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a b s t r a c t 

We propose preference learning algorithms for inferring the parameters of a threshold-based sorting 

model from large sets of assignment examples. The introduced framework is adjusted to different scores 

originally used in Multiple Criteria Decision Analysis (MCDA). They include Ordered Weighted Average, 

an additive value function, the Choquet integral, a distance from the ideal and anti-ideal alternatives, and 

Net Flow Scores built on the results of outranking-based pairwise comparisons. As a concrete application 

of these models, we use Artificial Neural Networks with up to five hidden layers. Their components and 

architecture are designed to ensure high interpretability, which supports the models’ acceptance by do- 

main experts. To learn the most favorable values of all parameters at once, we use a variant of a gradient 

descent optimization algorithm called AdamW. In this way, we make the MCDA methods suitable for han- 

dling vast, inconsistent information. The extensive experiments on various benchmark problems indicate 

that the introduced algorithms are competitive in predictive accuracy quantified in terms of Area Un- 

der Curve and the 0/1 loss. In this regard, some approaches outperform the state-of-the-art algorithms, 

including generalizations of logistic regression, mathematical programming, rule ensemble and tree in- 

duction algorithms, or dedicated heuristics. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The need to process data to conclusions or arguments that sup- 

ort more informed and better decision-making is growing each 

ear ( Liu, Kadzi ́nski, Liao, & Mao, 2021 ). Consequently, one of the

ain trends in today’s information technology is developing intel- 

igent decision support systems. Their successful application de- 

ends on the quality of being believable or trustworthy ( Linkov, 

alaitsi, Trump, Keisler, & Kott, 2020 ). The need to explain the de- 

isions made by computer systems ( Doshi-Velez & Kim, 2017 ) is 

eflected in the legal regulations of the European Union ( Goodman 

 Flaxman, 2017 ). 

Multiple Criteria Decision Aiding (MCDA) and Machine Learning 

ML) belong to the most important and fastest developing disci- 

lines within Artificial Intelligence (AI) ( Corrente, Greco, Kadzi ́nski, 

 Słowi ́nski, 2013; Doumpos & Zopounidis, 2011 ). They offer meth- 

ds that support humans in decision-making processes. Within the 

cope of this paper, we focus on multiple criteria sorting ( Alvarez, 

shizaka, & Martínez, 2021 ) or instance ranking ( Fürnkranz & 

üllermeier, 2011 ) problems. They aim at assigning a set of al- 

ernatives to preference ordered classes, labels, or degrees in the 
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resence of multiple attributes with pre-defined preference direc- 

ions. Moreover, we limit our interest to learning ordered classifi- 

ation models from decision examples. In MCDA, they are treated 

s the DM’s indirect preference information in the form of assign- 

ent examples ( Liu, Liao, Kadzi ́nski, & Słowi ́nski, 2019; Zopounidis 

 Doumpos, 20 0 0 ), whereas in ML – they form a training set in

he task of supervised learning ( Doumpos & Zopounidis, 2011 ). The 

oal is to find the model for classifying all alternatives, including 

he ones that have not been judged directly by the Decision Maker 

DM) nor considered in the reference set ( Doumpos & Zopounidis, 

018 ). 

Even though the paradigm of learning by example is handled 

y both MCDA and ML, there are notable differences between 

hese two disciplines ( Corrente et al., 2013; Doumpos & Zopouni- 

is, 2011; Waegeman, De Baets, & Boullart, 2009 ). On the one 

and, MCDA is user-oriented. It exploits Decision Makers’ knowl- 

dge or expertise and aims at the DMs to learn about their pref- 

rences and the problem at hand. On the contrary, ML is model- 

riented, being focussed on data analysis, information extraction, 

nd preference discovery. These various aims are, in turn, reflected 

n different forms of incorporated models, the amount of processed 

nformation, techniques used for arriving at a final result, and the 

ole of users. 

The preference models used in MCDA are highly interpretable 

nd explainable ( Corrente et al., 2013 ). Their primary role is to en- 

https://doi.org/10.1016/j.ejor.2022.06.053
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ourage the involvement of the DMs ( Roy, 2010 ) through gaining 

nsights on the role of different criteria, the character of alterna- 

ives, and the influence of particular performances on the decision. 

n the contrary, ML has mainly focused on the development of 

on-linear models, offering higher predicting ability and the pos- 

ibility of capturing complex interdependencies ( Corrente et al., 

013 ). However, this results in limited ability to determine which 

ata influences a decision and, consequently, less confidence in the 

odel’s employment by the users who need to interpret and un- 

erstand the underlying process ( Waegeman et al., 2009 ). 

The traditional MCDA methods have been designed for learn- 

ng from a small set of decision examples for a subset of ref- 

rence alternatives ( Doumpos & Zopounidis, 2018 ). Typically, the 

ranslation of assignment examples into compatible values of 

n assumed preference model has been conducted with mathe- 

atical programming techniques that aim at reconstructing the 

M’s judgments as faithfully as possible. However, when the 

M’s preference information is rich and highly inconsistent, 

ost approaches cannot deal efficiently with preference disag- 

regation ( Liu et al., 2019 ). Some exceptions that have in-built 

echanisms for dealing efficiently with large sets of inconsis- 

ent preferences include variants of the Dominance-based Rough 

et Approach (DRSA) ( Greco, Matarazzo, & Słowi ́nski, 2001 ) and 

TADIS ( Zopounidis & Doumpos, 20 0 0 ). On the contrary, ML has

lways been focused on dealing with large, inconsistent sets of 

raining data ( Doumpos & Zopounidis, 2011 ). These are usually 

omposed of historical data, preferences collected over time, or ob- 

ervations of past decisions. In ML, some advanced statistical mod- 

ls or optimization algorithms are used to exploit the parameters 

pace in search of the values that minimize some classification er- 

or. 

Over the years, MCDA and ML have been developing separately 

hile fostering their interests mentioned above. Nonetheless, the 

vailability of large data resources as well as the need for both ex- 

lainable models and interpretable decision-making processes have 

otivated the cross-fertilization of the two disciplines. Individu- 

ls, companies, organizations, and governments have accumulated 

 vast quantity of data, and its analysis has exceeded the reach of 

uman processing capacity. However, it needs to be exploited in a 

ay that allows verifying whether a model focuses on the relevant 

spects, offers arguments and knowledge for decision-making, and 

nvolves the DM to take part in the process actively. Consequently, 

ne has developed the algorithms that scale up well with an in- 

reasing number of assignment examples, at the same time incor- 

orating the intuitive models originally proposed in MCDA ( Cinelli, 

adzi ́nski, Miebs, Gonzalez, & Słowi ́nski, 2022 ). 

The research at the crossroads of MCDA and ML is called 

reference learning ( Fürnkranz & Hüllermeier, 2011 ). Within this 

eld, some MCDA methods have been adjusted to deal with large 

ata, leading to the elaboration of intuitive classification meth- 

ds. In what follows, we list the representative algorithms aimed 

t multiple criteria sorting and instance ranking problems. In 

articular, Chandrasekaran, Ryu, Jacob, & Hong (2005) proposed 

inear programming models based on isotonic separation, and 

otłowski & Słowi ́nski (2013) introduced a family of classifiers 

xploiting the class of all monotonic functions, not making any 

dditional assumptions about the model apart from the mono- 

onicity constraints. Then, Tehrani, Cheng, Dembczy ́nski, & Hüller- 

eier (2012) generalized logistic regression to learn the param- 

ters of the Choquet integral, Liu et al. (2021) formulated opti- 

ization models for learning additive value functions augmented 

ith components for handling the interactions between criteria, 

hereas Kadzi ́nski & Szczepa ́nski, (2022) proposed a variety of 

ethods for learning the parameters of a sorting model with char- 

cteristic class profiles. Furthermore, Dembczy ́nski, Kotłowski, & 

łowi ́nski (2009) introduced an algorithm based on the variant of 
782 
RSA for generating a monotonic rule ensemble and Dembczy ́nski, 

otłowski, & Słowi ́nski (2006) extended DRSA by considering an 

dditive function model resulting from rough approximations. Also, 

 few approaches have been proposed to learn the parameters 

f an outranking-based sorting model used in the ELECTRE TRI- 

 method or its simplified variant called MR-Sort. They include an 

volutionary algorithm ( Doumpos, Marinakis, Marinaki, & Zopouni- 

is, 2009 ) or linear programming models combined with simulated 

nnealing ( Olteanu & Meyer, 2014 ) or a dedicated metaheuris- 

ic ( Sobrie, Mousseau, & Pirlot, 2019 ). 

This paper proposes to use Artificial Neural Networks (ANNs) 

or preference learning in the context of highly interpretable 

CDA models. ANNs are versatile learners that can be applied to 

early any learning task, where input and output data are well- 

nderstood, yet the process that relates the input to the output is 

ighly complex. Over the last years, ANNs have been successfully 

pplied in the context of data analysis, control systems, speech 

nd pattern recognition, and computer games. This is mainly due 

o the development of Deep Learning (DL) (i.e., efficient learning 

lgorithms for ANNs with multiple hidden layers) that has revo- 

utionalized the field of AI and its applicability in the context of 

ig data ( Deng & Yu, 2014 ). However, the employment of ANNs in

CDA has been scarce. In particular, Malakooti & Zhou (1994) used 

n Adaptive Feedforward Adaptive Feedforward ANN to learn the 

tility function based on a set of training patterns in the form 

f alternatives with their associated evaluations by the DM and 

hen applied it to rank a discrete set of alternatives. Moreover, 

u (2009) proposed a single-layer perceptron for multiple crite- 

ia classification problems based on pairwise comparisons among 

lternatives conducted in the spirit of an ELECTRE-based outrank- 

ng relation. Furthermore, Hanne (1997) suggested the use of ANNs 

s a part of an MCDA network, in which they can be applied 

o standardize and aggregate performances from different criteria 

r even to choose the most relevant method from a pre-defined 

ool of a few approaches. Finally, Guo, Zhang, Liao, Chen, & Zeng 

2021) proposed the NN-MCDA method that combines an additive 

alue model with potentially non-monotonic marginal functions 

nd a fully connected deep neural network. 

We introduce the preference learning algorithms that use ANNs 

o infer parameters of the threshold-based sorting procedure from 

arge sets of assignment examples. In this procedure, following 

TADIS ( Zopounidis & Doumpos, 20 0 0 ), the frontiers between 

lasses are delimited by the thresholds on a scale of a compre- 

ensive score that reflects the quality of each alternative from 

ll relevant viewpoints considered jointly. We adjust the intro- 

uced framework to different types of scores. In particular, we 

onsider aggregation of the performances on various criteria us- 

ng OrderedWeighted Average (OWA) operator ( Yager, 1988 ), an 

dditive value function initially employed in UTADIS ( Zopounidis 

 Doumpos, 20 0 0 ), and the Choquet integral ( Angilella, Corrente, 

reco, & Słowi ́nski, 2013 ). These scores are able to capture differ- 

nt compensation levels or interactions between criteria. Moreover, 

e account for a model postulated in TOPSIS that builds on the 

istances of a given alternative from the ideal and anti-ideal op- 

ions ( Hwang & Yoon, 1981 ). Also, we consider the Net Flow Score 

NFS) procedures that aggregate the results of pairwise compar- 

sons between all alternatives. The comparisons are conducted in 

he spirit of the PROMETHEE ( Brans & De Smet, 2016 ) and ELEC- 

RE ( Figueira, Greco, Roy, & Słowi ́nski, 2013 ) methods, exploiting 

ither preference degrees or the outcomes of concordance and dis- 

ordance tests. 

The ANNs have been originally designed to capture complex 

ransformations of inputs (in our case, performances on all criteria) 

o outputs (in our case, class assignments). We have designed their 

rchitecture and adjusted the characteristics of individual units to 

erive sorting models that are flexible enough to fit the learn- 
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ng data and sufficiently interpretable due to being inspired by 

he MCDA methods. This is in line with the recent trend in ML, 

hich postulates making prediction models and their decisions in- 

erpretable ( Molnar, 2020 ). 

When learning the sorting models, we minimize the loss func- 

ion defined as an average of regrets for all reference alterna- 

ives. The choice of ANNs as a computation technique for conduct- 

ng preference disaggregation allowed us to use a variety of tools 

upporting the optimization. In particular, to learn the most fa- 

orable value parameters, we employ a variant of a gradient de- 

cent optimization algorithm called Adam ( Kingma & Ba, 2014 ). 

he optimization is enhanced with techniques such as data aug- 

entation to increase the noise resistance, regularization to pre- 

ent model overfitting, and batch optimization to reduce the im- 

act of the information processing order on the attained results. 

he networks deriving the parameters of the OWA-, Choquet-, and 

istance-based models are shallow. However, the ANNs proposed 

or UTADIS, PROMETHEE, and ELECTRE can be classified as deep 

earning models ( Deng & Yu, 2014 ) due to many hidden layers and

onsidering different levels related to the data processing (e.g., cri- 

eria, alternatives, pairs of alternatives, and assignments). Hidden 

ayers are required to learn complex models inspired by the value- 

nd outranking-based MCDA methods. However, the raw weight 

alues of multiple layers, some of which conduct non-linear trans- 

ormations of data, are hardly interpretable for the users. There- 

ore, we ensure that users are exhibited only with the final mod- 

ls of ANN-UTADIS, ANN-PROMETHEE, and ANN-ELECTRE. These 

odels summarize the comprehensive contribution of individual 

riteria, resulting from the transformations conducted by various 

ayers, activation performed with non-linear activations functions, 

nd normalization to an easily interpretable range of alternatives’ 

cores. 

We conduct a thorough experimental verification of the pro- 

osed algorithms on a set of benchmark sorting problems. Its re- 

ults are quantified in terms of two quality measures for different 

roportions between the sizes of the training and testing sets. The 

ultiplicity of proposed methods allows indicating which model 

s most appropriate for a given problem. We also compare the 

btained results with the performance of the existing preference 

earning approaches. These include the Choquistic ( Tehrani et al., 

012 ) and logistic ( Hosmer, Lemeshow, & Sturdivant, 20 0 0 ) regres-

ion, Kernel Logistic Regression (KLR) with polynomial and Gaus- 

ian kernels, rule ensemble (MORE) ( Dembczy ́nski et al., 2009 ) and 

ree induction (LMT) ( Landwehr, Hall, & Frank, 2003 ) algorithms, 

alue-based UTADIS model ( Zopounidis & Doumpos, 20 0 0 ), and 

utranking-based methods incorporating mathematical program- 

ing (MIP) ( Leroy, Mousseau, & Pirlot, 2011 ) or a dedicated meta- 

euristic (META) ( Sobrie et al., 2019 ). 

The remainder of the paper is organized in the following 

ay. Section 2 reminds a threshold-based sorting procedure. In 

ection 3 , we discuss the novel preference learning algorithms that 

ncorporate different scores for judging a comprehensive quality of 

lternatives. Section 4 provides details of the employed optimiza- 

ion techniques. In Section 5 , we illustrate the use of the proposed 

ethods on a selected multiple criteria sorting problem for which 

 large set of assignment examples is available. Section 6 discusses 

he results of computational experiments, comparing the predictive 

apabilities of our ANN-based approaches and the state-of-the-art 

ethods. The last section concludes and provides avenues for fu- 

ure research. 

. Threshold-based score-driven multiple criteria sorting 

The following notation is used in the paper: 

• A = { a , a , . . . , a , . . . , a n } – a finite set of n alternatives; 
1 2 i 

783 
• A 

R = { a ∗
1 
, a ∗

2 
, . . . , a ∗

i 
, . . . } ⊆ A – a finite set of reference alter-

natives, which the DM accepts to critically judge in a holistic 

way; 
• G = { g 1 , g 2 , . . . , g j , . . . , g m 

} – a finite set of m evaluation cri-

teria, g j : A → R for all j ∈ J = { 1 , . . . , m } ; 
• X j = { x j ∈ R : g j (a i ) = x j , a i ∈ A } – a set of all different per-

formances on g j , j ∈ J; as typical in the field of prefer-

ence learning, we assume that all performances on g j , j = 

1 , . . . , m , are scaled to the [0,1] interval; 

• x 1 
j 
, x 2 

j 
, . . . , x 

n j (A ) 

j 
– increasingly ordered values of X j , x k 

j 
<

x k +1 
j 

, k = 1 , 2 , . . . , n j (A ) − 1 , where n j (A ) = | X j | and n j (A ) ≤
n ; 

• C 1 , C 2 , . . . , C p – p pre-defined, preference ordered classes, 

where C h +1 is preferred to C h , h = 1 , . . . , p − 1 ( H =
{ 1 , . . . , p} ). 

e consider the problem of sorting imposed by the use of func- 

ion f : R m → H that maps alternative a i ∈ A evaluated in terms of

 criteria to one of the decision classes C h , h = { 1 , . . . , p} . To ag-

regate performances on multiple criteria, we use a function as- 

igning a comprehensive score Sc(a i ) to a i ∈ A . The maximal score 

s assigned to an ideal alternative a + with the most preferred per- 

ormances on all criteria, whereas the minimal score is associated 

ith an anti-ideal alternative a −. The range [ Sc(a −) , Sc(a + )] may

iffer depending on the applied method. Moreover, the scale of 

 comprehensive score is divided by a set of class thresholds t h , 

 = 1 , . . . , p − 1 , which delimit the intervals implying an assign-

ent to particular decision classes ( Köksalan & Özpeynirci, 2009 ): 

Sc(a i ) < t 1 ⇒ a i ∈ C 1 , 

t h −1 ≤ Sc(a i ) < t h ⇒ a i ∈ C h , for h = 2 , . . . , p − 1 , 

Sc(a i ) ≥ t p−1 ⇒ a i ∈ C p . (1) 

o avoid direct specification of the parameter values, we assume 

ndirect preference information is available or specified by the DM. 

t has the form of desired class assignments C DM 

(a ∗
i 
) for refer- 

nce alternatives a ∗
i 

∈ A 

R . When constructing or training the sorting 

odel, we will disaggregate holistic preferences to respect the ref- 

rence assignments in the following way ( Doumpos & Zopounidis, 

004 ): 

for all a ∗
i 

∈ A 

R : 
Sc(a ∗

i 
) ≥ t C DM (a ∗

i 
) −1 , if C DM 

(a ∗
i 
) > 1 , 

Sc(a ∗
i 
) + ε ≤ t C DM (a ∗

i 
) , if C DM 

(a ∗
i 
) < p, 

} 

(2) 

here ε is an arbitrarily small positive value. When numerous as- 

ignment examples are considered, they might not be reproduced 

imultaneously. Therefore, in the optimization phase, we will con- 

ider the following loss function defined as an average of regrets 

or all reference alternatives: 

inimize : loss = 

1 

| A 

R | 
∑ 

a ∗
i 
∈ A R 

r egr et(a ∗i ) , (3) 

here r egr et is equal to the distance from thresholds delimiting 

he desired class in case an alternative is misclassified or to zero, 

therwise: 

 egr et(a ∗i ) = max { t C DM (a ∗
i 
) −1 − Sc(a ∗i ) , Sc(a ∗i ) − t C DM (a ∗

i 
) , 0 } . (4)

n the following section, we discuss a variety of scoring procedures 

hat will be incorporated in the ANN-based preference learning al- 

orithms. For each of them, the scoring function Sc is defined dif- 

erently. 
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Fig. 1. The architecture of the neural network employed by the ANN-OWA method. 

3

M

l

m

w

f

t

i

m

3

a

s  

g

O

w

a

s

n

l

n

a

n

o

S

S  

t

r

i

s

a

i

t

i

t

b

n

3

d

I

T  

f

C

w

o

e

C  

T

a

w  

M

t

i

w  

T

n

t

d

g

s

a

s

S

T

(

i

C

w

T

c

i

e

S

A

p

t

p

i

E  

a

t

. Preference learning with artificial neural networks and 

CDA-inspired preference models 

In this section, we present the MCDA-inspired approaches that 

earn parameters of the sorting models from large sets of assign- 

ent examples. For this purpose, they apply Artificial Neural Net- 

orks. We will discuss a variety of methods that implement dif- 

erent strategies for deriving the comprehensive scores of alterna- 

ives. Nonetheless, for all of them, the derived model remains eas- 

ly interpretable, and the sorting results are explainable for a hu- 

an DM. 

.1. ANN-OWA: preference learning with ordered weighted average 

nd ANN 

OWA is an aggregation function generalizing other operators 

uch as min, max, average, median, or sum ( Yager, 1988 ). It ag-

regates performances using a revised weighted sum: 

WA (a i ) = 

m ∑ 

j=1 

w j sort j (a i ) , (5) 

here sort j (a i ) is the j-th largest performance of alternative a i on 

ny criterion and w j is the weight linked with the j-th position in 

orted performance vector of a i . We assume that w j ∈ R ≥0 . 

ANN-OWA starts with sorting the performances of each alter- 

ative in a non-increasing order (see Fig. 1 ). Then, a single linear 

ayer aggregates the performances using the OWA operator with 

on-negative weights. Since the value of OWA can be, in general, 

rbitrarily large, to increase interpretability of the results, we apply 

ormalization to the [0,1] range by dividing the scores by the sum 

f weights w j : 

c AN N −OWA (a i ) = 

∑ m 

j=1 w j sort j (a i ) ∑ m 

j=1 w j 

. (6) 

uch a score is compared against the thresholds t = [ t 1 , t 2 , . . . , t p−1 ]

o determine the class assignments using Eq. (1) and calculate the 

egret that is considered when optimizing the network parameters, 

.e., weights w j and thresholds t . 

The last component of the ANN responsible for the compari- 

on of a comprehensive score with class thresholds to derive the 

ssignment is the same for all methods presented in the follow- 

ng subsections. Thus, we will not mention it when describing 

hese approaches, instead focussing on the computation of scores 

n line with the assumptions of different methods. Nevertheless, 

he thresholds and the underlying sorting procedure will always 

e depicted in the figures representing the architectures of neural 

etworks. 

.2. ANN-Ch: preference learning with the Choquet integral and ANN 

The Choquet integral model is an additive aggregation method, 

ealing with interactions between criteria ( Angilella et al., 2013 ). 
784 
t takes the form of a weighted sum over all subsets of criteria 

 ⊆ G , where the performance for T is the minimum over the per-

ormances on criteria contained in T : 

h μ(a i ) = 

∑ 

T ⊆G 

w T · min 

j∈ T 
g j (a i ) , (7) 

here 
∑ 

T ⊆G w T = 1 . We limit the considered interactions to pairs 

f criteria by referring to the 2-additive Möbius transform ( Tehrani 

t al., 2012 ): 

h μ, 2 (a i ) = 

m ∑ 

j=1 

w j g j (a i ) + 

∑ 

{ j,l}⊆G 

w { j,l} min (g j (a i ) , g l (a i )) . (8)

o respect the pre-defined preference directions for all criteria, we 

ssume that the weights are non-negative: 

 j ≥ 0 , ∀ j ∈ { 1 , . . . , m } . (9)

oreover, we consider the positive and negative interactions, 

hough limiting their impact on the attained scores in the follow- 

ng way: 

 { j,l} + w j ≥ 0 , ∀ j ∈ { 1 , . . . , m } , ∀ l ∈ { 1 , . . . , m }\{ j} . (10)

he variant of the method respecting such constraints will be de- 

oted as ANN-Ch-Constr. In the pre-processing phase, we perform 

he Möbius transform of a 2-order additive measure of the input 

ata (see Fig. 2 ). Then, two linear layers are responsible for ag- 

regating pre-criteria performances using non-negative weights re- 

pecting Eq. (9) and interaction components using weights associ- 

ted with pairs of criteria that respect Eq. (10) . Their outputs are 

ummed and normalized to the [0,1] range as follows: 

c AN N −C h −C onstr. (a i ) = 

Ch μ, 2 (a i ) ∑ m 

j=1 w j + 

∑ 

{ j,l}⊆G w { j,l} 
. (11) 

he parameters optimized by ANN are weights of both linear layers 

 w j and w j,l ) and class thresholds t . 

The other two variants of the Choquet integral-based method 

ncorporate different assumptions. The first one, called ANN- 

h-Pos. , considers only positive interactions, hence limiting the 

eights for individual criteria and pairs to non-negative values. 

he other variant, called ANN-Ch-Uncons. , does not impose any 

onstraints on the weights. Moreover, both variants apply normal- 

zation of scores with the sigmoid function as proposed in Tehrani 

t al. (2012) : 

c AN N −Ch −Sig (a i ) = sigmoid(Ch μ, 2 (a i ) + bias ) . (12) 

 diagram showing the network operations for these variants is 

resented in Fig. 3 . First, we perform the Möbius transform. Since 

here are no constraints involving different weights, per-criteria 

erformances and interaction components can be aggregated us- 

ng a single linear layer. It performs the calculations defined by 

q. (8) and adds a bias value as defined by Eq. (12) . The bias

llows the sigmoid function to be shifted, and the lack of restric- 

ions on the sum of weights allows for an arbitrary adjustment of 
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...
Möbius transform

Linear Layer

Linear Layer

+ Normalization
...

Fig. 2. The architecture of the neural network employed by the ANN-Ch-Constr. method. 

...
Möbius transform

Linear Layer

Sigmoid
...

Fig. 3. The architecture of the neural network employed by the ANN-Ch-Pos. and ANN-Ch-Uncons. methods. 
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he sigmoid function’s argument scale. In ANN-Ch-Pos. , all weights 

eed to be non-negative. The result from the linear layer is pro- 

essed by a sigmoid activation function. It ensures that the score 

or each alternative is in the [0,1] range. 

.3. ANN-TOPSIS: preference learning with TOPSIS and ANN 

Technique for Order of Preference by Similarity to Ideal Solu- 

ion (TOPSIS) considers the ideal a + and anti-ideal a − alternatives 

ith the following performances on each criterion g j ∈ G ( Hwang 

 Yoon, 1981 ): 

 j (a + ) = max a i ∈ A (g j (a i )) and g j (a −) = min a i ∈ A (g j (a i )) . (13)

he closer alternative a i ∈ A is to a + and the further it is from a −,

he more preferred it is. The respective distances can be computed 

s follows: 

 

+ (a i ) = 

( 

n ∑ 

j=1 

w 

′ 
j y 

+ 
j 
(a i ) 

) 

1 
z 

and d −(a i ) = 

( 

n ∑ 

j=1 

w 

′ 
j y 

−
j 
(a i ) 

) 

1 
z 

, (14) 

here w 

′ 
j 
= | w j | z , w j ∈ R ≥0 is the weight associated with criterion

 j ∈ G , y + 
j 
(a i ) = | g j (a + ) − g j (a i ) | z and y −

j 
(a i ) = | g j (a i ) − g j (a −) | z ,

or j = 1 , . . . , m . Overall, the comprehensive score for a i is com-

uted in the following way: 

 (a i ) = 

d −(a i ) 

d −(a i ) + d + (a i ) 
. (15) 

n this paper, we assume z = 1 . Thus w 

′ 
j 

can be interpreted as the

eight of criterion g j without any additional transformations. 

The architecture of the neural network performing the respec- 

ive calculations for ANN-TOPSIS is presented in Fig. 4 . In the pre- 

rocessing stage, we compute y + 
j 
(a i ) and y −

j 
(a i ) values for each al-

ernative a i ∈ A . The linear layer calculates the distances from the 

deal and anti-ideal alternatives while using non-negative weights 

 

′ 
j 
. It is followed by aggregation according to Eq. (15) . The param-

ters subject to optimization are weights w 

′ 
j 

and class thresholds 

. The neural networks for ANN-OWA, all variants of ANN-Ch, and 

NN-TOPSIS share the same number of layers, including one input 

ayer, one hidden layer, and one output layer responsible for sort- 

ng. 

.4. Modelling monotonic functions with ANNs 

To construct ANNs suitable for conducting calculations of more 

omplex MCDA methods, it is necessary to define a monotonic 
785 
unction. It can be seen as transforming per-criteria performances 

r performance differences, maintaining the pre-defined preference 

irections. We consider two monotonic functions: non-decreasing 

nd non-increasing for gain- and cost-type criteria, respectively. 

he transformation of a function from non-decreasing to non- 

ncreasing is conducted by negating the function. We define a 

on-decreasing function as a neural network with a single hidden 

ayer and a continuous sigmoidal activation function with positive 

eights. According to Cybenko (1989) , for an arbitrary continuous 

igmoid function σ , function u ( x ) of vector x ∈ R 

N : 

 ( x ) = 

L ∑ 

k =1 

αk σ (y T k x + θk ) , (16) 

here αk , θk ∈ R and y k ∈ R 

N , can approximate any N-dimensional 

ontinuous function with precision depending on the number of 

omponents L . Also, u ( x ) is equivalent to a neural network with a

ingle hidden layer ( Cybenko, 1989 ). 

In what follows, we build on the following two observations. 

n the one hand, if F is a family of monotonic functions, then 

 

f (x ) ∈ F f (x ) is also a monotonic function. On the other hand, the 

inear transformation α f (x ) + β of a monotonic function f , where 

∈ R ≥0 and β ∈ R , is a monotonic function. Assuming αk ∈ R ≥0 ,

 k ∈ R 

N 
≥0 

, θk ∈ R , and σ is a monotonic continuous sigmoidal func- 

ion, then u ( x ) is also a monotonic function. The values of αk ,

 k , and θk will be optimized using an algorithm described in 

ection 4 by iteratively refining parameter values with function 

radients. The major monotonic continuous sigmoidal functions are 

igmoid and hard sigmoid functions. However, to avoid a problem 

f gradient vanishing, in the learning process, we will consider the 

on-decreasing monotonic function LeakyHard Sigmoid (see Fig. 5 ): 

eaky Hard Sigmoid(x ) = 

{ 

δx, i f x < 0 , 

x, i f 0 ≤ x ≤ 1 , 

δ(x − 1) + 1 , i f x > 1 , 

(17) 

here δ is a slope factor, being a very small value in the range 

0,1). The above function is not a continuous sigmoidal function 

nd cannot be used to approximate any non-decreasing mono- 

onic function. For example, it cannot represent the level segments. 

owever, it is possible to decrease the value of a slope during 

raining to zero. Then, LeakyHard Sigmoid will be equal to hard sig- 

oid function. We will consider a one-dimensional space of x and 
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Fig. 4. The architecture of the neural network employed by the ANN-TOPSIS method. 
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Fig. 5. The LeakyHard Sigmoid function. 
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 . Thus, for the sake of simplicity, we assume that: 

 (x ) = 

L ∑ 

k =1 

αk σ (y k x + θk ) , (18) 

here σ is LeakyHard Sigmoid with a slope 0.01, L is the number 

f components of function u , and y k , αk ∈ R ≥0 . Function u (x ) can

e considered as a line segment function with ends designated by 

he individual components. It changes slope only at the character- 

stic points resulting from the applied σ function. Each component 

as two characteristic points: ( 
−θk 
y k 

, 0) and ( 
−θk +1 

y k 
, αk ) , which are

rojected onto u (x ) . Such a projection from the component func- 

ions on the output model for a single argument x is presented in 

ig. 6 . Function u (x ) is marked with a solid line resulting from the

ombination of three components marked with dashed lines. The 

ransformation conducted by Monotonic Block is general, not im- 

osing the limits on the ranges of its output values. This means 

hat, in particular, u j (0) ∈ R and u j (1) ∈ R ≥0 . To ensure that the

esults are interpretable, subsequent normalization to the desired 

ange, e.g., [0 , 1] , is needed. 

Function u (x ) , defined by Eq. (18) , can be presented as a neural

etwork with a single input value x . This value is copied L times

nd passed as the input to the linear layers, where it is scaled by 

eights y and shifted by bias θ . Then, the output from the input 
k k 

786 
ayer is transformed by the LeakyHard Sigmoid function and passed 

o the next linear layer. It must be ensured that the weights in all 

ayers are greater than zero to maintain the function’s monotonic- 

ty. The weights αk are initialized with positive values. If during 

raining some value falls below ε being an arbitrarily small positive 

alue, it is set to ε. In what follows, we will refer to the network

epresenting function u (x ) as Monotonic Block (see Fig. 7 ). It will

e used as a component of the three preference learning methods 

hat are presented in the following subsections. 

.5. ANN-UTADIS: preference learning with UTADIS and ANN 

UTADIS is a preference disaggregation method that quantifies a 

omprehensive quality of each alternative using an additive value 

unction ( Zopounidis & Doumpos, 20 0 0 ): 

(a i ) = 

m ∑ 

j=1 

w j u j (g j (a i )) , (19) 

here u j ∈ [0 , 1] is a marginal value function and w j is a weight

ssociated with criterion g j . Function U(a i ) takes values in the [0,1] 

ange, delimited by U(a −) = 0 and U(a + ) = 1 for anti-ideal and

deal alternatives, respectively. In UTADIS, u j is piecewise linear 

ith n j (A ) pre-defined characteristic points x k 
j 

such that: 

 j (x k j ) ≤ u j (x k +1 
j 

) , ∀ k ∈ { 1 , . . . , n j (A ) − 1 } , and ∀ j ∈ { 1 , . . . , m } . 
(20) 

he marginal values between these points are computed using 

inear interpolation. In UTADIS, the marginal values u j (x k 
j 
) in 

he characteristic points and weights w j are determined using 

athematical programming based on a set of assignment exam- 

les ( Zopounidis & Doumpos, 20 0 0 ). In turn, we will employ ANN

or deriving weights and the shape of marginal value functions 

ithout having to specify characteristic points. In this way, the 

ethod offers greater flexibility in fitting the learning data. 

The neural network used by ANN-UTADIS is shown in Fig. 8 . 

he performance on each criterion is transformed using Monotonic 
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Fig. 6. Function u (x ) representing the transformation conducted by the Monotonic Block with three ( L = 3 ) components. 

Monotonic Block

LeakyHardSigmoid Linear LayerLinear Layer
Input Output

Fig. 7. The Monotonic Block used in the preference learning algorithms based on ANNs. 

Monotonic Block

Monotonic Block

Linear Layer

...
...

Monotonic Block

Normalization
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Fig. 8. The architecture of the neural network employed by the ANN-UTADIS method. 
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locks according to Eq. (18) , adhering to the monotonicity con- 

traint. To use each Monotonic Block , it is required to provide the 

umber L of components. It constrains the maximum number of 

reakpoints for the resulting function (note that some components 

ay become inactive during optimization, i.e., when αk = 0 ). Then, 

he per-criterion marginal values are aggregated into a comprehen- 

ive value in line with Eq. (19) by a linear layer. Its weights w j are

onstrained to positive values to preserve the pre-defined prefer- 

nce directions. For the sake of normalization, we apply the min- 

ax scaling of comprehensive scores: 

c ANN-UTADIS (a i ) = 

U(a i ) − U(a −) 

U( a + ) − U(a −) 
. (21) 

The neural network used by ANN-UTADIS optimizes weights 

 j , class thresholds t , and parameters incorporated in the Mono- 

onic Blocks . In general, a marginal value function for each crite- 

ion may be modeled with a different number L of components. 

owever, we will use the same value of L for all criteria, which 

llows for a more straightforward parallelization of calculations 

n Eq. (18) by operations on tenors rather than on individual 

calars. Overall, the network for ANN-UTADIS involves one input 

ayer, three hidden layers, and one output layer. 

.6. ANN-PROMETHEE: preference learning with PROMETHEE and 

NN 

The PROMETHEE method aggregates the results of pairwise 

omparisons of each alternative against all remaining ones into 

 comprehensive measure of desirability ( Brans & De Smet, 

016 ). For each pair (a i , a k ) ∈ A × A and each criterion g j ∈ G , the

arginal preference degree is computed as follows: 

 j (a i , a k ) = P j 
(
d j (a i , a k ) 

)
, (22) 

here P j is a marginal preference function and d j (a i , a k ) = g j (a i ) −
 j (a k ) is the performance difference. In PROMETHEE, six pre- 

efined types of P j are considered. However, the most commonly 

sed is the following: 

 j (a i , a k ) = 

⎧ ⎨ 

⎩ 

0 , if d j (a i , a k ) ≤ q j , 
d j (a i ,a k ) −q j 

p j −q j 
, if 0 < d j (a i , a k ) ≤ p j , 

1 , if d j (a i , a k ) > p j , 

(23) 

here q j is an indifference threshold defining the maximal perfor- 

ance difference that is negligible and p j is a preference thresh- 

ld specifying the minimal performance difference justifying a 

trict preference. All preference functions in PROMETHEE are non- 

ecreasing. Also, they are normalized so that F j (a i , a k ) = 0 for

 j (a i , a k ) ≤ 0 and their largest value is one. The function type and

he respective parameter values for each criterion need to be pro- 

ided by the DM. The outcomes from the individual criteria are 

ggregated into a comprehensive preference index π(a i , a k ) using 

 weighted sum: 

(a i , a k ) = 

m ∑ 

j=1 

w j F j (a i , a k ) , (24) 

here w j ≥ 0 is a weight associated with criterion g j and 

 m 

j=1 w j = 1 . As a result, π(a i , a i ) = 0 , a i ∈ A and π(a + , a −) =
 , where a + and a − are the ideal and anti-ideal alternatives. 

uch preference degrees are further aggregated into the positive 

F S + (a i ) and negative NF S −(a i ) flows, using the NFS procedure: 

F S + (a i ) = 

1 

n − 1 

n ∑ 

k =1 

π(a i , a k ) and 

F S −(a i ) = 

1 

n − 1 

n ∑ 

k =1 

π(a k , a i ) . (25) 
788
he arguments in favour and against alternative a i are finally ag- 

regated into a comprehensive flow: 

F S(a i ) = NF S + (a i ) − NF S −(a i ) . (26)

n the proposed ANN-PROMETHEE method, we use monotonic 

arginal preference functions that are automatically adjusted to 

he training data, not requiring the specification of type, weights, 

r comparison thresholds. The architecture of the underlying neu- 

al network is presented in Fig. 9 . Following the assumptions 

f PROMETHEE, we first compute the performance differences 

 j (a i , a k ) on each criterion. The negative differences are clipped to 

ero via the ReLU function: 

eLU(x ) = max (x, 0) . (27) 

n this way, the non-positive performance differences will be as- 

igned the same value of the preference index. The values of 

arginal preference functions F j are computed using the Monotonic 

lock which ensures both monotonicity and flexibility of shape ad- 

ustment: 

 j (a i , a k ) = u j ( max (d j (a i , a k ) , 0)) . (28)

he marginal preference degrees are aggregated into a compre- 

ensive preference index using a linear layer with non-negative 

eights. Since weights and parameters of the Monotonic Block are 

ot constrained from the top, we normalize the comprehensive in- 

ices as follows: 

norm 

(a i , a k ) = 

π(a i , a k ) − π(a −, a −) 

π( a + , a −) − π(a −, a −) 
. (29) 

hen, the outcomes of pairwise comparisons are aggregated over 

ll alternatives into positive, negative, and comprehensive flows us- 

ng the Net Flow Score procedure: 

c ANN-PROMETHEE (a i ) = NF S + (a i ) − NF S −(a i ) 

= 

1 

n − 1 

[ 

n ∑ 

k =1 

πnorm 

(a i , a k ) − πnorm 

(a k , a i ) 

] 

. 

(30) 

he use of NFS implies that the preference degrees for all pairs 

f alternatives need to be computed in a batch. Moreover, simi- 

ar to the ANN-UTADIS, ANN-PROMETHEE requires specification of 

he number of components for each Monotonic Block . However, it is 

ecommended to use the same number L for all such blocks. Over- 

ll, the network for ANN-PROMETHEE involves one input layer, four 

idden layers, and one output layer. 

.7. ANN-ELECTRE: preference learning with ELECTRE and ANN 

The ELECTRE method compares the alternatives pairwise 

hrough an outranking relation ( Figueira et al., 2013 ). In what fol- 

ows, we discuss its adaptation for scoring the alternatives based 

n aggregating the sufficiently great outranking credibilities using 

he NFS procedure. We will consider two tests to compute the 

redibility for pair (a i , a k ) ∈ A × A . The concordance test quantifies

he arguments in favor of a i being at least as good as a k . The

arginal concordance index for criterion g j is computed as fol- 

ows: 

 j (a i , a k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f g j (a i ) ≥ g j (a k ) − q j , 
g j (a i )+ p j −g j (a k ) 

p j −q j 
, i f g j (a i ) < g j (a k ) − q j 

and g j (a i ) ≥ g j (a k ) − p j , 
0 , i f g j (a i ) < g j (a k ) − p j , 

(31) 

here q j and p j are, respectively, indifference and preference 

hresholds. Whichever the threshold values, c j (a i , a k ) = 1 for 

(a i ) ≥ g(a k ) . Moreover, c j (a i , a k ) is a monotonic and piecewise 
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Fig. 9. The architecture of the neural network employed by the ANN-PROMETHEE method. 
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inear function. The per-criteria results are aggregated into a com- 

rehensive concordance index C(a i , a k ) using a weighted sum: 

(a i , a k ) = 

m ∑ 

j=1 

w j c j (a i , a k ) , (32) 

here w j is a weight associated with g j and 

∑ m 

j=1 w j = 1 . Index

(a i , a k ) is interpreted as the strength of the coalition of criteria 

upporting the outranking. In turn, the discordance test verifies 

he strength of arguments against the outranking. In particular, a 

arginal discordance index is defined as follows: 

 j (a i , a k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f g j (a i ) ≤ g j (a k ) − v j , 
g j (a k ) −p j −g j (a i ) 

v j −p j 
, i f g j (a i ) > g j (a k ) − v j 

and g j (a i ) ≤ g j (a k ) − p j , 
0 , i f g j (a i ) > g j (a k ) − p j , 

(33) 

here v j is a veto threshold interpreted as the minimal perfor- 

ance difference im plying a com plete discordance. The thresholds 

eed to respect the following constraints: 0 ≤ q j ≤ p j < v j . Note 

hat the discordance effect does not to be considered for all g j ∈ G

ecause the power to veto against the outranking is usually at- 

ributed only to the most important criteria. We consider the ag- 

regation of partial discordances into a comprehensive one using 

he following function ( Mousseau & Dias, 2004 ): 

 (a i , a k ) = 1 − max 
j=1 , ... ,m 

D j (a i , a k ) . (34)

ence the maximal partial discordance over all criteria decides 

pon the comprehensive strength of arguments against the hy- 

othesis that a i outranks a k . Finally, the credibility degree is com- 

uted by multiplying the comprehensive concordance and discor- 

ance: 

(a i , a k ) = C(a i , a k ) · D (a i , a k ) . (35)

hus the greater the arguments in favor and the lesser the argu- 

ents against the outranking, the greater the credibility. To com- 

ute the score for each alternative, we will consider only suffi- 

iently great credibilities to avoid compensation between marginal 

rguments in favor or against a i being a favorable alternative. 

pecifically, we will consider only σ (a i , a k ) which are at least as

ood as cutting level λ such that 0 . 5 ≤ λ ≤ 1 . Finally, similar to the

ROMETHEE method, we compute the Net Flow Score for each al- 

ernative a i ∈ A : 

F S(a i ) = NF S + (a i ) − NF S −(a i ) 

= 

1 

n − 1 

[ 

n ∑ 

k =1 

σNF S (a i , a k ) − σNF S (a k , a i ) 

] 

, (36) 
789 
here σNF S (a i , a k ) = σ (a i , a k ) − λ if σ (a i , a k ) ≥ λ and

NF S (a i , a k ) = 0 , otherwise. Note that other realizations of 

NF S (a i , a k ) would also be possible. However, we opted for a 

ariant that keeps the spirit of ELECTRE while being intuitively 

seful in computing comprehensive scores of alternatives via NFS. 

In the proposed ANN-ELECTRE , we avoid direct specification 

f thresholds ( q j , p j and v j ), weights w j , and cutting level λ. In

urn, the parameters of an outranking-based sorting model are in- 

erred indirectly using the neural network whose architecture is 

resented in Fig. 10 . In the preprocessing phase, ANN computes 

he performance differences. Then, the calculations are split into 

wo parts responsible for conducting the concordance and discor- 

ance tests. These parts share the value of preference thresholds 

p j , j = 1 , . . . , m , to prevent the simultaneous occurrence of con-

ordance and discordance. These thresholds are optimized when 

raining the ANN while ensuring that p j ∈ [0 , 1] . 

In part responsible for the concordance test, the performance 

ifferences are truncated to positive values by the ReLU function 

see Eq. (27) ), and their order is reversed by subtracting them 

rom one. Since the performances on individual criteria are nor- 

alized in the [0,1] range, after the above transformation, we 

ill get one (corresponding to the maximal value of the concor- 

ance index) if g j (a i ) ≥ g j (a k ) , or a value in the [0,1] range, oth-

rwise. The obtained value is processed by the marginal concor- 

ance function u c 
j 

implemented by Monotonic Block , allowing for 

ts monotonic and flexible transformation as depicted in Fig. 11 (a). 

he marginal concordance should be zero if the performance dif- 

erence exceeds the preference threshold p j . This can be attained 

y subtracting the value of u c 
j 

attained for 1 − p j , i.e., u c 
j 
(1 − p j )

rom u c 
j 
(1 − ReLU(g j (a k ) − g j (a i ))) . The resulting difference should 

e truncated to positive values, e.g., using the ReLU function. How- 

ver, the lack of a gradient for the negative arguments of this func- 

ion makes it difficult to optimize values of preference thresholds 

p j , j = 1 , . . . , m . For this reason, we use the LeakyReLU function in-

tead which has a non-zero gradient for negative values equal to δ: 

eakyReLU(x ) = max (x, δx ) , (37) 

here δ is a slope angle for the negative part of the function. It 

hould take a small value and can be minimized to zero during 

ptimization. The result of these operations is shown in Fig. 11 (b). 

verall, the marginal concordance index c j (a i , a k ) is computed as 

ollows: 

 j (a i , a k ) = LeakyReLU p 

(
u 

c 
j 

(
1 − ReLU(g j (a k ) − g j (a i )) 

)
−u 

c 
j (1 − p j ) 

)
. (38) 

omprehensive concordance index C(a i , a k ) is calculated using 

q. (32) by a linear layer that incorporates criteria weights w j ≥ 0 . 
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Fig. 10. The architecture of the neural network employed by the ANN-ELECTRE method. 

(a) intermediate functions (b) final functions

Fig. 11. The marginal concordance and discordance functions for the ANN-ELECTRE method before (a) and after (b) subtracting the value attained for preference threshold 

p j and after transformation by LeakyReLU with δ = 0 . 01 . 
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inally, values of C(a i , a k ) are normalized to the [0,1] range, using

he min-max scaling: 

 norm 

(a i , a k ) = 

C(a i , a k ) − C(a −, a + ) 
C( a + , a −) − C(a −, a + ) 

. (39) 

The other part of the ANN-ELECTRE network is responsible for 

onducting the discordance test. It first truncates the performance 

ifferences to positive values, i.e., these for which g j (a k ) ≥ g j (a i ) .

hen, the result of such an operation is processed by function u D 
j 

odeled by the Monotonic Block to obtain marginal discordance in- 
790 
ex (see Fig. 11 a). To account for the preference threshold p j and 

educe the discordances to zero for performance differences be- 

ow this threshold, we subtract the value of u D 
j 

attained for p j , i.e.,

 

D 
j 
(p j ) , from u D 

j 
(ReLU(g j (a k ) − g j (a i ))) . Finally, the resulting differ-

nce is processed using the LeakyReLU function (see Fig. 11 b) in 

he following way: 

 j (a i , a k ) = LeakyReLU 

(
u 

D 
j (ReLU(g j (a k ) − g j (a i ))) − u 

D 
j (p j ) 

)
. 

(40) 
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omprehensive discordance index D (a i , a k ) is computed in line 

ith Eq. (34) and normalized to the [0,1] range: 

 norm 

(a i , a k ) = 

D (a i , a k ) − D (a + , a −) 

D ( a −, a + ) − D (a + , a −) 
. (41) 

verall, the largest value of the marginal discordance is one, which 

llows the method to adjust the test in such a way that the discor- 

ance is not necessarily modeled on all criteria. 

The results from the two parts of ANN responsible for the con- 

ordance and discordance tests are combined into the outranking 

redibility σ (a i , a k ) using Eq. (35) in the form of a multiplication 

ayer. To consider only sufficiently great credibilities, we should de- 

rease them by cutting level λ and transform the resulting nega- 

ive values to zero. However, since cutting level λ is a parameter 

earned during training, to allow for its more efficient optimization, 

e decided to transform the negative credibilities to values close 

o zero using the LeakyReLU function with a very small δ equal to 

.001: 

NF S (a i , a k ) = LeakyReLU(σ (a i , a k ) − λ) . (42) 

he positive and negative flows as well as comprehensive scores, 

enoted by Sc AN N −E LE CT RE ( a i ) , for all alternatives a i ∈ A are com-

uted in line with Eq. (36) . 

The hyperparameters of ANN-ELECTRE are the slope values δ
or the LeakyReLU function and the number L of components for 

onotonic Blocks . Similar to the previously discussed methods, to 

peed up the optimization process, we use the same value of L for 

ll criteria in the concordance and discordance parts of the net- 

ork. Overall, the network for ANN-ELECTRE involves one input 

ayer, five hidden layers, and one output layer. Hence its architec- 

ure involves the greatest number of layers and units among all 

ntroduced methods. 

. Optimization 

In this section, we discuss the process of determining pa- 

ameter values for the presented sorting models along with all 

he supporting techniques that accelerate this process. The role 

f optimization is to determine an optimal model highly consis- 

ent with the supplied/available assignment examples. Due to non- 

inear transformations, numerous relationships between values of 

ifferent parameters, and a large number of objects to be scored 

particularly for methods based on pairwise comparisons), the use 

f contemporary mathematical programming solvers is excluded 

ecause of their insufficient efficiency. Therefore, to determine the 

alues of model parameters, we use the iterative optimization 

ethods based on Gradient Descent (GD). There are many differ- 

nt techniques, called optimizers, used in ANN that are based on 

D. In this paper, we employ AdamW, which is the Adam opti- 

izer ( Kingma & Ba, 2014 ) with decoupled weight decay regular- 

zation ( Loshchilov & Hutter, 2018 ). 

The AdamW optimizer employs the following hyperparameters 

aving a significant impact on the training process, speed, and 

uality of an identified solution: 

• α – a learning rate that affects the size of the parameter cor- 

rection in an optimization step. Too low values imply slow 

learning and the possibility of getting stuck in the local op- 

timum too early, while too high values make it possible to 

omit the optimum and prevent the optimization from con- 

verging. 
• β1 and β2 – momentum factors determining the impact of 

historical improvement of parameters on the current step. 

Momentum is used to speed up and improve the optimiza- 

tion process by drawing conclusions from previous steps to 

determine a more stable optimization direction and less dy- 

namic response to perturbations during training. 
791 
• ε – a small value added to the denominator to stabilize the 

calculations. 
• w τ – a weight decay factor. 

The entire optimization process is presented as Algorithm 1 . 

lgorithm 1 Optimization algorithm using AdamW (adapted after 

oshchilov & Hutter, 2018 ). 

1: given α ∈ (0 , 1) , β1 = 0 . 9 , β2 = 0 . 999 , ε = 10 −8 , w τ = 0 . 01 , ξ ∈
(0 , 1) 

2: initialize epoch number τ ← 0 , parameter vector x τ=0 ∈ R 

n , 

first moment vector m τ=0 ← 0 , second moment vector v τ=0 ← 

0 

3: e v aluations ← g(A 

R ) 

4: input ← P reprocesing(e v aluations ) 

5: repeat 

6: τ ← τ + 1 

7: input noised ← input + N (0 , ξ ) 

8: g τ ← ∇Loss (Sc( x τ−1 , input noised )) 

9: m τ ← β1 m τ−1 + (1 − β1 ) g τ
0: v τ ← β2 v τ−1 + (1 − β2 ) g 

2 
τ

11: ˆ m τ ← m τ / (1 − βτ
1 
) 

2: ˆ v τ ← v τ / (1 − βτ
2 
) 

3: x τ ← x τ−1 − (α ˆ m τ / ( 
√ 

ˆ v τ + ε) + w τ x τ−1 ) 

4: until stopping criterion is met 

irst, all parameter values x τ=0 are initialized randomly accord- 

ng to the constraints imposed on specific parameter types. These 

arameters can be, e.g., weights w j , interaction coefficients w { j,l} 
nd class thresholds t for the ANN-Ch methods, whereas for ANN- 

LECTRE – these are αk , y k , θk from each Monotonic Block , weights 

 j , preference thresholds p j , cutting level λ, and class thresholds t . 

t the same time, all auxiliary variables for the optimization pro- 

ess, including an epoch number and moment vectors, are initial- 

zed (see line 2). 

We used two optimization techniques aimed at accelerating op- 

imization. The first one is Batch Gradient Descent (BGD), which 

alculates loss, gradient, and modifications of network parameter 

alues at once after processing all alternatives in A 

R (see line 3). 

t speeds up the entire optimization process and makes the final 

odel independent from the order of processing the alternatives. 

f it is impossible to use BGD, it is recommended to employ Mini 

atch Gradient Descent ( Ruder, 2016 ). This technique divides the 

raining set into subsets in each epoch and trains this subset at 

nce. In this case, the order of processing alternatives may affect 

he final result, but this impact will be negligible with sufficiently 

arge batches. 

The other method for reducing processing time is to prepare 

he input data in the preprocessing stage so that only operations 

sing network parameters are performed in each epoch (see line 

). For example, one assumes that the entry gets alternatives with 

erformances converted to the 0–1 range via min-max scaling. 

After the input data preprocessing stage, the actual optimiza- 

ion process takes place. It consists of the iterative improvement 

f the model parameters to minimize a comprehensive classifi- 

ation error. To increase the noise resistance, robustness of the 

odel, and its generalization capabilities, we used data augmen- 

ation ( Zheng, Song, Leung, & Goodfellow, 2016 ). It is a technique 

ainly used to reduce overfitting ( Shorten & Khoshgoftaar, 2019 ). 

t is about creating new training objects from the transformations 

f the original objects. The basic change is to add noise, e.g., in the 

orm of Gaussian noise N (0 , ξ ) , where ξ is the standard deviation,

eing an additional hyperparameter of the optimization process. 

ts application implies a slight change in alternatives performances, 

ifferent in each epoch (see line 7). 
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Table 1 

Values of criteria weights obtained for the ANN-based methods for the illus- 

trative example concerning the ERA dataset. 

Method w 1 w 2 w 3 w 4 

ANN-OWA 0.4257 0.0055 0.2225 0.3464 

ANN-Ch-Constr. 0.0693 0.0433 0.0000 0.0255 

ANN-Ch-Uncons. 0.0030 0.0039 0.0018 −0.0029 

ANN-Ch-Pos. 0.0060 0.0048 0.0021 0.0003 

ANN-TOPSIS 0.5799 0.7987 0.6676 0.5701 

ANN-UTADIS 0.3251 0.1663 0.4217 0.0869 

ANN-PROMETHEE 0.2126 0.4573 0.1591 0.1709 

ANN-ELECTRE (concordance) 0.5139 0.1955 0.2726 0.0180 

ANN-ELECTRE (discordance) 0.3029 0.0000 1.0000 0.2110 
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By propagating the input with noise through the successive lay- 

rs of the network in iteration τ with the current parameter values 

 τ−1 , scores Sc are computed for all reference alternatives A 

R . The 

esulting class assignments are compared with the desired ones, 

nd the respective loss is computed. Then, the loss is backprop- 

gated across all network layers, leading to gradient vectors g τ
see line 8). Subsequently, gradient transformation is performed for 

ach parameter to improve the optimization process (see lines 9–

2). The AdamW algorithm employs an adaptive learning rate for 

ach method parameter, using squared gradients to scale the learn- 

ng rate and moving momentum average. 

Finally, a new parameter value x τ is computed by combin- 

ng the current value with the identified correction. For this pur- 

ose, AdamW considers the previously prepared auxiliary vari- 

bles, learning rate, and weight decay (see line 13). The latter 

arameter controls the model’s regularization, imposing an addi- 

ional optimization goal that prevents the construction of accurate, 

hough incorrect, solutions with poor generalization capabilities. 

his may occur in the case of overfitting the model for the train- 

ng data or assigning parameter values that are hard to interpret 

in the case of ANNs, these are usually prohibitively large values). 

he weight decay mechanism adds a penalty, controlled by w τ , for 

he value of the parameters in each optimization step. 

Processing all alternatives and modifying the parameter values 

s called an epoch. Such a process is performed multiple times un- 

il the stopping condition is met. In our case, it occurs after 200 

raining epochs. The final parameter values are those for which the 

odel obtained the lowest error for the validation set during opti- 

ization. 

. Illustration of preference models inferred with neural 

etworks 

In this section, we illustrate the preference models inferred 

ith the proposed ANN-based methods. We consider a two-class 

roblem called ERA (Employee Rejection / Acceptance) ( Hall et al., 

009 ). It concerns a student survey regarding the willingness to 

ire an employee based on four features of a candidate, such as, 

.g., experience and verbal skills. All criteria are of gain type and 

ave been pre-processed as described in Section 4 . The models 

ere obtained by training the methods on 80% randomly chosen 

lternatives. The criteria weights obtained for all methods are pre- 

ented in Table 1 , whereas the interaction coefficients for the ANN- 

h algorithms are given in Table 2 . 

ANN-OWA By applying the ANN-OWA method, we obtained a 

odel parameterized with the weights shown in Table 1 . They re- 

ect the impact of each position in the sorted performance vector 

n the comprehensive score and assignment of each alternative. 

he highest performance on any criterion has the greatest impact 

n the results (almost 43% ), and the lowest performance is the sec- 

nd most important factor (almost 35% ). In contrast, the second- 

est performance has a negligible impact on the recommended as- 
792 
ignment (below 1% ). The two classes considered in the ERA prob- 

em are separated by threshold t 1 = 0 . 4114 with OWA taking values

etween 0 and 1. 

In what follows, we provide the models derived with different 

ariants of the Choquet integral-based algorithms. Unlike in the 

NN-OWA method, the weights from the linear layer correspond 

o the weights of individual criteria and interaction coefficient for 

airs of criteria. 

ANN-Ch-Constr Let us first consider the variant in which the cri- 

eria weights need to be positive, interactions can be either posi- 

ive or negative, but the negative interaction coefficients cannot be 

reater than the weights of the criteria involved in a given pair. 

he analysis of weights (see Table 1 ) indicates that the greatest im- 

act is attributed to the first criterion, whereas the third criterion 

as the least influence on the attained score. The values of the in- 

eraction coefficients are given in Table 2 . All coefficients but w { 1 , 4 } 
re positive. The greatest synergy effect is observed for g 1 and 

 2 as well as g 3 and g 4 . This means that the simultaneous pres- 

nce of highly preferred performances on these criteria pairs gives 

he alternative a bonus. Note that the weights retain the required 

ependencies and fulfill the constrain defined by Eq. (10) (e.g., 

 1 + w { 1 , 4 } = 0 . 0693 + −0 . 0255 ≥ 0 ). 

The actual significance of criterion g i in the Choquet integral 

an be represented by the Shapley value ϕ(i ) defined as fol- 

ows ( Angilella et al., 2013 ): 

(i ) = w i + 

∑ 

{ i,l}⊆G 

w { i,l} 
2 

. (43) 

or the considered model, we obtained the following coefficients: 

(1) = 0 . 2454 , ϕ(2) = 0 . 3409 , ϕ(3) = 0 . 2148 , and ϕ(4) = 0 . 1989 .

hey indicate that g 1 and g 4 are the most and the least important 

riteria, respectively. In addition, g 3 has a relatively high signifi- 

ance level ϕ(3) despite its zero weight w 3 . However, it is involved 

n multiple interacting pairs of criteria. Finally, the separating class 

hreshold is t 1 = 0 . 6117 . 

ANN-Ch-Uncons For the variant of ANN-Ch that considers both 

ositive and negative interactions, while allowing for a change in 

he direction of preference for a given criterion, the results are 

uite different. Based on the inferred weights (see Table 1 ), we 

onclude that g 2 and g 3 have, respectively, the greatest and the 

east individual impacts on the attained scores. Moreover, g 4 is 

ssigned a negative weight, meaning that preference learning led 

o the inversion of preference direction from gain to cost for this 

riterion. This may indicate possible inconsistencies in the data 

r suggest the need for incorporating additional constraints in 

he model. The interaction coefficients for all pairs of criteria are 

hown in Table 2 . Pair { g 1 , g 2 } has the greatest positive impact on

he attained score, giving a great bonus to alternatives with high 

erformances on both g 1 and g 2 . On the other extreme, w { 1 , 3 } is 

ery low, implying that the benefit from the coexistence of high 

alues on g 1 and g 3 is marginal. Furthermore, negative interactions 

an be observed for { g 1 , g 4 } and { g 2 , g 4 } . This suggests that it is

eneficial for alternatives to have a low value on at least one crite- 

ion in these two pairs, which most likely relates to g 4 , whose in-

ividual weight was already negative. The value of bias is 0.4486, 

erving to shift the sigmoid function and having no direct inter- 

retation. In this case, the value of a separating class threshold is 

 1 = 0 . 6117 . 

ANN-Ch-Pos The last variant of ANN-Ch assumed that both indi- 

idual weights and interaction coefficients need to be positive. This 

xcludes, e.g., negating the preference direction of g 4 , as suggested 

y the previous model. The analysis of weights (see Table 1 ) indi- 

ates the g 1 and g 2 are the most important criteria, whereas the 

mpact of g 4 is negligible. The crucial role of the first two criteria 

s emphasized by the highest value of the interaction coefficient 

or this pair. On the other extreme, g and g are not interacting, 
3 4 
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Table 2 

Values of criteria interaction coefficients obtained for the ANN-based methods using the 

Choquet integral for the illustrative example concerning the ERA dataset. 

Method w { 1 , 2 } w { 1 , 3 } w { 1 , 4 } w { 2 , 3 } w { 2 , 4 } w { 3 , 4 } 

ANN-Ch-Constr. 0.2859 0.0919 −0.0255 0.1374 0.1720 0.2003 

ANN-Ch-Uncons. 0.0042 0.0002 −0.0007 0.0022 −0.0021 0.0006 

ANN-Ch-Pos. 0.0043 0.0012 0.0008 0.0030 0.0006 0.0000 

(a) criterion g1 (b) criterion g2

(c) criterion g3 (d) criterion g4

Fig. 12. Marginal value functions scaled by criteria weights constructed by ANN-UTADIS for the ERA dataset. 
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eaning that the coexistence of high or low values on these crite- 

ia has no impact on the attained score. The precise value of inter- 

ction coefficients are shown in Table 2 . All above weights trans- 

ate into the following normalized Shapley values: ϕ(1) = 0 . 3962 , 

(2) = 0 . 3794 , ϕ(3) = 0 . 1819 , and ϕ(4) = 0 . 0425 . They confirm

hat g 1 and g 2 are the most influential criteria, whereas the role 

f g 4 is negligible. The threshold separating the two considered 

lasses on a scale of the Choquet integral is t 1 = 0 . 6173 . 

ANN-TOPSIS TOPSIS investigates the distance of each alterna- 

ive from the ideal and anti-ideal alternatives. For the considered 

roblem, the performances of these alternatives are as follows: 

 

+ = [1 , 1 , 1 , 1] and a − = [0 , 0 , 0 , 0] . Criterion g 2 has the greatest

mpact on the distances, whereas the influence of g 4 is the least 

see Table 1 ). However, the ratios between the criteria weights are 

uch lesser than in the case of the Choquet integral-based models, 

eaning that in TOPSIS, the importances of all criteria are more 

alanced. The threshold separating the less and more preferred 

lasses on the considered distance scale from 0 to 1 is t 1 = 0 . 4601 .

ANN-UTADIS The value-based model inferred by ANN-UTADIS 

onsists of marginal value functions for all criteria. Their shapes 

an be visualized based on the characteristic points of the Mono- 

onic Blocks , weights for the linear layer aggregating marginal val- 

es, and the normalization constraint for the weights. We used 20 

omponent functions (neurons in the hidden layer) in each of the 

onotonic Blocks . Thus the constructed functions can have up to 

0 characteristic points. The plots can be reconstructed by query- 

ng relevant parts of the ANN for the value assigned to artificially 

enerated input data. 
793
The marginal value functions are shown in Fig. 12 . The great- 

st maximal share in the comprehensive value is assigned to g 3 , 

hereas the lowest maximal share corresponds to g 4 (see Table 1 ). 

he marginal function for g 1 reveals minor differences for the per- 

ormances ranging from 0.6 to 0.8. In contrast, above 0.8, there is 

 rapid increase in marginal values, indicating a high preference 

or alternatives with the most preferred values on g 1 . For g 2 , the

arginal values assigned to performances lesser than 0.1 are close 

o zero. Above this level, the function’s shape, similar to the func- 

ion corresponding to g 3 , is nearly linear. In turn, for g 4 , the dif-

erences between the marginal values are significant for very low 

r very high performances, whereas the slope is less steep in the 

id-range. The threshold separating the two classes on a scale of 

 comprehensive value from 0 to 1 is t 1 = 0 . 4909 . 

ANN-PROMETHEE In the PROMETHEE-based method, the param- 

ter values of the network refer to pairwise comparisons of alter- 

atives, providing evidence on how much one of them is preferred 

o the other. In this case, we used 20 component functions in each 

f the Monotonic Blocks and reconstructed the marginal preference 

unctions similarly as for ANN-UTADIS. The plots in Fig. 13 are al- 

eady scaled by the criteria weights. 

The weight of g 2 is the greatest, whereas the importance coef- 

cients of g 3 and g 4 are much lesser (see Table 1 ). For all criteria

nd the non-positive performance differences, pref erence degrees 

re zero. Moreover, a small advantage of one alternative over an- 

ther does not imply the preference or the preference degree is 

ery marginal. For example, for g 4 – the preference functions starts 

o increase for difference greater than 0.12. Hence this value can be 
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(a) criterion g1 (b) criterion g2

(c) criterion g3 (d) criterion g4

Fig. 13. Marginal preference functions scaled by criteria weights constructed by ANN-PROMETHEE for the ERA dataset. 
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nterpreted as an indifference threshold. Furthermore, we do not 

bserve any level (constant) part above a certain value. Once the 

unction starts to increase, this trend is maintained till the very 

nd. Hence the preference threshold for all criteria is equal to one. 

he plots show that the greatest increase in the preference degree 

ccurs for the largest differences ( > 0 . 75 ), but for g 1 and g 4 , such

 steep slope is also observed for differences between 0.2 to 0.3. 

he threshold separating the two classes on a Net Flow Score scale 

rom −1 to 1 is t 1 = 0 . 

ANN-ELECTRE For the ELECTRE-like method, we analyze the con- 

ordance and discordance functions for each criterion. In this ap- 

roach, 30 components were used in each of the Monotonic Blocks . 

owever, as can be seen in Fig. 14 , most of them were deac-

ivated during training. This led to easily interpretable functions 

ith clearly distinguished thresholds for the performance differ- 

nce, implying the maximal value of either concordance or discor- 

ance. 

The marginal concordance and discordance functions presented 

n Fig. 14 were already normalized. Moreover, the concordance 

unctions were scaled by the weights (see Table 1 ). For ANN- 

LECTRE, there is no univocal information on the importance of 

ifferent criteria because the methods assigned different weights 

o the arguments in favor and against the outranking deriving from 

he same criterion. On the one hand, g 1 has the greatest impact in 

erms of supporting the truth of outranking, whereas the concor- 

ance weight of g 4 is the least. On the other hand, g 3 may have a

ery negative impact by strongly supporting discordance in case of 

arge performance differences against the outranking. The maximal 

iscordance on g 3 is one, hence zeroing the outranking credibility 

n case one alternative is vastly worse than another on this cri- 

erion. Furthermore, the discordance does not occur for g 2 , which 

an be interpreted as the lack of power of this criterion to veto 

gainst the outranking. 

When it comes to the marginal functions, for performance dif- 

erences greater or equal to zero, the concordance indices take 

n

794 
he maximal value of one (if the plot is unscaled) or concordance 

eight assigned to a given criterion (when considering a scaled 

lot as depicted in Fig. 14 ). For all criteria, an indifference thresh- 

ld is close to zero. It is also possible to distinguish the preference 

nd veto thresholds. When the performance difference exceeds the 

egated preference threshold, the concordance becomes positive, 

hereas if the performance difference is lesser than this thresh- 

ld, the discordance occurs (when veto is admitted for a given cri- 

erion). For g 3 , this threshold has a value of 0.2236. In turn, for g 1 ,

here is a large zone with no or very marginal concordance and 

iscordance. The concordance becomes positive for marginally neg- 

tive performance differences, whereas the discordance is above 

ero only when one alternative is worse than another by at least 

p 1 = 0 . 5940 . The preference thresholds directly optimized by the 

NN for g 2 and g 4 are 0.3329 and 0.3354. Finally, when the perfor- 

ance difference is greater than the veto threshold, the maximal 

iscordance on a given criterion occurs. The values of this thresh- 

ld for g 1 , g 3 , and g 4 are, respectively, around 0.93, 0.38, and 0.61. 

An important parameter inferred by ANN-ELECTRE is the cut- 

ing level λ. It was assigned a very high value of 0.95. This means

hat the arguments supporting the outranking need to be very 

trong, and the arguments against the outranking need to be none 

r negligible to support the inclusion of credibility in the Net Flow 

core computations performed by the method. The threshold sep- 

rating the rejection and acceptance classes on the scale between 

1 and 1 is t 1 = 0 . 

. Computational experiments 

To investigate the performance of the proposed methods, they 

ere applied to a set of binary sorting problems (see Table 3 ). The

atasets come from the UCI repository ( http://archive.ics.uci.edu/ 

l/ ) and the WEKA software ( Hall et al., 2009 ). The number of

riteria is between four and eight, whereas the number of alter- 

atives ranges from several dozen to several hundred. In Table 3 , 

http://archive.ics.uci.edu/ml/
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(a) criterion g1 (b) criterion g2

(c) criterion g3 (d) criterion g4

Fig. 14. Marginal concordance and discordance functions constructed by ANN-ELECTRE for the ERA dataset. 

Table 3 

Datasets considered in the experimental evaluation. 

Name Code No. of alternatives No. of criteria No. of pairwise comparisons 

Den Bosch DBS 120 8 14,280 

Computer Processing Units CPU 209 6 43,472 

Breast Cancer BCC 286 7 81,510 

Auto MPG MPG 392 7 153,272 

Employee Selection ESL 488 4 237,656 

Mammographic MMG 961 5 922,560 

Employee Rejection/Acceptance ERA 1000 4 999,000 

Lecturers Evaluation LEV 1000 4 999,000 

Car Evaluation CEV 1728 6 2,984,256 
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e include the information on the number of pairwise compar- 

sons that appear as input in outranking-based approaches such as 

NN-PROMETHEE and ANN-ELECTRE. 

The same set of problems was considered in Tehrani et al. 

2012) and Sobrie et al. (2019) . For a detailed description of each 

et, see Tehrani et al. (2012) . Some of them (MPG, MMG, and BCC)

nvolve nominal attributes that have been transformed into mono- 

onic criteria according to Tehrani et al. (2012) . This increases the 

ifficulty of the preference learning task for such problems as the 

ethods respecting the pre-defined preference directions need to 

eal with an arbitrarily imposed order which reduces their flexi- 

ility in fitting the model. 

To quantify the algorithms’ performance, we use two classifica- 

ion quality measures. The first one is a standard misclassification 

rror (0/1 loss), referring to the number of alternatives in A 

C ⊆ A 

hat the inferred model classifies incorrectly: 

 / 1 loss = 

1 

| A C | 
∑ 

a i ∈ A C 
CL error (a i ) , (44) 

here: 

L error (a i ) = 

{
1 , if Sc(a i ) < t C DM (a i ) , or Sc(a i ) ≥ t C DM (a i )+1 , 

0 , otherwise. 
(45) 
795 
he other measure is AUC, which – for a binary classification in- 

olving classes C 1 and C 2 – takes the following form: 

UC = 

∑ 

a i ∈ A C 1 
∑ 

a j ∈ A C 2 1 [ Sc(a i ) < Sc(a j )] 

| A C 1 || A C 2 | , (46) 

here: 

 [ Sc(a i ) < Sc(a j )] = 

{
1 , iff Sc(a i ) < Sc(a j ) , 
0 , else . 

(47) 

UC builds on the number of pairs of alternatives from different 

lasses for which the order of classes is reflected in the respec- 

ive scores, i.e., a comprehensive score of a i from the less preferred 

lass than the class of a j is lesser than Sc(a j ) . The measure is nor-

alized by the number of all pairs of alternatives from different 

lasses. Thus AUC indicates how many changes in the ranking im- 

osed by the comprehensive scores are needed to obtain an en- 

irely consistent outcome. 

In the following subsection, we report the experimental results 

or eight algorithms proposed in this paper. We compare them 

gainst the following state-of-the-art preference learning methods: 

• logistic regression (LR), which is a well-established statisti- 

cal classification method, using the linear model of the in- 

put attributes ( Hosmer et al., 20 0 0 ); while estimating the 
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parameters of the weighted sum model, it optimizes the 

log-likelihood function capturing the probability of observ- 

ing the desired classification for alternatives given the input 

data and the model; 
• Choquistic regression (CR), i.e., a generalization of LR in 

which the Choquet integral is used as the preference 

model ( Tehrani et al., 2012 ); when estimating values of its 

parameter, the algorithm also optimizes the log-likelihood 

function using a sequential quadratic programming approach 

implemented in Matlab; 
• kernel logistic regression with the polynomial kernel (KLR- 

ply) and a degree equal to two so that it models low-level 

interactions of criteria ( Tehrani et al., 2012 ); 
• kernel logistic regression with the Gaussian kernel (KLR-rbf) 

able to capture interactions of higher-order; note that KLR 

methods are extensions of LR that are flexible but not neces- 

sarily monotonic in the sense of preserving pre-defined pref- 

erence directions ( Tehrani et al., 2012 ); 
• the MORE algorithm that learns rule ensembles, adhering to 

monotonicity constraints, in which a single rule is treated as 

a subsidiary base classifier ( Dembczy ́nski et al., 2009 ); rule 

induction is performed by minimizing the sigmoid 0–1 loss 

function; 
• the LMT algorithm that induces tree-structured models con- 

taining logistic regression functions at the leaves ( Landwehr 

et al., 2003 ), while accounting for the least squared misclas- 

sification error; 
• the UTADIS method, which employs linear programming 

provided by the IBM ILOG CPLEX solver ( Sobrie et al., 2019 ) 

to infer a threshold-based value-driven sorting model us- 

ing piecewise linear marginal functions with three seg- 

ments ( Zopounidis & Doumpos, 20 0 0 ); it optimizes a mis- 

classification error defined as an average distance of alterna- 

tives’ comprehensive values from the value ranges delimited 

by the thresholds associated with their desired classes; the 

proposed ANN-based algorithms minimize the same objec- 

tive function; 
• the Mixed-Integer Program (MIP) for learning the param- 

eters of MR-Sort, which is a simplified variant of ELEC- 

TRE TRI-B, using a majority rule and boundary class pro- 

files ( Leroy et al., 2011 ); the model parameters are selected 

by minimizing the 0/1 loss using the IBM ILOG CPLEX solver; 
• the metaheuristic (META) for learning the parameters of MR- 

Sort ( Sobrie et al., 2019 ) which uses evolutionary algorithms 

and mathematical programming to select parameter values 

minimizing the 0/1 loss. 
• UTADIS-G, i.e., UTADIS employing general marginal value 

functions with the characteristic points corresponding to all 

unique performances ( Greco, Mousseau, & Słowi ́nski, 2010 ); 

the optimized objective is the same as for the standard 

UTADIS; the method has been implemented by the authors 

of this paper using the GLPK solver. 

.1. Estimation of hyperparameter values 

In Section 4 , we discussed the process of optimizing parame- 

er values taking into account hyperparameters. This section is de- 

oted to estimating the values of these hyperparameters as well as 

ther hyperparameters involved in the operations of the proposed 

reference learning algorithms that are needed to train the models 

uccessfully. 

To find the optimal values, we performed a grid search to verify 

he classification quality for different values. Specifically, we tested 

hree hyperparameters: 
796 
• learning rate α ∈ { 0 . 0 01 , 0 . 0 02 , 0 . 0 05 , 0 . 01 , 0 . 02 , 0 . 05 } (in

addition, for ANN-OWA, all variants of ANN-Ch, and ANN- 

TOPSIS, we considered { 0 . 1 , 0 . 2 , 0 . 5 } ); 
• the number L ∈ { 10 , 20 , 30 } of components used by Mono-

tonic Block for ANN-UTADIS, ANN-PROMETHEE, and ANN- 

ELECTRE – it is the only parameter whose value needs to 

be provided before training for these methods; 
• standard deviation ξ ∈ { 0 , 0 . 01 , 0 . 02 , 0 . 05 } of Gaussian noise

used in date augmentation, where 0 means there is no ad- 

ditional noise added to the input data in each optimization 

step. 

The range of a learning rate for ANN-OWA, ANN-Ch, and ANN- 

OPSIS was extended due to the existing trend in the prelimi- 

ary tests. They indicated that better results could be obtained 

or higher values of α. However, the extended tests revealed that 

his trend was valid only for a specific range of values, and after 

xceeding a certain threshold, the classification outcomes deterio- 

ated. 

In a single test, we considered precise values for each of the 

bove hyperparameters. The test was repeated 100 times for three 

izes of the training and test sets. They correspond to the scenarios 

here (i) the training set is small compared to the test set (20% 

s. 80%), (ii) both sets are equal in size (50% vs. 50%), and (iii) the

raining set contains a significant number of alternatives compared 

o the test set (80% vs. 20%), which is the most common setting. In 

ach run, the allocation of alternatives to the training and test sets 

as performed randomly and independently. The selected values 

f hyperparameters are the ones for which the best average value 

f the performance measure was obtained for the training set in a 

undredfold experiment described above. 

In the main paper, we present the results obtained for the ERA 

ataset for 80% of training data and the AUC measure (see Fig. 15 ).

he results for ANN-UTADIS were similar for different hyperparam- 

ter values, ranging from 0.7807 to 0.7935. The highest average 

core was obtained for α = 0 . 02 , L = 20 , and ξ = 0 . 02 . However,

hey cannot be claimed as the best hyperparameter values unan- 

mously. The Student’s T-test with a confidence level of 0.95 in- 

icated that the AUC mean was statistically indistinguishable for 

 out of 72 configurations. On the other extreme, the lowest AUC 

alue was observed for α = 0 . 001 , L = 10 , and ξ = 0 . 05 . There are

o strict trends here, however, it can be observed that the results 

or L = 20 and L = 30 are more often better than for L = 10 . 

For ANN-PROMETHEE, we observe a trend indicating that bet- 

er results are achieved for lesser values of learning rate and stan- 

ard deviation of the noise. The best AUC score (0.7840) is attained 

or α = 0 . 005 , L = 10 , ξ = 0 . 0 , being, however, statistically indistin-

uishable for 41 out of 72 configurations. In turn, the best results 

or the ANN-ELECTRE are achieved for a learning rate of 0.01 and 

.02. At the same time, the greater the learning rate and lower 

oise std, the better the results. The number L of components has 

o significant influence on the results. The best combination of pa- 

ameters is α = 0 . 01 , L = 30 , and ξ = 0 . 0 with mean AUC 0.7678

we noted 20 other statistically indistinguishable configurations). 

For ANN-Ch-Uncons., we observe the greatest differences in 

lassification outcomes among all methods. For different values of 

yperparameters, AUC ranges between 0.6387 and 0.7872. The best 

utcomes are obtained for learning rates between 0.01 and 0.2. 

he highest average score was obtained for α = 0 . 05 and ξ = 0 . 02 .

owever, no statistically sound difference between means was ob- 

erved for the other 13 out of 36 vectors of hyperparameter values. 

lso, for ANN-Ch-Uncons, we did not observe a noticeable impact 

f the input noise on the final results. 

Similar trends occur for the remaining methods, i.e., the value 

f a learning rate for which the best results are obtained is: for 

NN-Ch-Pos. – between 0.02 and 0.1, for ANN-TOPSIS – between 
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(a) ANN-UTADIS (b) ANN-PROMETHEE (c) ANN-ELECTRE

(d) ANN-Ch-Uncons. (e) ANN-Ch-Pos. (f) ANN-Ch-Constr.

(g) ANN-OWA (h) ANN-TOPSIS

Fig. 15. The AUC value attained for the training set by various methods for different hyperparameter values for the ERA dataset. 
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.05 and 0.2, for ANN-Ch-Constr – it is above 0.1, and for ANN- 

WA – it is equal to 0.5. The best configurations for these methods 

re: for ANN-Ch-Pos. – α = 0 . 05 and ξ = 0 . 05 , for ANN-TOPSIS –

= 0 . 1 and ξ = 0 . 02 , for ANN-Ch-Constr – α = 0 . 2 and ξ = 0 . 05 ,

nd for ANN-OWA – α = 0 . 5 and ξ = 0 . 05 . 

The above conclusions hold only for the ERA dataset. For some 

ther sets, the dependencies differed. The respective figures are 

resented in the e-Appendix (supplementary material available on- 

ine). 

.2. Experimental results in terms of AUC and 0/1 loss 

In this section, we report the experimental results for 17 ap- 

roaches, including eight proposed in this paper. All experiments 

ere carried out on a single CPU 2300MHz Intel(R) Xeon(R) E5- 

650 v3 using Python 3.6 and the Pytorch 1.2.0 library. The training 

imes are shown in the e-Appendix. The outcomes for the state-of- 

he-art methods are derived from Tehrani et al. (2012) and Sobrie 

t al. (2019) . 

In Tables 4–6 , we report the mean AUC values for nine bench- 

ark datasets and different proportions of the training and test 

ets. For each approach, we provide the standard deviation, rank 
797 
ccording to the mean for a given problem, and an average rank 

or all datasets (see the last column). A few missing values in the 

ables for MIP indicate that this approach was not able to find a 

olution within a pre-defined time limit. In what follows, we will 

iscuss in detail the results obtained for 80% share of the training 

et (see Table 6 ). Then, we will indicate the major differences for 

he remaining two settings. 

Let us start by discussing the specificity of different datasets. In 

eneral, the best AUC values were attained for CPU, ESL, DBS, and 

EV. For example, the mean AUC values for ANN-UTADIS for these 

our datasets were 0.9998, 0.9885, 0.9676, and 0.9410, whereas the 

espective means attained by ANN-ELECTRE were 0.9998, 0.9600, 

.9893, and 0.8786. Such high-quality scores for CPU or ESL indi- 

ate that the best-performing approaches assigned such compre- 

ensive scores to the alternatives that inversed the original pref- 

rence relation only for a few or several pairs in the testing sets. 

n the other extreme, the least AUC values were observed for BCC 

nd ERA. For these problems, ANN-UTADIS attained average val- 

es equal to 0.7830 and 0.7957, whereas for ANN-ELECTRE – these 

ere 0.7497 and 0.7695. This means that the input and output 

rders were not consistent for about 20–25% of pairs in the test 

et. Such differences confirm that the considered datasets posed 
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Table 4 

Classification performance in terms of the mean and standard deviation of AUC for 20% training data and 80% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 9159 ± 0 . 0230 (8) 0 . 9979 ± 0 . 0024 (1) 0 . 7513 ± 0 . 0158 (4) 0 . 8870 ± 0 . 0086 (9) 0 . 9839 ± 0 . 0030 (4) 0 . 7844 ± 0 . 0081 (1) 0 . 8955 ± 0 . 0066 (2) 0 . 9384 ± 0 . 0041 (8) 0 . 8769 ± 0 . 0118 (13) 5.56 

ANN-PROMETHEE 0 . 9289 ± 0 . 0224 (3) 0 . 9918 ± 0 . 0089 (3) 0 . 7524 ± 0 . 0162 (2) 0 . 8750 ± 0 . 0088 (10) 0 . 9840 ± 0 . 0030 (3) 0 . 7801 ± 0 . 0087 (2) 0 . 8923 ± 0 . 0075 (5) 0 . 8919 ± 0 . 0060 (15) 0 . 8869 ± 0 . 0162 (8) 5.67 

ANN-Ch-Uncons. 0 . 9181 ± 0 . 0150 (6) 0 . 9798 ± 0 . 0082 (9) 0 . 7292 ± 0 . 0211 (8) 0 . 9640 ± 0 . 0089 (6) 0 . 9835 ± 0 . 0037 (5) 0 . 7758 ± 0 . 0081 (4) 0 . 8930 ± 0 . 0069 (3) 0 . 9685 ± 0 . 0026 (6) 0 . 8866 ± 0 . 0075 (11) 6.44 

ANN-Ch-Pos. 0 . 9202 ± 0 . 0161 (5) 0 . 9751 ± 0 . 0072 (11) 0 . 7495 ± 0 . 0187 (5) 0 . 7394 ± 0 . 0614 (17) 0 . 9834 ± 0 . 0029 (6) 0 . 7771 ± 0 . 0076 (3) 0 . 8929 ± 0 . 0059 (4) 0 . 9284 ± 0 . 0038 (11) 0 . 8868 ± 0 . 0128 (9) 7.89 

ANN-Ch-Constr 0 . 9164 ± 0 . 0242 (7) 0 . 9806 ± 0 . 0073 (8) 0 . 7515 ± 0 . 0169 (3) 0 . 8451 ± 0 . 0147 (12) 0 . 9848 ± 0 . 0030 (2) 0 . 7721 ± 0 . 0094 (5) 0 . 8918 ± 0 . 0059 (6) 0 . 9344 ± 0 . 0071 (9) 0 . 8920 ± 0 . 0081 (4) 6.22 

ANN-ELECTRE 0 . 9285 ± 0 . 0210 (4) 0 . 9971 ± 0 . 0038 (2) 0 . 7325 ± 0 . 0177 (6) 0 . 8540 ± 0 . 0219 (11) 0 . 9854 ± 0 . 0023 (1) 0 . 7640 ± 0 . 0094 (9) 0 . 8852 ± 0 . 0077 (10) 0 . 8753 ± 0 . 0160 (16) 0 . 8960 ± 0 . 0119 (2) 6.78 

ANN-OWA 0 . 9077 ± 0 . 0161 (10) 0 . 9411 ± 0 . 0110 (17) 0 . 7533 ± 0 . 0180 (1) 0 . 6514 ± 0 . 0159 (18) 0 . 9808 ± 0 . 0029 (7) 0 . 7654 ± 0 . 0074 (8) 0 . 8688 ± 0 . 0064 (14) 0 . 7240 ± 0 . 0070 (17) 0 . 8897 ± 0 . 0057 (5) 10.78 

ANN-TOPSIS 0 . 8919 ± 0 . 0191 (12) 0 . 9130 ± 0 . 0191 (18) 0 . 7243 ± 0 . 0139 (9) 0 . 9533 ± 0 . 0046 (7) 0 . 7806 ± 0 . 0112 (18) 0 . 7369 ± 0 . 0076 (14) 0 . 8137 ± 0 . 0073 (17) 0 . 9655 ± 0 . 0028 (7) 0 . 8527 ± 0 . 0080 (17) 13.22 

CR 0 . 9290 ± 0 . 0322 (2) 0 . 9822 ± 0 . 0121 (5) 0 . 6400 ± 0 . 0641 (18) 0 . 9788 ± 0 . 0160 (1) 0 . 9670 ± 0 . 0074 (12) 0 . 7669 ± 0 . 0334 (6) 0 . 8971 ± 0 . 0098 (1) 0 . 9825 ± 0 . 0080 (3) 0 . 8867 ± 0 . 0123 (10) 6.44 

LR 0 . 8866 ± 0 . 0511 (14) 0 . 9806 ± 0 . 0124 (7) 0 . 6970 ± 0 . 0411 (12) 0 . 9675 ± 0 . 0068 (5) 0 . 9721 ± 0 . 0060 (8) 0 . 7602 ± 0 . 0331 (11) 0 . 8905 ± 0 . 0081 (7) 0 . 9332 ± 0 . 0033 (10) 0 . 8962 ± 0 . 0080 (1) 8.33 

KLR-ply 0 . 9359 ± 0 . 0218 (1) 0 . 9716 ± 0 . 0072 (13) 0 . 6509 ± 0 . 0568 (17) 0 . 9704 ± 0 . 0075 (4) 0 . 9638 ± 0 . 0106 (13) 0 . 7555 ± 0 . 0139 (12) 0 . 8870 ± 0 . 0094 (8) 0 . 9818 ± 0 . 0058 (5) 0 . 8552 ± 0 . 0203 (16) 9.89 

KLR-rbf 0 . 9053 ± 0 . 0433 (11) 0 . 9843 ± 0 . 0116 (4) 0 . 7124 ± 0 . 0290 (11) 0 . 9741 ± 0 . 0055 (3) 0 . 9705 ± 0 . 0099 (9) 0 . 7662 ± 0 . 0098 (7) 0 . 8860 ± 0 . 0128 (9) 0 . 9821 ± 0 . 0076 (4) 0 . 8938 ± 0 . 0121 (3) 6.78 

MORE 0 . 8731 ± 0 . 0481 (16) 0 . 9749 ± 0 . 0235 (12) 0 . 6639 ± 0 . 0567 (15) 0 . 9501 ± 0 . 0263 (8) 0 . 9466 ± 0 . 0484 (17) 0 . 7198 ± 0 . 0329 (17) 0 . 8137 ± 0 . 0621 (18) 0 . 9888 ± 0 . 0063 (2) 0 . 8754 ± 0 . 0274 (14) 13.22 

LMT 0 . 9151 ± 0 . 0228 (9) 0 . 9816 ± 0 . 0113 (6) 0 . 7310 ± 0 . 0675 (7) 0 . 9753 ± 0 . 0092 (2) 0 . 9696 ± 0 . 0086 (11) 0 . 7619 ± 0 . 0160 (10) 0 . 8797 ± 0 . 0182 (11) 0 . 9902 ± 0 . 0042 (1) 0 . 8890 ± 0 . 0259 (6) 7.00 

META 0 . 8761 ± 0 . 0462 (15) 0 . 9531 ± 0 . 0247 (15) 0 . 6810 ± 0 . 0458 (13) 0 . 8337 ± 0 . 0291 (13) 0 . 9569 ± 0 . 0114 (15) 0 . 7256 ± 0 . 0238 (16) 0 . 8530 ± 0 . 0258 (15) 0 . 8968 ± 0 . 0116 (14) 0 . 8828 ± 0 . 0129 (12) 14.22 

MIP 0 . 8637 ± 0 . 0463 (17) 0 . 9497 ± 0 . 0262 (16) 0 . 7155 ± 0 . 0365 (10) 0 . 8215 ± 0 . 0368 (15) 0 . 9510 ± 0 . 0166 (16) 0 . 7182 ± 0 . 0328 (18) 0 . 8424 ± 0 . 0291 (16) - 0 . 8877 ± 0 . 0151 (7) 14.78 

UTADIS 0 . 8886 ± 0 . 0496 (13) 0 . 9789 ± 0 . 0283 (10) 0 . 6650 ± 0 . 0527 (14) 0 . 8162 ± 0 . 0335 (16) 0 . 9704 ± 0 . 0095 (10) 0 . 7409 ± 0 . 0175 (13) 0 . 8707 ± 0 . 0146 (12) 0 . 9235 ± 0 . 0183 (13) 0 . 8650 ± 0 . 0294 (15) 12.89 

UTADIS-G 0 . 8564 ± 0 . 0507 (18) 0 . 9552 ± 0 . 0366 (14) 0 . 6617 ± 0 . 0489 (16) 0 . 8314 ± 0 . 0328 (14) 0 . 9636 ± 0 . 0122 (14) 0 . 7307 ± 0 . 0233 (15) 0 . 8705 ± 0 . 0134 (13) 0 . 9269 ± 0 . 0149 (12) 0 . 8474 ± 0 . 0284 (18) 14.89 

Table 5 

Classification performance in terms of the mean and standard deviation of AUC for 50% training data and 50% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 9399 ± 0 . 0292 (4) 0 . 9991 ± 0 . 0017 (1) 0 . 7632 ± 0 . 0307 (3) 0 . 8911 ± 0 . 0164 (9) 0 . 9859 ± 0 . 0047 (3) 0 . 7880 ± 0 . 0144 (1) 0 . 8996 ± 0 . 0100 (4) 0 . 9395 ± 0 . 0060 (8) 0 . 8815 ± 0 . 0162 (14) 5.22 

ANN-PROMETHEE 0 . 9446 ± 0 . 0266 (2) 0 . 9971 ± 0 . 0044 (3) 0 . 7636 ± 0 . 0336 (2) 0 . 8746 ± 0 . 0180 (10) 0 . 9856 ± 0 . 0042 (4) 0 . 7839 ± 0 . 0136 (2) 0 . 8946 ± 0 . 0131 (8) 0 . 8960 ± 0 . 0099 (14) 0 . 8874 ± 0 . 0168 (11) 6.22 

ANN-Ch-Uncons. 0 . 9301 ± 0 . 0234 (8) 0 . 9890 ± 0 . 0060 (8) 0 . 7517 ± 0 . 0252 (6) 0 . 9713 ± 0 . 0084 (6) 0 . 9855 ± 0 . 0045 (5) 0 . 7823 ± 0 . 0163 (3) 0 . 8974 ± 0 . 0110 (5) 0 . 9707 ± 0 . 0036 (6) 0 . 8923 ± 0 . 0124 (8) 6.11 

ANN-Ch-Pos. 0 . 9303 ± 0 . 0254 (7) 0 . 9821 ± 0 . 0082 (13) 0 . 7560 ± 0 . 0359 (5) 0 . 7538 ± 0 . 0489 (16) 0 . 9844 ± 0 . 0048 (6) 0 . 7816 ± 0 . 0148 (4) 0 . 8963 ± 0 . 0101 (6) 0 . 9302 ± 0 . 0060 (13) 0 . 8878 ± 0 . 0167 (10) 8.89 

ANN-Ch-Constr 0 . 9299 ± 0 . 0299 (9) 0 . 9865 ± 0 . 0056 (11) 0 . 7641 ± 0 . 0314 (1) 0 . 8494 ± 0 . 0224 (12) 0 . 9870 ± 0 . 0039 (1) 0 . 7769 ± 0 . 0138 (5) 0 . 8957 ± 0 . 0105 (7) 0 . 9357 ± 0 . 0088 (10) 0 . 8952 ± 0 . 0113 (7) 7.00 

ANN-ELECTRE 0 . 9416 ± 0 . 0251 (3) 0 . 9988 ± 0 . 0020 (2) 0 . 7318 ± 0 . 0368 (9) 0 . 8536 ± 0 . 0218 (11) 0 . 9864 ± 0 . 0042 (2) 0 . 7652 ± 0 . 0150 (11) 0 . 8869 ± 0 . 0110 (11) 0 . 8751 ± 0 . 0192 (16) 0 . 9019 ± 0 . 0128 (1) 7.33 

ANN-OWA 0 . 9117 ± 0 . 0296 (15) 0 . 9447 ± 0 . 0138 (17) 0 . 7568 ± 0 . 0336 (4) 0 . 6575 ± 0 . 0281 (17) 0 . 9816 ± 0 . 0049 (7) 0 . 7665 ± 0 . 0150 (10) 0 . 8714 ± 0 . 0119 (15) 0 . 7236 ± 0 . 0113 (17) 0 . 8920 ± 0 . 0112 (9) 12.33 

ANN-TOPSIS 0 . 9082 ± 0 . 0284 (16) 0 . 9193 ± 0 . 0176 (18) 0 . 7402 ± 0 . 0293 (7) 0 . 9545 ± 0 . 0097 (8) 0 . 7844 ± 0 . 0262 (18) 0 . 7416 ± 0 . 0171 (14) 0 . 8203 ± 0 . 0125 (17) 0 . 9662 ± 0 . 0033 (7) 0 . 8569 ± 0 . 0119 (16) 13.44 

CR 0 . 9341 ± 0 . 0228 (5) 0 . 9920 ± 0 . 0073 (6) 0 . 6912 ± 0 . 0469 (15) 0 . 9818 ± 0 . 0075 (1) 0 . 9720 ± 0 . 0084 (12) 0 . 7705 ± 0 . 0310 (9) 0 . 9098 ± 0 . 0103 (1) 0 . 9912 ± 0 . 0024 (4) 0 . 9003 ± 0 . 0132 (2) 6.11 

LR 0 . 9191 ± 0 . 0293 (11) 0 . 9914 ± 0 . 0056 (7) 0 . 7184 ± 0 . 0367 (11) 0 . 9803 ± 0 . 0084 (3) 0 . 9764 ± 0 . 0062 (8) 0 . 7633 ± 0 . 0241 (12) 0 . 8935 ± 0 . 0113 (9) 0 . 9362 ± 0 . 0071 (9) 0 . 8972 ± 0 . 0125 (5) 8.33 

KLR-ply 0 . 9492 ± 0 . 0198 (1) 0 . 9771 ± 0 . 0109 (14) 0 . 7001 ± 0 . 0396 (12) 0 . 9776 ± 0 . 0083 (4) 0 . 9726 ± 0 . 0080 (11) 0 . 7740 ± 0 . 0148 (7) 0 . 8999 ± 0 . 0120 (3) 0 . 9950 ± 0 . 0019 (2) 0 . 8962 ± 0 . 0140 (6) 6.67 

KLR-rbf 0 . 9174 ± 0 . 0316 (13) 0 . 9925 ± 0 . 0056 (5) 0 . 7294 ± 0 . 0344 (10) 0 . 9752 ± 0 . 0068 (5) 0 . 9754 ± 0 . 0070 (9) 0 . 7745 ± 0 . 0141 (6) 0 . 9012 ± 0 . 0128 (2) 0 . 9907 ± 0 . 0031 (5) 0 . 8995 ± 0 . 0091 (3) 6.44 

MORE 0 . 9179 ± 0 . 0403 (12) 0 . 9873 ± 0 . 0149 (10) 0 . 6980 ± 0 . 0586 (13) 0 . 9563 ± 0 . 0313 (7) 0 . 9557 ± 0 . 0301 (17) 0 . 7215 ± 0 . 0381 (17) 0 . 8185 ± 0 . 0580 (18) 0 . 9921 ± 0 . 0042 (3) 0 . 8839 ± 0 . 0305 (13) 12.22 

LMT 0 . 9259 ± 0 . 0289 (10) 0 . 9883 ± 0 . 0077 (9) 0 . 7387 ± 0 . 0656 (8) 0 . 9814 ± 0 . 0074 (2) 0 . 9707 ± 0 . 0120 (14) 0 . 7719 ± 0 . 0144 (8) 0 . 8920 ± 0 . 0164 (10) 0 . 9977 ± 0 . 0017 (1) 0 . 8976 ± 0 . 0153 (4) 7.33 

META 0 . 9074 ± 0 . 0366 (17) 0 . 9701 ± 0 . 0140 (15) 0 . 6929 ± 0 . 0398 (14) 0 . 8337 ± 0 . 0231 (14) 0 . 9640 ± 0 . 0099 (15) 0 . 7366 ± 0 . 0233 (16) 0 . 8721 ± 0 . 0147 (14) 0 . 8960 ± 0 . 0073 (15) 0 . 8862 ± 0 . 0138 (12) 14.67 

MIP 0 . 8998 ± 0 . 0336 (18) 0 . 9645 ± 0 . 0194 (16) – – 0 . 9563 ± 0 . 0114 (16) 0 . 7167 ± 0 . 0274 (18) 0 . 8511 ± 0 . 0219 (16) – – 17.33 

UTADIS 0 . 9325 ± 0 . 0345 (6) 0 . 9940 ± 0 . 0131 (4) 0 . 6650 ± 0 . 5270 (16) 0 . 8272 ± 0 . 0243 (15) 0 . 9747 ± 0 . 0116 (10) 0 . 7437 ± 0 . 0211 (13) 0 . 8746 ± 0 . 0137 (12) 0 . 9339 ± 0 . 0138 (11) 0 . 8667 ± 0 . 0385 (15) 11.33 

UTADIS-G 0 . 9117 ± 0 . 0332 (14) 0 . 9830 ± 0 . 0201 (12) 0 . 6571 ± 0 . 0524 (17) 0 . 8456 ± 0 . 0205 (13) 0 . 9714 ± 0 . 0069 (13) 0 . 7388 ± 0 . 0187 (15) 0 . 8738 ± 0 . 0134 (13) 0 . 9329 ± 0 . 0114 (12) 0 . 8439 ± 0 . 0253 (17) 14.00 
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799
arious challenges to the preference learning algorithms. In the e- 

ppendix, we discuss various characteristics that partially explain 

uch results. For example, CPU involves six criteria, each with at 

east several different performances, and no single violation of the 

ominance or indistinguishability relation in the desired assign- 

ents. Analogously, the desired assignments for ESL agree with the 

ominance relation for the vast majority of pairs of alternatives, 

nd only a tiny share of pairs are inconsistent with the dominance 

r indistinguishability. On the other extreme, the seven criteria for 

CC involve just a few different performances, and almost 7% of all 

airs of alternatives assigned to different classes violate the domi- 

ance. 

Also, some datasets differentiated the considered sorting meth- 

ds better than others. The greatest differences between mean AUC 

alues were observed for MPG (for CR – 9855 and for ANN-OWA –

614), CEV (for LMT – 0.9993 and for ANN-OWA – 0.7304), ESL (for 

NN-ELECTRE – 0.9893 and for ANN-TOPSIS – 0.7911). This con- 

rms that their specificity posed a significantly greater challenge 

o some approaches. On the contrary, the least differences were 

oted for DBS (for ANN-UTADIS – 0.9676 and for META – 0.9019) 

nd CPU (for ANN-UTADIS – 0.9998 and for ANN-TOPSIS – 0.9318). 

till, even for these benchmark problems, it was possible to distin- 

uish the subsets of clearly better- or worse-performing methods. 

The most favorable average ranks implied by the mean AUC 

easures for the nine datasets are attained by: 

• ANN-UTADIS (4.89), which attains the best results for DBS, 

CPU, and ERA, positions in the top four for other three prob- 

lems, and is ranked outside the top ten only for MMG; 
• ANN-Ch-Uncons. (5.00), which is the most advantageous for 

BCC, while never dropping outside the upper half of the 

ranking; note that this method has a competitive advan- 

tage of not having to respect the pre-defined preference di- 

rections, which is particularly useful for datasets such as 

BCC (1st rank), MPG (5th rank), and MMG (7th rank), for 

which some originally nominal attributes have been arbitrar- 

ily transformed to monotonic criteria in Tehrani et al. (2012) ; 
• CR (5.67), which attains the highest mean AUC for MPG, 

LEV, and MMG, while being ninth or lower for four other 

datasets; 
• KLR-rbf (6.11), attaining ranks between second for CEV and 

eleventh for BCC; 
• ANN-PROMETHEE (6.67), ranked in the top four for most 

datasets. 

On the other extreme, the worst average ranks are attained by 

IP (17.11), META (14.67), UTADIS-G (13.56), ANN-TOPSIS (12.89), 

ORE (12.44), ANN-OWA (12.22), and UTADIS (11.33). Hence, 

nly ANN-OWA and ANN-TOPSIS achieved relatively worse results 

mong the proposed algorithms. This can be attributed to simple 

reference models employed by these methods. 

Following Tehrani et al., (2012) , we applied the statistical tests 

o verify the significance of the performance differences. The Fried- 

an test allowed us to reject the null hypothesis on all methods 

erforming equally for all sizes of the training set and both con- 

idered measures (AUC and 0/1 loss). The detailed outcomes of a 

ost hoc analysis for all pairs of algorithms conducted using the 

emenyi and Wilcoxon tests with a confidence level of 90% are 

iscussed in the e-Appendix. In what follows, we directly com- 

are pairwise only the approaches using similar preference mod- 

ls. When claiming that some performance difference in terms of 

UC is significant, this is confirmed by the result of the Nemenyi 

est applied to a subset of algorithms using related models. 

ANN-UTADIS performs significantly better than UTADIS (the 

ilcoxon test) and UTADIS-G (the Wilcoxon and Nemenyi tests) 

ased on mathematical programming. The reasons are as follows. 

irst, minimizing the sum of regrets by UTADIS and UTADIS-G does 
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ot correspond to the perspective captured by AUC. Also, the use 

f Monotonic Block by ANN-UTADIS gives a chance for inferring 

ery flexible marginal value functions with characteristic points 

etter fitting the input data. In turn, data augmentation prevents 

he model overfitting that occurs with UTADIS-G. 

When it comes to outranking-based methods, ANN-PROMETHEE 

ignificantly outperforms MIP and META, which learn the param- 

ters of the MR-Sort model using, respectively, Mixed Integer Pro- 

ramming and a dedicated heuristic. Furthermore, ANN-ELECTRE 

ttains significantly better results than MIP. The ANN-based meth- 

ds proposed in this paper use the NFS procedure, threshold-based 

orting method, and flexible marginal preference, concordance, and 

iscordance functions. In turn, the model used in MR-Sort is more 

omplex with the boundary profiles whose performances need to 

e determined by the method and concordance functions without 

ones of indifference and weak preference, hence offering lesser 

exibility. 

The results attained for all algorithms using the Choquet inte- 

ral model (i.e., three variants of ANN-Ch and CR) are very similar 

or DBS, CPU, ESL, LEV, and MMG. For BBC and ERA, CR was worse 

han the ANN-based methods. In turn, ANN-Ch-Constr. and ANN- 

h-Pos. were outperformed by CR on MPG and CEV. The variant 

ithout any constraint on the weights performed better for these 

hallenging datasets because it could fit the data even better by 

nversing the pre-defined preference directions via assigning the 

egative weights. Overall, the Nemenyi test confirmed that ANN- 

h-Uncons. and CR were significantly better than ANN-Ch-Pos. 

When it comes to logistic regression methods, KLR-ply and KLR- 

bf perform, on average, better than LR. This is due to the non- 

onotonic KLR methods being able to capture low- (ply) or high- 

evel (rbf) interactions. However, according to the Wilcoxon test, 

he statistically significant difference is observed only for KLR-rbf 

nd LR. Moreover, the slight advantage of KLR methods is not im- 

lied by admitting non-monotonicity for datasets that originally 

nvolved nominal criteria (e.g., for MPG and MMG, LR attains better 

esults than both KLR-rbf and KLR-ply). 

The observations, rankings, and trends for other proportions of 

he training and test sets (see Tables 4 and 5 ) are very similar

o the outcomes discussed above for the 80/20 division. However, 

ith the decrease in the number of alternatives in the training set, 

he AUC decreases by a few percent for the ANN-based methods. 

or example, ANN-UTADIS attains an average AUC equal to 0.9676, 

.9399, and 0.9159 for DBS with 80/20, 50/50, and 20/80 shares 

f the training and test sets, whereas the analogous results at- 

ained by ANN-Ch-Constr. for BCC are 0.7865, 0.7641, and 0.7515. 

o or marginal performance deterioration is observed for ANN- 

ROMETHEE and ANN-ELECTRE for datasets with a larger number 

f alternatives, i.e., MPG, ERA, LEV, and CEV. For example, for ANN- 

ROMETHEE and MPG, AUC is 0.8794 for 80% training set, 0.8746 

or 50%, and 0.8750 for 20%. As a result, the average ranks for 

hese approaches are slightly better for the least size of training 

ata than for more numerous learning sets. In fact, for the 20/80 

ivision, ANN-PROMETHEE shares the best average rank with ANN- 

TADIS. In the same spirit, the average ranks for ANN-Ch-Constr., 

NN-Ch-Pos., and ANN-OWA get slightly better with the decrease 

f the training set’s share. The opposite trend is observed for ANN- 

TADIS and ANN-Ch-Uncons. The greatest improvement of ranks 

or smaller training data among the state-of-the-art algorithms is 

bserved for LR and META. In contrast, the most significant deteri- 

ration is noted for KLR-ply, UTADIS, and UTADIS-G. 

In Tables 7–9 , we report the mean values of 0/1 loss for nine

enchmark datasets and different proportions of the training and 

est sets. Unlike for AUC, lesser values of 0/1 loss are more favor- 

ble. Let us first focus on the results for 80% share of the train-

ng set (see Table 9 ). They confirm the conclusions derived from 

UC analysis on the challenge posed by different datasets to the 
800 
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Table 8 

Classification performance in terms of the mean and standard deviation of 0/1 loss for 50% training data and 50% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 1093 ± 0 . 0353 (2) 0 . 0104 ± 0 . 0118 (2) 0 . 2276 ± 0 . 0165 (3) 0 . 1735 ± 0 . 0197 (9) 0 . 0546 ± 0 . 0099 (1) 0 . 2640 ± 0 . 0135 (4) 0 . 1566 ± 0 . 0110 (8) 0 . 1126 ± 0 . 0080 (8) 0 . 1717 ± 0 . 0192 (10) 5.22 

ANN-PROMETHEE 0 . 1210 ± 0 . 0374 (6) 0 . 1381 ± 0 . 0569 (18) 0 . 2709 ± 0 . 0374 (11) 0 . 2031 ± 0 . 0232 (13) 0 . 0812 ± 0 . 0122 (14) 0 . 2900 ± 0 . 0138 (13) 0 . 1768 ± 0 . 0119 (14) 0 . 2273 ± 0 . 0138 (15) 0 . 1812 ± 0 . 0222 (16) 13.33 

ANN-Ch-Uncons. 0 . 1178 ± 0 . 0306 (4) 0 . 0430 ± 0 . 0200 (4) 0 . 2196 ± 0 . 0199 (1) 0 . 0756 ± 0 . 0137 (7) 0 . 0582 ± 0 . 0114 (3) 0 . 2653 ± 0 . 0116 (7) 0 . 1605 ± 0 . 0113 (10) 0 . 0731 ± 0 . 0060 (6) 0 . 1711 ± 0 . 0138 (9) 5.67 

ANN-Ch-Pos. 0 . 1207 ± 0 . 0313 (5) 0 . 0637 ± 0 . 0202 (11) 0 . 2391 ± 0 . 0254 (4) 0 . 2691 ± 0 . 0346 (17) 0 . 0605 ± 0 . 0121 (5) 0 . 2642 ± 0 . 0130 (5) 0 . 1648 ± 0 . 0125 (12) 0 . 1277 ± 0 . 0078 (10) 0 . 1687 ± 0 . 0161 (5) 8.22 

ANN-Ch-Constr 0 . 1032 ± 0 . 0323 (1) 0 . 0562 ± 0 . 0155 (9) 0 . 2201 ± 0 . 0235 (2) 0 . 2015 ± 0 . 0207 (12) 0 . 0559 ± 0 . 0104 (2) 0 . 2673 ± 0 . 0117 (8) 0 . 1639 ± 0 . 0122 (11) 0 . 1187 ± 0 . 0083 (9) 0 . 1596 ± 0 . 0132 (1) 6.11 

ANN-ELECTRE 0 . 1120 ± 0 . 0299 (3) 0 . 0101 ± 0 . 0111 (1) 0 . 3363 ± 0 . 0298 (17) 0 . 2335 ± 0 . 0390 (15) 0 . 0668 ± 0 . 0097 (6) 0 . 3075 ± 0 . 0150 (17) 0 . 1809 ± 0 . 0116 (16) 0 . 2568 ± 0 . 0187 (16) 0 . 1653 ± 0 . 0186 (2) 10.33 

ANN-OWA 0 . 1363 ± 0 . 0311 (8) 0 . 1207 ± 0 . 0230 (16) 0 . 2395 ± 0 . 0216 (5) 0 . 2577 ± 0 . 0175 (16) 0 . 0677 ± 0 . 0112 (7) 0 . 2651 ± 0 . 0119 (6) 0 . 1787 ± 0 . 0104 (15) 0 . 2629 ± 0 . 0065 (17) 0 . 1770 ± 0 . 0124 (14) 11.56 

ANN-TOPSIS 0 . 1480 ± 0 . 0343 (11) 0 . 1374 ± 0 . 0235 (17) 0 . 2453 ± 0 . 0196 (6) 0 . 1020 ± 0 . 0148 (8) 0 . 2678 ± 0 . 0371 (18) 0 . 2871 ± 0 . 0141 (11) 0 . 2246 ± 0 . 0119 (18) 0 . 0880 ± 0 . 0066 (7) 0 . 2093 ± 0 . 0130 (17) 12.56 

CR 0 . 1572 ± 0 . 0416 (14) 0 . 0464 ± 0 . 0281 (5) 0 . 2687 ± 0 . 0282 (10) 0 . 0577 ± 0 . 0251 (1) 0 . 0601 ± 0 . 0126 (4) 0 . 2844 ± 0 . 0306 (9) 0 . 1372 ± 0 . 0125 (1) 0 . 0376 ± 0 . 0059 (4) 0 . 1667 ± 0 . 0144 (3) 5.67 

LR 0 . 1708 ± 0 . 0380 (18) 0 . 0626 ± 0 . 0247 (10) 0 . 2799 ± 0 . 0245 (14) 0 . 0654 ± 0 . 0150 (2) 0 . 0704 ± 0 . 0113 (10) 0 . 2851 ± 0 . 0303 (10) 0 . 1651 ± 0 . 0133 (13) 0 . 1360 ± 0 . 0101 (12) 0 . 1701 ± 0 . 0158 (8) 10.78 

KLR-ply 0 . 1333 ± 0 . 0333 (7) 0 . 0835 ± 0 . 0264 (15) 0 . 2591 ± 0 . 0287 (7) 0 . 0728 ± 0 . 0159 (4) 0 . 1023 ± 0 . 0225 (17) 0 . 2926 ± 0 . 0151 (14) 0 . 1520 ± 0 . 0160 (5) 0 . 0328 ± 0 . 0057 (3) 0 . 1721 ± 0 . 0164 (11) 9.22 

KLR-rbf 0 . 1692 ± 0 . 0382 (17) 0 . 0547 ± 0 . 0233 (7) 0 . 2599 ± 0 . 0301 (8) 0 . 0744 ± 0 . 0151 (5) 0 . 0682 ± 0 . 0121 (8) 0 . 2882 ± 0 . 0142 (12) 0 . 1493 ± 0 . 0165 (4) 0 . 0463 ± 0 . 0086 (5) 0 . 1693 ± 0 . 0130 (7) 8.11 

MORE 0 . 1457 ± 0 . 0413 (9) 0 . 0489 ± 0 . 0226 (6) 0 . 2640 ± 0 . 0288 (9) 0 . 0751 ± 0 . 0178 (6) 0 . 0695 ± 0 . 0139 (9) 0 . 3037 ± 0 . 0180 (16) 0 . 1486 ± 0 . 0157 (3) 0 . 0215 ± 0 . 0053 (2) 0 . 1691 ± 0 . 0140 (6) 7.33 

LMT 0 . 1473 ± 0 . 0406 (10) 0 . 0674 ± 0 . 0243 (13) 0 . 2717 ± 0 . 0295 (12) 0 . 0672 ± 0 . 0164 (3) 0 . 0709 ± 0 . 0135 (11) 0 . 2956 ± 0 . 0148 (15) 0 . 1545 ± 0 . 0142 (6) 0 . 0174 ± 0 . 0069 (1) 0 . 1671 ± 0 . 0167 (4) 8.33 

META 0 . 1623 ± 0 . 0469 (15) 0 . 0675 ± 0 . 0237 (14) 0 . 2750 ± 0 . 0317 (13) 0 . 1781 ± 0 . 0237 (11) 0 . 1004 ± 0 . 0186 (15) 0 . 2056 ± 0 . 0173 (2) 0 . 1592 ± 0 . 0122 (9) 0 . 1483 ± 0 . 0095 (14) 0 . 1732 ± 0 . 0151 (12) 11.67 

MIP 0 . 1627 ± 0 . 0426 (16) 0 . 0640 ± 0 . 0239 (12) – – 0 . 1018 ± 0 . 0155 (16) 0 . 1958 ± 0 . 0137 (1) 0 . 1422 ± 0 . 0154 (2) – – 13.22 

UTADIS 0 . 1480 ± 0 . 0421 (12) 0 . 0230 ± 0 . 0238 (3) 0 . 2854 ± 0 . 0246 (16) 0 . 2090 ± 0 . 0236 (14) 0 . 0783 ± 0 . 0163 (13) 0 . 2342 ± 0 . 0171 (3) 0 . 1556 ± 0 . 0132 (7) 0 . 1324 ± 0 . 0117 (11) 0 . 1758 ± 0 . 0152 (13) 10.22 

UTADIS-G 0 . 1553 ± 0 . 0413 (13) 0 . 0555 ± 0 . 0328 (8) 0 . 2850 ± 0 . 0219 (15) 0 . 1753 ± 0 . 0251 (10) 0 . 0771 ± 0 . 0148 (12) 0 . 3305 ± 0 . 0491 (18) 0 . 1877 ± 0 . 0247 (17) 0 . 1430 ± 0 . 0436 (13) 0 . 1796 ± 0 . 0271 (15) 13.44 

Table 9 

Classification performance in terms of the mean and standard deviation of 0/1 loss for 80% training data and 20% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 0645 ± 0 . 0542 (1) 0 . 0046 ± 0 . 0137 (1) 0 . 2056 ± 0 . 0389 (3) 0 . 1587 ± 0 . 0324 (9) 0 . 0436 ± 0 . 0180 (1) 0 . 2527 ± 0 . 0210 (4) 0 . 1447 ± 0 . 0144 (4) 0 . 1081 ± 0 . 0154 (8) 0 . 1608 ± 0 . 0302 (7) 4.22 

ANN-PROMETHEE 0 . 0932 ± 0 . 0580 (6) 0 . 1080 ± 0 . 0775 (17) 0 . 2656 ± 0 . 0591 (11) 0 . 1949 ± 0 . 0378 (13) 0 . 0757 ± 0 . 0251 (14) 0 . 2814 ± 0 . 0317 (11) 0 . 1706 ± 0 . 0212 (14) 0 . 2234 ± 0 . 0195 (15) 0 . 1691 ± 0 . 0235 (11) 12.44 

ANN-Ch-Uncons. 0 . 0864 ± 0 . 0540 (3) 0 . 0266 ± 0 . 0265 (5) 0 . 1816 ± 0 . 0348 (1) 0 . 0614 ± 0 . 0218 (4) 0 . 0482 ± 0 . 0186 (3) 0 . 2556 ± 0 . 0260 (6) 0 . 1517 ± 0 . 0204 (8) 0 . 0672 ± 0 . 0119 (6) 0 . 1595 ± 0 . 0263 (6) 4.67 

ANN-Ch-Pos. 0 . 0909 ± 0 . 0526 (5) 0 . 0385 ± 0 . 0261 (9) 0 . 2191 ± 0 . 0456 (5) 0 . 2669 ± 0 . 0470 (17) 0 . 0500 ± 0 . 0207 (4) 0 . 2552 ± 0 . 0245 (5) 0 . 1518 ± 0 . 0217 (9) 0 . 1238 ± 0 . 0147 (11) 0 . 1595 ± 0 . 0295 (5) 7.78 

ANN-Ch-Constr 0 . 0673 ± 0 . 0516 (2) 0 . 0380 ± 0 . 0285 (8) 0 . 1909 ± 0 . 0412 (2) 0 . 1853 ± 0 . 0393 (12) 0 . 0455 ± 0 . 0178 (2) 0 . 2587 ± 0 . 0252 (7) 0 . 1538 ± 0 . 0208 (10) 0 . 1124 ± 0 . 0148 (9) 0 . 1486 ± 0 . 0221 (1) 5.89 

ANN-ELECTRE 0 . 0868 ± 0 . 0553 (4) 0 . 0061 ± 0 . 0116 (2) 0 . 3200 ± 0 . 0423 (17) 0 . 2242 ± 0 . 0486 (15) 0 . 0593 ± 0 . 0207 (7) 0 . 3010 ± 0 . 0397 (17) 0 . 1777 ± 0 . 0205 (16) 0 . 2492 ± 0 . 0281 (16) 0 . 1551 ± 0 . 0243 (2) 10.67 

ANN-OWA 0 . 1064 ± 0 . 0604 (7) 0 . 0973 ± 0 . 0433 (16) 0 . 2169 ± 0 . 0399 (4) 0 . 2583 ± 0 . 0426 (16) 0 . 0569 ± 0 . 0216 (6) 0 . 2589 ± 0 . 0249 (8) 0 . 1740 ± 0 . 0250 (15) 0 . 2588 ± 0 . 0144 (17) 0 . 1670 ± 0 . 0239 (10) 11.00 

ANN-TOPSIS 0 . 1076 ± 0 . 0626 (8) 0 . 1180 ± 0 . 0461 (18) 0 . 2224 ± 0 . 0340 (6) 0 . 0890 ± 0 . 0271 (8) 0 . 2469 ± 0 . 0554 (18) 0 . 2789 ± 0 . 0236 (9) 0 . 2172 ± 0 . 0238 (18) 0 . 0814 ± 0 . 0086 (7) 0 . 1987 ± 0 . 0268 (17) 12.11 

CR 0 . 1416 ± 0 . 0681 (13) 0 . 0212 ± 0 . 0301 (4) 0 . 2496 ± 0 . 0485 (7) 0 . 0551 ± 0 . 0160 (1) 0 . 0542 ± 0 . 0218 (5) 0 . 2813 ± 0 . 0280 (10) 0 . 1314 ± 0 . 0176 (1) 0 . 0273 ± 0 . 0089 (4) 0 . 1584 ± 0 . 0251 (3) 5.33 

LR 0 . 1616 ± 0 . 0743 (17) 0 . 0640 ± 0 . 0335 (14) 0 . 2773 ± 0 . 0548 (14) 0 . 0611 ± 0 . 0263 (2) 0 . 0660 ± 0 . 0203 (10) 0 . 2843 ± 0 . 0302 (12) 0 . 1627 ± 0 . 0249 (13) 0 . 1328 ± 0 . 0173 (12) 0 . 1657 ± 0 . 0232 (9) 11.39 

KLR-ply 0 . 1265 ± 0 . 0663 (10) 0 . 0754 ± 0 . 0372 (15) 0 . 2569 ± 0 . 0506 (8) 0 . 0727 ± 0 . 0268 (5) 0 . 0922 ± 0 . 0279 (15) 0 . 2918 ± 0 . 0290 (15) 0 . 1472 ± 0 . 0231 (5) 0 . 0286 ± 0 . 0075 (5) 0 . 1741 ± 0 . 0246 (15) 10.33 

KLR-rbf 0 . 1343 ± 0 . 0672 (12) 0 . 0405 ± 0 . 0284 (10) 0 . 2598 ± 0 . 0529 (10) 0 . 0740 ± 0 . 0284 (7) 0 . 0657 ± 0 . 0229 (9) 0 . 2905 ± 0 . 0312 (13) 0 . 1496 ± 0 . 0233 (7) 0 . 0239 ± 0 . 0066 (3) 0 . 1696 ± 0 . 0271 (12) 9.22 

MORE 0 . 1242 ± 0 . 0609 (9) 0 . 0412 ± 0 . 0299 (11) 0 . 2570 ± 0 . 0463 (9) 0 . 0737 ± 0 . 0269 (6) 0 . 0661 ± 0 . 0219 (11) 0 . 2988 ± 0 . 0276 (16) 0 . 1397 ± 0 . 0214 (3) 0 . 0190 ± 0 . 0070 (2) 0 . 1645 ± 0 . 0235 (8) 8.33 

LMT 0 . 1433 ± 0 . 0667 (14) 0 . 0338 ± 0 . 0352 (6) 0 . 2707 ± 0 . 0554 (13) 0 . 0614 ± 0 . 0251 (3) 0 . 0691 ± 0 . 0228 (12) 0 . 2910 ± 0 . 0290 (14) 0 . 1474 ± 0 . 0232 (6) 0 . 0089 ± 0 . 0047 (1) 0 . 1595 ± 0 . 0283 (4) 8.11 

META 0 . 1592 ± 0 . 0698 (16) 0 . 0640 ± 0 . 0304 (14) 0 . 2677 ± 0 . 0547 (12) 0 . 1686 ± 0 . 0369 (11) 0 . 1001 ± 0 . 0297 (16) 0 . 2031 ± 0 . 0250 (2) 0 . 1616 ± 0 . 0222 (12) 0 . 1506 ± 0 . 0166 (14) 0 . 1698 ± 0 . 0279 (13) 12.17 

MIP 0 . 1480 ± 0 . 0811 (15) 0 . 0598 ± 0 . 0315 (12) – – 0 . 1008 ± 0 . 0247 (17) 0 . 1856 ± 0 . 0260 (1) 0 . 1359 ± 0 . 0185 (2) – – 13.22 

UTADIS 0 . 1280 ± 0 . 0501 (11) 0 . 0152 ± 0 . 0214 (3) 0 . 2913 ± 0 . 0510 (15) 0 . 2080 ± 0 . 0388 (14) 0 . 0744 ± 0 . 0235 (13) 0 . 2356 ± 0 . 0292 (3) 0 . 1572 ± 0 . 0222 (11) 0 . 1336 ± 0 . 0167 (13) 0 . 1734 ± 0 . 0265 (14) 10.78 

UTADIS-G 0 . 1683 ± 0 . 0667 (18) 0 . 0356 ± 0 . 0386 (7) 0 . 3016 ± 0 . 0478 (16) 0 . 1617 ± 0 . 0383 (10) 0 . 0656 ± 0 . 0228 (8) 0 . 3259 ± 0 . 0567 (18) 0 . 1781 ± 0 . 0253 (17) 0 . 1166 ± 0 . 0217 (10) 0 . 1778 ± 0 . 0246 (16) 13.33 
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reference learning algorithm and their ability to differentiate be- 

ween these approaches. For example, the 0/1 loss values attained 

y ANN-UTADIS for CPU, ESL, and DBS are 0.0046, 0.0436, and 

.0645, indicating the inconsistencies in the suggested assignments 

nly for a marginal share of test data. On the other extreme, these 

alues for ERA and BCC are 0.2527 and 0.2056, respectively, con- 

rming an incorrect classification for a significant share of alterna- 

ives. When it comes to the differences between average 0/1 losses 

or the best and worst-performing algorithms, they are the least 

or MMG, LEV, and DBS, while being the greatest for CEV, MPG, 

SL, and BCC. 

The most favorable average ranks implied by the 0/1 loss for 

he nine datasets are attained by: 

• ANN-UTADIS (4.22), which has the least 0/1 loss for DBS, 

CPU, and ESL, while being ranked in the upper half of the 

ranking for all problems; 
• ANN-Ch-Uncons. (4.67), which is at the top for BCC, while 

being ranked in the top six for 8 out of 9 datasets; 
• CR (5.33), which attains the lowest mean of 0/1 loss for LEV 

and MPG, 
• ANN-Ch-Constr. (5.89) ranked first for MMP and second for 

BDS, CPU, and ESL. 

On the other extreme, the worst average ranks are attained 

y UTADIS-G (13.33), MIP (13.22), ANN-PROMETHEE (12.44), META 

12.17), ANN-TOPSIS (12.11), LR (11.39), ANN-OWA (11.00), UTADIS 

10.78), and ANN-ELECTRE (10.67). Note that the differences be- 

ween the average ranks for the approaches in the lower half of 

he ranking are lesser than in the case of AUC. 

When it comes to the direct comparison of the approaches us- 

ng similar preference methods in terms of the 0/1 loss, ANN- 

TADIS performs better than UTADIS for all datasets except ERA 

nd better than UTADIS-G for all considered problems; ANN- 

LECTRE is more advantageous than META only for 4 out of 9 

roblems, whereas the algorithms using the Choquet integral at- 

ain similar results for CPU, ESL, LEV, and MMG. Moreover, CR was 

orse than the ANN-Ch methods on DBS and BCC, whereas ANN- 

h-Constr. and ANN-Ch-Pos. were underperforming for MPG and 

EV. On average, the latter approach attained the worst average 

ank among these four methods, most likely due to the least flexi- 

le model admitting only positive interactions for pairs of criteria. 

With the decrease in the number of alternatives in the train- 

ng set relative to the test set, the 0/1 loss increases for almost all

ethods (see Tables 7 and 8 ). For example, for ANN-UTADIS and 

BS, its values are equal to 0.0645 for 80% training data, 0.1093 for 

0%, and 0.1460 for 20%. The analogous results attained by ANN- 

h-Constr. for BCC are 0.1816, 0.2196, and 0.2406. The least per- 

ormance deterioration can be observed for ANN-PROMETHEE and 

NN-ELECTRE for BCC, MPG, ERA, LEV, and CEV. In particular, for 

ROMETHEE-ANN and BCC, the respective 0/1 losses are 0.2656 for 

0/20, 0.2709 for 50/50, and 0.2659 for 20/80. In general, the av- 

rage ranks for ANN-UTADIS, ANN-Ch-Uncons., and LR get slightly 

orse with the decrease of the training set’s share, whereas the 

anks for LR, META, and MIP exhibit an inverse trend. In the case 

f META and MIP, this can be explained by the greater efficiency of 

hese algorithms when dealing with smaller data sizes. For exam- 

le, for the 20/80 division, MIP identified the solutions for 8 out of 

 datasets, whereas for greater training sets, it failed to identify a 

orting model for the additional three problems. 

The conclusions derived from the analysis of the 0/1 loss 

gree with the ones formulated for AUC. On the one hand, ANN- 

TADIS, ANN-Ch-Uncons., and CR are the best performing algo- 

ithms, whereas MIP, META, TOPSIS, OWA, UTADIS, and UTADIS- 

 attain the least advantageous results. A noticeable difference 

oncerns the performance of ANN-ELECTRE and ANN-PROMETHEE, 

hich are among the best approaches in terms of AUC but are 
802
ated poorly when considering the 0/1 loss. This means that these 

wo outranking-based methods correctly reproduce the preference 

elations for the vast majority of pairs of alternatives while making 

ore mistakes concerning their classification. It can be explained 

iven the nature of these methods and the learning process. ANN- 

LECTRE and ANN-PROMETHEE incorporate the NFS procedure 

ith a score for each alternative derived from pairwise compar- 

sons against all remaining alternatives. However, these scores are 

ransformed into assignments by comparing them with the class 

hresholds. It turns out that the threshold inferred for the train- 

ng set might not generalize well for the test set, leading to the 

isclassification of alternatives, which attain scores close to the 

hreshold. This is confirmed by Fig. 16 , which indicates that for 

RA, changing the threshold value for the test set rather than us- 

ng the one inferred from the learning data might improve the 0/1 

oss even by a few percent. 

In the e-Appendix, we report the experimental results for the 

NN-based algorithms in terms of the F1 score as well as the 

utcomes given different performance measures obtained for the 

raining set. 

. Conclusions and future work 

The availability of data resources helps individuals and groups 

ine helpful information and make better-informed decisions. The 

pectrum of practical problems that emphasize handling large 

uantities of data becomes more extensive. This requires the de- 

elopment of dedicated techniques. In recent years, an often em- 

hasized aspect is that such methods should support both the ex- 

lainability of recommended decisions and the interpretability of 

he entire decision-making process. 

In this paper, we have considered the problem of processing 

ata into explainable and interpretable models. This has been done 

n the context of preference learning. It consists of training the 

odels on a set of alternatives for which the preferences are 

nown/available and predicting the preferences for all other op- 

ions. Specifically, we considered learning the parameters of mono- 

onic sorting models from large sets of assignment examples. In 

his kind of problem, alternatives need to be assigned to pre- 

efined, preference-ordered classes in the presence of multiple, po- 

entially conflicting criteria. 

We have advocated the use of intuitive models inspired by 

he development in the field of MCDA. This is consistent with 

he recent trends in Machine Learning ( Rudin, 2019 ). The consid- 

red models offer measures for (i) quantifying the role of indi- 

idual criteria and subsets of criteria, (ii) understanding the im- 

act of particular performances on the decision, (iii) gaining in- 

ights on which performance differences are negligible, significant, 

r critical, and (iv) capturing the strength of criteria coalitions 

ufficient for claiming that one alternative is at least as good as 

nother. Moreover, the applied operators offer a mathematically 

ound and elegant manner for aggregating the arguments support- 

ng each alternative’s strengths and weaknesses. Also, the consid- 

red threshold-based sorting procedure is easily understandable 

nd transparent in deriving the assignments by comparing alterna- 

ives’ comprehensive scores with the separating class thresholds. 

As a concrete Machine Learning application of these models, we 

ave proposed Artificial Neural Networks as a computation tech- 

ique for conducting preference disaggregation. ANNs have been 

sed before for classification in the context of extensive data. 

owever, the non-linear models they derived could not be inter- 

reted by human Decision Makers nor accepted by domain experts. 

hanks to the suitably adjusted components, units, and architec- 

ure, we have made ANNs suitable for learning highly explainable 

odels. 
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(a) ANN-PROMETHEE (b) ANN-ELECTRE

Fig. 16. The values of 0/1 loss ( y -axis) for different separating class thresholds ( x -axis) for the ERA problem. 
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The main benefits of the proposed preference learning algo- 

ithms are three-fold. First, we infer the parameters of the sort- 

ng models from decision examples, not requiring the Decision 

aker to specify their values directly. We allow for simultane- 

us inference of all parameters of the sorting model, such as, e.g., 

riteria weights, concordance and discordance functions, and the 

omparison, veto, credibility, and separating class thresholds. This 

annot be done efficiently with mathematical programming tech- 

iques that are traditionally applied in MCDA. Also, we avoid an 

rbitrary indication of meta-parameters such as shapes of prefer- 

nce functions or characteristic points of marginal values functions. 

n turn, we apply more general per-criterion (value, preference, 

oncordance, or discordance) functions that offer greater flexibil- 

ty in fitting the input data while maintaining the original spirit of 

CDA. 

Second, we contribute to the stream of making the MCDA 

ethods suitable for handling inconsistent preference information 

hat is too large to be dealt with by most traditional methods 

ithin an acceptable time. Sets of alternatives traditionally con- 

idered in MCDA consist of modestly-sized collections ( Wallenius 

t al., 2008 ) and the development of the algorithms scaling up 

ell with the number of alternatives has not been at the core 

f MCDA ( Corrente et al., 2013 ). For example, the basic MCDA al-

orithms for dealing with inconsistency in the provided prefer- 

nce information are based on Mixed-Integer Linear Programming 

MILP). Nonetheless, some existing MCDA and preference learning 

ethods are capable of dealing with large inconsistent sets of as- 

ignment examples (see, e.g., Chandrasekaran et al., 2005; Dem- 

czy ́nski et al., 2009; Greco et al., 2001; Kotłowski & Słowi ́nski, 

013; Manthoulis, Doumpos, Zopounidis, & Galariotis, 2020; Sobrie 

t al., 2019; Tehrani et al., 2012; Zopounidis & Doumpos, 20 0 0 ).

n this spirit, we demonstrate the feasibility of the proposed ANN- 

ased approaches to the collections of over one thousand alterna- 

ives or the problems requiring comparing a few million pairs of 

lternatives. We know that the volume of datasets considered in 

ome other sub-fields of ML is far more significant than in our 

xperiments. Hence, demonstrating the usability of the proposed 

ethods in areas typical for the ML applications remains a subject 

or future research. These include, e.g., finance, medicine, econ- 

my, and information retrieval, in which even some MCDA meth- 

ds have been already used in the context of data sets with sizes 

xceeding those considered in this paper (e.g., bank failure predic- 

ion ( Manthoulis et al., 2020 ), prognosis for hospice referral ( Gil- 

errera et al., 2015 ), and recommender systems in numerous ap- 

lication domains ( Manouselis & Costopoulou, 2007 )). 

Third, the extensive experiments on various benchmark prob- 

ems indicate that the introduced algorithms are competitive in 
803 
erms of predictive accuracy. This is particularly true for the 

hree approaches called ANN-UTADIS, ANN-Ch-Uncons., and ANN- 

ROMETHEE. They incorporate preference models in the form 

f an additive value function with generalized marginal func- 

ions, 2-additive Choquet integral admitting significant variability 

f weights, and an outranking relation combined with the Net Flow 

core procedure. These methods perform well in terms of the AUC 

easure, which focuses on preserving pairwise preference rela- 

ions. In addition, ANN-UTADIS and ANN-Ch-Uncons. score favor- 

bly also on the 0/1 loss, which is directly related to the classifi- 

ation accuracy. On average, the predictions made by these algo- 

ithms were slightly more accurate than the recommendations de- 

ivered by the state-of-the-art methods, including logistic regres- 

ion and its generalizations, rule ensemble methods, approaches 

ased on mathematical programming, and a dedicated metaheuris- 

ic for an outranking-based classification model. The advantage of 

he ANN-based methods derives from a few factors, including in- 

orporating more general preference functions, efficient optimiza- 

ion methods, and techniques for increasing noise resistance, pre- 

enting overfitting, and reducing the impact of the information 

rocessing order on the attained results. 

From a broader perspective, the variability of different algo- 

ithms proposed in this paper gives a chance for adjusting the sort- 

ng model to the provided preference information, as postulated 

n Hanne (1997) . In particular, we considered score-, distance-, and 

utranking-based approaches that admit different compensation 

evels, interactions between criteria, or per-criterion risk attitudes 

r curvatures of marginal functions. In MCDA, such factors need to 

e considered when selecting a single method a priori. However, 

n the preference learning context, all presented neural networks 

an be aggregated in a single ANN that would, in the end, activate 

nly the part and underlying approach leading to the most advan- 

ageous results that fit the available indirect preferences in the best 

ay. 

The directions for future research can be divided into experi- 

ental and methodological. The former ones derive from the lim- 

tations of our study. First, some data sets considered in the ex- 

erimental comparison involve nominal attributes arbitrarily trans- 

ormed into monotonic criteria as described in Tehrani et al. 

2012) . While this increases the difficulty of the preference learn- 

ng task, such an interpretation neglects the original performance 

cales without preference directions. In this perspective, we per- 

eive the need to further test the preference learning algorithms 

n real-world data with correctly defined criteria and increase 

he variety of publicly available properly designed benchmark data 

ets. Second, when testing the performance of algorithms, we run 

nly those originally proposed in this paper. For the remaining 
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ethods, we recalled the results reported in the respective works 

e.g., Sobrie et al., 2019; Tehrani et al., 2012 ) on the same bench-

ark problems. This could be questioned concerning the optimiza- 

ion of hyperparameters which is an essential component of the 

xperimental study. We performed it differently than in Sobrie 

t al. (2019) and Tehrani et al. (2012) . In particular, the perfor- 

ance of some algorithms (e.g., UTADIS) for which the results 

ere reported in other works could be improved if their hyper- 

arameters were set more carefully. Given this limitation, we want 

o emphasize the need for adopting proper processes for optimiz- 

ng the hyperparameters of MCDA methods in future studies that 

ill focus on performing comparative analyses. In our understand- 

ng, successfully implementing this postulate requires making the 

ource code of all so far proposed methods in the preference learn- 

ng stream publicly available. Third, when optimizing the parame- 

ers of the sorting model, one could investigate the impact of other 

isclassification errors than a sum of regrets or different tech- 

iques than AdamW. 

Regarding future research related to the development of other 

ethods, we envisage the following four directions. First, we 

ill propose neural preference learning algorithms for other 

ntuitive MCDA approaches. The most appealing ones include 

he ELECTRE ( Costa, Rui Figueira, Vieira, & Vieira, 2019 ) and 

ROMETHEE ( Pelissari, Oliveira, Amor, & Abackerli, 2019 ) methods 

ith boundary or characteristic class profiles and value-based ap- 

roaches admitting interactions between criteria ( Liu et al., 2021 ) 

nd non-monotonicity ( Liu et al., 2019 ) of marginal value func- 

ions. Second, it is possible to combine different methods within 

 single neural network and aggregate their results into a com- 

rehensive quality measure. The form of an aggregation operator 

nd the weights associated with scores delivered by various ap- 

roaches could be learned during the optimization process ( Hanne, 

997 ). Third, it would be interesting to verify the impact of using 

n ensemble of models that attained a pre-defined threshold of 

he classification error. In this paper, we only used the model that 

erformed the best during learning. However, some other models 

ere only slightly worse, and their joint use on the test set could 

ncrease the robustness of recommended assignments. Finally, an 

ppealing idea consists of adjusting the preference learning algo- 

ithms to an online setting ( Sahoo, Pham, Lu, & Hoi, 2018 ). Un-

ike batch learning applied in this paper, it assumes preferences are 

rovided in sequential order, and the method needs to update the 

lassification model at each step. This would correspond to a com- 

on MCDA scenario in which the DM provides preferences in suc- 

essive iterations. 
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