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Abstract—Calculating the capacity (with or without feedback)
of channels with memory and continuous alphabets is a chal-
lenging task. It requires optimizing the directed information rate
over all channel input distributions. The objective is a multi-
letter expression, whose analytic solution is only known for a
few specific cases. When no analytic solution is present or the
channel model is unknown, there is no unified framework for
calculating or even approximating capacity. This work proposes
a novel capacity estimation algorithm that treats the channel
as a ‘black-box’, both when feedback is or is not present. The
algorithm has two main ingredients: (i) a neural distribution
transformer (NDT) model that shapes a noise variable into the
channel input distribution, which we are able to sample, and (ii)
the directed information neural estimator (DINE) that estimates
the communication rate of the current NDT model. These models
are trained by an alternating maximization procedure to both
estimate the channel capacity and obtain an NDT for the optimal
input distribution. The method is demonstrated on the moving
average additive Gaussian noise channel, where it is shown
that both the capacity and feedback capacity are estimated
without knowledge of the channel transition kernel. The proposed
estimation framework opens the door to a myriad of capacity
approximation results for continuous alphabet channels that were
inaccessible until now.

I. INTRODUCTION

Many discrete-time continuous-alphabet communication

channels involve correlated noise or inter-symbol interference

(ISI). Two predominant communication scenarios over such

channels are when feedback from the receiver back to the

transmitter is or is not present. The fundamental rates of

reliable communication over such channels are, respectively,

the feedback (FB) and feedforward (FF) capacity. Starting

from the latter, the FF capacity of an n-fold point-to-point

channel PY n|Xn , denoted CFF, is given by [1]

CFF = lim
n→∞

sup
PXn

1

n
I(Xn;Y n). (1)

In the presence of feedback, the FB capacity CFB is [17]

CFB = lim
n→∞

sup
P

Xn‖Y n−1

1

n
I(Xn → Y n) (2)

where,

I(Xn → Y n) :=

n∑

i=1

I(X i;Yi|Y
i−1) (3)

is the directed information (DI) from the input sequence Xn to

the output Y n [8], and PXn‖Y n−1 :=
∏n

i=1 PXi|Xi−1Y i−1 is

the distribution of Xn causally-conditioned on Y n−1 (see [21],

[24] for further details). Built on (3), for stationary processes,

the DI rate is defined as

I(X → Y) := lim
n→∞

1

n
I(Xn → Y n). (4)

As proved in [8], when feedback is not present, the op-

timization problem (2) performed over the marginals PXn

is equivalent to the optimization in (1). This casts DI as a

unifying information measure for representing both FF and

FB capacities.

Computing CFF and CFB requires solving a multi-letter

optimization problem. Closed form solutions to this chal-

lenging task are known only in several special cases. A

common example for CFF is the Gaussian channel with

memory [14] and the ISI Gaussian channel [15]. There are

no known extensions of these solutions to the non-Gaussian

case. For CFB, a solution for the 1st order moving average

additive Gaussian noise (MA(1)-AGN) channel was found

[12]. Another closed form characterization is available for

auto-regressive moving-average (ARMA) AGN channels [11].

To the best of our knowledge, these are the only two non-

trivial examples of continuous channels with memory whose

FB capacity is known in closed form. Furthermore, when the

channel model is unknown, there is no efficient method for

numerically approximating capacity.

Some recent progress related to capcity computation was

made based on deep learning (DL) techniques [9], [19].

In a novel work [9], mutual information neural estimator

(MINE) [2] was used to learn a modulation for a memoryless

channel. In [19], a capacity estimator was proposed based on

reinforcement learning algorithm that iteratively estimates and

maximizes the DI rate, but only for discrete alphabet channels

with a known channel model.

Inspired by the above, we develop the framework for

estimating FF and FB capacity of arbitrary continuous-

alphabet channels, possible with memory, without knowing

the channel model. Our method does not need to know

the channel transition kernel. We only assume a stationary

channel model and that channel outputs can be sampled by

feeding it with inputs. Central to our method are a new DI

neural estimator (DINE), used to evaluate the communication

rate, and a neural distribution transformer (NDT), used to

simulate input distributions. Together, the DINE and NDT



lay the groundwork for our capacity estimation algorithm. In

the remainder of this section, we describe DINE, NDT, and

their integration into the capacity estimator.

A. Directed Information Neural Estimation

The estimation of mutual information (MI) from samples

using neural networks (NNs) is a recently proposed approach

[2], [3]. It is especially effective when the involved random

variables (RVs) are continuous. The concept originated from

[2], where MINE was proposed. The core idea is to represent

MI using the Donsker-Varadhan (DV) variational formula

I(X ;Y ) = sup
T:X×Y→R

E [T(X,Y )]− logE
[
eT(X̃,Ỹ )

]
, (5)

where (X,Y ) ∼ PXY and (X̃, Ỹ ) ∼ PX⊗PY . The supremum

is over all measurable functions T for which both expecta-

tions are finite. Parameterizing T by an NN and replacing

expectations with empirical averages, enables gradient ascent

optimization to estimate I(X ;Y ). A variant of MINE that goes

through estimating the underlying entropy terms was proposed

in [3]. The new estimators were shown empirically to perform

extremely well, especially for continuous alphabets.

Herein, we propose a new estimator for the DI rate I(X →
Y). The DI is factorized as

I(Xn → Y n) = h(Y n)− h(Y n‖Xn), (6)

where h(Y n) is the differential entropy of Y n and

h(Y n‖Xn) :=
∑n

i=1 h(Yi|Y i−1, X i). Applying the approach

of [3] to the entropy terms, we expand each as a Kullback-

Leibler (KL) divergence and a cross-entropy (CE) residual

and invoke the DV representation. To account for memory,

we derive a formula valid for causally dependent data, which

involves RNNs as function approximator (rather than the FF

network used in the independently and identically distributed

(i.i.d.) case). Thus, the DINE is an RNN-based estimator for

the directed information rate from Xn to Y n based on their

samples.

DI estimators were recently presented in [25]–[27]. Also,

an estimator of the transfer entropy using FF networks was

proposed [16], which upper bounds the DI in the special case

of a jointly Markov process with finite memory. DINE is the

first method based on RNN and hence does not assume any

parametric model such as discrete alphabets, or Markovity.

Further details on the DINE algorithm are given in subsection

II-A.

B. Neural Distribution Transformer and Capacity Estimation

DINE accounts for one of the two tasks involved in estimat-

ing capacity, it estimates the objective of (2). The remaining

task is to optimize this objective over input distributions.

Generally, sampling from an arbitrary distribution is a complex

task. To overcome this, we design a deep generative model of

the channel input distributions, namely the NDT. The idea is

similar to ones used for generative modeling tasks, e.g, gen-

erative adversarial networks [23] or variational autoencoders

[22]. The designed NDT maps i.i.d. noise into samples of

the channel input distribution. For estimating FB capacity, in

addition to the i.i.d. noise, the NDT also receives channel FB

as inputs. Together, NDT and DINE form the overall system

that estimates the capacity as shown in Fig 1.

The capacity estimation algorithm trains the DINE and NDT

models together via an alternating maximization procedure.

Namely, we iteratively train each model while keeping the

(parameters of the) other one fixed. DINE estimates the

communication rate of a fixed NDT input distribution, and

the NDT is trained to increase its rate with respect to fixed

DINE model. Proceeding until convergence, this results in the

capacity estimate, as well as an NDT generative model for the

achieving input distribution.

We demonstrate our method on the MA(1)-AGN channel.

Both CFF and CFB are estimated using the same algorithm,

using the channel as a black-box to solely generate samples.

The estimation results are compared with the analytic solution

to show the effectiveness of the proposed approach.
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Fig. 1. The overall capacity estimation system. NDT generates samples that
are fed into the channel. DINE uses these samples to improve its estimation
of the communication rate. DINE then supplies gradient for the optimization
of NDT.

II. METHODOLOGY

We give a high-level description of the algorithm and its

building blocks. Due to space limitations, full details are

reserved to the extended version of this paper. The imple-

mentation is available in github.†

A. Directed Information Estimation Method

We propose a new estimator of the DI rate between two

correlated stationary processes, termed DINE. Building on [3],

we factorize each term in (6) as:

h(Y n) = hCE(PY n , PY n−1 ⊗ P
Ỹ
)

−DKL(PY n‖PY n−1 ⊗ P
Ỹ
)

h(Y n‖Xn) = hCE(PY n‖Xn , PY n−1‖Xn−1 ⊗ P
Ỹ
)

−DKL(PY n‖Xn‖PY n−1‖Xn−1 ⊗ P
Ỹ
)
(7)

†https://github.com/zivaharoni/capacity-estimator-via-dine



where hCE(P,Q) and DKL(P‖Q) are, respectively, the cross

entropy (CE) and KL divergence between P and Q, and P
Ỹ

is uniform reference measure over the support of the dataset.

To simplify notation, we use the shorthands

D
(n)
Y := DKL(PY n‖PY n−1 ⊗ P

Ỹ
)

D
(n)
Y ‖X := DKL(PY n‖Xn‖PY n−1‖Xn−1 ⊗ P

Ỹ
). (8)

Subtracting both elements in (7) and observing that the

difference of CE terms equals the DI at the former time step,

we have

I(Xn → Y n) = I(Xn−1 → Y n−1) +D
(n)
Y ‖X −D

(n)
Y . (9)

Note that the difference of KL divergences equals

I(Xn;Yn|Y n−1). For stationary data processes we take

the limit and obtain

lim
n→∞

D
(n)
Y ‖X −D

(n)
Y = lim

n→∞
I(Xn;Yn|Y

n−1) = I(X → Y).

(10)

Each DKL is expanded by its DV representation [4] as:

D
(n)
Y = sup

T:Ω→R

E [T(Y n)]− logE
[
eT(Y

n−1,Ỹ )
]

D
(n)
Y ‖X = sup

T:Ω→R

E [T(Y n‖Xn)]− logE
[
eT(Y

n−1‖Xn−1,Ỹ )
]
.

(11)

To maximize (11), each DV potential is parametrized by

a modified LSTM and expected values are estimated by

empirical averages over the dataset Dn := {(xi, yi)}ni=1. Thus,

the optimization objectives are:

D̂Y ‖X(θY ‖X ,Dn) :=
1

n

n∑

i=1

TθY ‖X
(yi|x

iyi−1)

− log

(
1

n

n∑

i=1

e
Tθ

Y ‖X
(ỹi|x

iyi−1)

)

D̂Y (θY ,Dn) :=
1

n

n∑

i=1

TθY (yi|y
i−1)

− log

(
1

n

n∑

i=1

eTθY
(ỹi|y

i−1)

)
(12)

where ỹn
i.i.d.
∼ P

Ỹ
and TθY , TθY ‖X

are the parametrized

potentials.

The estimator is given by:

ÎDn
(X → Y) := sup

θY ‖X∈ΘY ‖X

D̂Y ‖X − sup
θY ∈ΘY

D̂Y (13)

By universal approximation of RNNs [6] and Breiman’s

theorem [7], the maximizer of (13) approaches I(X → Y) as

the number of samples grows, provided the neural networks

are sufficiently expressive.

To capture the time dependencies in Dn we introduce a

modified LSTM network model for functional approximation.

LSTM [5] is an RNN that receives a time series {yi}Ti=1 as

input and for each i, performs a recursive non-linear transform

Algorithm 1 Directed Information Rate Estimation

input: Samples of the process Dn.

output: ÎDn
(X → Y), estimated directed information rate.

Initialize networks parameters θY , θY ‖X .

Step 1, Optimization:

repeat

Draw a batch DB = {(x
(i+1)T
iT , y

(i+1)T
iT )}Bi=1

Feed the network with the examples and compute

loss D̂Y ‖X(θY ‖X ,DB), D̂Y (θY ,DB).
Update networks parameters:

θY ‖X ← θY ‖X +∇D̂Y ‖X(θY ‖X ,DB)

θY ← θY +∇D̂Y (θY ,DB)
until convergence

Step 2, Perfrom a Monte Carlo estimation over Dn

and subtract loss evaluations to obtain estimation :

ÎDn
(X → Y) = D̂Y ‖X(θY ‖X ,Dn)− D̂Y (θY ,Dn)

to calculate its hidden state si. We denote the LSTM function

by F : (yi, si−1) 7−→ si. The full characterization of F is

provided in [5].

We modify the structure of the LSTM to perform the

calculations:

si = F (yi, si−1) = s(yi|y
i−1)

s̃i = F (ỹi, si−1) = s(ỹi|y
i−1)

(14)

A similar modification is introduced for D̂Y ‖X by substitution

of yi with (yi, xi) and ỹi with (ỹi, xi), we have:

si = F (yi, xi, si−1) = s(yi|y
i−1, xi)

s̃i = F (ỹi, xisi−1) = s(ỹi|y
i−1, xi)

(15)

A visualization of a modified LSTM cell (unrolled) is shown in

Fig. 2. The LSTM cell’s output is the sequence {(si, s̃i)}ni=1,

which is fed into a fully-connected layer to obtain TθY and

TθY ‖X
. As demonstrated by Algorithm 1 and Fig. 3, in each

iteration we draw DB , a subset on Dn, of size B. We feed the

NN with DB to acquire TθY , TθY ‖X
. Those enter the NN loss

function (12), and gradients are calculated to update the NN

parameters θY , θY ‖X .

...
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s̃i, respectively.
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B. Neural Distribution Transformer

The DINE model is an effective approach to estimate the

argument of (2). However, finding the capacity comprises

maximization of the DI with respect to the input distribution.

For this purpose we present the NDT model that represents

a general input distribution of the channel. At each iteration

i = 1, . . . , n the NDT maps an i.i.d noise vector N i to a

channel input variable Xi. When feedback is present the NDT

maps (N i, Y i−1) 7−→ Xi. Thus, NDT is represented by an

RNN with parameters µ as shown in Fig. 4. The NDT model is

used to generate the channel input Xn, and the DINE estimates

the DI between Xn and Y n.

PSfrag replacements
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Fig. 4. The NDT. The noise and past channel output (if feedback is applied)
are fed into an NN. The last layer performs normalization to obey the power
constraint, if needed.

C. Complete Architecture Layout

Combining DINE and NDT models into a complete system

enables capacity estimation. As shown in Fig. 1, the NDT

model is fed with i.i.d. noise and its output is the samples

Xn. These samples are fed into the channel to generate its

output. Then, (Xn, Y n) are fed both to the DINE model that

outputs ÎDn
(X → Y). To estimate the capacity, DINE and

NDT models are trained together. The training scheme, as

shown in Algorithm 2, is a variant of alternated maximization

procedure. This procedure iterates between updating the DINE

and NDT models parameters sets θ, µ, where each iteration

the parameters of one model are fixed and the other ones are

updated. By the end of training a long Monte-Carlo evaluation

of ∼ 106 samples is done in order to estimate the expectations

in (12) accurately.

Applying this algorithm to channels with memory estimates

their capacity without any specific knowledge of the channel

underlying distribution. Next, we demonstrate the effectiveness

of this algorithm on continuous alphabet channels.

Algorithm 2 Capacity Estimation

input: Continuous channel, feedback indicator

output: ÎDn
(X → Y, µ), estimated capacity.

Initialize DINE parameters, θY , θY ‖X

Initialize NDT parameters µ

if feedback indicator then

Add feedback to NDT

repeat

Step 1: Train DINE model

Generate B sequences of length T of i.i.d random noise

Compute DB = {(xT
i , y

T
i )}

B
i=1 with NDT and channel

Compute D̂Y ‖X(θY ‖X ,DB), D̂Y (θY ,DB)
Update DINE parameters:

θY ‖X ← θY ‖X +∇D̂Y ‖X(θY ‖X ,DB)

θY ← θY +∇D̂Y (θY ,DB)
Step 2: Train NDT

Generate B sequences of length T of i.i.d random noise

Compute DB = {(xT
i , y

T
i )}

B
i=1 with NDT and channel

compute the objective:

ÎDB
(X → Y, µ) = D̂Y ‖X(θY ‖X ,DB)− D̂Y (θY ,DB)

Update NDT parameters:

µ← µ+∇µÎDB
(X → Y, µ)

until convergence

Monte Carlo evaluation of ÎDn
(X → Y, µ)

return ÎDn
(X → Y, µ)

III. NUMERICAL RESULTS

We demonstrate the performance of Algorithm 2 on the

AWGN channel and the first order MA-AGN channel. The

numerical results are then compared with the analytic solution

to verify the effectiveness of our method.

A. AWGN channel

The power constrained AWGN channel is investigated as

an instance of memoryless continuous alphabet channel for

which analytic solution is known. The channel model is given

by

Yi = Xi + Zi, i ∈ N, (16)

where Zi ∼ N
(
0, σ2

)
are i.i.d RVs, and Xi is the channel

input sequence bound to the power constraint E
[
X2

i

]
≤ P .

Its capacity is given by C = 1
2 log

(
1 + P

σ2

)
. In our imple-

mentation we chose σ2 = 1 and estimated the capacity for a

range of P values. The numerical results are compared to the

analytic solution in Fig. 5

B. Gaussian MA(1) channel

The calculation of capacity of linear Gaussian channels with

memory can be divided into two cases, feedback (CFB) and

feed-forward (CFB) capacity. We will focus on the MA(1)

Gaussian channel model, which is given by:

Zi = αUi−1 + Ui

Yi = Xi + Zi (17)
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Fig. 5. Estimation and capacity of the AWGN channel for various values of
SNR

where, Ui
i.i.d.
∼ N (0, 1), Xi is the channel input sequence bound

to the power constraint E
[
X2

i

]
≤ P , and Yi is the channel

output.

1) Feed-forward capacity: For the LTI Gaussian channel

with input power constraint, CFF can be obtained by applying

the water-filing algorithm [14]. We applied Algorithm 2 to

estimate CFF and compare with results of the water-filling

algorithm. Results are in Fig. 6.
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Fig. 6. Preformance of CFF estimation in the MA(1)-AGN channel.

2) Feedback capacity: In general, CFB of the ARMA(k)

Gaussian channel can be formulated as a dynamic program-

ming problem, which can be solved by an iterative algorithm

[11]. For the particular case of (17), CFB is given by − log(x0),
where x0 is a solution of a 4th order polynomial equation. We

applied Algorithm 2 for the feedback capacity to obtain an

estimate of CFB. The results and compared with the analytic

solution as shown in Fig. 7).
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Fig. 7. Preformance of CFB estimation in the MA(1)-AGN channel.
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Fig. 8. Optimization progress of directed information rate of Algorithm 2 for
the feedback setting with P = 1. The information rates were estimated by a
Monte-Carlo evaluation of (13) with 105 samples.

IV. CONCLUSION AND FUTURE WORK

We have presented a methodology to estimate FF and FB

capacity using the channel as a ”black-box”. The estimator is

designed by a novel DI estimator (DINE) and NDT model,

both based on RNNs. The performance of the estimator are

demonstrated on the AWGN and MA(1)-AGN channels, and

estimation agrees with the analytic solution.

We wish to further generalize our method of information

rate estimation for multi-user communication channels, a field

with many unsolved problems and to find theoretical guar-

antees of the estimator. In addition, information theory (e.g,

channel capacity) give us a rigorous mathematical framework

where analytical solution are known due to Shannon theory

hence this can be a good problem for evaluating machine

learning approaches.
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