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A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to
EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is
developed and demonstrated. The model integrates variable speed pumps for modeling the pumps
operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on
water age), and tanks sizing cost which are assumed to vary with location and diameter. The water
distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1
and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability
requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-
objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or
water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the
storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored.
The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality
of two types, and reliability through residual storage requirements, in a single multi-objective frame-
work. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while
producing explainable engineering outcomes. The model can be used as a decision tool for both pumps
operation, water quality, required storage for reliability considerations, and tank sizing decision-making.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In reality, most problems are of a multi-objective contradictory
nature. The most common goal of an engineering analysis is to
select the best tradeoffs among competing objectives. Frequently,
such problems are structured as single objective problems by
lumping all goals into a single minimization or maximization
framework. This type of analysis might be beneficial for gaining
insights to a considered problem. However, it is not suited for
a clear tradeoff among the utilized objectives. Contrary to that, in
a multi-objective formulation there is no single optimal solution,
but sets of non-dominated solutions which form a Pareto trade-off
curve among all goals.

In recent years, several methods have been developed which
extend single objective optimization schemes to multi-objective
algorithms. Three of the more utilized algorithms are the multi-
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objective genetic algorithm (MOGA) (Fonseca and Fleming, 1993),
the non-dominated sorting genetic algorithm II (NSGAII) (Deb et al.,
2002), and the strength Pareto evolutionary algorithm II (SPEA2)
(Zitzler et al., 2001).

Research on multi-objective optimization for water resources
and for water distribution systems management is relatively new.
Wen and Lee (1998) developed a neural network model coupled
with a multi-objective optimization scheme to simulate decision-
making preferences in a river basin for water quality management.
Halhal et al. (1999) introduced a multi-objective model to solve
a water distribution systems design problem through minimizing
network cost versus maximizing the hydraulic benefit of the
system. Erickson et al. (2002) utilized a multi-objective optimi-
zation algorithm for groundwater water quality management
through remediation by pump-and-treat. Kapelan et al. (2003)
used a multi-objective genetic algorithm to find sampling loca-
tions for optimal calibration. Keedwell and Khu (2003) applied
a hybrid multi-objective evolutionary algorithm to the optimal
design problem of a water distribution system, where the hybrid
approach employed a non-dominated sorting genetic algorithm
coupled with a neighborhood search methodology. Prasad and
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Park (2004) applied a non-dominated sorting genetic algorithm for
minimizing the network cost versus maximizing a reliability index.
Park and Aral (2004) suggested to control salt intrusions into
coastal aquifers by determining pumping rates and well locations
through a multi-objective optimization model. Babayan et al.
(2005) used a multi-objective genetic algorithm framework to
solve the design problem of a water distribution system under
demands uncertainty. Bau and Mayer (2007) presented a multi-
objective formulation to design and manage pump-and-treat
remediation strategies through planning site characterization
programs for reducing subsurface parameter uncertainty. Baltar
and Fontane (2008) explored multi-objective particle swarm
optimization for reservoir operation. Perelman et al. (2008)
extended the combinatorial optimization Cross Entropy (CE)
method (Rubinstein, 1999) to multi-objective optimization
through minimizing the network capital and operational costs
versus the maximization of the network hydraulic performance.
Huang and Liu (2010) coupled a hybrid genetic algorithm with an
artificial neural network in a multi-objective framework for cali-
brating surface water quality models. Wu et al. (2010) used multi-
objective optimization to tradeoff cost and greenhouse gas emis-
sions for water distribution systems optimal design. Alfonso et al.
(2010) developed a multi-objective optimization model for water
quality decision making in water distribution systems in case of
a contaminant intrusion. Nikolos et al. (2010) combined single and
multi-objective differential evolution algorithms with an artificial
neural network for exploring demand operational strategies in the
northern part of the Rhodes Island, Greece. Chang et al. (2010)
employed multi-objective optimization to enhance negotiations
on discounting ratios on water deficit impacts between irrigation
and public sectors stakeholders. Wu et al. (2011) developed
a pump power estimation method using a false position meth-
odology based optimization for incorporating variable speed
pumps in design and planning of water distribution systems.

In this work water quality, pumping cost, and tank sizing
objectives are integrated in a one framework together with
constraints on threshold storage-reliability. This assimilated
formulation is new and can provide a new decision support tool to
support decisions on trading-off pumps operation versus tank
sizing versus water quality and versus surplus storage require-
ments. The developed methodology is demonstrated on EPANET
(USEPA, 2012) Example 3 system.

The study provides a tool for enhancing engineering decision
making through: (1) a multi-objective scheme for water distribu-
tion systems tanks design by mutually optimizing operational
costs, disinfectant residuals/water age, and tanks sizing, (2)
a quantitative model for exploring tanks sizing significance on
water quality and operational costs objectives, (3) a methodology
for investigating the relative distribution significance of storage
throughout the system, and (4) a method to quantify the implica-
tion of residual storage requirements on operational costs and
water quality considerations.

2. Problem formulation

This section defines the mathematical models solved in this
work followed by the solution methodology.

2.1. Decision variables

The decision variables in this study are operational and design:
the speed of each pump v; and the disinfectant concentrations u; at
each treatment plant (operational), and the diameter td; of each
tank (design). The pumping and concentration schedules are

expressed as patterns with durations corresponding to the control
evaluation horizon H,.

The pumps speed and the plants concentration are restricted to
a continuous range u; € (Umijn; Umax) and Vj € (Vmin; Vmax), Fespec-
tively, where the tanks diameter can receive values from discrete
sets td;e {td},td?, ...,td"}. Those constitute the decision variables
of the considered problems:

U = [{u;(1),...,u;(Hp)} for ieR] (1)
V = [{»(1),...,vi(Hp)} for icP) 2)
Td = [td; forieT)] 3)

The vector U corresponds to the concentration pattern at the
reservoirs (sources) which belongs to the set R. Next, the vector V is
associated with the pumps speed schedules: for each pump
belonging to the set P a schedule of H, elements (24 in this study for
24 h) is computed. Lastly, Td is the vector of the tanks diameter,
where for each tank a diameter is selected from the set T.

2.2. Objectives

Pumps operational cost, water quality, and tanks sizing are
formulated herein as the model objectives.

2.2.1. Operational cost

The first objective J1(v,td) is the overall energy consumed by the
pumps during the control evaluation horizon H,. Different energy
tariffs for each pump can be considered:

HP
L td) = > > mi(k)Ei(k) (4)
k

=1 ieP

where 7;(k) is the energy cost of pump i over time period k, and E;(k)
is the energy consumed by pump i over time period k (constant).

The operational cost objective will drive the system to minimize
the amount of pumping during peak energy tariffs and utilize the
systems storage for reducing energy cost.

2.2.2. Water quality

Two different water quality objectives are considered in this
work. The first is based on disinfectant concentrations, where the
second on water age.

2.2.2.1. Water quality objective based on disinfectant concentrations.
For each of the nodes in the system (including the tanks) the
concentration of chlorine is evaluated using a penalty-based function
(Ewald et al., 2008) as described in Fig. 1. This is different from the
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Fig. 1. Water quality evaluation function (following Ewald et al., 2008).
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common approach of introducing hard ranged water quality
constraints (Cmin; Cmax) at each node of the system. In case of the later,
the distribution of chlorine within the network cannot be forced to
meet the required range constraints at all nodes (Tryby et al., 2002).

The formulation utilized in this study for disinfectant concen-
tration is:

] (v,u,td)

Z > Fq(cjk)) (5)

k=1 jeJ

where ] is the subset of the monitored nodes, Fy(-) is the quality
evaluation function (see Fig. 1), and cj(k) is the disinfectant
concentration at node j at time instant k. Note that the subset of
nodes considered can be altered, and the quality evaluation func-
tion parameters adjusted (e.g., for nodes which constitute higher
bacteriological hazards risks).

2.2.2.2. Water quality objective based on water age. The second
water quality objective is based on water age (Salomons et al.,
2012). It is aimed at minimizing the age of water below a certain
threshold for all nonzero demand nodes:

Zk Zs, (k)d;(k)a; (k)

By(v.td) = (6)
2 zh1§¢®

where dj(k) is the demand at node i at time instant k, a;(k) is the age
of water at node i at time instant k, and s;(k) is a variable defined as:

o 1, if a(k) > ag
si(k) = {O, if a;(k) < ay, (7)

where ay, is the water age threshold (ag, = 12 h in this study).

This objective attempts to set the water age at consumer nodes
below the threshold ay,, prioritizing nodes with higher demands.
Considering only the demand nodes while neglecting the tanks
may lead to unexpected results. This will be further elaborated in
the example application section.

2.2.3. Tanks cost

The third objective J3(td) corresponds to the cost of erecting
tanks at desired locations, which is assumed to be a function of both
the tank location and its diameter:

= > fultd) (8)

ieT

where T is the subset of tanks in the system, and f;(-) is the tanks
cost function defined as:

fri(td) = Bi-td® + 9)

where f; and v; are the design coefficients for the size and tank
location, respectively. The assumed shapes for (9) utilized in this
study for the example application below, are presented in Fig. 2.

2.3. Constraints

There are three kinds of constraints for this problem. The first
are constraints derived from the network physics which the deci-
sion variables should meet, such as flows, pressures, continuity, etc.
In this work the network is evaluated using the quantity-quality
simulation program EPANET (USEPA, 2012) which incorporates
the system’s dynamics.
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Fig. 2. Tanks cost functions.

For each simulation step EPANET returns a warning code indi-
cating whether the simulation was successful or not. That infor-
mation is then used for determining if the evaluated solution is
feasible or not, thus introducing the first constraint:

Hy
> w(k) =0, (10)

k=1

where w(k) is the warning code returned by EPANET. Note that (10)
implies a positive pressure constraint at all nodes (Kurek and Brdys,
2007, 2010). Explicit additional minimum and maximum pressure
constraints could be added at all or some of the nodes at different
time steps k. As the results for the example application revealed
satisfactory pressure outcomes for all cases [i.e., a minimum of
10 m, an average of 33 m, and a maximum of 67 m] such constraints
were not implemented.

The next constraints enforce periodical operation of the
network which is required for its reliable operation. Those impose
terminal constraints on the tank levels:

max{0, |p¢(Hp) — pe(1)| —ape(1)} = 0, VteT (11)

where p(k) is the head at tank t at time instant k, « is the coefficient
that relaxes the terminal constraint introducing tolerance to the
constraint, and T is the set of all tanks in the network. In this study
a was set to 0.1.

The third type of restrictions is storage-reliability constraints for
guaranteeing that a sufficient amount of water is stored in the
system at any time. The rational behind this constraint is for
ensuring that for every time instant k the amount of water stored in
the tanks is equal or greater than the demand predicted for the next
D time steps. This results in H, constraints defined as:

2 k+D
ZK%") wp,(lc)}— o (D diky| =0, fork=1:H, (12)

leT m=k+1| je]

where td; is the diameter of tank [, p)(k) is the pressure in tank [ at
time k, and dj(k) is the demand at node j at time k.
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Fig. 3. Solution procedure flowchart.

3. Optimization problems

Assembling the above objectives and constraints yields the
following two multi-objective optimization problems (13) and (14):

Minimize {]1 i ;13}

veV,ueU tdeTd (-13)
Subject to : (10),(11),(12)

Minimi 2.

Nz Urifis ”

Subject to : (10),(11),(12)

The difference between (13) and (14) is not only in the water
quality objective. As (14) is based on water age there is no need to
optimize the disinfectant concentrations at the system inlets, thus
the overall number of decision variables is reduced.

River
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Legend

e node
¥ tank

& pump
— link

m reservoir

Fig. 4. Example application.
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Fig. 5. Pareto set for a storage-reliability constraint of 6 h.

4. Solution procedure

The optimization problems defined in (13) and (14) require
a multi-objective scheme for searching the Pareto optimal set. In
this work SPEA2 (Zitzler et al., 2001) is utilized due to its superior
diversity preservation mechanism based on a modified k-nearest
neighbor approach. Its operation is based on a strength Pareto
approach where the non-dominated set is determined by the
strength of the dominators. Additionally, SPEA2 is also equipped
with an external archive which allows preservation of the already
obtained Pareto set approximation. The solution procedure flow-
chart is described in Fig. 3.

The algorithm starts with a random initialization of both the real
variables and the binary coded tank diameters. Each solution
residing in the working population is assessed for computing its
corresponding objective function values and constraints, where the
system behavior is simulated using EPANET. Once the entire pop-
ulation is evaluated, the strength of each solution is computed. A
solution strength is expressed by the number of individuals which
are dominated by the considered solution out of the combined
archive and the current population. Next, the raw fitness of an
individual is assessed as the sum of the strength of the solutions,
which dominate it. Following this scheme the non-dominated
individuals are assigned a raw fitness value of zero. This approach
allows SPEA2 to take into account the quality of both the dominated
and non-dominating solutions when assigning a fitness to an
individual. To provide an efficient niching mechanism, the raw
fitness is augmented with an adaptation of the k-th nearest
neighbor algorithm.

Subsequently, a new archive is created by copying the non-
dominated solutions from the merged archive and the current
population. In case the size of the Pareto set exceeds the size of the
archive, the solutions which occupy the most crowded regions of
the Pareto set are neglected. Otherwise, if the size of the set is

Table 1
Impact of storage requirement on the span of the Pareto set approximations.

Storage
requirement

(h)

Objective function

Operational cost  Disinfectant concentration Tanks cost

Min Max Min Max Min Max

4 73.56 123.06 1350.17 1901.54 145.42 200.70
6 77.52 12947 1425.46 2000.75 170.62 225.12
8 83.70 15247 1253.56 2032.85 221.62 282.82
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Table 2

Selected solutions for comparison based on the distance from the utopian solution.

Storage Utopian solution Selected solution Corresponding tank diameters (m)
requirement (h) Ji 1 I Is I Is Tank 1 Tank 2 Tank 3
4 73.56 1350.17 145.42 102.24 1473.75 151.92 274 10.7 38.53
6 77.52 1425.46 170.62 104.99 1530.56 188.82 244 10.7 47.2

8 83.70 1253.56 221.62 108.48 1493.87 231.42 183 10.7 56.4

smaller than the archive, it is complemented by the best solutions
with regard to their fitness. Once the new archive is populated
a stopping condition is invoked to determine whether the algo-
rithm should terminate. In this study a stopping condition based on
a fixed number of generations is utilized. The number of genera-
tions was selected based on the performance of the algorithm
during an extensive testing phase.

If the algorithm is to evaluate the next generation, then the
selection of parent individuals is performed based on a constrained
tournament (Deb, 2000). The conception of the constrained tour-
nament is based on comparing first the constraint violation of the
solution and later on comparing their fitness. Following this
procedure feasible solutions are in favor to infeasible.

For the binary variables a single-point crossover and random
mutation is used. In case of a real variable a simulated binary
crossover (SBX) and polynomial mutation were selected (Deb,
2001). Once completed, the new population is evaluated and
fitness values are assigned to the obtained solutions and for the
ones from the archive.

5. Example application

The optimization problems (13) and (14) were tested on EPANET
(USEPA, 2012) Example 3 (Fig. 4). The system consists of two
reservoirs (sources) (a Lake and a River), three elevated tanks, 120
pipes, 94 nodes, and two pumping stations. The example full input
file is freely available with the EPANET software from USEPA (2012).

SPEA2 was invoked with a population size of 300 and an
external archive of 200, with nine binary (three per tank), and 96
real variables corresponding to the pumping schedules and the
concentration set points for problem (13), and 48 real variables for
problem (14). The mutation probability was set to 0.1, the crossover
probability to 1, and the SBX crossover parameter to 1.5. The
number of generations was selected as 500, allowing repetitive
stable approximations of the Pareto sets. All computations were
conducted on an Intel Core i5-2430M processor with 4 GB of RAM.
A single run for generating the Pareto set took approximately 4 h.

The tanks diameter ranges were set to (15.2—39.6 m), (7.6—
19.8 m), and (24.4—60.9 m), for Tank 1, 2, and 3, respectively,
with eight equally spaced discrete diameters in-between each
range. These ranges were selected based on the existing tank
diameters of 26 m, 15.2 m, and 50 m, for Tank 1, 2, and 3,
respectively.

5.1. Multi-objective problem (13)

Fig. 5 describes the Pareto set obtained for the case where water
quality is expressed using disinfectant concentration [problem
(13)]. This set corresponds to a storage-reliability constraint [Eq.
(12)] of 6 h. It can be seen from Fig. 5 that the obtained Pareto set
approximation is uniformly spaced in the objective space indicating
a successful run of SPEA2.

The impact of the reliability-storage constraint is presented in
Table 1. It can be seen from Table 1 that the less water is required
the smaller is the energy and tank costs. With the increase of the

required storage the energy and tanks cost increase. The water
quality objective is comparable for all cases as the water circulation
in the system is similar.

For comparing solutions which carry similar properties,
a selection procedure based on an utopian solution is introduced
(Miettinen, 1999). Likewise, other comparison methodologies could
be employed (e.g., through utilizing game theory techniques as
described in Salazar et al., 2007). Following Miettinen (1999) the
utopian solution z* is first constructed using the minimum values of
all objective functions (see Table 2).

Z = {min{/;},min{j>}, min{J3}} (15)

Next, the span of the front 4J; for each of the considered
objectives is computed:
AJi = max{j;} —min{J;}, for

i=1.3, (16)

Subsequently, for removing any preferences in the selection, the
fronts are normalized using their span in the objective space, and
finally a solution having the minimum distance to the utopian
solution is selected for comparison.

w\ 2 w\ 2 w\ 271
. -z b -z J3—2; :
wot[(57) () (52 )

where Q is the Pareto set resulting from solving the problem (13) or
(14), and p is the selected "balanced" solution.

In case of the Pareto set for 6 h of storage-reliability, the selected
"balanced" solution is marked (Fig. 5). The values of all objective
functions and their corresponding tank sizes are given in Table 2.
Notice, that the main storage corresponds to Tank 3. Tank 2, due to
its small size and location at the far end of the network, is kept

(17)

Controls of pump 10

Relative speed
Price of energy [$/kWh]

Time [h]

Controls of pump 335

0.5

Relative speed
Price of energy [$/kWh]

Four =s=r=:= Six ===== Eight =eseeeeee Tariff

Fig. 6. Pump controls for the marked solution (see Fig. 5).
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Fig. 7. Disinfectant concentration at the treatment plants for the marked solution (see
Fig. 5).

relatively small, thus enhancing the minimization of water quality
issues which might occur in its vicinity.

Next, the control actions corresponding to the balanced solution
in Fig. 5 are explored (Figs. 6—10). First the pumping speed in
relation to the energy tariff. Each of the pumps in the system is
subject to a different energy tariff which clearly reflects its resulted
speed (Fig. 6). As anticipated the pumping speed for the most
restrictive storage-reliability constraint of 8 h yields the highest
pumping speeds. At the same time, notice that pump 335 takes
advantage of the midday cheap energy period.

Analogously, the concentration at the treatment plants is
examined in Fig. 7. Due to the increased storage in the 8 h solution
the corresponding concentration at the input to the system is
generally higher. This is especially evident at the river source, and
when comparing to the four and 6 h storage requirements.

Sustainable and reasonable tank operation is crucial for proper
energy conservation and water quality maintenance within the

Tank 1
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Fig. 8. Level at the tanks for the marked solution (see Fig. 5).
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Fig. 9. Storage in the network for the marked solution (see Fig. 5).

network. The resulting tank operation over an extended time
period is given in Fig. 8 for the balanced solutions presented in
Table 2 and in Fig. 5. It can be seen from Fig. 8 that all tanks meet
the water level terminal requirement. It might seem odd that the
tanks level is the highest during the evening. This is due to the
storage constraint, and the high consumer demands during the
evening and night. The second tank located at the far end of the
system is less influenced by the storage constraint and the tank
sizing objective.

Turning the focus to the system storage and the impact of the
storage-reliability constraint on it, it can be seen from Fig. 9 that in
all cases the balanced solution attempts to minimize the volume of
the stored water in the system. This is a valid outcome as storing
excessive water would deteriorate the water quality and increase
pumping cost. At the same time, the selected tank diameters allow
the network to operate under similar pressures, with a mean of
approximately 35 (m), a minimum of around 8-10m, and
a maximum of 70—75 m.
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Fig. 10. Disinfectant distribution within the network for the marked solution (see
Fig. 5).
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Finally, the distribution of disinfectant within the network is
presented if Fig. 10. The top plot in Fig. 10 corresponds to the 4 h
storage-reliability constraint, the middle to the 6 h, and the bottom
to the eight. The most noticeable influence of the storage constraint
on the disinfectant distribution is visible for the 8 h storage
requirement. The distribution of chlorine there is "wider" due to
a higher storage in the systems, and the corresponding disinfectant
deterioration at the tanks. This could be overcome by introducing
additional booster chlorination stations within the network.

5.2. Multi-objective problem (14)

In this section the proposed algorithm is demonstrated on the
second water quality objective which is based on water age
[problem (14)]. In this case a single Pareto set is explored for
comparing how the solutions within a single front differ from each
other.

Three solutions were selected. One of them marked with a circle
in Fig. 11 is the "balanced" solution chosen according to the
previously introduced utopian mechanism (Miettinen, 1999). The
remaining two solutions (Fig. 11) are those having the minimum
value of the water quality function (marked with a triangle) and the
minimum value of the consumed energy (marked with *). Addi-
tionally, the selected solution values and their corresponding tank
sizes are presented in Table 3. Note (see Table 3), that the solution
having the best water quality value has also the largest Tank 3 size.
This unexpected result will be further explained below.

In Fig. 12 the pumping speeds are presented for the three
selected solutions described in Fig. 11. As expected, the solution
having the minimum value of energy has smaller pumps speed,
which translates to fewer consumed energy. In all cases the energy
tariffs are exploited. This is especially visible for pump 335 which
encounters an electricity tariff with a cheaper midday period.

In examining the tanks operation (Fig. 13) one can see that the
dotted tank operation result, which corresponds to the best water

Table 3
The selected solutions for comparison for the water age criterion.

Storage Selected solutions Corresponding tank diameters (m)
requirement bk Tank 1 Tank 2 Tank 3
Balanced 98.11 090 162.5 15.2 12.2 42.7
Best energy 76.54 134 187.7 213 15.2 42.7
Best quality 141.37 0.69 221.62 15.2 9.14 56.4
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Fig. 12. Pump controls for the three selected solutions (see Fig. 11).

quality solutions, is puzzling. The largest tank in the network
(Tank 3) has almost a constant water level. Moreover, the tanks
operation is significantly different to what was observed in the case
of the disinfectant concentration water quality objective (see Fig. 8).

Could the different water quality measure have this kind of
impact on the proposed operation of the system? Looking at the
amount of water stored for the selected solutions (Fig. 14), it can be
seen that the operation of the system is completely different for the
three solutions. The best water quality solution (bottom plot)
shows that the algorithm tries to keep the tanks full. Why is that?
This is attributed to the assumption in the age based water quality
criterion (Egs. (6) and (7)) that only demand nodes are considered.
This obviously overrules the tanks from this evaluation. The tanks
influence the water quality only when water is discharged from
them. The proposed methodology thus founded a way around this
problem: it stores as much as possible water in the tanks so as to
limit the amount of water withdrawn from them, which impairs
water age.

fec]
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Pressure [m]

Tank 2
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~

Time [h]

Balanced ===== Energy rrresesees Quality

Fig. 13. Tanks operation level for the three selected solutions (see Fig. 11).
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Fig. 14. Storage for the three selected solutions (see Fig. 11).

Observing the distribution of water age in the system (Fig. 15), it
is apparent that most of the nodes have water age below the 12 h
required threshold. However, the outliers on the box plot clearly
show that the water age at some nodes rise. Those are the tanks,
and the nodes supplied directly from them.

6. Discussion

A new integrated approach for storage sizing, water quality,
pumps operation, and storage-reliability considerations was
developed and demonstrated using two different water quality
objectives: one based on disinfectant residuals and the other on
water age. The multi-objective evolutionary algorithm SPEA2 was
employed for the Pareto set computation while EPANET was
utilized for simulating the system’s hydraulic and water quality
behavior.

All model outcomes were explainable and the Pareto fronts
generated stable for all runs. The utilization of the water age
objective revealed interesting understandable insights on the
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Fig. 15. Age of water for the three selected solutions (see Fig. 11).

model performance, thus strengthening its potential for serving as
a decision tool.

Possible extensions of this work can include the incorporation of
tank sizing at candidate system sites (i.e., not only at existing
locations), integration of pumps scheduling at pumping stations,
and assimilation of other/additional reliability/risk criteria as
constraints or new objectives.
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Glossary

D: number of time steps of predicted demand to be stored in the system,

di(k): demand at node i at time instant k,

Ei(k): energy consumed by pump i over time period k,

fti(+): tanks cost function,

Fq(+): quality evaluation function,

Hy: control evaluation horizon length,

J: subset of the monitored nodes,

J1(-): first objective function corresponding to consumed energy,

j§(~): second objective function corresponding to water quality expressed by
disinfectant concentration,

J3(+): second objective function corresponding to water quality expressed by water
age,

J3(-): third objective function corresponding to storage cost,

p(k): head at tank t at time instant k,

P: set of controlled pumps,

R: set of reservoirs,

si(k): auxiliary variable indicating if the water age at node i exceeds the water age
threshold,

T: set of tanks in the system,

td;: diameter of tank i,

Td: vector of tank diameters,

u;: disinfectant concentration at treatment plant i,

Umin: maximum allowable disinfectant concentration,

Umax: Minimum allowable disinfectant concentration,

U: concentration patterns at the reservoirs,

w(k): warning code returned by EPANET at time instant k,

vi: speed of pump i,

Vmin: Minimum allowable pump speed,

Vmax: Maximum allowable pump speed,

V: speed patterns for each pump belonging to set P,

a: coefficient that relaxes the terminal constraint,

Bi: cost function coefficient,

7vi: cost function coefficient,

ni(k): energy cost of pump i over time period k,

aj(k): age of water at node i at time instant k,

asp: water age threshold,

ci(k): disinfectant concentration at node j at time instant k.
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