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1 Introduction
We examine the Newton-Krylov algoithm for solving the steady-state nonliner Burger’s equation
using scipy.optimize package. The effect of line search and preconditioning are studied in con-
vergence rate. The simulations are performed in a one-dimensional domain with uniform mesh of
different sizes. Please provide your answers in a PDF file format including the explanations, algo-
rithm, graphs, and codes developed in your report. For your report, consider problem statement,
methodology, results and discussions, and conclusion sections. Submit your answers to the Courses
according to the prescribed due-date.

2 Problem statement
Burger’s equation has a steady-state solution with the prescribed boundary conditions as follows: udu

dx
− ν d2u

dx2 = 0,
u(0) = +1,
u(1) = −1

(1)

In Eq. (1), u is the scalar property. The first term, udu/dx is the convection and νd2u/dx2 is the
diffusion of the property in the one-dimensional domain and ν is the diffusivity coefficient. The
problem can be seen as a nonlinear system which the steady-state solution u(x) is seeking to find
as a root of nonlinear equation F (u) = 0 in the conservative form:

F (u) = 0, F (u) :=
d(u2/2)

dx
− ν d

2u

dx2
(2)

The domain is discretized into uniform mesh ∆x = 1.0/(n − 1) where n is the number of grid
points. The nonlinear operator in Eq. (1) is also discretized by the second-order central finite
difference method. Therefore, for each node of domain we have:

F (i) =
1

4∆x
(u2i+1 − u2i−1)−

ν

∆x2
(ui+1 − 2ui + ui−1), i = 0, 1, · · · , n− 1 (3)

The norm ‖F‖ is going to be minimized using the Newton-Krylov algorithm. Accordingly, the
nonlinear problem is linearized as follows:

J(x)δx = R(x) (4)
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where J(x) = F ′(x) is the Jacobian of F and R(x) = −F (x) is the nonlinear residual. For
a discretized domain with n grid points, the Jacobian, Jn,n has the dimension of n × n and the
residual Rn has the dimension of n. The linearized system of equations (4) can be solved using fast
Krylov methods (e.g. GMRES). The overall solution steps can be summarized as follows:
----------------------
Newton-Krylov algoritm
----------------------
1. Linearizing the nonlinear system F(x)=0
2. Solving the linearized system with Krylov methods:

2.1. Preconditioning the linearized system
3. Global convergence check by stabilization techniques:

3.1. Line search, Trust zone, ...
4. Update the solution for the next iteration

Figure 1(a) compares the field with different diffusivity coefficients and Fig. 1(b) shows the effect
of preconditioning on the convergence with Armijo line search.

(a) Different diffusivity (b) Preconditioning effect, ν = 0.1

Figure 1: Solution of steady-state Burger’s equation for n = 71.

3 Solution method
The system of nonlinear equations (3) is going to be solved using newton krylov method of
scipy.optimize module. The mesh dimensions considered for the domain −1 ≤ x ≤ +1 is nx =
{51, 101, 301} with the nonlinear residual norm of f tol=1e-10 and initial guess u0 = 0.

1. Compare the convergence rate (log scale), without line search and preconditioning, for the
mesh size n = 301 with ν = 0.1, 0.01, 0.001. Plot the scalar field for different diffusivity and
analyze the effect of dissipation on the field and convergence.

2. For ν = 0.1, and different mesh sizes with Armijo line search, study the effect of pre-
conditioning M on the convergence rate of newton krylov. Accordingly, the viscous
(diffusion) part of Eq. (1) with sparse ILU spilu and fill factor=10 is considered:

Fv(u) = ν
∂2u

∂x2
≈ ν

∆x2
(ui+1 − 2ui + ui−1) → Mij =

∂Fv,i

∂uj
, Mi,i±1 =

ν

∆x2
,Mi,i =

−2ν

∆x2

To set the preconditioner, use LinearOperator and introduce it to the method by inner M.
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