flat 11.2 

A320 

A320 

Smith 

6.0 

6.0 

6.25 

Flat 10.5 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

Flat 7.9 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

1.5” Semi-

Circle 
5.5 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

.75” Semi-

Circle 
6.9 

 

 

Hadjiev, Sabiri and Zanati suggest that when gas flow rates are high the mixing times can 

increase, or decrease due to interaction between the bubbles and the impellers [29].   

 The mixing times obtained in this study were compared to the experimental kLa 

values to examine the possibility of a correlation.  The following figures plot the kLa of 

each tank configuration versus the mixing time at the two flow rates.  In these figures the 

mixing times of 10.5, 11.2, 15.8, and 16.0 seconds correspond to only one experimental 

data point.  However, the mixing times of 6.8 and 8.3 seconds correspond to multiple 

experimental data points. 
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Table 9: Mixing Times for the Four-Impeller Configurations 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec) 

Rushton 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Flat 6.8 

Rushton 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Film-Covered 8.3 

Smith 

Smith 

Smith 

Smith 

6.25 

6.25 

6.25 

6.25 

Flat 11.6 

Smith 

Smith 

Smith 

Smith 

6.25 

6.25 

6.25 

6.25 

1.5” Semi-

Circle 
6.6 

He3 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Flat 9.9 

He3 

He3 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Flat 15.8 

He3 

Smith 

Smith 

Smith 

6.0 

6.25 

6.25 

6.25 

Flat 10.5 

He3 

He3 

Smith 

Smith 

6.0 

6.0 

6.25 

6.25 

Flat 12.1 
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Figure 24: kLa versus mixing time for data obtained at a gas flow rate of 140 lpm. 

 

 

 
Figure 25: kLa versus mixing time for data obtained at a gas flow rate of 170 lpm. 
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 As seen in these figures the mixing times do not correlate to the experimentally 

determined kLa values.  Due to this lack of correlation, gas flow rates of 25 and 40 liters 

per minute were tested for four additional tank configurations.  These additional tests are 

outlined in Table 10 and plotted in Figure 26 and Figure 27. 

 Figure 26 and Figure 27 show that a correlation between mixing time and kLa 

might be possible.  However, these systems are very complex and have several factors 

that affect mixing time and kLa.  Reducing these correlations to just two variables (kLa 

and mixing time) is likely oversimplifying the phenomena that are occurring in a stirred 

tank. 

 

 
Figure 26: kLa versus mixing time for data obtained at a gas flow rate of 25 lpm. 
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Figure 27: kLa versus mixing time for data obtained at a gas flow rate of 40 lpm. 

 

Table 10: Additional kLa Testing Performed at Gas Flow 

Rates of 25 and 40 Liters per Minute 

Impeller 

Configuration 

Baffle 

Type 

Mixing 

Time (s) 

kLa 

25 lpm 40 lpm 

He3 

He3 

Rushton 

Flat 16.0 56.8 80.6 

He3 

He3 

Smith 

Flat 15.8 68.4 97.2 

A320 

A320 

Rushton 

Flat 11.2 67.7 104 

A320 

A320 

Smith 

Flat 10.5 70.6 127 
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CFD Results and Mixing Capabilities 

 

 The CFD results calculated in this study can be used to give a better 

understanding of mixing in stirred tanks, and how certain aspects of the tank produce 

better mixing.  In Figure 28 and Figure 29 we see the middle and lower impellers of two 

tank configurations, one using A320 impellers and one using He3 impellers.  These 

pictures are a slice of the mid-plane of the tank and the arrows represent the direction of 

flow.  The different colors of arrows represent faster moving fluid, where the length of 

the arrows represents the direction of the fluid moving at that point.  Where the arrows 

 

 
Figure 28: Flow visualization of middle and lower impellers of 

the He3-He3-Rushton tank configuration. 
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Figure 29: Flow visualization of middle and lower impellers of 

the A320-A320-Rushton tank configuration. 

 

 are longer, the fluid is moving more in line with the mid-plane of the tank; where the 

arrows are shorter they are moving more perpendicular to the mid-plane of the tank. 

  From these we can see that the He3 impeller acts as more of an axial flow 

impeller than the A320, and thus creates more fluid interaction with the Rushton 

impeller.  However, the A320 impeller, which acts more like a mixed flow impeller, 

creates eddies with the side wall of the tank.  These eddies have higher fluid velocities 

than those produced by the He3 impeller.  These eddies also likely produce better side-to-

side mixing of the tank, while the interaction between the He3 and Rushton impellers 

likely produce better top-to-bottom mixing.  These same interactions are noted when the 

Rushton is replaced with the Smith impeller.  In addition, where A320 impellers are used 

mixing times are better than those where He3 impellers are used.  In these figures it is 
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also noteworthy to mention the “dead” zones that occur half way between the impellers.  

The fluid coming off the impellers looses momentum and comes to almost a complete 

stop in the very dark areas of the visualizations. 

 When the three and four-Rushton impeller configurations are compared with one 

another it is expected that the latter will perform better.  In Figure 30 we see that in the 

three-Rushton configuration the flow from one impeller does not interact with the other 

creating a dead zone between the two.  In the four-Rushton configuration (Figure 31) we 

do not see the dead zone as before.  In fact, in this configuration we see that the fluid 

coming off one impeller creates eddies through the interaction with the fluid coming off 

the other impeller.  When comparing the mixing times between the three and four-

impeller models we note that, on average, the four-impeller models perform better.  

However, the three-Rushton impeller configurations seem to perform only slightly worse 

than the four-impeller configurations. 

 The baffles used in these calculations were studied to see how much disruption of 

flow they created.  In Figure 32, Figure 33 and Figure 34 cross sections of the stirred tank 

are shown to see this flow disruption.  The cross-sections pictured are taken at mid-

distance between the middle and upper impeller in the three-Rushton tank. 
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Figure 30: Flow visualization of middle and lower 

impellers of the Three-Rushton tank configuration. 

 

 
Figure 31: Flow visualization of middle and lower impellers 

of the Four-Rushton tank configuration. 
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Figure 32: Flow visualization of a cross section of 

the Three-Rushton tank with flat baffles. 

 

 
Figure 33: Flow visualization of a cross section of the 

Three-Rushton tank with .75” round baffles. 
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Figure 34: Flow visualization of a cross section of the 

Three-Rushton tank with 1.5” round baffles. 

 

 From these figures we see that both the large and small round baffles create 

higher fluid velocities in the tank.  However, for the small round baffles almost all of the 

fluid in the tank is moving in a uniform circular motion.  These circular streamlines 

indicate a lack of mixing in the radial direction.  The large round baffles create more 

disruption than the smaller ones.  Although, these still have some of the uniform motion 

near the center of the tank, which could create similar circular streamlines.  The mixing 

times suggest that the large round baffles have comparable or even better mixing 

capability than the flat baffles.  Nevertheless, the mixing times are too close to 

differentiate between the two.  As seen in Figure 35, the film-covered baffles disrupt the 

flow just as much as the flat baffles, and the mixing times suggest they are comparable as 

well. 
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Figure 35: Flow visualizations of cross sections of the Four-Rushton tank with 

flat (left) and film-covered (right) baffles. 

 

 From the preceding results we can conclude that there are differences in the 

impellers and baffles.  The mixing times predict that, in this size of tank, the A320  

impellers perform better than the He3 impellers.  The results also show a difference seem 

to have similar results, all of which provide better disruption than the small round baffles.  

For a complete listing of the CFD results obtained see Appendix B. 

 

Dimensionless Number Correlation 

 

 In order to study the dimensionless correlations presented by Schluter and 

Nishikawa, the experimental results from the stirred tank reactor were plotted against 

Equations (22) and (23).  These plots, as shown in Figure 36 and Figure 37, show two 

things.  First, neither the Schluter nor the Nishikawa equations accurately models the 

data.  Second, there is a great distinction between Rushton impeller data and the cases  
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Figure 36: Plot of experimental data using the original (Eqn. 22) and modified Schluter 

equation.  The hollow and solid markers represent the original and modified 

correlations, respectively.  The diamond, square, and triangle markers represent the four-

Rushton, two-HE3-one-Smith, and two-A320-one-Smith configurations, respectively. 

(The line shows a 1:1 comparison of the experimental and predicted values) 

 

 
Figure 37: Plot of experimental data using the original (Eqn. 23) and modified 

Nishikawa equations.  The hollow and solid markers represent the original and 

modified correlations, respectively.  The diamond, square, and triangle markers 

represent the four-Rushton, two-HE3-one-Smith, and two-A320-one-Smith 

configurations, respectively. (The line shows a 1:1 comparison of the experimental 

and predicted values) 
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where axial flow impellers are used.  The Schluter equation over predicts kLa for the  

Rushtons, but under predicts kLa for the cases with axial flow impellers.  The Nishikawa 

equation follows a similar pattern by over predicting kLa for the Rushtons, for high kLa 

values, and under predicting kLa for the other two cases.  However, the Nishikawa 

equation seems to also under predict kLa for cases of reduced mass transfer.  These errors 

in prediction may be due to the use of un-corrected values in the development of the 

correlation. 

 The average error in the prediction of kLa for each correlation was evaluated.  The 

results, as shown in Table 11, indicate that the modified Schluter equation is the most 

accurate tool for predicting kLa.  The modified Schluter equation is based on Equation 

(22); however, different values of C, a, and b are used, as outlined in Table 12.  The 

constants were calculated by fitting Equation (22) to the corrected experimental data.  An 

example of how this correlation can be used to predict kLa is shown in Figure 38.  The 

correlation can be useful in determining which operating conditions or impeller 

configurations are needed to obtain a desired kLa. 

 

Table 11: Percent Error in kLa Prediction for Various Correlations 

 

Schluter Nishikawa 

 
Original 

 
Modified Original 

 
Modified 

Four Rushtons 86.5 
 

15.7 30.2 
 

16.6 

Two HE3, One Smith 41.5 
 

7.7 68.7 
 

7.3 

Two A320, One Smith 41.6 
 

8.7 68.2 
 

16.7 

Average 56.5 
 

10.7 55.7 
 

13.5 
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Table 12: Constants Obtained for Equation (22) by the Use of 

Corrected Experimental Values 

 C a b 

4-Rushton 0.9953 0.4468 1.072 

Smith, 2-Axial 1.74x10
-4

 0.6479 2.35x10
-2

 

 

 

 
Figure 38: Plot of predicted oxygen mass transfer rates in a 250 L fermentation 

vessel with four Rushton impellers at different mixing speeds and gas flow rates. 

 

Error Analysis and Uncertainty Range 

 

 In order to calculate the uncertainty of these calculations first the uncertainties of 

the individual components need to be known.  The uncertainties of the time constants 

were calculated from the standard deviations observed in the experiments conducted.  

Since the probes were calibrated before each experiment, the precision uncertainty on the 

percent oxygen readings was neglected in the calculation.  However, the bias uncertainty 

is given as 0.3% of readout.  Since kLa is usually calculated between 20% and 75% 

dissolved oxygen, the average uncertainty equates to .1425%.  The uncertainties for the 

two time constants were calculated from a standard T distribution using a 95% 
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confidence.  The uncertainty of the first time constant (τ1) is .35998 seconds and the 

uncertainty of the second time constant (τ2) is .7988 seconds.  To calculate the 

uncertainty of a single corrected data point Equation (19) (represented as “y”) is used to 

propagate the uncertainty according to the following equation. 

𝑈𝑐𝑑𝑝 =   
𝜕𝑦

𝜕𝜏1
𝑈𝜏1

 
2

+  
𝜕𝑦

𝜕𝜏2
𝑈𝜏2

 
2

+  
𝜕𝑦

𝜕𝐶
𝑈𝐶𝑏

 
2

 (44) 

According to Equation (44) the uncertainty of a single corrected data point is .952% 

dissolved oxygen.  From this, an uncertainty on the slope of the linearized data points can 

be calculated.  Bevington and Robinson [30] derive a measure of the uncertainty of the 

slope of a least-squares fit to a straight line according to the following equation. 

𝑈𝑠𝑙𝑜𝑝𝑒 = 𝑁𝑑𝑝

𝑈𝑐𝑑𝑝
2

 𝑁𝑑𝑝  𝑥𝑖
2 −   𝑥𝑖 2 

 (45) 

 Using these equations, the bias uncertainty of a kLa measurement of 786 is 65.3 

hr
-1

.  The precision uncertainty, calculated using a standard T distribution with a 95% 

confidence, is 71.6 hr
-1

.  Taking into account these two uncertainties, the uncertainty on a 

kLa measurement of 786 hr
-1

 is 96.9 hr
-1

. 

 This means that if an experimenter calculated a kLa of 175 hr
-1

 without using any 

corrections, then correcting for the time response of the probes would give a value of 985 

hr
-1

.  After correcting for the transient time period (assuming 8 seconds for the transient 

period) the kLa would then be 805 hr
-1

 +/- 96.9 hr
-1

.   
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CHAPTER 7 

CONCLUSIONS 

 

 

 The second-order probe response model is an effective tool in correcting for a 

slow response time in dissolved oxygen sensors.  Using this technique, any dissolved 

oxygen measurement can be corrected, as long as the time response of the probes is 

known.  This technique can be applied to probes that have both slow and fast time 

responses, although, for a probe with a fast time response, the correction might be 

negligible. 

 The method developed to account for a transient volume rise gives a correction 

for kLa values that have been affected by the volume rise.  The method shows that the 

distortion in calculated kLa is due to the number of data points used in the calculation that 

fall within the transient time period according to equation (46). 

 From the experimental kLa studies we see that for a 250 liter tank with a 3:1 

height to diameter ratio, four Rushton impellers used with the film-covered baffles 

creates the best conditions for mass transfer.  The axial flow impellers so not seem to 

have any advantage, or disadvantage over the radial flow impellers.  Numerically 

calculated mixing times do not correlate with mass transfer for the gas flow rates used by 

this STR and thus can only be used to give information on mixing. 

 Numerical studies for this STR give important information on how different 

baffles and impellers affect the mixing.  For the three-impeller configurations the fluid 

mixing zones do not interact with each other, creating dead zones in the tank.  When 

using the He3 impeller, there is more interaction between fluid zones, but there are still 
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large areas of very slow moving liquid.   The four-impeller configurations do not 

experience these dead zones, and thus produce better mixing conditions.  Mixing times 

calculated from these studies suggest that the 0.75 inch round baffles do not create good 

disruption in the tank, thus impeding the mixing.  However the other three types of 

baffles all provide very good disruption and mixing, especially when used with radial 

flow impellers.  Future research on this subject would benefit from including 

experimental kLa studies using all three types of baffles and distinguishing the advantages 

and disadvantages of each. 

 Finally, dimensionless correlations present a useful tool for scale-up and design of 

stirred tank fermentors.  However, these models must be developed from data where the 

probe response time and the transient volume rise have both been accounted for.  The 

correlations that have been developed previous to this work do not accurately model the 

data.  The correlations developed in this study more accurately model the data and are 

useful for the design of 250 L stirred tank fermentors.  However there are limitations to 

these correlations and they should be tested further when used for other sizes and shapes 

of tanks. 
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Appendix A: Experimental Results 

Table 13: Tabulated Experimental Results 

Impeller 

Configuration 

Baffle 

Type 

Impeller Speed 

(rpm) 

kLa (1/hr) 

(corrected for probe response and 

transient volume rise) 

He3 

He3 

Rushton 

Flat 

250 153 

300 208 

450 302 

He3 

He3 

Smith 

Flat 

250 192 

300 241 

450 399 

A320 

A320 

Rushton 

Flat 

250 141 

300 281 

450 357 

A320 

A320 

Smith 

Flat 

250 205 

300 249 

450 531 

Rushton 

Rushton 

Rushton 

Rushton 

Flat 

250 194 

300 258 

450 388 

Rushton 

Rushton 

Rushton 

Rushton 

Plastic 

Film 

250 262 

300 361 

450 786 
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Appendix B: CFD Results 

 This appendix contains flow visualization pictures and mixing times from the 

CFD models used for this study.  Each page contains the information from one of the 

CFD models including five flow visualization pictures.  These pictures are: 1) a color-

coded velocity scale of the velocity vectors in the remaining four pictures 2) a view of the 

y-z plane with y being the vertical direction 3) a view of the x-z plane at the mid-section 

of the first impeller 4) a view of the x-z plane at a point half way in-between two of the 

impellers 5) a view of the x-z plane at the mid-section of the upper-most impeller.  

Examples of the three and four-impeller configurations and where the pictures come from 

are shown below. 
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Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

He3 

He3 

Rushton 

6.0 

6.0 

6.0 

Flat 16.0 
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Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

He3 

He3 

Smith 

6.0 

6.0 

6.25 

Flat 15.8 
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Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

He3 

He3 

Smith 

6.0 

6.0 

6.25 

1.5” 

Semi-circle 
18.3 

 

 

  

     

    



88 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

A320 

A320 

Rushton 

6.0 

6.0 

6.0 

Flat 11.2 

 

 

  

     

   



89 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

A320 

A320 

Smith 

6.0 

6.0 

6.25 

Flat 10.5 

 

 

  

     

     



90 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

Flat 7.9 

 

 

  

     

  



91 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

1.5” 

Semi-circle 
5.5 

 

 

  

     

  



92 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

0.75” 

Semi-circle 
6.9 

 

 

  

   

    



93 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

Rushton 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Flat 6.8 

 

 

  

   

  



94 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

Rushton 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Plastic Film 8.3 

 

 

  

     

     



95 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

Smith 

Smith 

Smith 

Smith 

6.25 

6.25 

6.25 

6.25 

Flat 11.6 

 

 

  

     

  



96 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

Smith 

Smith 

Smith 

Smith 

6.25 

6.25 

6.25 

6.25 

1.5” 

Semi-circle 
6.6 

 

 

  

     

   



97 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

He3 

Rushton 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Flat 9.9 

 

 

  

     

            



98 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

He3 

He3 

Rushton 

Rushton 

6.0 

6.0 

6.0 

6.0 

Flat 15.8 

 

 

  

   

  



99 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

He3 

Smith 

Smith 

Smith 

6.0 

6.25 

6.25 

6.25 

Flat 10.5 

 

 

  

   

  



100 

Impeller 

Configuration 

Impeller 

Diameter (in) 
Baffle Type 

Mixing Time 

(sec.) 

He3 

He3 

Smith 

Smith 

6.25 

6.25 

6.25 

6.25 

Flat 12.1 
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