
Circuits, Systems, and Signal Processing (2023) 42:580–600
https://doi.org/10.1007/s00034-022-02148-7

FPGA-Based Low-Cost Architecture for R-Peak Detection
and Heart-Rate Calculation Using Lifting-Based Discrete
Wavelet Transform

Anusaka Gon1 · Atin Mukherjee1

Received: 27 September 2021 / Revised: 2 August 2022 / Accepted: 4 August 2022 /
Published online: 20 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper focuses on designing a field-programmable gate array (FPGA)-based archi-
tecture for R-peak detection and heart rate calculation using lifting-based discrete
wavelet transform (DWT). An efficient and low-cost architecture for Daubechies 4
lifting-based DWT for a decomposition level of four is also proposed. The proposed
architecture is folded after the first decomposition level to avoid repetitive blocks
for different decomposition levels. The noise-removal and preprocessing of the elec-
trocardiogram (ECG) signals are carried out using lifting-based DWT. The 16-bit
fixed-point representation is employed throughout the design to reduce the hardware
complexity. The entire design is evaluated in both MATLAB R2020a and XILINX
VIVADO 2017.4. The proposed architecture is validated using three ECG databases,
namely theMIT-BIH arrhythmia, theMIT-BIH supraventricular, and the QT database.
A total of 122 distinct ECG datasets are tested on FPGA to determine the effective-
ness of the proposed R-peak detection architecture. The R-peaks detected using the
proposed technique show no noticeable error with respect to actual R-peaks. The
FPGA implementation is performed using the Artix-7 board that utilizes 2197 LUTs
and 486 flip-flops at an operating frequency of 44 MHz. The proposed architecture
achieves sensitivity, accuracy, positive predictivity, and detection rate of 99.52, 99.43,
99.91, and 0.565%, respectively, in MATLAB, and 99.44, 98.88, 99.43, and 1.09%,
respectively, in FPGA. In terms of both hardware utilization and R-peak detection
rate achieved, the proposed architecture is suitable to use as a part of low-cost smart
biomedical devices to perform continuous monitoring of ECG signals and automatic
detection of heart rates.
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1 Introduction

In recent years, a spike in the number of sudden heart attacks and other cardiovascu-
lar diseases has drawn attention to the healthcare industry. Several smart biomedical
devices that can automatically monitor heart rates, oxygen levels, and cardiac arrhyth-
mias have been developed by the medical industry. But, most of the existing devices
are very costly as they are imported from other countries. This demands an area-
efficient, low-cost hardware architecture for automatic heart rate detection with high
accuracy and low resource utilization. As a result, this research focuses on develop-
ing a hardware-efficient architectural design that can accurately detect R-peaks and
calculate heart rate using the lifting-based discrete wavelet transform (DWT). A field-
programmable gate array (FPGA) is a matrix of logic blocks that can be programmed
based on the logic used. FPGA has a variety of applications in the real-time biomedi-
cal signal processing field because of its low power consumption, parallel processing,
higher throughput, and flexible programming [21]. An electrocardiogram (ECG) is a
biological test that can be used to monitor cardiac activity, calculate heart rates, and
detect arrhythmias. The P-wave, QRS complex, and T-wave are three major compo-
nents of the ECG signal. The QRS complex provides information about the amplitude
and location (time) of an R-peak, and the R-R distance between two R-peaks is used
to determine heart rate.

The most common R-peak detection algorithms implemented and evaluated on
FPGAareHilbert transform (HT) [21], PanTompkins (PT) [26], andwavelet transform
[42]. HT is one of the popular R-peak detection approaches that require preprocessing
steps like noise-removal, first-order differentiation, etc. [21]. The main disadvantage
of the HT technique is that it requires a significant amount of hardware resources
due to the multiple preprocessing steps. The QRS detection using the PT technique
[26] involves complex signal processing operations and two types of thresholding
techniques. Also, the Shannon energy envelope technique, which uses basic VHDL
blocks for FPGA implementation, needs additional filtering and differentiation oper-
ations before R-peak detection in ECG signals [27]. Furthermore, the heart rate is
calculated using a division block in [27], which is a fairly complex circuit for FPGA
implementation.DWT is a popular digital signal processing technique used for extract-
ing specific signal features, segregating signals into different time–frequencywindows
and classification of signals. It is widely used in a variety of applications like ECG sig-
nal processing, image processing [20], neural networks like spiking neural networks
(SNN)models [36–38], etc. In [33, 43], the ECG signal is filtered using an integer Haar
wavelet transform with a decomposition level of up to four. Since the Haar wavelet
does not have any resemblance to an ECG wave, it will not be able to detect complex
or irregular heart rhythms. Also, the proposed architectures in [33, 43] are not folded
for different decomposition levels. For zero crossings and threshold selection, all four
output coefficients are used in [33], thus increasing the number of factors for R-peak
identification.
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In this paper, a lifting-based DWT technique based on the Daubechies 4 wavelet
is proposed to perform R-peak detection in ECG signals. An efficient and low-cost
architecture for four-level Daubechies 4 lifting-based DWT is also proposed. The
Daubechies 4 wavelet is chosen because it closely resembles an ECG beat, and it is
always preferable to choose a wavelet that resembles the signal to be analyzed [10].
Lifting-based DWT is chosen over the conventional DWT approach for preprocess-
ing ECG signals since it reduces computations of wavelet coefficients by a factor of
two [19]. Without any additional preprocessing stage, the proposed DWT technique
performs both noise-removal and preprocessing of the ECG signals. The proposed
lifting-based Daubechies 4 architecture is compared with the existing ones in terms
of the number of multipliers, adders, delay elements, and critical path delay and is
found to utilize fewer adders and delay elements compared to others. The R-peak
detection is carried out using only the fourth-level detailed wavelet coefficients. Heart
rate is calculated from detected R-peaks without any division block to reduce the hard-
ware. The complete architecture is evaluated using the MIT-BIH arrhythmia database
(mitdb) [24], the MIT-BIH supraventricular arrhythmia database (svdb) [8], and the
QT database (qtdb) [18].

The rest of the paper is organized as follows. A brief discussion on the lifting
scheme and corresponding equations for implementing Daubechies 4 lifting-based
DWT is included in Sect. 2. Section 3 illustrates the proposed methodology for R-
peak detection and heart-rate computation, as well as the proposed architecture for
Daubechies 4 lifting-based DWT. In Sect. 4, the performance of the proposed method-
ology on the MIT-BIH and the QT databases, synthesis report, and comparison with
previous research work with respect to important design parameters are discussed.
The proposed work is concluded in Sect. 5.

2 Theoretical Description of the Lifting Scheme

The wavelet transform provides a time–frequency representation of a signal [31]. It is
appropriate for non-stationary signals like ECG, whose spectral components change
over time. The DWT technique analyzes both low and high-frequency components by
passing the signal through a bank of filters. The approximation coefficients (ai ) are
obtained from the low-pass filter (LPF), and the detailed coefficients (di ) are obtained
from the high-pass filter (HPF) outputs after downsampling by a factor of two, where
i denotes the number of decomposition levels [22]. The output signal from each filter
is passed through a downsampler, which re-samples the signal at half of the input
sampling rate by eliminating every alternate sample. Figure 1 shows a conventional
DWT architecture describing two levels of decomposition. The conventional DWT
architecture is inefficient because half of the output coefficients obtained after filtering
are discarded due to downsampling, after the filtering step. The performance of the
DWT architecture is improved by employing a polyphase matrix of the filter bank
that avoids the calculation of wavelet coefficients, which are to be discarded later, by
performing the downsampling before filtering. In the polyphase representation, the
filter and the input signal are split into even and odd halves.
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Fig. 1 A conventional DWT architecture describing two levels of decomposition

If yn is the input signal and yen and yon are the respective even and odd parts of the
input signal, an and dn are the approximation and detailed coefficients, respectively,
and l(z) and h(z) are the transfer functions of LPF and HPF, respectively, then the
polyphase representation of the wavelet decomposition can be expressed as

[
dn
an

]
= F(z)

[
yon
yen

]
(1)

where F(z) is the polyphase filter bank, which is expressed as:

F(z) =
[
le(z) he(z)
lo(z) ho(z)

]
(2)

he(z) and ho(z) are the respective even and odd components of the transfer functions
of the HPFs, and le(z) and lo(z) are the respective even and odd components of the
transfer functions of the LPFs.

The lifting scheme proposed by Sweldon [32] calculates theDWTcoefficientsmore
efficiently than the conventional approach because it reduces the computational com-
plexity by factorizing the polyphase matrix of the wavelet filter bank into elementary
matrices using the Euclidean algorithm. Every FIR filterbank can be factored into a
cascade of lifting steps, i.e., as the product of upper and lower triangular matrices and
a diagonal normalization matrix. Using the Euclidean algorithm, the polyphase matrix
F(z) can be factored into lifting steps as follows [1]:

F(z) =
m∏
t=1

[
1 pt (z)
0 1

][
1 0

ut (z) 1

][
N 0
0 1

N

]
(3)

where pt (z) and ut (z) are the predict and update Laurent polynomials, respectively,
t is the number of predict and update polynomials, and N is the normalization factor.
The architecture for the lifting scheme is shown in Fig. 2. The LPF, l(z), and HPF,
h(z), associated with Daubechies 4 wavelet are given by [12]:

l(z) = l0 + l1z
−1 + l2z

−2 + l3z
−3 (4)
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Fig. 2 The architecture of the lifting scheme

h(z) = −l3z
2 + l2z

1−l1+l0z
−1 (5)

where l0 = 1+√
3

4
√
2 , l1 = 3+√

3
4
√
2 , l2 = 3−√

3
4
√
2 , and l3 = 1−√

3
4
√
2 are the filter coefficients.

On splitting the filters into even and odd parts, the corresponding polyphase matrix
for the Daubechies 4 wavelet is given as [7]:

F(z) =
[
l0 + l2z−1 −l3z1 − l1
l1 + l3z−1 l2z1 + l0

]
(6)

The polyphase matrix for the Daubechies 4 wavelet filter factored into lifting steps
using the Euclidean algorithm can be expressed as follows:

F(z) =
[
1 −√

3
0 1

][
1 0√

3
4 +

√
3−2
4 z−1 1

][
1 z
0 1

]⎡
⎣

√
3+1√
2 0

0
√
3−1√
2

⎤
⎦ (7)

On substituting the factorized polyphase matrix, F(z) into Eq. (1), we get the
corresponding equations for the implementation of the lifting-based DWT based on
the Daubechies 4 wavelet:

d1n = y2n+1 − √
3y2n (8)

a1n = y2n +
√
3
/
4d

1
n +

√
3 − 2

4
d1n+1 (9)

d2n = d1n + a1n−1 (10)

an =
√
3 + 1√
2

a1n (11)

dn =
√
3 − 1√
2

d2n (12)

where d1n , a
1
n and d2n are the intermediate values, yn is the input signal with y2n and

y2n+1 as the even and odd parts of the signal, and n is the length of the input signal.
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3 ProposedMethodology for R-Peak Detection and Heart-Rate
Calculation of ECG Signals

A complete block diagram describing R-peak detection and heart-rate calculation of
the ECG signals using the lifting-based DWT implemented in an FPGA is shown in
Fig. 3. A detailed description of each block is presented next.

3.1 Pre-processing of ECG Signal Using Lifting-based DWT

DWT divides the input signal into different time–frequency windows depending on
the number of decomposition levels. The energy of abnormal and normal QRS com-
plexes in an ECG signal is concentrated within a frequency range of 5–22 Hz [45]. So
the number of decomposition levels for the proposed lifting-based DWT is set to four
for a sampling frequency of 360 Hz. Among the output coefficients produced after the
lifting-based DWT, only fourth-level detailed coefficients, with a frequency range of
11.25–22.25 Hz, are used for the detection of QRS complexes and R-peaks. Addition-
ally, the frequency range of the chosenDWTcoefficient helps in noise removal without
any extra filtering operation because the most prominent noises in ECG recordings are
baseline wander and electrode motion noise with a frequency range below 10 Hz [9].

3.1.1 Proposed Architecture of Lifting-based DWT for Daubechies 4 Wavelet

A block diagram describing the proposed four-level Daubechies 4 lifting-based DWT
architecture is shown in Fig. 4. In Fig. 4, the first block describes the lifting-based

Fig. 3 Block diagram describing the proposed methodology for R-peak detection and heart-rate calculation

Fig. 4 Block diagram describing the proposed architecture for four-level Daubechies 4 lifting-based DWT
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DWT technique that produces the approximation coefficients, ai’s, (i = 1 to 4), and
the detailed coefficient for the fourth level, d4. To reduce computation, the detailed
coefficients of the first three levels are not calculated. After each decomposition level,
the approximation coefficients are stored in a memory array of size N/2 × 16, where
N is the total sample size of the input ECG signal and 16 represents the input bit-size,
which is used as an input for the next decomposition level. The proposed lifting-based
DWT architecture is folded after the first decomposition level. So, all four levels of
decompositions are performed using a single lifting-based DWT block. The address
unit AU1 is used to perform each level of decomposition, and AU2 is used to provide
the address required to store thewavelet coefficients in thememory block, respectively.

A signal flow graph depicting the computation of wavelet coefficients using Eqs.
(8–12) is shown in Fig. 5. The approximation and detailed coefficients are indicated
as an and dn, respectively. As illustrated in the signal flow graph, the first step is
involved in the calculation of the intermediate step d1n . The second step performs the
calculation of two intermediate values a1n and d

2
n simultaneously, and at the final step,

the scaling of the intermediate values gives the approximation coefficients, an, and the
detailed coefficients, dn. So, the five equations required to construct the lifting-based
DWT for the Daubechies 4 wavelet are reduced to only three steps in the proposed
architecture. Figure 6 shows the equivalent architecture of the proposed lifting-based

Fig. 5 Signal flow graph of the lifting-based DWT block based on Daubechies 4 wavelet

Fig. 6 Proposed lifting-based DWT block for Daubechies 4 wavelet, where m1, m2…, m6 are the output
from the multiplexers with select lines S1, S2,.., S6, respectively, K2, K3, and K4 are the output from the
D flip-flops
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DWT block using the signal flow graph. Table 1 explains the step-by-step operation
of the proposed architecture for the calculation of the DWT coefficients. As shown in
Table 1, an and dn are produced in parallel at K1 and d, respectively, at alternating
clock pulses. Also, the select line Sk (k = 1 to 6) values repeat alternately after the
third clock pulse. The obtained approximation coefficients are stored in the memory
array to start the next level of decomposition.

3.1.2 Address Units

Each address unit consists of a 4:2 encoder, a 4:1 multiplexer, and an 11-bit loadable
counter, as shown in Fig. 7. The proposed architecture consists of two address units,
AU1 and AU2. In AU1, the encoder has four input signals, STARTj (j = 0 to 3) which
enable four different levels of decomposition. Initially, the START0 signal is enabled.
Depending on the STARTj signal enabled, the multiplexer’s output provides a load
value (LOAD) to the loadable counter. After the loadable counter completes counting,
it enables the next STARTj and disables the previous STARTj-1 signal for performing
the next level of decomposition. The inputs to the multiplexer are the varying sample
values required for performing signal decomposition due to the subsampling in DWT.
TheAU1’s output ADDRESS serves twomajor purposes. First, it divides the incoming
input samples into y2n and y2n+1. The input signal is divided into even and odd parts
by dividing the incoming sample value by two: y2n represents the samples that are
multiples of two, and the remaining are represented by y2n+1. Second, if theADDRESS
value is odd, S2, S4, and S5 get the value 0, and S3 and S6 get the value 1, and vice
versa when the ADDRESS value is even. A similar architecture for AU2 is used for
storing the approximation coefficient values in the memory array, which are used as
inputs for the next level of decomposition.

All the blocks or elements used for the proposed four-level Daubechies 4 lifting-
basedDWTarchitecture are utilized at every clock pulse, whichmakes the architecture
hardware-efficient. In [2], an area-efficient three-level lifting-based DWT architecture
for bio-orthogonal wavelets [3] is proposed that produces the output wavelet coef-
ficients serially and has a high critical path delay of two adders and one multiplier.
The architecture in [2] employs seven multiplexers whose select line values are not
repetitive and hence will require separate memory elements for storage. On the other
hand, the select line values for the multiplexers used are repetitive in the proposed
architecture and hence do not require any extra memory storage. In addition, a new
pipelined architecture is proposed in Fig. 8, where pipelining registers, R, have been
inserted to reduce the critical path delay of the proposed architecture in Fig. 6. The
proposed pipelined architecture now has a critical path delay of one multiplier only
and can operate at a higher frequency.

A comparison table of existing lifting-based and conventional DWT architectures
with that of the proposed lifting-based pipelined architecture is shown in Table 2. The
recursive lifting-basedDWTarchitecture in [12] has a high critical path delaywith four
adders and a multiplier. Also, the number of registers and delay elements depends on
the number of decomposition levels. The architecture of [13] is based on the algebraic
integer quantization (AIQ) mapping of wavelet coefficients, which requires separate
hardware for mapping and reconstruction. A folded lifting-based DWT proposed in
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Fig. 7 Address unit of proposed lifting-based DWT based on Daubechies 4 wavelet

Fig. 8 Proposed pipelined lifting-based DWT block based on Daubechies 4 wavelet

Table 2 Comparison of existing lifting-based and conventional DWT architectures

Methodology Type of
wavelet

Critical
path

Number
of
adders

Number of
multipliers

Number
of delay
elements

Multiplexer Th

Recursive
architecture
[12]

Daub4 4(Ta + Tm) 4 6 i – 2

Folded AIQ
mapping
[13]

Daub4 3Ta 9 0 8 – 1

Folded
architecture
[34]

Daub4 Ta + Tm 4 5 2i+1 – 2

Modified
lifting-based
[28]

9/7 Tm 4 8 21 – 2

Multiplier-less
[30]

5/3 2Ta+Right
Shift +
2’s com-
pliment

6 6 (Shifter) 6 – 2

Distributed
Arithmetic
[5]

9/7, 5/3 Ta 18 0 12 32 2

Proposed Daub4 Tm 2 4 3 3 2

Ta and Tm are critical path delay of adder and multiplier, respectively, Th is the throughput, Daub4 =
Daubechies 4 wavelet, and i is the number of decomposition levels
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[34] has delay elements that depend on the number of decomposition stages used. A
modified lifting-based DWT architecture based on the 9/7 filter [28] and a multiplier-
less lifting-based DWT architecture based on the 5/3 filter [30] have also been studied
and compared with the proposed one. The distributed arithmetic architecture in [5]
employs both 9/7 and 5/3 wavelets and is based on the conventional DWT approach.
Table 2 shows that the proposed architecture has the lowest number of arithmetic units,
multiplexers, and delay elements that are independent of the number of decomposition
levels. Apart from the conventional DWT architecture in [5], which has a large number
of adders, multiplexers, and delay elements, the proposed architecture has the shortest
critical path delay. Since the proposed lifting-basedDWTarchitecture has low resource
utilization, it can be used for optimized image processing [20], SNN [36–38], and
other neuromorphic computing architectural designs [35, 39, 40] as well. In [37], the
credit assignment problem in neuromorphic computing is solved by segregating signals
into dendritic compartments where the proposed lifting-based architecture can be
an effective signal segregation technique. A self-adaptive multi-compartment (SAM)
spiking neuron model for spike-based learning with working memory is proposed in
[36], and a real-time hardware-efficient scalable architecture for the implementation of
large-scale multi-compartment biologically meaningful neural networks is proposed
in [35]. The proposed DWT technique can be utilized to classify noisy spike patterns
in [36] by extracting required features. A spike-based framework with minimum error
entropy is proposed in [38] for building an online meta-learning scheme in SNN
architectures, and a fault-tolerant neuromorphic spike routing system to avoidmultiple
fault nodes is proposed in [39]. A large-scale cerebellar design is proposed in [40] to
encompass the cerebellum’s anatomical structure in a large-scale SNN model. The
proposed wavelet transform technique can be used for visualizing errors in various
layers of an SNN model to develop more accurate error estimation [38] and fault-
tolerant systems [39], as well as to reduce the overall cost of complete SNN systems
due to its low resource utilization.

3.2 QRS Detection Block

The QRS detection block detects the QRS complexes once preprocessing of the ECG
signal using the lifting-based DWT technique is completed. Because the frequency of
d4 is similar to that of a QRS complex, only one thresholding step is used to eliminate
any remaining P, T-wave peaks, or unwanted large noise peaks. Then, QRS complexes
are detected using an adaptive threshold of 0.18ε, where ε is the absolute highest
amplitude value in the fourth level of detailed coefficients. The values of d4 above
the adaptive threshold are considered potential QRS complexes and are referred to as
QRS_sig.

3.3 R-Peak Detection and Heart-Rate Calculations

TheQRS_sig is passed through theR-peak detection blocks to detect theR-peakwithin
each detected QRS complex. The R-peak detection starts with sample value zero and
finds the maximum amplitude of the QRS_sig within each QRS complex until the next
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zeroth sample is found. This step avoids the detection of more than one R-peak within
a QRS complex which may occur because of notched R-peaks. Once all the R-peaks
are detected, the false ones are eliminated based on the following conditions: (a) If
RxRx+1 (x denotes the R-peak position) interval is less than 200 ms, the Rx+1 peak is
eliminated as QRS complexes cannot occur more closely than this refractory period;
(b) If RxRx+1 interval is less than 360 ms, it is most certainly a T-wave and so the R
peak with the lower amplitude is removed and the next RR interval is verified.

After the eliminationprocess, the detectedR-peaks are namedR_1.But, the detected
R-peaks are different from the real R-peaks in the input ECG signal because of an offset
[6]. The true R-peaks are detected from the input signal by finding the maximum value
over a window length of 60 samples around the detected R_1 peaks. The maximum
length of the QRS complex for any patient is 160 ms, which is around 60 samples at
a sampling frequency of 360 Hz [15]. This last step helps in the accurate detection of
the R-peak positions in the ECG signal. Heart rate is then computed using shift and
compare operations instead of any division block to reduce hardware complexities.

4 Results and Discussion

4.1 Performance Analysis

The entire R-peak detection architecture is implemented on the Artix-7 FPGA evalua-
tion board. The target chip for the selected FPGA kit is XC7A200TFBG676-2. In the
VIVADO XILINX 2017.4 tool, the architecture is implemented on the FPGA using
theVerilog hardware description language. The proposed architecture is first evaluated
in MATLAB R2020a using the mitdb and then implemented on the FPGA evaluation
board using the mitdb [24], svdb [8], and the qtdb [18]. The MATLAB code for the
proposed R-peak detection technique using lifting-based DWT is made available on
Github, and the link to access the same is provided in the Declarations section of
the paper. The ECG signal is converted into a 16-bit fixed-point representation with
12 fractional bits in MATLAB and stored in a text file. In XILINX, a ROM block is
initialized using a text file. The address for the ROM block is generated using AU1.
In FPGA, a total of 3000 samples at a sampling frequency of 360 Hz are used for
the input ECG signal. The proposed R-peak detection technique is tested on three
different databases, the mitdb, the svdb, and the qtdb, to verify its effectiveness. With
a sampling frequency of 360 Hz, the mitdb contains 48 half-hours of two-channel
ECG recordings from 47 different subjects. All of the 48 ECG recordings were tested
for a period of 3000 samples in FPGA and a period of 21,600 samples in MATLAB.
The svdb, with a sampling frequency of 128 Hz, contains 78 half-hour ECG record-
ings, and the qtdb contains 100 fifteen-minute ECG recordings. A total of 42 and 32
distinct ECG data were tested from the svdb and the qtdb, respectively, for a period
of 3000 samples on the FPGA board. Out of a total of 650,000 samples in each ECG
recording, the samples that are either affected by noise or contain abnormal ECG beats
are chosen for evaluation. The svdb is chosen for testing the proposed architecture as
supraventricular contractions are one of the most prevalent arrhythmias among peo-
ple with cardiac diseases. The performance of the proposed technique is evaluated
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using three parameters, namely true positive (TP), false positive (FP), and false neg-
ative (FN), which calculate the total number of correctly identified R-peaks, falsely
detected R-peaks, and missed R-peaks, respectively. The sensitivity (SEN), detection
rate (DER), accuracy (ACC), and positive predictive value (PPV) can be calculated
using the above three parameters:

SEN = TP

TP + FN
× 100% (13)

DER = FN + FP

TP
× 100% (14)

ACC = TP

TP + FN + FP
× 100% (15)

PPV = TP

TP + FP
× 100% (16)

Table 3 shows the performance of the proposed lifting-based DWT technique in
MATLAB using the mitdb. Table 4 shows the performance of the proposed technique
when implemented on an FPGA utilizing the mitdb, svdb, and qtdb. A total of 122
distinct ECG data sets were tested on FPGA. As seen from the results, the detection
rates for FPGA implementation andMATLAB are close enough with a slight variance
due to the difference in the number of samples used for testing. Figure 9 depicts R-
peaks detected in XILINX for record numbers 107, 207, 223, 111, and 203 of the
mitdb. According to the XILINX results, the input ECG signals, the detected QRS
complexes, the initial R-peaks detected, and the final R-peak locations detected are
stored in the array named rom, QRS, R_1, and R_location, respectively. Because of
the presence of noise, the inverted R-peaks of 207 result in the detection of a false peak
at a sample value of 535. But on the other hand, the proposed technique accurately
detects abnormal R-peaks in 107, R-peaks with varying amplitude in 223, notched
R-peaks with large T-waves in 111, and abnormal R-peaks with baseline wander in
203 without any false detection. In [26], all of the R-peaks detected for 107 are slightly
shifted from the actual ones, but the proposed technique detects R-peaks at their exact
locations as shown in Fig. 9b. As seen from the results, the evaluated R-peak values
and the actual R-peak values are mostly the same or have very little variation. As a
result, the R-peak detection error of the proposed technique is negligible.

4.2 Synthesis Report and Performance Comparison

The synthesis report obtained for the proposed technique implemented using theArtix-
7 evaluation board is shown in Table 5. The proposed pipelined architecture achieves
a maximum operating frequency of 44 MHz. The comparison of the proposed lifting-
based R-peak detection technique with the existing software implemented R-peak
detection techniques in terms of SEN%, ACC%, DER%, and PPV% is shown in Table
6. The proposed methodology has the highest PPV% value, because of a relatively
lower number of FP detected, and a better detection rate than that of [23]. Even though
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Table 3 Performance of theMATLAB implementation of proposed lifting-basedR-peak detection technique
using mitdb

ECG record number Total beats TP FN FP SEN% DER% ACC% PPV%

100 74 74 0 0 100 0 100 100

101 70 70 0 0 100 0 100 100

102 73 73 0 0 100 0 100 100

103 70 70 0 0 100 0 100 100

104 74 74 0 0 100 0 100 100

105 83 83 0 0 100 0 100 100

106 69 66 3 0 95.65 4.54 95.65 100

107 71 71 0 0 100 0 100 100

108 58 60 0 2 100 3.33 96.77 96.77

109 91 91 0 0 100 0 100 100

111 69 69 0 0 100 0 100 100

112 85 85 0 0 100 0 100 100

113 58 58 0 0 100 0 100 100

114 55 54 1 0 98.18 1.85 98.18 100

115 63 63 0 0 100 0 100 100

116 79 79 0 0 100 0 100 100

117 50 50 0 0 100 0 100 100

118 73 73 0 0 100 0 100 100

119 65 65 0 0 100 0 100 100

121 60 59 1 0 98.33 1.69 98.33 100

122 87 86 1 0 98.85 1.16 98.85 100

123 49 49 0 0 100 0 100 100

124 50 49 1 0 98 2.04 98 100

200 86 86 0 0 100 0 100 100

202 53 53 0 0 100 0 100 100

203 86 86 0 0 100 0 100 100

205 89 89 0 0 100 0 100 100

207 61 61 0 0 100 0 100 100

208 105 105 0 0 100 0 100 100

209 92 92 0 0 100 0 100 100

210 91 91 0 0 100 0 100 100

212 90 90 0 0 100 0 100 100

213 111 111 0 0 100 0 100 100

214 76 76 0 0 100 0 100 100

215 113 111 2 0 98.23 1.80 98.23 100
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Table 3 (continued)

ECG record number Total beats TP FN FP SEN% DER% ACC% PPV%

217 72 73 0 1 100 1.37 98.64 98.64

219 74 74 0 0 100 0 100 100

220 72 72 0 0 100 0 100 100

221 79 78 1 0 98.73 1.28 98.73 100

222 75 75 0 0 100 0 100 100

223 80 80 0 0 100 0 100 100

228 71 71 0 0 100 0 100 100

230 79 79 0 0 100 0 100 100

231 63 63 0 0 100 0 100 100

232 63 63 0 0 100 0 100 100

233 103 96 7 0 93.20 7.29 93.20 100

234 92 92 0 0 100 0 100 100

Total 3552 3538 17 3 99.52 0.565 99.43 99.91

Table 4 Performance of the FPGA implementation of the proposed lifting-based R-peak detection technique
using mitdb, svdb, and qtdb

Databases TP FN FP SEN (%) DER (%) ACC (%) PPV (%)

mitdb 1130 6 9 99.47 1.327 98.68 99.20

svdb 631 4 4 99.37 1.267 98.74 99.37

qtdb 393 2 1 99.49 0.7 99.24 99.74

Total 2154 12 14 99.44 1.09 98.88 99.43

the method proposed in [16] has a higher SEN% than the proposed method, in [16],
the evaluation has not been performed on all the 48 records from mitdb. In Table 7,
the FPGA-based performance of the proposed methodology is compared with that of
the existing hardware-based R-peak detectionmethodologies. The proposed technique
has the highest SEN%of any except [23]. The comparison of the existing FPGA-based
R-peak detection techniques in terms of resource utilization is tabulated in Table 8.
In terms of resource utilization, the proposed architecture uses the lowest number of
registers, flip-flops, and LUTs except [14, 33]. The low resource utilization of [14,
33] comes at the expense of very low detection rates. The high detection rate of [23,
27] comes at the expense of higher resource utilization. In terms of the detection
rates achieved, the proposed architectural design results in the lowest resource uti-
lization with respect to wavelet transform and other commonly used R-peak detection
techniques.
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Fig. 9 a Actual R-peaks in record number 107 from mitdb, b R-peak detected (R_location) in XILINX for
record number 107 with an average heart-rate of 70.9, c Actual R-peaks in record number 207 from mitdb,
and d R-peak detected (R_location) in XILINX for record number 207 with an average heart-rate of 78.6
e Actual R-peaks in record number 223 from mitdb, f R-peak detected (R_location) in XILINX for record
number 223 with an average heart-rate of 105, g Actual R-peaks in record number 111 from mitdb, and
h R-peak detected (R_location) in XILINX for record number 111 with an average heart-rate of 70 iActual
R-peaks in record number 203 from mitdb, j R-peak detected (R_location) in XILINX for record number
203 with an average heart-rate of 40
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Table 5 Synthesis report of the proposed R-peak detection and heart-rate calculation architecture in Artix-7
FPGA board

Resource Utilization Used Available Utilization (%)

Slice LUTs 2197 134,600 1.63

Slice Registers 585 269,200 0.22

Register as Flip-Flop 486 269,200 0.18

BRAM 2 365 0.55

Bonded IOBs 150 400 37.5

BUFGCTRL 4 32 12.5

Maximum operating frequency 44 MHz

Table 6 Comparison of existing software-based (MATLAB) R-peak detection techniques with the proposed
one in terms of detection rates

Methodology Database
used

SEN
(%)

ACC
(%)

DER
(%)

PPV
(%)

Shanon energy envelope [27] mitdb 99.95 99.84 0.16 99.89

Bio-orthogonal wavelet transform [16] mitdb 99.86 99.86 0.002 –

Center derivative and intermediate value
theorem [23]

mitdb 99.58 99.26 0.74 99.68

Proposed mitdb 99.52 99.43 0.565 99.91

5 Conclusions

An FPGA-based low-cost R-peak and heart rate detection architecture using the
lifting-based DWT is proposed in this research paper. The majority of the exist-
ing methodologies used for the R-peak detection require pre-filtering or other signal
processing operations. Whereas signal decomposition using lifting-based DWT per-
forms both noise-removal and preprocessing of ECG signals without any additional
preprocessing steps. In comparison to existing lifting-based DWT architectures for
Daubechies 4 wavelet, the proposed architecture requires fewer adders and delay
elements. The proposed architecture’s critical path delay is also comparable to the
existing architectures. The R-peaks detected using the proposed technique show neg-
ligible error with respect to the actual R-peaks of the input signals. Both MATLAB
and FPGA-based evaluations using mitdb, svdb, and qtdb were performed for the pro-
posed architecture. The proposed architecture achieves a sensitivity of 99.52% and
99.44%, an accuracy of 99.43% and 98.88%, a detection rate of 0.56% and 1.09%,
and a positive predictive value of 99.91% and 99.43% in the case of MATLAB and
FPGA-based implementations, respectively. With the proposed Daubechies 4 lifting-
based DWT architecture, the R-peak detection technique achieves a good detection
rate while using a minimum number of resources.
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Table 7 Comparison of existing hardware-implemented R-peak detection techniques with the proposed one
in terms of detection rates

Methodology Database Used SEN (%) ACC (%) DER (%)

PT [26] mitdb 99.48 99.31 0.68

Integer Haar wavelet transform [33] Self-acquired 98.76 – –

Integer Haar wavelet transform [43] Self-acquired data 98.31 98.15 1.88

Center derivative and intermediate
value theorem [23]

mitdb 99.83 99.39 0.61

DWT and multilayer perception
(MLP) [41]

mitdb 98.3 95.0 1.7

Empirical mode decomposition
[29]

nsrdb + svdb + afdb 94.76 – –

Biorthogonal spline wavelet
transform [4]

mitdb 99.31 98.5 1.49

Filtering, contrast enhancement,
detection block [11]

mitdb 98.82 – –

Kalman filter [44] mitdb 99.23 98.63 –

Biorthogonal wavelet transform
[17]

mitdb 99.31 98.9 1.02

Energy derivative [25] mitdb 99.2 98.5 1.46

Integer Haar wavelet transform [14] qtdb 98.12 – –

Proposed mitdb + svdb + qtdb 99.44 98.88 1.09

nsrdb = normal sinus rhythm database, afdb = atrial fibrillation database

Table 8 Comparison of resource utilization of the existing FPGA-based R-peak detection techniques with
the proposed technique

Methodology Registers Flip-flops LUTs

PT [26] 1061 – 4900

Shanon energy envelope [27] 5728 – 88,456

Integer Haar wavelet transform [33] – 501 557

Center derivative and intermediate value theorem [23] 3587 31,577 31,577

DWT and multilayer perception (MLP) [41] 2650 2763 7598

Biorthogonal spline wavelet transform [4] 1320 1298 2102

Kalman filter [44] 4421 – 21,111

Integer Haar wavelet transform [14] 503 – 2004

Proposed 584 486 2197
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