
Brandenburg University of Technology
Cottbus-Senftenberg
IT Security Group

Practical Exercise Class
“Introduction to Cyber Security”

Winter Term 2022/2023

Introduction to Cyber Security
– Secret Key Cryptography –

Deadline: 10th November, 2022

Introduction

The main goal of cryptography is confidentiality, often achieved through encryption. This first
practical exercise concerns itself with some historical and modern cryptographic algorithms and
methods to analyze encrypted text. Some books containing information on basic cryptographic
methods can be found in the references [2, 5].

In this exercise we will first work with the open source e-learning tool CrypTool. The tool serves
as a demonstration for many cryptographic algorithms. There are several versions of that tool.
In this lab we will focus on the Java implementation of CrypTool, namely JCrypTool 2.0 and the
online version CTO. These programs are cross-platform compatible. You can either download the
tooll from the website [1] or use it directly in your web browser.

JCrypTool provides many historical and modern cryptographic algorithms and adequate analysis
methods to study and break weakly encrypted messages. The tool also comes with visualization
capabilities, which makes CrypTool a handy tool to understand the complex world of cryptogra-
phy.

Once we have obtained a basic understanding of the historical and modern cryptographic algo-
rithms, you will analyze some encrypted files on our own. To this end, we will consider different
kinds of scenarios typically covered in the field of cryptography. We will consider ciphertext-only
attacks as well as (partial) known plaintext attacks. In the setting of ciphertext-only attacks, we
will implement a brute-force search to break a AES encryption with a weak password. Later, we
will improve the naive brute-force by utilizing a method called hill climbing to reverse a mono-
alphabetic substitution. On the side of (partial) known plaintext attacks, we will analyze an en-
crypted zip container. Here, the predictable header information of the file format specification
serves as a partially known plaintext.

Page 1 of 11

Notes

Note that this task assumes basic knowledge to have been learned in previous studies. If you find
yourself missing such knowledge1, it is your responsibility to attain it in self study. This also holds
for topics that are covered in the lecture or exercise classes of introduction to cyber security that
have not yet been held, i.e., this practical task is independent of the lectures and exercises with
respect to the this issue.

1 Preparation

To get familiar with some historical and modern cryptographic algorithms, we start with a case
study utilizing CrypTool. Try to understand the analysis/attack for every scenario presented below.
Think about reasons why these attacks were possible at all. While walking through the different
scenarios, the overall goal is to gain an adequate understanding on how the cryptographic algo-
rithm works, as well as how the cryptanalysis is mounted. Simply “clicking” through the examples
may not be enough to solve the tasks. To this end, it is recommended to walk through these steps
before starting the actual tasks listed in section 2.

Even though this first part of the task sheet is ungraded, you may be asked questions about these
scenarios during the oral consultation of this task, influencing the points you attain. Keep in mind
that the practical tasks are mandatory to get approval for the final exam.

1.1 Caesar Cryptography

Inform yourself about the classical Caesar algorithm and possible methods of analysis. Classify
the cryptanalysis according to known-plaintext and ciphertext-only attack. Which fundamental
fact is used to break the Caesar cipher?

Hints:

1. To de- and encrypt with the Caesar cipher using JCrypTool, choose the menu Algorithms
→ Classic → Caesar. In the online version of CrypTool you can find the Caesar cipher in
the “Ciphers” menu.

1Examples for this could be matrix calculus or basic statistical methods.

Page 2 of 11

2. To find additional resources you can use either the build in help function of JCrypTool or the
tutorial provided by online tool. Keep in mind that external resources are allowed as well.

3. To calculate and visualize frequency use Analysis → Entropy Analysis.

1.2 Vigenère Cryptography

The main vulnerability in Caesar cipher is the monoalphabetic substitution. Thus, Vigenère ex-
tended the idea of the Caesar algorithm by using different shifts of the same alphabet during the
encryption. Inform yourself about how the polyalphabetic substitution is being realized. How can
it still be analyzed? – Inform yourself about the Kappa test2as well as the Kasiski test. Which one
is used in the current implementation of JCrypTool.

Hints:

1. To de- and encrypt the Vigenère cipher with JCrypTool choose the menu Algorithms →
Classic → Vigenère. In the online version of CrypTool you can find the Vigenère cipher in
the “Ciphers” menu.

2. To find additional resources you can use either the build in help function of JCrypTool or the
tutorial provided by online tool. Keep in mind that external resources are allowed as well.

3. Note, that there is a built-in Vigenère-breaker in JCryptTool, which may be helpful to under-
stand the methodology behind the cryptanalysis of Vigenère ciphers.

1.3 Mono-alphabetic Substitution

The monoalphabetic substitution is another generalization of the Caesar algorithm. It substitutes
a letter from the plaintext with an arbitrarily chosen one3. However, there is still the possibility
for an easy cryptanalysis. Inform yourself about the monoalphabetic substitution, analysis tech-
niques that are available and why these techniques work.

Hints:

1. To analyze the cipher, you have to choose the menu entry Analysis → Substitution Analysis.

2alternative name: Friedman test
3Without repetitions of course, i.e., the substitution is a permutation of the alphabet.

Page 3 of 11

2. If you know the language of the text to analyze, it is recommended to utilize this knowledge
in the analysis dialog.

1.4 XOR Cryptography

While working with binary data, the XOR encryption is a common and performant algorithm4.
In CrypTool, we can apply an XOR encryption, e.g., to a compressed data or hex file. Think
about the knowledge required to analyze an XOR cipher, and bring at least one example of such
knowledge.

1.5 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is a method used to date, but the theory of elliptic curves dates
way back. Already at the end of the 19th century, all mathematical foundations used in contem-
porary ECC were known. Here we will look at the properties of elliptic curves over the field of the
real numbers, as well as finite fields. To get familiar with elliptic curves, you can start using the
visualization provided by JCrypTool,

Visuals -> Elliptic Curve Calculations

Try to understand the basic properties of elliptic curves over the real numbers and how the point
addition can be realized geometrically. Why is this not possible over a finite number field? Com-
pare the graphs of the curve in the finite (discrete) field and the continuous case.

4The XOR cipher can be seen as Vigenère cipher over the alphabet {0,1}

Page 4 of 11

2 Tasks

Task 1: Ciphertext-only Analysis

Cryptanalysis based on knowledge of the ciphertext only, i.e., we do not have any clue about the
plaintext, is the most difficult type of analysis. A method that can always be used is exhaustive
key search, where every key is tried out. For this lab you were provided a file called enc_2.hex,
which has been encrypted twice, using monoalphabetic substitution first and then the AES algo-
rithm in CBC mode. The AES encryption used a weak key, where from the 128 bit key only the
first 16 bits were chosen and the rest of the key was padded with zeros. Here, the initialization
vector (IV) is the first block of the ciphertext.

Task 1.1: Brute-force Weak AES

Due to the small key space, a brute-force attack on enc_2.hex seems to be a reasonable
technique to break the outer AES encryption layer. Write a short prototype script to automate
the attack. Thereby, think about a criterion to distinguish the right key. The decryption has to be
computed and stored in enc_1.hex for further processing in the next step.

Hints:

1. Notice that there are already many implementations (libraries) available to apply AES en-
cryption and decryption, e.g., PyCrypdome to interface with Python.

2. Take a look at Shannon entropy. How can it help to find out the correct key among all
possible combinations?

Task 1.2: The Hill-Climbing Method to Break Monoalphabetic Substitution

To break the inner monoalphabetic substitution, a naive brute-force attack, would require to test
up to 26! ≈ 4 · 1026 possible permutations of the alphabet5. Assuming each probe takes 1 µs,
approximately 1013 years would be required. A more sophisticated method is required. The
monoalphabetic substitution corresponds to a permutation of the alphabet, which can be repre-
sented by a substitution defined in a lookup-table like the example depicted in table 1.

5Aassuming the alphabet A-Z only.

Page 5 of 11

reference alphabet A B C D E F G H I J K · · ·
key alphabet Z H Q P L A G I Y X M · · ·

Table 1: Exemplary substitution key for monoalphabetic substitution

From combinatorics it is known that starting from an arbitrary permutation of a finite alphabet,
we can define any key permutation by applying a finite number of transpositions6, i.e., assuming,
we start with the initial permutation I and the substitution permutation (i.e., the key) used for
monoalphabetic encryption is K, then there exist transpositions T1,T2, . . . ,Tl , such that

K = Tl ◦Tl−1 ◦ · · · ◦T1 ◦ I .

In other words, finding out for given I the transpositions Ti is equivalent to finding the encryption
key. That way the cryptanalysis becomes an iterative approach, where we successively test
substitutions I, T1 ◦ I, T2 ◦T1 ◦ I, . . ., starting from I until we find K. To formalize this idea into an
algorithm called hill climbing, three critical questions have to be answered:

1. How to choose the initialization key I, i.e., the permutation to start with?

2. How to derive from one key, e.g., I, the following keys T1 ◦ I, T2 ◦T1 ◦ I, . . .?

3. How to measure the quality of each permutation, i.e., did we improve from Ti ◦ · · · ◦T1 ◦ I to
Ti+1 ◦Ti ◦ · · · ◦T1 ◦ I?

Your task is to answer these questions and to implement, as well as to mount, the hill climbing
approach to break the monoalphabetic cipher applied on enc_1.hex. For a successful com-
pletion of this subtask, you have to submit your work, your prototype implementation of the hill
climbing attack using a suitable key initialization and the key derivation rule. Additionally, you have
to submit the plaintext obtained, as well as the substitution key found by your attack. To guide
you through this cryptanalysis, the following paragraphs provide help regarding the questions
mentioned above.

Initialization key. The actual performance of the hill climbing attack will be heavily effected by
the initial key from where the algorithm starts. To this end, it makes sense to not just select a
random permutation. Instead, we should select a permutation which likely is close to the actual

6Naively, a transposition can be viewed as a single swap of two characters of the alphabet.

Page 6 of 11

permutation, such that less transpositions are required. For the sake of this lab your task is to
initialize the key by frequency analysis of the ciphertext. This process of initialization has to be im-
plemented in an automated way. You may want to implement a function init_key(cipher)
serving this purpose.

Key derivation algorithm. In the context of the monoalphabetic substitution, the key derivation
function is rather simple. As has already been observed, the final key can be represented as a
composition of single transpositions of the alphabet. To this end, it makes sense to derive the
next key to probe from the given one by applying one single transposition, i.e., we randomly swap
two letters in our lookup table.7

Measuring the quality of the update. The crucial part in hill climbing is the measurement
function according to which we decide whether a key derived makes an improvement or not. For
the sake of this lab, this part will be given. We provide a scoring function based on so called n-
gram analysis. The implementation provided will be in C/C++ and Python. If you prefer a different
language, you have to translate the given source code on your own. While this part is already
implemented for you, your task is to understand the proposed/implemented technique. Questions
may be asked during a examination.

1 ’’’

2 ngram_score module to provide a mechanism to score

3 texts based on a n-gram lookup table. The lookup

4 table has to be created out-of-band.

5

6 Date 11.10.2021

7 ’’’

8

9 from math import log10

10

11

12 ’’’

13 ngram_score class to calculate the n-gram score

14 of a text based on a lookup table of the most

15 common n-grams in a specific language.

16 ’’’

17 class ngram_score(object):
18

19 def __init__(self, file_name, sep=’ ’):

20 ’’’

21 Construct a new n-gram lookup table from the

22 provided file. The assumed file structure is

23 <ngram> <number-of-occurrences>, separated by

24 a whitespace.

7E.g., if A was initially mapped to T and C to F, after the transposition, A should be map to F and C to T respectively.

Page 7 of 11

25 ’’’

26 # read in raw file

27 self.ngrams = {}

28 with open(file_name, ’r’) as raw_file:

29 for line in raw_file:

30 ngram, count = line.split(sep)

31 self.ngrams[ngram] = int(count)
32

33 # store some internal parameters

34 self.order = len(ngram)
35 self.total_ngrams = sum(self.ngrams.values())
36

37 # calculate probabilities

38 for ix in self.ngrams:

39 p = log10(float(self.ngrams[ix]) / self.total_ngrams)

40 self.ngrams[ix] = p

41

42 # define default probability for n-grams

43 # not occurring in the given lookup table

44 self.default_value = log10(0.01/self.total_ngrams)

45

46 def score(self, input_text, normalize=False):

47 ’’’

48 Calculate the score of the input text based on

49 the lookup table. The option ’normalize’ is used

50 to normalize the score based on the text input

51 length. While this is required to compare texts of

52 different length, it has negative effects on scoring

53 texts of same length! Only enable it if required!

54 ’’’

55 score = 0

56 text = input_text.upper()

57 for idx in range(len(text)-self.order+1):
58 current_ngram = text[idx:idx+self.order]

59 if current_ngram in self.ngrams:

60 score += self.ngrams[current_ngram]

61 else:
62 score += self.default_value

63

64 if normalize:

65 score = score / (len(text)-self.order+1)
66

67 return score

Listing 1: n-gram scores

Notice that the source code listed above will be provided. There is no need to copy it from here,
which may give rise to unexpected issues due to formatting.

Page 8 of 11

Task 2: Find the Right Algorithm

Given the files sentence_1.txt (p1), sentence_2.txt (p2) and task02.cryp (c), find
an encryption scheme (Gen,Enc,Dec) and two keys k1 and k2 which fulfill the requirements

• Deck1(p1) = c and

• Deck2(p2) = c,

i.e., the decryption of task02.cryp (ciphertext) results in the plaintext of sentence_1.txt
if k1 is being used and in sentence_2.txt if k2 is being used. Submit both keys k1 and k2 as
well as the decryption algorithm that was used. Hereby, it does not matter if you develop your own
script or use a publicly available tool. However, in both cases make sure to guarantee access to
the algorithm used otherwise the task can not be assessed.

Task 3: Partial Known Plain-Text Analysis

Along with this task sheet you have received the file encrypted.zip.hex. This zip file was
encrypted with an 80-Bit-long XOR key. The compression was done with the default option using
Version 3.20. Your task is to decrypt the given file. Submit the key used for the encryption, as
well as a short description of how you have approached the cryptanalysis. You are allowed and
encouraged to support your solution process by self-written scripts, which you can submit as
well.

Hints:

1. Consider the encoding used in the XOR-algorithm if you think about using JCrypTool.

2. Sometimes it is better to reimplement a basic algorithm like XOR instead of converting a
given input to satisfy existing programs requirements.

3. While analyzing/breaking the encryption, consider a known-plaintext attack. Which parts of
the file are known for such an kind of attack?

4. The task may not be solved by one iteration. Assuming a part of the key is known only,
you can use x00 for the missing bytes of the key. E.g., you are sure the last two bytes
are 0xFF 0xFF, then the key 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0xFF 0xFF may be used in a first iteration. Think about why this fact is important for your
analysis.

Page 9 of 11

Submission

Submit a single compressed zip file named firstname_lastname.zip, where you replace
firstname (lastname) with your first (last) name. The zip file contains solutions of the tasks and its
contents must be named and structured as follows:

01_task

aes.key

monoalphabetic.key

bruteforce_aes.{ py | cpp | * }

break_monoalphabetic.{ py | cpp |* }

02_task

sentence_1.key

sentence_2.key

README.md

03_task

XOR.key

XOR_decrypter.{ py | cpp | * }

All files should contain the requested key/plaintext only. The encoding is assumed to be UTF-8
for text files. The monoalphabetic key (text file) should be in the form RXLEDNOCISFQ....
The AES key and all other binary keys should be stored as binary. The README from task 2
should contain the name of the algorithm used, e.g., AES, MD5 and a short instruction on how to
apply it to obtain the requested result. Additionally, source code can be submitted to support the
explanations in the README.md.

Page 10 of 11

References

[1] CrypTool. JCrypTool: Cryptography for everybody. 2020. URL: https://www.cryptool.
org/en/jct/ (visited on 10/24/2020) (cit. on p. 1).

[2] P. B. Esslinger and C. Team. Learning and Experiencing Cryptography with CrypTool and
SageMath. 2018. URL: https://www.cryptool.org/assets/ctp/documents/
CT-Book-en.pdf (visited on 10/04/2022) (cit. on p. 1).

[3] Letter Frequencies in the English Language. URL: https://www3.nd.edu/~busiforc/
handouts/cryptography/Letter%20Frequencies.html (visited on 11/01/2020).

[4] C. Online. CrypTool: Cryptography for everybody. 2020. URL: https://www.cryptool.
org/en/cto/ (visited on 10/24/2020).

[5] W. Stallings. Cryptography And Network Security : Principles And Practice. 7th. Pearson
Education, 2016. ISBN: 9788178089027 (cit. on p. 1).

Page 11 of 11

https://www.cryptool.org/en/jct/
https://www.cryptool.org/en/jct/
https://www.cryptool.org/assets/ctp/documents/CT-Book-en.pdf
https://www.cryptool.org/assets/ctp/documents/CT-Book-en.pdf
https://www3.nd.edu/~busiforc/handouts/cryptography/Letter%20Frequencies.html
https://www3.nd.edu/~busiforc/handouts/cryptography/Letter%20Frequencies.html
https://www.cryptool.org/en/cto/
https://www.cryptool.org/en/cto/

	– Secret Key Cryptography –
	1 Preparation
	1.1 Caesar Cryptography
	1.2 Vigenère Cryptography
	1.3 Mono-alphabetic Substitution
	1.4 XOR Cryptography
	1.5 Elliptic Curve Cryptography

	2 Tasks

