كاهش ميانگين زمان پاسخ خدمات اورزانس پزشكى از طریق بهينه سازى مكان پايگًاههاى اورڤانس
 c احمد كمالى،، سيد مجتبى سجادى b، فريبرز جولاى
 a a دانشجوى دكترى مهندسى صنايع، پرديس البرز، دانشگاه تهران، تهران، ايران ايران

نويسنده مسئول: سيد مجتبى سجادى (msajadi@ut.ac.ir)
چچكيده

 سيستم فعلى، كارائى اين مدل را در دنياى واقعى نشان مى دهد.

كلمات كليدى: خدمات اوررانس يزشكى، مكان يابى، شبيه سازى

 تركيبهاى مختلف تركيبى كه داراى بهترين زمان پاسخ مى باشد را التخاب نمود. نتايج مثبت مربوط به اجراى اين روش در شهر اصفهان اعتبار اين
'احمد كمالى، سيد مجتبى سجادى، فريبرز جولاى، كاهش ميانگين زمان پاسخ خدمات ...
r, ז. مكان يابى

 فوريت پزشكى، با بكاركيرى مكان يابى و استقرار مجدد آمبولانس ها، بهِيبود داد.

 به مسائل مكان يابى راطبق جدول 1 به سه دسته تقسيم كرده اند [هـ]

جدول 1. مدلهاى كلى مسائل مكان يابى

مسائل مكان يابى قطعى	مسائل مكان يابى هويا	مسائل مكان يابى احتمالى
مسائل مكان يابى ميانه	مدلههاى مكان يابى تك تسهيلاتى پويا	مدلههاى احتمالى
مسائل مكان يابى پوش	مدلهاى مكان يابى چند تسهيلاتى پويا	مدلهاى برنامه ريزى سناريو
مسائل مكان يابى مركز	رويكردهاى تناوبى پويا	

در ادامه به تفكيك مدلهاى مكان يابى به بررسى مطالعاتى كه در زمينه ى مكان يابى آمبولانس ها شده است پرداخته مى شود:

شروع مدل هاى مكان يابى آمبولانس ها با مدل LSCM بود [ع]. هدف از اين مدل كمينه سازى تعداد آمبولانس هاى مورد نياز به منظور يوشش

دسترس مى باشد. هدف از اين مدل بيشينه كردن ميزان تقاضاى يوشيده شده بوسيله آمبولانس ها در يك محدوده زمانى معين بود[1/].

ميزان تقاضائى را كه در بازه زمانى معينى، چند بار تحت پوشش قرار مى كرفت را بيشينه مى كرد.
 می كردند [[1]. مدلى تحت عنوان DSM بوسيله كندرائو و ديتران ارائه شد كه از دو استاندارد پوششى

مدلهاى احتمالى

 بود [[1]. در اين مدل، با استفاده از قابليت اطمينان معين، تعداد آمبولانس مورد نياز با تضمين رسيدن به حداقل يوشش لازم، كمينه مى شد.

دو مدل احتمالى ديگر به نام هاى MALPI و MALPII بوسيله روله و ماريانوف با هدف بيشينه سازى تقاضاى يوشيده شده با احتمال معين ه،

 طراحى كردند [lv]. اين مدل، از يكى محدوديت خطى بر روى تعداد آمبولانس مورد نياز به منظور دستيابى به يكى سطح اطمينان معين از پوشش،

 يابى مى شدند كه زمان پاسخ دهى مورد انتظار با برآورده كردن محدوديت هاى پوششى، كمينه مى شد. در مدل MERLP1
 شده در مدل Q-MALP، طراحى شدند [TY].

مدلهاى يويا

 تقاضا رخ مى داد، حل مى شد.

 امكان اعزام و اتمام ماموريت چچندين آمبولانس به طور هماي

احمد كمالى، سيد مجتبى سجادى، فريبرز جولاى، كاهش ميانگَين زمان پاسخ خدمات ...

 كدام آمبولانس يا آمبولانس هائى بايستى به صحنه ى حادثه اعزام شوند.

شكل ا. فرآيند زمان پاسخ آمبولانس

زمانيكه مركز مديريت اورثانس در حال ارائه ى جزئيات تماس جديد به آمبولانس مى باشد يك تاخير كوچک آماده سازى قبل از حركت آمبولانس به

 كه فرآيند پاسخ را به صورت خلاصه بيان مى نمايد زمان پاسخ
 زمان تاخيرى كه براى آماده سازى حركت رخ مى دهد و نهايتا مدت مدت زمان سفر.

r٪,1. مدل سازى مكان يابى
جهت مكان يابى پايگاهمایى اوررثانس ابتدا بايستى مدل رياضى ايانى اين مساله نوشته شود. در ادامه ابتدا به بررسى مجموعه ها، پارامترها و متغيرهاى موجود

مجموعه ها: مجموعه هاى موجود در اين مدل عبارتند از:
I I: نقاط تقاضا، J: إيكَاههاى آمبولانس، H: بيمارستانها، W: انواع آمبولانس
پارامتر ها: پارامترهاى موجود در اين مدل عبارتند از:
TT

متغيرها: پارامترهاى مورد استفاده در اين مدل عبار تند از:
 پاییًاهى در مكان ز ففال سازى كردد برابر با يك و در غير اينصورت برابر با صفر مى باشد.،
$\operatorname{Min} \sum_{j=1}^{p}\left(C I * y_{j}\right)+\sum_{j=1}^{p} \sum_{w=1}^{2}\left(C W * A_{j w}\right)+\sum_{i=1}^{n} \sum_{j=1}^{p} \sum_{h=1}^{u} \sum_{w=1}^{2}\left(C T *\left(T S_{j i}+T H_{i h}+T B_{h i}\right)\right) * x_{i j h w}$
St:
$\sum_{j=1}^{p} \sum_{h=1}^{u} x_{i j h w} \geq d_{i w} \quad \forall i, w$
$A_{j w} \leq Q_{j w} * y_{j} \quad \forall j, w$
$\sum_{i=1}^{n} \sum_{h=1}^{u} x_{i j h w} *\left(T S_{j i}+T H_{i h}+T B_{h j}\right) \leq\left(T T_{t} * D F * A_{j w}\right) \quad \forall j, w$
$\sum_{j=1}^{p} y_{j} \leq k$
$\sum_{i=1}^{n} \sum_{h=1}^{u} x_{i j h w} \leq \sum_{i=1}^{n} d_{i w} * y_{j} \quad \forall j, w$

احمد كمالى، سيد مجتبى سجادى، فريبرز جولاى، كاهش ميانگَين زمان إِسخ خدمات ．．．

$$
\begin{align*}
& \sum_{j=1}^{p} A_{j w}=N A_{w} \quad \forall w \tag{v}\\
& x_{i j h w} \in Z^{+} \quad \forall i, j, h, w \\
& y_{j} \in\{0,1\} \quad \forall j \\
& A_{j w} \in Z^{+} \quad \forall j, w
\end{align*}
$$（ 1$)$

「．
 روش پيشنهادى براى مكان يابى پايگاههاى اوررانس بر اساس مراحل زير ارائه مى گردد．
 ヶ，ا，تعيين مكان فعلى پايگَاههاى اوررانس

 Y．Y．Y．تعيين مكان بيمارستانها

 به ارائه ى كليه ى خدمات پزش شكى نمى باشند．

ヶ，ヶ，r．تعيين نقاط تقاضا
نقاط تقاضا به صورت تصادفى در كل سطح شهر مورد مطالعه پراكنده مى باشند．جهت سانـ ساده نمودن مدل، تقاضا هاى مربوط به هر نا ناحيه متمركز شده اند به كونه ای كه بتوان مختصات مراكز نواحى مختلف شهر را به عنوان نقاط تقاضا در در نظر كر كرفت．

F．F．F．F．تعيين فاصله بين تقاط مورد نظر
مدل مساله جهت محاسبه ى مسافت بين مختصات تقاط تقاضا، پايگاهمهاى اوررّانس و بيمارستانزها از روش فاصله ى اقليدسى استفاده مينمايد．همحّنين جهت محاسبه ى مسافت واقعى پيموده شده توسط آمبولانسها مدل از ضريب تصحيح استفاده مى نمايد كه اين ضريب تصحيح در شهرهاى مختلف، متفاوت مى باشد．

ヶ，ヶ．
هزينه ى عمليات فعال سازى（CI）：منظور از هزينه ى عمليات فعال سازى، مجموع هزينه ى راه اندازى يك پايكاه اورثانس مى باشد كه متوسط اين هزينه در شهرهاى مختلف، متفاوت مى باشد．

 صورت مقاديرى ثابت بدست آورد．

 ها را بدست آور هه و به صورت مقدارى ثابت در مدل در نظر كـر كـرفت

مدل شبيه سازی پيشامد گسسته ى بر اساس شكل \ايجاد شده و سيس مدل كا كاميبوترى در نرم افزار ارنا پياده سازى مى شود．مدل شبيه سازی

 اورثانسى به مركز تلفن اورثانس آغاز مى گردد．پس از دريافت تماس، إراتور تحليل اوليه ایى در مورد تماس انجام داده و سـى مى نما نمايد نوع تماس را را

مشخص نمايد. كه انواع تماس عبارتند از: تماسهاى صرفا جهت دريافت اطلاعات اوررانسى،تماس جعلى و اشتباه و تماسهاى درخواست كمكهاى اوررّانسى
نهايتا در صور تيكه تماس دريافت شده از نوع درخواست كمكهاى اوررانسى بود اطلاعات اوليه ای شامل محل جغرافيائى مصدوم يا بيمارو نوع آسيب يا

 ساير آمبولانسهاى آماده بكار به محل تقاضا مى رسد.

هـ مطالعه موردى

 از اين مراكز ثقل به عنوان يك نقطه تقاضا با جمعيتى معادل جمعيت حوزه مربوط مشخص شد الـد

 بازه هاى ياد شده مشخص مى باشد.

جدول r. توزيع تماسهاى ورودى در بازه هاى زمانى مختلف

بازه زمانى	تعداد كل تماسها در r ماه كذشته	درصد تماس هاى ورودى	ميانگیين سرعت آمبولانس ها(كيلومتر بر ساعت)
صبح	(40).	$\%$.	4.
بعد از ظهر	40.9	$\%$.	Δ.
عصر	rvan	$\%$ \% $\%$	Δ.
سپيده دم	rras	$\% 10$	9.
كل تماسهاى دريافتى	10.rr	$\% 1$.	

 كرفته مى شوند. سناريو هاى ييشنهادى عبار تند از:

بهمن 1 1r94
احمد كمالى، سيد مجتبى سجادى، فريبرز جولاى، كاهش ميانكَين زمان إسخ خدمات ．．．

 F

شبيه سازى براى سناريوهاى ذكر شده، در بازه هاى زمانى كاري كه قبا

همين دليل نتايج حاصل از اجراى اين سناريو در جدول آن ذكر نشده اسر است．
جدول 「．نتايج حاصل از اجراى سناريوها در باز زمانى 「 「 نيمه شب تا 9 صبح

شهار سناريو	بازه زمانى		بهترين زمان پاسخ（TR）	پا اندازى شده	تعداد آمبولانسهاى	تعداد آمبولانسهاى پيشرفته
1	سپیيه دم	r	$1{ }^{\text {f }}$	\wedge		
	صبح	r	10	\wedge	\wedge	\square
	بعد از ظهر	r	10	\wedge	\wedge	Δ
	شب	r	If	\wedge	λ	Δ
r	سپيده دم	r	If	\wedge	\wedge	\checkmark
	صبح	r	10	\wedge	\wedge	Δ
	بعد از ظهر	r	10	\wedge	\wedge	\checkmark
	شب	r	If	\wedge	λ	\checkmark
F	سپيده دم	r	If	\wedge	\wedge	a
	صبح	r	1.	1.	1.	Q
	بعد از ظهر	r	1.	9	9	Δ
	شب	f	9	9	λ	4
a	سپیده دم	r	1.	11	1.	4
	ح	r	If	\wedge	\wedge	Q
	بعد از ظهر	f	9	1.	9	4
	شب	F	9	9		4

نتايج حاصل از اجراى شبيه سازى سناريو هاى پنج گانه نشان مى دهد كه سناريو هاى f وه
 مى باشد．با توجه به اينكه اجراى سناريوهاى f چشم پوشى نموده و اين كار را انجام داد زيرا در سيستمهاى سلامت و درمان و به ويزه سيستمهاى خدمات اورزانس زمان از اهميت فوق العاده ایى برخوردار مى باشد به گونه ایى كه كاهش زمان پاسخ مى تواند منجر به نجات جان انسانهاى زيادى شود．البته از آنجاييكه تفاوت بين زمان پاسخ ارائه
 سناريوى ${ }^{\text {F }}$ گزينه ى مناسب ترى باشد．

9．نتيجه گيرى

در اين پ夫وهش جهت كاهش زمان پاسخ تقاضاهاى خدمات اورزانس پزشكى، رويكردى تلفيقى از روشهاى بهیينه سازى و شبيه سازى براى مكان يابى پايگاههای اورزانس مورد استفاده قرار گرفت．با اجراى مدل بهينه سازى از خروجى هاى اين مدل به عنوان ورودى هاى مدل شبيه سازى استفاده گرديد．پس از آن با تعريف سناريوهاى مختلف، عملكرد سيستم خدمات اورزانس پزشكى اصفهان بر اساس اين سناریوها در بازه هاى زمانى چهار گانه مورد ارزيابى قرار گرفت．در نهايت پس از اجراى متعدد سناريوهاى انتخاب شده، نتايج حاصل از اجرا مورد تجزيه و تحليل قرار گرفت．از آنجا كه از بين سناريو هاى مشخص شده، دو مورد از سناريوها زمان پاسخ بسيار مناسب ترى نسبت به زمان پاسخ سيستهم كنونى ارائه كردند و با توجه به اهميت زمان در سيستمهاى اورزانس پزشكى بنابراين مشخص مى گردد با تغييراتى در مكان پايگاهرهاى اورزانس و بدون اضافه كردن تعداد پايگاههها و نيز تعداد آمبولانسها مى توان به زمان پاسخ بهترى دست يافت．

با استفاده از روش پيشنهادى در اين پزوهش، عملكرد سيستم خدمات اورزانس پزشكى در محيطى پويا مورد بررسى قرار گرفت．رويكرد ارائه شده در اين مقاله محدود به سيستمهاى خدمات پزشكى نبوده و مىتواند در ساير سيستمهعاى اورزانسى مانند خدمات آتش نشانى مورد استفاده قرار گيرد با اين تفاوت كه ممكن است هزينه هاى احداث پايگاههای جديد خدمات آتش نشانى از اهميت بيشترى برخوردار باشد．هر چند روش مورد استفاده در اين پزوهش جهت مكان یابی پايگاههای اورزانس پزشكى از كارائى مناسبى برخوردار مىباشد ولى در نظر گرفتن عواملى مانند تاثير تغييرات آب وهوايی فصلى بر روى ميانگین سرعت امبولانسها، پيشنهاد مى گردد．همچچنين تعيين هزينه و فرصت كاهش يک دقيقه ای زمان پاسخ، جهت انجام
تجزيه وتحليل دقيق شرايط ايجاد پايگاههاى جديل، مى تواند در آينده مورد بررسى قرار گیرد.
［ ］］Drezner，T．，Drezner，Z．，1997．Replacing Continuous Demand with Discrete Demand in a Competitive Location Mode．l， Naval Research Logistics，44，81－95．
［ ${ }^{〔}$ ］Brotcorne，L．，Laporte，G．，Semet，F．，2003．Ambulance Location and Relocation Models，European Journal of Operational Research，147，451－463．
［ ${ }^{r}$ ］Goldberg，J．，2004．Operations research models for the deployment of emergency services vehicles，Journal of EMS Management，1，20－39．
［ ${ }^{+}$］Sahin，G．，Sural，H．，2007．A review of hierarchical facility location models，Computers \＆Operations Research，34， 2310－2331．
［ \downarrow ］Owen，S．，Daskin，M．，1998．Strategic facility location：a review，European Journal of Operational Research，111，423－ 447.
［ ${ }^{4}$ ］Alsalloum，O．，Rand，G．，2006．Extensions to Emergency Vehicle Location Model，Computers \＆Operations Research， 33，2725－2743．
［ ${ }^{\vee}$ ］Basar，A．，Catay，B．，Unluyurt，T．，2011．A Multi－Period Double Coverage Approach for Locating the Emergency Medical Service Stations in Istanbul，Operations Research，62，627－637．
［＾］Sepehri，M．M．，Maleki，M．，Majlesi nasab，N．，2013．Designing a Redeployment Model for Located Ambulances， International Journal of Industrial Engineering \＆Production Management，24，171－182．
［ ${ }^{9}$ ］Beraldi，P．，Bruni，M．E．，2009．A Probabilistic Model Applied to Emergency Service Vehicle Location，European Journal of Operational Research，196，323－331．
［＇• ］Simpson，N．，Hancock，P．，2009．Fifty Years of Operational Research and Emergency Response，European Journal of Operational Research，60，126－139．
［＇＇］Ingolfsson，A．，Budge，S．，Erkut，E．，2008．Optimal Ambulance Location with Random Delays and Travel Times， Health Care Management，11，262－274．
［ ${ }^{〔}$ ］Gendreau，M．，Laporte，G．，Semet，F．，1997．Solving an Ambulance Location Model by Tabu Search，Location Science， 5，75－88．
［ ${ }^{〔}$ ］Taillard，E．，et al．，1997．Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows， Transportation Science，31，170－186．
[${ }^{+}$] Parragh, N., Hogan, K., 2010. The Maximum Availability Location Problem, Computers \& Operations Research, 37, 1129-1138.
[10] Marianov, V., 1994. Variable Neighborhood Search for the Dial-a-Ride Problem, Socio-Economic Planning Sciences, 28, 167-178.
[19] Cordeau, J., Laporte, G., 2007. The Dial-a-Ride Problem: Models and Algorithms, Operations Research, 153, 29-46.
[${ }$ V] Ball, M., Lin, F., 1993. A Reliability Model Applied to Emergency Service Vehicle Location, Operations Research, 160 , 18-36.
[$1 \wedge$] Marianov, V., ReVelle, C., 1996. The Queueing Maximal Availability Location Problem: a Model for the Siting of Emergency Vehicles, European Journal of Operational Research, 93, 110-120.
[19] Galvão, R., Fernando, Y., Morabito, R., 2005. Towards Unified Formulations and Extensions of Two Classical Probabilistic Location Models, Computers \& Operations Research, 32, 15-33.
[\quad •] Rajagopalan, H., Saydam, C., 2009. A Minimum Expected Response Model: Formulation, Heuristic Solution, and Application, Socio-Economic Planning Sciences, 43, 253-262.
[${ }^{r}$] T Tavakoli, A., Lightner, C., 2004. Implementing a Mathematical Model for Locating EMS Vehicles in Fayetteville, Computers \& Operations Research, 31, 1549-1563.
$\left[{ }^{Y r}\right]$ Repede, J.F., Bernardo, J.J., 1994. Developing and Validating a Decision Support System for Locating Emergency Medical Vehicles in Louisville, Kentucky, European Journal of Operational Research, 75, 567-581.
$\left[{ }^{r}{ }^{r}\right]$ Gendreau, M., Laporte, G., Semet, F., 2001. A Dynamic Model and Parallel Tabu Search Heuristic for Real-Time Ambulance Relocation, Parallel Computing, 27, 1641-1653.
$\left[{ }^{\dagger}{ }^{+}\right]$Andersson, T., Peterson, S., Varbrand, P., 2004. Calculating the Preparedness for an Efficient Ambulance Health care, 7th International IEEE Conference. Washington, USA, 14-20.
[${ }^{[0}$] Gendreau, M., Laporte, G., Semet, F., 2006. The Maximal Expected Coverage Relocation Problem for Emergency Vehicles, Journal of the Operational Research Society, 57, 22-28
[${ }^{4}{ }^{4}$] Andersson, T., Värbrand, P., 2007. Decision Support Tools for Ambulance Dispatch and Relocation, Journal of the Operational Research Society, 58, 195-201.
[${ }^{〔}$] Rajagopalan, H., Saydam, C., Xiao, j., 2008. A Multiperiod Set Covering Location Model for Dynamic Redeployment of Ambulances, Computers \& Operations Research, 35, 814-826.
[${ }^{〔}$]] Schmid, V., Doerner, K., "Ambulance Location and Relocation Problems with Time-Dependent Travel Times." European Journal of Operational Research, Vol. 90, 2010, pp. 580-595.
[${ }^{9}{ }^{9}$] Robinson, S., 2005. Discrete-event simulation: from the pioneers to the present, what next, Journal of the Operational Research Society, 56, 619-629.
[${ }^{r} \cdot$] Carson, J., 2005. Introduction to modeling and simulation, $5^{\text {th }}$ Winter Simulation Conference, New York, USA, 16-23.
[${ }^{r}$]] Nogueira, L., 2014. Reducing Emergency Medical Service response time via the reallocation of ambulance bases, Health Care Management Science, 58, 551-511.

