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ABSTRACT

We propose preference learning algorithms for inferring the parameters of a threshold-based sorting
model from large sets of assignment examples. The introduced framework is adjusted to different scores
originally used in Multiple Criteria Decision Analysis (MCDA). They include Ordered Weighted Average,
an additive value function, the Choquet integral, a distance from the ideal and anti-ideal alternatives, and
Net Flow Scores built on the results of outranking-based pairwise comparisons. As a concrete application
of these models, we use Artificial Neural Networks with up to five hidden layers. Their components and
architecture are designed to ensure high interpretability, which supports the models’ acceptance by do-
main experts. To learn the most favorable values of all parameters at once, we use a variant of a gradient
descent optimization algorithm called AdamW. In this way, we make the MCDA methods suitable for han-
dling vast, inconsistent information. The extensive experiments on various benchmark problems indicate
that the introduced algorithms are competitive in predictive accuracy quantified in terms of Area Un-
der Curve and the 0/1 loss. In this regard, some approaches outperform the state-of-the-art algorithms,
including generalizations of logistic regression, mathematical programming, rule ensemble and tree in-

duction algorithms, or dedicated heuristics.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The need to process data to conclusions or arguments that sup-
port more informed and better decision-making is growing each
year (Liu, Kadzinski, Liao, & Mao, 2021). Consequently, one of the
main trends in today’s information technology is developing intel-
ligent decision support systems. Their successful application de-
pends on the quality of being believable or trustworthy (Linkov,
Galaitsi, Trump, Keisler, & Kott, 2020). The need to explain the de-
cisions made by computer systems (Doshi-Velez & Kim, 2017) is
reflected in the legal regulations of the European Union (Goodman
& Flaxman, 2017).

Multiple Criteria Decision Aiding (MCDA) and Machine Learning
(ML) belong to the most important and fastest developing disci-
plines within Artificial Intelligence (Al) (Corrente, Greco, Kadzifski,
& Stowinski, 2013; Doumpos & Zopounidis, 2011). They offer meth-
ods that support humans in decision-making processes. Within the
scope of this paper, we focus on multiple criteria sorting (Alvarez,
Ishizaka, & Martinez, 2021) or instance ranking (Fiirnkranz &
Hiillermeier, 2011) problems. They aim at assigning a set of al-
ternatives to preference ordered classes, labels, or degrees in the
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presence of multiple attributes with pre-defined preference direc-
tions. Moreover, we limit our interest to learning ordered classifi-
cation models from decision examples. In MCDA, they are treated
as the DM’s indirect preference information in the form of assign-
ment examples (Liu, Liao, Kadzinski, & Stowinski, 2019; Zopounidis
& Doumpos, 2000), whereas in ML - they form a training set in
the task of supervised learning (Doumpos & Zopounidis, 2011). The
goal is to find the model for classifying all alternatives, including
the ones that have not been judged directly by the Decision Maker
(DM) nor considered in the reference set (Doumpos & Zopounidis,
2018).

Even though the paradigm of learning by example is handled
by both MCDA and ML, there are notable differences between
these two disciplines (Corrente et al., 2013; Doumpos & Zopouni-
dis, 2011; Waegeman, De Baets, & Boullart, 2009). On the one
hand, MCDA is user-oriented. It exploits Decision Makers’ knowl-
edge or expertise and aims at the DMs to learn about their pref-
erences and the problem at hand. On the contrary, ML is model-
oriented, being focussed on data analysis, information extraction,
and preference discovery. These various aims are, in turn, reflected
in different forms of incorporated models, the amount of processed
information, techniques used for arriving at a final result, and the
role of users.

The preference models used in MCDA are highly interpretable
and explainable (Corrente et al., 2013). Their primary role is to en-
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courage the involvement of the DMs (Roy, 2010) through gaining
insights on the role of different criteria, the character of alterna-
tives, and the influence of particular performances on the decision.
On the contrary, ML has mainly focused on the development of
non-linear models, offering higher predicting ability and the pos-
sibility of capturing complex interdependencies (Corrente et al.,
2013). However, this results in limited ability to determine which
data influences a decision and, consequently, less confidence in the
model’s employment by the users who need to interpret and un-
derstand the underlying process (Waegeman et al., 2009).

The traditional MCDA methods have been designed for learn-
ing from a small set of decision examples for a subset of ref-
erence alternatives (Doumpos & Zopounidis, 2018). Typically, the
translation of assignment examples into compatible values of
an assumed preference model has been conducted with mathe-
matical programming techniques that aim at reconstructing the
DM’s judgments as faithfully as possible. However, when the
DM'’s preference information is rich and highly inconsistent,
most approaches cannot deal efficiently with preference disag-
gregation (Liu et al., 2019). Some exceptions that have in-built
mechanisms for dealing efficiently with large sets of inconsis-
tent preferences include variants of the Dominance-based Rough
Set Approach (DRSA) (Greco, Matarazzo, & Stowinski, 2001) and
UTADIS (Zopounidis & Doumpos, 2000). On the contrary, ML has
always been focused on dealing with large, inconsistent sets of
training data (Doumpos & Zopounidis, 2011). These are usually
composed of historical data, preferences collected over time, or ob-
servations of past decisions. In ML, some advanced statistical mod-
els or optimization algorithms are used to exploit the parameters
space in search of the values that minimize some classification er-
TOr.

Over the years, MCDA and ML have been developing separately
while fostering their interests mentioned above. Nonetheless, the
availability of large data resources as well as the need for both ex-
plainable models and interpretable decision-making processes have
motivated the cross-fertilization of the two disciplines. Individu-
als, companies, organizations, and governments have accumulated
a vast quantity of data, and its analysis has exceeded the reach of
human processing capacity. However, it needs to be exploited in a
way that allows verifying whether a model focuses on the relevant
aspects, offers arguments and knowledge for decision-making, and
involves the DM to take part in the process actively. Consequently,
one has developed the algorithms that scale up well with an in-
creasing number of assignment examples, at the same time incor-
porating the intuitive models originally proposed in MCDA (Cinelli,
Kadzinski, Miebs, Gonzalez, & Stowinski, 2022).

The research at the crossroads of MCDA and ML is called
preference learning (Fiirnkranz & Hiillermeier, 2011). Within this
field, some MCDA methods have been adjusted to deal with large
data, leading to the elaboration of intuitive classification meth-
ods. In what follows, we list the representative algorithms aimed
at multiple criteria sorting and instance ranking problems. In
particular, Chandrasekaran, Ryu, Jacob, & Hong (2005) proposed
linear programming models based on isotonic separation, and
Kotlowski & Stowinski (2013) introduced a family of classifiers
exploiting the class of all monotonic functions, not making any
additional assumptions about the model apart from the mono-
tonicity constraints. Then, Tehrani, Cheng, Dembczynski, & Hiiller-
meier (2012) generalized logistic regression to learn the param-
eters of the Choquet integral, Liu et al. (2021) formulated opti-
mization models for learning additive value functions augmented
with components for handling the interactions between criteria,
whereas Kadzinski & Szczepanski, (2022) proposed a variety of
methods for learning the parameters of a sorting model with char-
acteristic class profiles. Furthermore, Dembczynski, Kotlowski, &
Stowinski (2009) introduced an algorithm based on the variant of
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DRSA for generating a monotonic rule ensemble and Dembczynski,
Kottowski, & Stowinski (2006) extended DRSA by considering an
additive function model resulting from rough approximations. Also,
a few approaches have been proposed to learn the parameters
of an outranking-based sorting model used in the ELECTRE TRI-
B method or its simplified variant called MR-Sort. They include an
evolutionary algorithm (Doumpos, Marinakis, Marinaki, & Zopouni-
dis, 2009) or linear programming models combined with simulated
annealing (Olteanu & Meyer, 2014) or a dedicated metaheuris-
tic (Sobrie, Mousseau, & Pirlot, 2019).

This paper proposes to use Artificial Neural Networks (ANNs)
for preference learning in the context of highly interpretable
MCDA models. ANNs are versatile learners that can be applied to
nearly any learning task, where input and output data are well-
understood, yet the process that relates the input to the output is
highly complex. Over the last years, ANNs have been successfully
applied in the context of data analysis, control systems, speech
and pattern recognition, and computer games. This is mainly due
to the development of Deep Learning (DL) (i.e., efficient learning
algorithms for ANNs with multiple hidden layers) that has revo-
lutionalized the field of Al and its applicability in the context of
big data (Deng & Yu, 2014). However, the employment of ANNs in
MCDA has been scarce. In particular, Malakooti & Zhou (1994) used
an Adaptive Feedforward Adaptive Feedforward ANN to learn the
utility function based on a set of training patterns in the form
of alternatives with their associated evaluations by the DM and
then applied it to rank a discrete set of alternatives. Moreover,
Hu (2009) proposed a single-layer perceptron for multiple crite-
ria classification problems based on pairwise comparisons among
alternatives conducted in the spirit of an ELECTRE-based outrank-
ing relation. Furthermore, Hanne (1997) suggested the use of ANNs
as a part of an MCDA network, in which they can be applied
to standardize and aggregate performances from different criteria
or even to choose the most relevant method from a pre-defined
pool of a few approaches. Finally, Guo, Zhang, Liao, Chen, & Zeng
(2021) proposed the NN-MCDA method that combines an additive
value model with potentially non-monotonic marginal functions
and a fully connected deep neural network.

We introduce the preference learning algorithms that use ANNs
to infer parameters of the threshold-based sorting procedure from
large sets of assignment examples. In this procedure, following
UTADIS (Zopounidis & Doumpos, 2000), the frontiers between
classes are delimited by the thresholds on a scale of a compre-
hensive score that reflects the quality of each alternative from
all relevant viewpoints considered jointly. We adjust the intro-
duced framework to different types of scores. In particular, we
consider aggregation of the performances on various criteria us-
ing OrderedWeighted Average (OWA) operator (Yager, 1988), an
additive value function initially employed in UTADIS (Zopounidis
& Doumpos, 2000), and the Choquet integral (Angilella, Corrente,
Greco, & Stowinski, 2013). These scores are able to capture differ-
ent compensation levels or interactions between criteria. Moreover,
we account for a model postulated in TOPSIS that builds on the
distances of a given alternative from the ideal and anti-ideal op-
tions (Hwang & Yoon, 1981). Also, we consider the Net Flow Score
(NFS) procedures that aggregate the results of pairwise compar-
isons between all alternatives. The comparisons are conducted in
the spirit of the PROMETHEE (Brans & De Smet, 2016) and ELEC-
TRE (Figueira, Greco, Roy, & Stowinski, 2013) methods, exploiting
either preference degrees or the outcomes of concordance and dis-
cordance tests.

The ANNs have been originally designed to capture complex
transformations of inputs (in our case, performances on all criteria)
to outputs (in our case, class assignments). We have designed their
architecture and adjusted the characteristics of individual units to
derive sorting models that are flexible enough to fit the learn-
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ing data and sufficiently interpretable due to being inspired by
the MCDA methods. This is in line with the recent trend in ML,
which postulates making prediction models and their decisions in-
terpretable (Molnar, 2020).

When learning the sorting models, we minimize the loss func-
tion defined as an average of regrets for all reference alterna-
tives. The choice of ANNs as a computation technique for conduct-
ing preference disaggregation allowed us to use a variety of tools
supporting the optimization. In particular, to learn the most fa-
vorable value parameters, we employ a variant of a gradient de-
scent optimization algorithm called Adam (Kingma & Ba, 2014).
The optimization is enhanced with techniques such as data aug-
mentation to increase the noise resistance, regularization to pre-
vent model overfitting, and batch optimization to reduce the im-
pact of the information processing order on the attained results.
The networks deriving the parameters of the OWA-, Choquet-, and
distance-based models are shallow. However, the ANNs proposed
for UTADIS, PROMETHEE, and ELECTRE can be classified as deep
learning models (Deng & Yu, 2014) due to many hidden layers and
considering different levels related to the data processing (e.g., cri-
teria, alternatives, pairs of alternatives, and assignments). Hidden
layers are required to learn complex models inspired by the value-
and outranking-based MCDA methods. However, the raw weight
values of multiple layers, some of which conduct non-linear trans-
formations of data, are hardly interpretable for the users. There-
fore, we ensure that users are exhibited only with the final mod-
els of ANN-UTADIS, ANN-PROMETHEE, and ANN-ELECTRE. These
models summarize the comprehensive contribution of individual
criteria, resulting from the transformations conducted by various
layers, activation performed with non-linear activations functions,
and normalization to an easily interpretable range of alternatives’
scores.

We conduct a thorough experimental verification of the pro-
posed algorithms on a set of benchmark sorting problems. Its re-
sults are quantified in terms of two quality measures for different
proportions between the sizes of the training and testing sets. The
multiplicity of proposed methods allows indicating which model
is most appropriate for a given problem. We also compare the
obtained results with the performance of the existing preference
learning approaches. These include the Choquistic (Tehrani et al.,
2012) and logistic (Hosmer, Lemeshow, & Sturdivant, 2000) regres-
sion, Kernel Logistic Regression (KLR) with polynomial and Gaus-
sian kernels, rule ensemble (MORE) (Dembczynski et al., 2009) and
tree induction (LMT) (Landwehr, Hall, & Frank, 2003) algorithms,
value-based UTADIS model (Zopounidis & Doumpos, 2000), and
outranking-based methods incorporating mathematical program-
ming (MIP) (Leroy, Mousseau, & Pirlot, 2011) or a dedicated meta-
heuristic (META) (Sobrie et al., 2019).

The remainder of the paper is organized in the following
way. Section 2 reminds a threshold-based sorting procedure. In
Section 3, we discuss the novel preference learning algorithms that
incorporate different scores for judging a comprehensive quality of
alternatives. Section 4 provides details of the employed optimiza-
tion techniques. In Section 5, we illustrate the use of the proposed
methods on a selected multiple criteria sorting problem for which
a large set of assignment examples is available. Section 6 discusses
the results of computational experiments, comparing the predictive
capabilities of our ANN-based approaches and the state-of-the-art
methods. The last section concludes and provides avenues for fu-
ture research.

2. Threshold-based score-driven multiple criteria sorting

The following notation is used in the paper:

e A={ay,ay,...,q;,...,ay} - a finite set of n alternatives;
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o« AR={at a5, ..., a,...} €A - a finite set of reference alter-
natives, which the DM accepts to critically judge in a holistic
way;

G=1{g1.82.....&j.....8m} - a finite set of m evaluation cri-

teria, gi:A— R forall jeJ={1,...,m};

o Xj={x; eR:gj(a) =xj,a; € A} - a set of all different per-
formances on gj;, jeJ; as typical in the field of prefer-
ence learning, we assume that all performances on gj, j =
1,...,m, are scaled to the [0,1] interval;

. x},x?,...,x?im) - increasingly ordered values of X, xf <
x§+1,l<=1,2,...,nj(A)_1, where n;(A) = |X;| and n;(A) <

n;

¢ (.G, ...,Cp - p pre-defined, preference ordered classes,
where C,., is preferred to C, h=1,...,p—-1 (H=
{1,....p}).

We consider the problem of sorting imposed by the use of func-
tion f: R™ — H that maps alternative g; € A evaluated in terms of
m criteria to one of the decision classes C,, h = {1, ..., p}. To ag-
gregate performances on multiple criteria, we use a function as-
signing a comprehensive score Sc(q;) to a; € A. The maximal score
is assigned to an ideal alternative a* with the most preferred per-
formances on all criteria, whereas the minimal score is associated
with an anti-ideal alternative a~. The range [Sc(a™), Sc(a™)] may
differ depending on the applied method. Moreover, the scale of
a comprehensive score is divided by a set of class thresholds ¢,
h=1,...,p—1, which delimit the intervals implying an assign-
ment to particular decision classes (Koksalan & Ozpeynirci, 2009):

Sc(ay) <t; = a; €y,
tho1 <Sc(@) <ty =a;€C, for h=2,...,p-1,

Sc(a;) = tp 1 = a; € Cp.

(1)

To avoid direct specification of the parameter values, we assume
indirect preference information is available or specified by the DM.
It has the form of desired class assignments Cpy(af) for refer-
ence alternatives af e AR, When constructing or training the sorting
model, we will disaggregate holistic preferences to respect the ref-
erence assignments in the following way (Doumpos & Zopounidis,
2004):

for all af € AR :
Sc(ay) = teyy @1, if Com(ay) > 1,
Sc(ay) + € <teyy @), if Com(a;) < p,

(2)

where € is an arbitrarily small positive value. When numerous as-
signment examples are considered, they might not be reproduced
simultaneously. Therefore, in the optimization phase, we will con-
sider the following loss function defined as an average of regrets
for all reference alternatives:

Minimize : loss = ﬁ > regret(ay), (3)

areaR

where regret is equal to the distance from thresholds delimiting
the desired class in case an alternative is misclassified or to zero,
otherwise:

(4)

In the following section, we discuss a variety of scoring procedures
that will be incorporated in the ANN-based preference learning al-
gorithms. For each of them, the scoring function Sc is defined dif-
ferently.

regret (a;) = max{tc,, -1 — Sc(@;), Sc(a;) — te,y@)- O}
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SC((L,‘) <t = Cl
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Cla)
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Normalization

g1{a;)
CE——— i
g (a,) Linear Layer
> sort >
Z wjsort;{a;)
_ j=1
gm(a:)

4

Scfa;) 2 ty-1 = C,

Fig. 1. The architecture of the neural network employed by the ANN-OWA method.

3. Preference learning with artificial neural networks and
MCDA-inspired preference models

In this section, we present the MCDA-inspired approaches that
learn parameters of the sorting models from large sets of assign-
ment examples. For this purpose, they apply Artificial Neural Net-
works. We will discuss a variety of methods that implement dif-
ferent strategies for deriving the comprehensive scores of alterna-
tives. Nonetheless, for all of them, the derived model remains eas-
ily interpretable, and the sorting results are explainable for a hu-
man DM.

3.1. ANN-OWA: preference learning with ordered weighted average
and ANN

OWA is an aggregation function generalizing other operators
such as min, max, average, median, or sum (Yager, 1988). It ag-
gregates performances using a revised weighted sum:

m
OWA(a;) = Y wysort;(a;),
o1

(3)

where sort;(a;) is the j-th largest performance of alternative a; on
any criterion and w; is the weight linked with the j-th position in
sorted performance vector of a;. We assume that w; € R.o.

ANN-OWA starts with sorting the performances of each alter-
native in a non-increasing order (see Fig. 1). Then, a single linear
layer aggregates the performances using the OWA operator with
non-negative weights. Since the value of OWA can be, in general,
arbitrarily large, to increase interpretability of the results, we apply
normalization to the [0,1] range by dividing the scores by the sum
of weights w;:

YLy wysort;(a;)
Y w;
Such a score is compared against the thresholds t = [t,t;, ..., tp_1]
to determine the class assignments using Eq. (1) and calculate the
regret that is considered when optimizing the network parameters,

i.e,, weights w; and thresholds t.

The last component of the ANN responsible for the compari-
son of a comprehensive score with class thresholds to derive the
assignment is the same for all methods presented in the follow-
ing subsections. Thus, we will not mention it when describing
these approaches, instead focussing on the computation of scores
in line with the assumptions of different methods. Nevertheless,
the thresholds and the underlying sorting procedure will always
be depicted in the figures representing the architectures of neural
networks.

(6)

Scann-owa(a;) =

3.2. ANN-Ch: preference learning with the Choquet integral and ANN

The Choquet integral model is an additive aggregation method,
dealing with interactions between criteria (Angilella et al., 2013).
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It takes the form of a weighted sum over all subsets of criteria
T < G, where the performance for T is the minimum over the per-
formances on criteria contained in T:
Chy (@) =) wr-ming;(a)),

Tec jeT

(7)

where Y r.cwyr = 1. We limit the considered interactions to pairs
of criteria by referring to the 2-additive Mobius transform (Tehrani
et al., 2012):

m
Chyo(a;) = ijgj(ai) + Z wy;nmin(g;(a;), g (a;)). (8)
j=1 {iycc

To respect the pre-defined preference directions for all criteria, we
assume that the weights are non-negative:

(9)

Moreover, we consider the positive and negative interactions,
though limiting their impact on the attained scores in the follow-
ing way:

w;>0,Vje{l,...,m}.

Vie{l,...om}Vie{1,....m\{j). (10)

The variant of the method respecting such constraints will be de-
noted as ANN-Ch-Constr. In the pre-processing phase, we perform
the Mobius transform of a 2-order additive measure of the input
data (see Fig. 2). Then, two linear layers are responsible for ag-
gregating pre-criteria performances using non-negative weights re-
specting Eq. (9) and interaction components using weights associ-
ated with pairs of criteria that respect Eq. (10). Their outputs are
summed and normalized to the [0,1] range as follows:
Ch;L,Z (ai)

YL Wi+ X (e Wi

The parameters optimized by ANN are weights of both linear layers
(wj and w;,) and class thresholds ¢.

The other two variants of the Choquet integral-based method
incorporate different assumptions. The first one, called ANN-
Ch-Pos., considers only positive interactions, hence limiting the
weights for individual criteria and pairs to non-negative values.
The other variant, called ANN-Ch-Uncons., does not impose any
constraints on the weights. Moreover, both variants apply normal-
ization of scores with the sigmoid function as proposed in Tehrani
et al. (2012):

SCann—ch-sig(a;) = sigmoid (Chy, » (a;) + bias). (12)

A diagram showing the network operations for these variants is
presented in Fig. 3. First, we perform the Mobius transform. Since
there are no constraints involving different weights, per-criteria
performances and interaction components can be aggregated us-
ing a single linear layer. It performs the calculations defined by
Eq. (8) and adds a bias value as defined by Eq. (12). The bias
allows the sigmoid function to be shifted, and the lack of restric-
tions on the sum of weights allows for an arbitrary adjustment of

Wiy +w;j =0,

(11)

SCaNN—ch—constr.(@i) =
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Mébius transform Normalization X
Linear Layer Se(ay) 2815 G
min(y; (@), gi(a:))
gm(a:) wy; pmin(gi(a). gai))
L6
Fig. 2. The architecture of the neural network employed by the ANN-Ch-Constr. method.
g1(m) ¢ Sefa;) <t =~ O
g2(as) Linear Layer th Z Slb)) <= @ Cl(a:)
Mobi 9;(a:), min(g;(ai), g1 (a:)) Chy(a;) o Se(a;
6bius transform B X ) Sigmoid
Z w;g;(a:) + Z wig iy mindgi(as), gila:)) + bias Se(a) =ty 1= €y
gt LG —
Im (@)

Fig. 3. The architecture of the neural network employed by the ANN-Ch-Pos. and ANN-Ch-Uncons. methods.

the sigmoid function’s argument scale. In ANN-Ch-Pos., all weights
need to be non-negative. The result from the linear layer is pro-
cessed by a sigmoid activation function. It ensures that the score
for each alternative is in the [0,1] range.

3.3. ANN-TOPSIS: preference learning with TOPSIS and ANN

Technique for Order of Preference by Similarity to Ideal Solu-
tion (TOPSIS) considers the ideal a* and anti-ideal a~ alternatives
with the following performances on each criterion g; € G (Hwang
& Yoon, 1981):

gj(a®) = maxqca(gj(a;)) and g;(a~) = ming,ca(g;(a;)). (13)
The closer alternative a; € A is to a™ and the further it is from a~,

the more preferred it is. The respective distances can be computed
as follows:

z z

d*(a) = (Y wiyf @) | andd=(a)= (Y wyj@)] . (14)
j=1 j=1

where w;. = |wj|?, wj € Ry is the weight associated with criterion
8j € G, yi(a)=gj(a®) —gj(a)|* and y; (@) = Igj(a;) —g;(a ),

for j=1,...,m. Overall, the comprehensive score for g; is com-
puted in the following way:
R(@) = %) (15)

d=(a;) +d+(a)’
In this paper, we assume z = 1. Thus w’, can be interpreted as the
weight of criterion g; without any additional transformations.

The architecture of the neural network performing the respec-
tive calculations for ANN-TOPSIS is presented in Fig. 4. In the pre-
processing stage, we compute y;f (a;) and yi (a;) values for each al-
ternative a; € A. The linear layer calculates the distances from the
ideal and anti-ideal alternatives while using non-negative weights
w}. It is followed by aggregation according to Eq. (15). The param-
eters subject to optimization are weights wg. and class thresholds
t. The neural networks for ANN-OWA, all variants of ANN-Ch, and
ANN-TOPSIS share the same number of layers, including one input
layer, one hidden layer, and one output layer responsible for sort-
ing.

3.4. Modelling monotonic functions with ANNs

To construct ANNs suitable for conducting calculations of more
complex MCDA methods, it is necessary to define a monotonic
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function. It can be seen as transforming per-criteria performances
or performance differences, maintaining the pre-defined preference
directions. We consider two monotonic functions: non-decreasing
and non-increasing for gain- and cost-type criteria, respectively.
The transformation of a function from non-decreasing to non-
increasing is conducted by negating the function. We define a
non-decreasing function as a neural network with a single hidden
layer and a continuous sigmoidal activation function with positive
weights. According to Cybenko (1989), for an arbitrary continuous
sigmoid function o, function u(x) of vector x € RN:

L
u®) =Y o (VX +6)), (16)

k=1

where oy, 0 € R and y, € RN, can approximate any N-dimensional
continuous function with precision depending on the number of
components L. Also, u(x) is equivalent to a neural network with a
single hidden layer (Cybenko, 1989).

In what follows, we build on the following two observations.
On the one hand, if F is a family of monotonic functions, then
> fxyer f(x) is also a monotonic function. On the other hand, the
linear transformation « f(x) + 8 of a monotonic function f, where
a €R.o and B €R, is a monotonic function. Assuming o € R.o,
Yk € R’;’O, 0 € R, and o is a monotonic continuous sigmoidal func-
tion, then u(x) is also a monotonic function. The values of o,
Yr» and 6, will be optimized using an algorithm described in
Section 4 by iteratively refining parameter values with function
gradients. The major monotonic continuous sigmoidal functions are
sigmoid and hard sigmoid functions. However, to avoid a problem
of gradient vanishing, in the learning process, we will consider the
non-decreasing monotonic function LeakyHardSigmoid (see Fig. 5):

8X, ifx <0,
Leaky Hard Sigmoid (x) = 1 X, if0<x<1, (17)
S(x—1)+1, ifx>1,

where § is a slope factor, being a very small value in the range
[0,1). The above function is not a continuous sigmoidal function
and cannot be used to approximate any non-decreasing mono-
tonic function. For example, it cannot represent the level segments.
However, it is possible to decrease the value of a slope during
training to zero. Then, LeakyHardSigmoid will be equal to hard sig-
moid function. We will consider a one-dimensional space of x and
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Fig. 4. The architecture of the neural network employed by the ANN-TOPSIS method.

v

Fig. 5. The LeakyHardSigmoid function.

y. Thus, for the sake of simplicity, we assume that:

L
u®) =Y o (X + 6, (18)

k=1

where o is LeakyHardSigmoid with a slope 0.01, L is the number
of components of function u, and y;, o, € R.o. Function u(x) can
be considered as a line segment function with ends designated by
the individual components. It changes slope only at the character-
istic points resulting from the applied o function. Each component
has two characteristic points: (_y—i", 0) and (_}ﬂ‘kﬂ,ak), which are
projected onto u(x). Such a projection from the component func-
tions on the output model for a single argument x is presented in
Fig. 6. Function u(x) is marked with a solid line resulting from the
combination of three components marked with dashed lines. The
transformation conducted by Monotonic Block is general, not im-
posing the limits on the ranges of its output values. This means
that, in particular, u;(0) e R and u;(1) € R.o. To ensure that the
results are interpretable, subsequent normalization to the desired
range, e.g., [0, 1], is needed.

Function u(x), defined by Eq. (18), can be presented as a neural
network with a single input value x. This value is copied L times
and passed as the input to the linear layers, where it is scaled by
weights y, and shifted by bias 8. Then, the output from the input
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layer is transformed by the LeakyHardSigmoid function and passed
to the next linear layer. It must be ensured that the weights in all
layers are greater than zero to maintain the function’s monotonic-
ity. The weights «, are initialized with positive values. If during
training some value falls below ¢ being an arbitrarily small positive
value, it is set to ¢. In what follows, we will refer to the network
representing function u(x) as Monotonic Block (see Fig. 7). It will
be used as a component of the three preference learning methods
that are presented in the following subsections.

3.5. ANN-UTADIS: preference learning with UTADIS and ANN

UTADIS is a preference disaggregation method that quantifies a
comprehensive quality of each alternative using an additive value
function (Zopounidis & Doumpos, 2000):

U(a) =) wju(g(a)), (19)

j=1
where u; € [0, 1] is a marginal value function and w; is a weight
associated with criterion g;. Function U(g;) takes values in the [0,1]
range, delimited by U(a=) =0 and U(a*) =1 for anti-ideal and
ideal alternatives, respectively. In UTADIS, u; is piecewise linear
with n;(A) pre-defined characteristic points xﬁ? such that:

uj(x§) < uj(x’;”), Vke{l,....n;(A) -1}, and Vje {1,...,m}.
(20)

The marginal values between these points are computed using
linear interpolation. In UTADIS, the marginal values uj(x’j) in
the characteristic points and weights w; are determined using
mathematical programming based on a set of assignment exam-
ples (Zopounidis & Doumpos, 2000). In turn, we will employ ANN
for deriving weights and the shape of marginal value functions
without having to specify characteristic points. In this way, the
method offers greater flexibility in fitting the learning data.

The neural network used by ANN-UTADIS is shown in Fig. 8.
The performance on each criterion is transformed using Monotonic
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Fig. 6. Function u(x) representing the transformation conducted by the Monotonic Block with three (L = 3) components.
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Fig. 8. The architecture of the neural network employed by the ANN-UTADIS method.
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Blocks according to Eq. (18), adhering to the monotonicity con-
straint. To use each Monotonic Block, it is required to provide the
number L of components. It constrains the maximum number of
breakpoints for the resulting function (note that some components
may become inactive during optimization, i.e.,, when ¢, = 0). Then,
the per-criterion marginal values are aggregated into a comprehen-
sive value in line with Eq. (19) by a linear layer. Its weights w; are
constrained to positive values to preserve the pre-defined prefer-
ence directions. For the sake of normalization, we apply the min-
max scaling of comprehensive scores:

_U(g) -U(a)
~U(@r)-Ua)

The neural network used by ANN-UTADIS optimizes weights
wj, class thresholds ¢, and parameters incorporated in the Mono-
tonic Blocks. In general, a marginal value function for each crite-
rion may be modeled with a different number L of components.
However, we will use the same value of L for all criteria, which
allows for a more straightforward parallelization of calculations
in Eq. (18) by operations on tenors rather than on individual
scalars. Overall, the network for ANN-UTADIS involves one input
layer, three hidden layers, and one output layer.

Scann-utapis (G;) (21)

3.6. ANN-PROMETHEE: preference learning with PROMETHEE and
ANN

The PROMETHEE method aggregates the results of pairwise
comparisons of each alternative against all remaining ones into
a comprehensive measure of desirability (Brans & De Smet,
2016). For each pair (a;, ;) € Ax A and each criterion g; € G, the
marginal preference degree is computed as follows:

Fi(a;, @) = Pi(dj(a;, @), (22)

where P; is a marginal preference function and d;(a;, a;) = g;(a;) —
gj(a) is the performance difference. In PROMETHEE, six pre-
defined types of P; are considered. However, the most commonly
used is the following:

2, if dj(al-,ak) =4q;,
Fi(ai, a) = § L9299 if 0 < dj(ai, @) < pj, (23)
1, if dj(a,v,ak) > pj’

where q; is an indifference threshold defining the maximal perfor-
mance difference that is negligible and p; is a preference thresh-
old specifying the minimal performance difference justifying a
strict preference. All preference functions in PROMETHEE are non-
decreasing. Also, they are normalized so that Fj(a;, ) =0 for
d;(a;, a;) <0 and their largest value is one. The function type and
the respective parameter values for each criterion need to be pro-
vided by the DM. The outcomes from the individual criteria are
aggregated into a comprehensive preference index 7 (a;, a,) using
a weighted sum:

m
m (@, q) =Y wiF(a;, @),
j=1

(24)

where w; >0 is a weight associated with criterion g; and
Z’]ﬁ:l wj=1. As a result, w(a;q)=0, g;eA and w(a*t,a") =
1, where at and a~ are the ideal and anti-ideal alternatives.
Such preference degrees are further aggregated into the positive
NFS*(a;) and negative NFS~(a;) flows, using the NFS procedure:

n
NFS*(q;) = n]j > m(a;, a) and
k=1

NFS™ (a,-) = n]j iﬂ'(ak, a,-). (25)
k=1
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The arguments in favour and against alternative g; are finally ag-
gregated into a comprehensive flow:

NFS(a;) = NFS*(a;) — NFS~(a;). (26)

In the proposed ANN-PROMETHEE method, we use monotonic
marginal preference functions that are automatically adjusted to
the training data, not requiring the specification of type, weights,
or comparison thresholds. The architecture of the underlying neu-
ral network is presented in Fig. 9. Following the assumptions
of PROMETHEE, we first compute the performance differences
d;(a;, a,) on each criterion. The negative differences are clipped to
zero via the ReLU function:

RelU (x) = max(x, 0). (27)

In this way, the non-positive performance differences will be as-
signed the same value of the preference index. The values of
marginal preference functions F; are computed using the Monotonic
Block which ensures both monotonicity and flexibility of shape ad-
justment:

Fi(a;, a) = uj(max(d;(a;, ai), 0)). (28)

The marginal preference degrees are aggregated into a compre-
hensive preference index using a linear layer with non-negative
weights. Since weights and parameters of the Monotonic Block are
not constrained from the top, we normalize the comprehensive in-
dices as follows:

(. aq)—7m(a,a")
w(at,a")—m(a,a")’

Tnorm (@j, Ay) = (29)
Then, the outcomes of pairwise comparisons are aggregated over
all alternatives into positive, negative, and comprehensive flows us-
ing the Net Flow Score procedure:

Scann-promeTHEE (@) = NFS* (a;) — NFS™ (a;)

1 n
Z Tnorm (Aj, Q) — Tnorm (A, ;)
k=1

n-1

(30)

The use of NFS implies that the preference degrees for all pairs
of alternatives need to be computed in a batch. Moreover, simi-
lar to the ANN-UTADIS, ANN-PROMETHEE requires specification of
the number of components for each Monotonic Block. However, it is
recommended to use the same number L for all such blocks. Over-
all, the network for ANN-PROMETHEE involves one input layer, four
hidden layers, and one output layer.

3.7. ANN-ELECTRE: preference learning with ELECTRE and ANN

The ELECTRE method compares the alternatives pairwise
through an outranking relation (Figueira et al., 2013). In what fol-
lows, we discuss its adaptation for scoring the alternatives based
on aggregating the sufficiently great outranking credibilities using
the NFS procedure. We will consider two tests to compute the
credibility for pair (a;, a;) € A x A. The concordance test quantifies
the arguments in favor of a; being at least as good as a,. The
marginal concordance index for criterion g; is computed as fol-
lows:

1, if gi(@) = gjla) —qj
w, if gi(a) <gjlay) —qj

and  g;(a;) > gj(ay) — pj,
0, if gj(a) <gjla) - pj.

where q; and p; are, respectively, indifference and preference

thresholds. Whichever the threshold values, c;(a;, ) =1 for
g(a;) = g(ay). Moreover, c;(a;, a;) is a monotonic and piecewise

Cj((li, ak) = (31)
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Fig. 9. The architecture of the neural network employed by the ANN-PROMETHEE method.

linear function. The per-criteria results are aggregated into a com-
prehensive concordance index C(a;, a;) using a weighted sum:

m
C(a;. ay) = Z wicj(a;, a),
-

(32)

where w; is a weight associated with g; and Z?; w; = 1. Index
C(a;, a) is interpreted as the strength of the coalition of criteria
supporting the outranking. In turn, the discordance test verifies
the strength of arguments against the outranking. In particular, a
marginal discordance index is defined as follows:

1, if gj(a) <gj(ay) —vj,

PR if gi(ap) > g(@) ~ vy
and g;(a) < gj(a) - pj,
if gj(ai) > gj(ar) - pj,

where v; is a veto threshold interpreted as the minimal perfor-
mance difference implying a complete discordance. The thresholds
need to respect the following constraints: 0 <q; < p; <v;. Note
that the discordance effect does not to be considered for all g; € G
because the power to veto against the outranking is usually at-
tributed only to the most important criteria. We consider the ag-
gregation of partial discordances into a comprehensive one using
the following function (Mousseau & Dias, 2004):

Dj(ai,ak) = (33)

0,

D(a;, ar) =1 - max Dj(a;, ai).
j=1,...m

(34)

Hence the maximal partial discordance over all criteria decides
upon the comprehensive strength of arguments against the hy-
pothesis that a; outranks a,. Finally, the credibility degree is com-
puted by multiplying the comprehensive concordance and discor-
dance:

o (a;, ) = C(a;, ar) - D(a;, ag). (35)

Thus the greater the arguments in favor and the lesser the argu-
ments against the outranking, the greater the credibility. To com-
pute the score for each alternative, we will consider only suffi-
ciently great credibilities to avoid compensation between marginal
arguments in favor or against a; being a favorable alternative.
Specifically, we will consider only o (a;, a,) which are at least as
good as cutting level A such that 0.5 < A < 1. Finally, similar to the
PROMETHEE method, we compute the Net Flow Score for each al-
ternative a; € A:

NFS(a;) = NFS*(a;) — NFS~(a;)

1
n-1

n
> ones (@i, @) — ones (ay, @) |, (36)

k=1

789

Ty, (44, 21 ) Seflu;) <t = Cy
PosTtive flow bz Selw) <t = 0 Clfu;)
Fosorm (@ 03) NES (i) /7 \NFS{z;) Sefas] -
crns (4505 N Seluw) 2t 1 = Gy
Toorm (04, 80)
Fonarn (31, 34 )
Negative flow
D SE S
where  onps(a;, ) = o (a;, @) — A  if  o(a,aq)=X1 and
onrs(a;, a,) =0, otherwise. Note that other realizations of

onrs(aj, a,) would also be possible. However, we opted for a
variant that keeps the spirit of ELECTRE while being intuitively
useful in computing comprehensive scores of alternatives via NFS.

In the proposed ANN-ELECTRE, we avoid direct specification
of thresholds (q;, p; and v;), weights w;, and cutting level A. In
turn, the parameters of an outranking-based sorting model are in-
ferred indirectly using the neural network whose architecture is
presented in Fig. 10. In the preprocessing phase, ANN computes
the performance differences. Then, the calculations are split into
two parts responsible for conducting the concordance and discor-
dance tests. These parts share the value of preference thresholds
pj, j=1,...,m, to prevent the simultaneous occurrence of con-
cordance and discordance. These thresholds are optimized when
training the ANN while ensuring that p; € [0, 1].

In part responsible for the concordance test, the performance
differences are truncated to positive values by the ReLU function
(see Eq. (27)), and their order is reversed by subtracting them
from one. Since the performances on individual criteria are nor-
malized in the [0,1] range, after the above transformation, we
will get one (corresponding to the maximal value of the concor-
dance index) if g;(a;) > gj(a;), or a value in the [0,1] range, oth-
erwise. The obtained value is processed by the marginal concor-
dance function u§ implemented by Monotonic Block, allowing for
its monotonic and flexible transformation as depicted in Fig. 11(a).
The marginal concordance should be zero if the performance dif-
ference exceeds the preference threshold p;. This can be attained
by subtracting the value of uj? attained for 1-p;, ie, u;(l -pj)
from u;(l — RelU(gj(ay) — g;(a;))). The resulting difference should
be truncated to positive values, e.g., using the ReLU function. How-
ever, the lack of a gradient for the negative arguments of this func-
tion makes it difficult to optimize values of preference thresholds
pj, j=1,...,m. For this reason, we use the LeakyReLU function in-
stead which has a non-zero gradient for negative values equal to §:

LeakyReLU (x) = max(x, 6x), (37)

where § is a slope angle for the negative part of the function. It
should take a small value and can be minimized to zero during
optimization. The result of these operations is shown in Fig. 11(b).
Overall, the marginal concordance index c;(a;, a;) is computed as
follows:

¢j(a;, ay) = LeakyReLU,(u§(1 — ReLU (g;(ay) — g;(a;)))
—u5(1 - py)). (38)

Comprehensive concordance index C(a;,a;) is calculated using
Eq. (32) by a linear layer that incorporates criteria weights w; > 0.
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Fig. 10. The architecture of the neural network employed by the ANN-ELECTRE method.
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Fig. 11. The marginal concordance and discordance functions for the ANN-ELECTRE method before (a) and after (b) subtracting the value attained for preference threshold

p; and after transformation by LeakyReLU with § = 0.01.

Finally, values of C(a;, a;) are normalized to the [0,1] range, using
the min-max scaling:

C(a;, a) —C(a”,a")
C(at,a~) —C(a—,a")’
The other part of the ANN-ELECTRE network is responsible for
conducting the discordance test. It first truncates the performance
differences to positive values, i.e., these for which g;(a,) > g;(a;).
Then, the result of such an operation is processed by function ug’
modeled by the Monotonic Block to obtain marginal discordance in-

(39)

Crorm (ai, ak) =

790

dex (see Fig. 11a). To account for the preference threshold p; and
reduce the discordances to zero for performance differences be-
low this threshold, we subtract the value of u? attained for pj, i.e,
ug’ (pj), from u?(ReLU(gj (ay) — g;(a;))). Finally, the resulting differ-
ence is processed using the LeakyReLU function (see Fig. 11b) in
the following way:

Dj(a;, a;) = LeakyReLU (u? (ReLU (g;(ay) — g;(a;))) — u?(p;)).
(40)
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Comprehensive discordance index D(a;, a;) is computed in line
with Eq. (34) and normalized to the [0,1] range:
D(a;, ax) —D(a*,a7)

D(a-,a*t) —D(a+,a~)’

Overall, the largest value of the marginal discordance is one, which
allows the method to adjust the test in such a way that the discor-
dance is not necessarily modeled on all criteria.

The results from the two parts of ANN responsible for the con-
cordance and discordance tests are combined into the outranking
credibility o (a;, a;) using Eq. (35) in the form of a multiplication
layer. To consider only sufficiently great credibilities, we should de-
crease them by cutting level A and transform the resulting nega-
tive values to zero. However, since cutting level A is a parameter
learned during training, to allow for its more efficient optimization,
we decided to transform the negative credibilities to values close
to zero using the LeakyReLU function with a very small § equal to
0.001:

onrs(a;, a,) = LeakyRelU (o (a;, a;) — A).

(41)

Duorm (aj, @) =

(42)

The positive and negative flows as well as comprehensive scores,
denoted by Scann_riectre(a;), for all alternatives a; € A are com-
puted in line with Eq. (36).

The hyperparameters of ANN-ELECTRE are the slope values §
for the LeakyReLU function and the number L of components for
Monotonic Blocks. Similar to the previously discussed methods, to
speed up the optimization process, we use the same value of L for
all criteria in the concordance and discordance parts of the net-
work. Overall, the network for ANN-ELECTRE involves one input
layer, five hidden layers, and one output layer. Hence its architec-
ture involves the greatest number of layers and units among all
introduced methods.

4. Optimization

In this section, we discuss the process of determining pa-
rameter values for the presented sorting models along with all
the supporting techniques that accelerate this process. The role
of optimization is to determine an optimal model highly consis-
tent with the supplied/available assignment examples. Due to non-
linear transformations, numerous relationships between values of
different parameters, and a large number of objects to be scored
(particularly for methods based on pairwise comparisons), the use
of contemporary mathematical programming solvers is excluded
because of their insufficient efficiency. Therefore, to determine the
values of model parameters, we use the iterative optimization
methods based on Gradient Descent (GD). There are many differ-
ent techniques, called optimizers, used in ANN that are based on
GD. In this paper, we employ AdamW, which is the Adam opti-
mizer (Kingma & Ba, 2014) with decoupled weight decay regular-
ization (Loshchilov & Hutter, 2018).

The AdamW optimizer employs the following hyperparameters
having a significant impact on the training process, speed, and
quality of an identified solution:

e o - a learning rate that affects the size of the parameter cor-
rection in an optimization step. Too low values imply slow
learning and the possibility of getting stuck in the local op-
timum too early, while too high values make it possible to
omit the optimum and prevent the optimization from con-
verging.

e B; and B, - momentum factors determining the impact of
historical improvement of parameters on the current step.
Momentum is used to speed up and improve the optimiza-
tion process by drawing conclusions from previous steps to
determine a more stable optimization direction and less dy-
namic response to perturbations during training.
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e ¢ - a small value added to the denominator to stabilize the
calculations.
e w; — a weight decay factor.

The entire optimization process is presented as Algorithm 1.

Algorithm 1 Optimization algorithm using AdamW (adapted after
Loshchilov & Hutter, 2018).

1: given o € (0,1), 1 =0.9, B, =0.999, € =108, w, =0.01, £ €
0. 1)

2: initialize epoch number 7 « 0, parameter vector X;_g € R",
first moment vector m,_g < 0, second moment vector V,_qg <
0

. evaluations < g(AR)

. input < Preprocesing(evaluations)

repeat

T« 1T+1

input,giseq < input + N (0, &)

8. < VLoss(Sc(X;_1, input,piseq))

m; < fim._; + (1 - B1)g;

Ve < Bve_q + (1 - B2)g?

m; <« m:/(1 *,Bf)

Vr < v /(1 —/SQT)
1B Xe < Xe_p — (et / (¥ +€) + wiXe )
14: until stopping criterion is met

© X NI Rw

First, all parameter values X,_g are initialized randomly accord-
ing to the constraints imposed on specific parameter types. These
parameters can be, e.g., weights wj, interaction coefficients wy;
and class thresholds t for the ANN-Ch methods, whereas for ANN-
ELECTRE - these are oy, Yy, 6, from each Monotonic Block, weights
wj, preference thresholds pj, cutting level A, and class thresholds t.
At the same time, all auxiliary variables for the optimization pro-
cess, including an epoch number and moment vectors, are initial-
ized (see line 2).

We used two optimization techniques aimed at accelerating op-
timization. The first one is Batch Gradient Descent (BGD), which
calculates loss, gradient, and modifications of network parameter
values at once after processing all alternatives in AR (see line 3).
It speeds up the entire optimization process and makes the final
model independent from the order of processing the alternatives.
If it is impossible to use BGD, it is recommended to employ Mini
Batch Gradient Descent (Ruder, 2016). This technique divides the
training set into subsets in each epoch and trains this subset at
once. In this case, the order of processing alternatives may affect
the final result, but this impact will be negligible with sufficiently
large batches.

The other method for reducing processing time is to prepare
the input data in the preprocessing stage so that only operations
using network parameters are performed in each epoch (see line
4). For example, one assumes that the entry gets alternatives with
performances converted to the 0-1 range via min-max scaling.

After the input data preprocessing stage, the actual optimiza-
tion process takes place. It consists of the iterative improvement
of the model parameters to minimize a comprehensive classifi-
cation error. To increase the noise resistance, robustness of the
model, and its generalization capabilities, we used data augmen-
tation (Zheng, Song, Leung, & Goodfellow, 2016). It is a technique
mainly used to reduce overfitting (Shorten & Khoshgoftaar, 2019).
It is about creating new training objects from the transformations
of the original objects. The basic change is to add noise, e.g., in the
form of Gaussian noise A (0, §), where £ is the standard deviation,
being an additional hyperparameter of the optimization process.
Its application implies a slight change in alternatives performances,
different in each epoch (see line 7).
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Table 1
Values of criteria weights obtained for the ANN-based methods for the illus-
trative example concerning the ERA dataset.

Method w, w; w3 Wy
ANN-OWA 0.4257  0.0055  0.2225  0.3464
ANN-Ch-Constr. 0.0693  0.0433  0.0000 0.0255
ANN-Ch-Uncons. 0.0030 0.0039 0.0018 -0.0029
ANN-Ch-Pos. 0.0060  0.0048  0.0021 0.0003
ANN-TOPSIS 0.5799  0.7987 0.6676  0.5701
ANN-UTADIS 0.3251 0.1663  0.4217  0.0869
ANN-PROMETHEE 02126  0.4573  0.1591 0.1709
ANN-ELECTRE (concordance)  0.5139  0.1955 0.2726  0.0180
ANN-ELECTRE (discordance) 0.3029 0.0000 1.0000 0.2110

By propagating the input with noise through the successive lay-
ers of the network in iteration T with the current parameter values
X7_1, scores Sc are computed for all reference alternatives AR. The
resulting class assignments are compared with the desired ones,
and the respective loss is computed. Then, the loss is backprop-
agated across all network layers, leading to gradient vectors g;
(see line 8). Subsequently, gradient transformation is performed for
each parameter to improve the optimization process (see lines 9—
12). The AdamW algorithm employs an adaptive learning rate for
each method parameter, using squared gradients to scale the learn-
ing rate and moving momentum average.

Finally, a new parameter value x; is computed by combin-
ing the current value with the identified correction. For this pur-
pose, AdamW considers the previously prepared auxiliary vari-
ables, learning rate, and weight decay (see line 13). The latter
parameter controls the model’s regularization, imposing an addi-
tional optimization goal that prevents the construction of accurate,
though incorrect, solutions with poor generalization capabilities.
This may occur in the case of overfitting the model for the train-
ing data or assigning parameter values that are hard to interpret
(in the case of ANNs, these are usually prohibitively large values).
The weight decay mechanism adds a penalty, controlled by wz, for
the value of the parameters in each optimization step.

Processing all alternatives and modifying the parameter values
is called an epoch. Such a process is performed multiple times un-
til the stopping condition is met. In our case, it occurs after 200
training epochs. The final parameter values are those for which the
model obtained the lowest error for the validation set during opti-
mization.

5. Illustration of preference models inferred with neural
networks

In this section, we illustrate the preference models inferred
with the proposed ANN-based methods. We consider a two-class
problem called ERA (Employee Rejection / Acceptance) (Hall et al.,
2009). It concerns a student survey regarding the willingness to
hire an employee based on four features of a candidate, such as,
e.g., experience and verbal skills. All criteria are of gain type and
have been pre-processed as described in Section 4. The models
were obtained by training the methods on 80% randomly chosen
alternatives. The criteria weights obtained for all methods are pre-
sented in Table 1, whereas the interaction coefficients for the ANN-
Ch algorithms are given in Table 2.

ANN-OWA By applying the ANN-OWA method, we obtained a
model parameterized with the weights shown in Table 1. They re-
flect the impact of each position in the sorted performance vector
on the comprehensive score and assignment of each alternative.
The highest performance on any criterion has the greatest impact
on the results (almost 43%), and the lowest performance is the sec-
ond most important factor (almost 35%). In contrast, the second-
best performance has a negligible impact on the recommended as-
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signment (below 1%). The two classes considered in the ERA prob-
lem are separated by threshold t; = 0.4114 with OWA taking values
between 0 and 1.

In what follows, we provide the models derived with different
variants of the Choquet integral-based algorithms. Unlike in the
ANN-OWA method, the weights from the linear layer correspond
to the weights of individual criteria and interaction coefficient for
pairs of criteria.

ANN-Ch-Constr Let us first consider the variant in which the cri-
teria weights need to be positive, interactions can be either posi-
tive or negative, but the negative interaction coefficients cannot be
greater than the weights of the criteria involved in a given pair.
The analysis of weights (see Table 1) indicates that the greatest im-
pact is attributed to the first criterion, whereas the third criterion
has the least influence on the attained score. The values of the in-
teraction coefficients are given in Table 2. All coefficients but wy; 4
are positive. The greatest synergy effect is observed for g; and
g, as well as g3 and g4. This means that the simultaneous pres-
ence of highly preferred performances on these criteria pairs gives
the alternative a bonus. Note that the weights retain the required
dependencies and fulfill the constrain defined by Eq. (10) (e.g.,
W1 4+ Wy 4y = 0.0693 4 —0.0255 > 0).

The actual significance of criterion g; in the Choquet integral
can be represented by the Shapley value (i) defined as fol-
lows (Angilella et al., 2013):

Z Wiiiy _

i,l}cG 2

@) =w;+ (43)
{

For the considered model, we obtained the following coefficients:
©(1) =0.2454, ¢(2) = 0.3409, ¢(3) = 0.2148, and ¢(4) = 0.1989.
They indicate that g; and g4 are the most and the least important
criteria, respectively. In addition, g3 has a relatively high signifi-
cance level ¢ (3) despite its zero weight ws. However, it is involved
in multiple interacting pairs of criteria. Finally, the separating class
threshold is t; = 0.6117.

ANN-Ch-Uncons For the variant of ANN-Ch that considers both
positive and negative interactions, while allowing for a change in
the direction of preference for a given criterion, the results are
quite different. Based on the inferred weights (see Table 1), we
conclude that g, and g3 have, respectively, the greatest and the
least individual impacts on the attained scores. Moreover, g4 is
assigned a negative weight, meaning that preference learning led
to the inversion of preference direction from gain to cost for this
criterion. This may indicate possible inconsistencies in the data
or suggest the need for incorporating additional constraints in
the model. The interaction coefficients for all pairs of criteria are
shown in Table 2. Pair {g,g,} has the greatest positive impact on
the attained score, giving a great bonus to alternatives with high
performances on both g; and g;. On the other extreme, wyy 3} is
very low, implying that the benefit from the coexistence of high
values on g; and g3 is marginal. Furthermore, negative interactions
can be observed for {g;,g4} and {g,,g4}. This suggests that it is
beneficial for alternatives to have a low value on at least one crite-
rion in these two pairs, which most likely relates to g4, whose in-
dividual weight was already negative. The value of bias is 0.4486,
serving to shift the sigmoid function and having no direct inter-
pretation. In this case, the value of a separating class threshold is
t; = 0.6117.

ANN-Ch-Pos The last variant of ANN-Ch assumed that both indi-
vidual weights and interaction coefficients need to be positive. This
excludes, e.g., negating the preference direction of g4, as suggested
by the previous model. The analysis of weights (see Table 1) indi-
cates the g; and g, are the most important criteria, whereas the
impact of g4 is negligible. The crucial role of the first two criteria
is emphasized by the highest value of the interaction coefficient
for this pair. On the other extreme, g3 and g4 are not interacting,
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Table 2
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Values of criteria interaction coefficients obtained for the ANN-based methods using the
Choquet integral for the illustrative example concerning the ERA dataset.

Method W1 2) w1 3)

Wi1,4)

Wi2,3) Wi2,4} W(3,4)

ANN-Ch-Constr.
ANN-Ch-Uncons.
ANN-Ch-Pos.

0.2859
0.0042
0.0043

0.0919
0.0002
0.0012

—-0.0255
—0.0007
0.0008

0.1374
0.0022
0.0030

0.1720
—0.0021
0.0006

0.2003
0.0006
0.0000

o o
N w
G S

o
N
S)

marginal value ui(a;)
s o
-
s &

o
o
G

°
1)
S

0.0 0.4 0.6

performance gi(a;)

0.8 1.0

(a) criterion g3

0.4

0.3

0.2

marginal value us(a;)

0.0

0.4 0.6 0.8

performance gs(a;)

(c) criterion g3

0.150

marginal value u,(a;)
c o o o o
S o o©o B b
B 2 2 8 &
> & & 8 B

0.000

0.0 0.4 0.6

performance g»(a;)

0.8 1.0

(b) criterion g

0.08

0.06

0.04

marginal value uy(aj)

0.00

0.4 0.6 0.8

performance g4(a;)

(d) criterion g4

Fig. 12. Marginal value functions scaled by criteria weights constructed by ANN-UTADIS for the ERA dataset.

meaning that the coexistence of high or low values on these crite-
ria has no impact on the attained score. The precise value of inter-
action coefficients are shown in Table 2. All above weights trans-
late into the following normalized Shapley values: ¢(1) = 0.3962,
©(2) =0.3794, ¢(3) =0.1819, and ¢(4) = 0.0425. They confirm
that g; and g, are the most influential criteria, whereas the role
of g4 is negligible. The threshold separating the two considered
classes on a scale of the Choquet integral is t; = 0.6173.

ANN-TOPSIS TOPSIS investigates the distance of each alterna-
tive from the ideal and anti-ideal alternatives. For the considered
problem, the performances of these alternatives are as follows:
at=[1,1,1,1] and a~ =0, 0, 0, 0]. Criterion g, has the greatest
impact on the distances, whereas the influence of g4 is the least
(see Table 1). However, the ratios between the criteria weights are
much lesser than in the case of the Choquet integral-based models,
meaning that in TOPSIS, the importances of all criteria are more
balanced. The threshold separating the less and more preferred
classes on the considered distance scale from 0 to 1 is t; = 0.4601.

ANN-UTADIS The value-based model inferred by ANN-UTADIS
consists of marginal value functions for all criteria. Their shapes
can be visualized based on the characteristic points of the Mono-
tonic Blocks, weights for the linear layer aggregating marginal val-
ues, and the normalization constraint for the weights. We used 20
component functions (neurons in the hidden layer) in each of the
Monotonic Blocks. Thus the constructed functions can have up to
40 characteristic points. The plots can be reconstructed by query-
ing relevant parts of the ANN for the value assigned to artificially
generated input data.
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The marginal value functions are shown in Fig. 12. The great-
est maximal share in the comprehensive value is assigned to g3,
whereas the lowest maximal share corresponds to g4 (see Table 1).
The marginal function for g; reveals minor differences for the per-
formances ranging from 0.6 to 0.8. In contrast, above 0.8, there is
a rapid increase in marginal values, indicating a high preference
for alternatives with the most preferred values on g;. For g, the
marginal values assigned to performances lesser than 0.1 are close
to zero. Above this level, the function’s shape, similar to the func-
tion corresponding to g3, is nearly linear. In turn, for g4, the dif-
ferences between the marginal values are significant for very low
or very high performances, whereas the slope is less steep in the
mid-range. The threshold separating the two classes on a scale of
a comprehensive value from 0 to 1 is t; = 0.4909.

ANN-PROMETHEE In the PROMETHEE-based method, the param-
eter values of the network refer to pairwise comparisons of alter-
natives, providing evidence on how much one of them is preferred
to the other. In this case, we used 20 component functions in each
of the Monotonic Blocks and reconstructed the marginal preference
functions similarly as for ANN-UTADIS. The plots in Fig. 13 are al-
ready scaled by the criteria weights.

The weight of g, is the greatest, whereas the importance coef-
ficients of g3 and g4 are much lesser (see Table 1). For all criteria
and the non-positive performance differences, preference degrees
are zero. Moreover, a small advantage of one alternative over an-
other does not imply the preference or the preference degree is
very marginal. For example, for g, - the preference functions starts
to increase for difference greater than 0.12. Hence this value can be
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Fig. 13. Marginal preference functions scaled by criteria weights constructed by ANN-PROMETHEE for the ERA dataset.

interpreted as an indifference threshold. Furthermore, we do not
observe any level (constant) part above a certain value. Once the
function starts to increase, this trend is maintained till the very
end. Hence the preference threshold for all criteria is equal to one.
The plots show that the greatest increase in the preference degree
occurs for the largest differences (> 0.75), but for g; and g4, such
a steep slope is also observed for differences between 0.2 to 0.3.
The threshold separating the two classes on a Net Flow Score scale
from -1 to 1is t; =0.

ANN-ELECTRE For the ELECTRE-like method, we analyze the con-
cordance and discordance functions for each criterion. In this ap-
proach, 30 components were used in each of the Monotonic Blocks.
However, as can be seen in Fig. 14, most of them were deac-
tivated during training. This led to easily interpretable functions
with clearly distinguished thresholds for the performance differ-
ence, implying the maximal value of either concordance or discor-
dance.

The marginal concordance and discordance functions presented
in Fig. 14 were already normalized. Moreover, the concordance
functions were scaled by the weights (see Table 1). For ANN-
ELECTRE, there is no univocal information on the importance of
different criteria because the methods assigned different weights
to the arguments in favor and against the outranking deriving from
the same criterion. On the one hand, g; has the greatest impact in
terms of supporting the truth of outranking, whereas the concor-
dance weight of g4 is the least. On the other hand, g3 may have a
very negative impact by strongly supporting discordance in case of
large performance differences against the outranking. The maximal
discordance on g3 is one, hence zeroing the outranking credibility
in case one alternative is vastly worse than another on this cri-
terion. Furthermore, the discordance does not occur for g,, which
can be interpreted as the lack of power of this criterion to veto
against the outranking.

When it comes to the marginal functions, for performance dif-
ferences greater or equal to zero, the concordance indices take
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the maximal value of one (if the plot is unscaled) or concordance
weight assigned to a given criterion (when considering a scaled
plot as depicted in Fig. 14). For all criteria, an indifference thresh-
old is close to zero. It is also possible to distinguish the preference
and veto thresholds. When the performance difference exceeds the
negated preference threshold, the concordance becomes positive,
whereas if the performance difference is lesser than this thresh-
old, the discordance occurs (when veto is admitted for a given cri-
terion). For g3, this threshold has a value of 0.2236. In turn, for gi,
there is a large zone with no or very marginal concordance and
discordance. The concordance becomes positive for marginally neg-
ative performance differences, whereas the discordance is above
zero only when one alternative is worse than another by at least
p1 = 0.5940. The preference thresholds directly optimized by the
ANN for g, and g4 are 0.3329 and 0.3354. Finally, when the perfor-
mance difference is greater than the veto threshold, the maximal
discordance on a given criterion occurs. The values of this thresh-
old for gq, g3, and g4 are, respectively, around 0.93, 0.38, and 0.61.

An important parameter inferred by ANN-ELECTRE is the cut-
ting level A. It was assigned a very high value of 0.95. This means
that the arguments supporting the outranking need to be very
strong, and the arguments against the outranking need to be none
or negligible to support the inclusion of credibility in the Net Flow
Score computations performed by the method. The threshold sep-
arating the rejection and acceptance classes on the scale between
—land 1ist; =0.

6. Computational experiments

To investigate the performance of the proposed methods, they
were applied to a set of binary sorting problems (see Table 3). The
datasets come from the UCI repository (http://archive.ics.uci.edu/
ml/) and the WEKA software (Hall et al., 2009). The number of
criteria is between four and eight, whereas the number of alter-
natives ranges from several dozen to several hundred. In Table 3,
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Fig. 14. Marginal concordance and discordance functions constructed by ANN-ELECTRE for the ERA dataset.

Table 3
Datasets considered in the experimental evaluation.

Name Code No. of alternatives ~ No. of criteria ~ No. of pairwise comparisons
Den Bosch DBS 120 8 14,280

Computer Processing Units CPU 209 6 43,472

Breast Cancer BCC 286 7 81,510

Auto MPG MPG 392 7 153,272

Employee Selection ESL 488 4 237,656

Mammographic MMG 961 5 922,560

Employee Rejection/Acceptance  ERA 1000 4 999,000

Lecturers Evaluation LEV 1000 4 999,000

Car Evaluation CEV 1728 6 2,984,256

we include the information on the number of pairwise compar-
isons that appear as input in outranking-based approaches such as
ANN-PROMETHEE and ANN-ELECTRE.

The same set of problems was considered in Tehrani et al.
(2012) and Sobrie et al. (2019). For a detailed description of each
set, see Tehrani et al. (2012). Some of them (MPG, MMG, and BCC)
involve nominal attributes that have been transformed into mono-
tonic criteria according to Tehrani et al. (2012). This increases the
difficulty of the preference learning task for such problems as the
methods respecting the pre-defined preference directions need to
deal with an arbitrarily imposed order which reduces their flexi-
bility in fitting the model.

To quantify the algorithms’ performance, we use two classifica-
tion quality measures. The first one is a standard misclassification
error (0/1 loss), referring to the number of alternatives in AC c A
that the inferred model classifies incorrectly:

0/1 loss = 1 > CL error(q;). (44)
|Ac] Pt
where:
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The other measure is AUC, which - for a binary classification in-
volving classes C; and C, - takes the following form:

Za,-eA(] Za]eACZ ]l[SC(ai) < Sc(a])]

AUC = , 46
Ac TG (40)

where:

n[sc(ai><sc<aj>1={§)’ Do ra) = 5@, (47)

AUC builds on the number of pairs of alternatives from different
classes for which the order of classes is reflected in the respec-
tive scores, i.e., a comprehensive score of a; from the less preferred
class than the class of a; is lesser than Sc(a;). The measure is nor-
malized by the number of all pairs of alternatives from different
classes. Thus AUC indicates how many changes in the ranking im-
posed by the comprehensive scores are needed to obtain an en-
tirely consistent outcome.

In the following subsection, we report the experimental results
for eight algorithms proposed in this paper. We compare them
against the following state-of-the-art preference learning methods:

o logistic regression (LR), which is a well-established statisti-
cal classification method, using the linear model of the in-
put attributes (Hosmer et al., 2000); while estimating the
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parameters of the weighted sum model, it optimizes the
log-likelihood function capturing the probability of observ-
ing the desired classification for alternatives given the input
data and the model;
Choquistic regression (CR), i.e., a generalization of LR in
which the Choquet integral is used as the preference
model (Tehrani et al., 2012); when estimating values of its
parameter, the algorithm also optimizes the log-likelihood
function using a sequential quadratic programming approach
implemented in Matlab;
kernel logistic regression with the polynomial kernel (KLR-
ply) and a degree equal to two so that it models low-level
interactions of criteria (Tehrani et al., 2012);
kernel logistic regression with the Gaussian kernel (KLR-rbf)
able to capture interactions of higher-order; note that KLR
methods are extensions of LR that are flexible but not neces-
sarily monotonic in the sense of preserving pre-defined pref-
erence directions (Tehrani et al., 2012);
the MORE algorithm that learns rule ensembles, adhering to
monotonicity constraints, in which a single rule is treated as
a subsidiary base classifier (Dembczynski et al., 2009); rule
induction is performed by minimizing the sigmoid 0-1 loss
function;
the LMT algorithm that induces tree-structured models con-
taining logistic regression functions at the leaves (Landwehr
et al., 2003), while accounting for the least squared misclas-
sification error;
the UTADIS method, which employs linear programming
provided by the IBM ILOG CPLEX solver (Sobrie et al., 2019)
to infer a threshold-based value-driven sorting model us-
ing piecewise linear marginal functions with three seg-
ments (Zopounidis & Doumpos, 2000); it optimizes a mis-
classification error defined as an average distance of alterna-
tives’ comprehensive values from the value ranges delimited
by the thresholds associated with their desired classes; the
proposed ANN-based algorithms minimize the same objec-
tive function;

the Mixed-Integer Program (MIP) for learning the param-

eters of MR-Sort, which is a simplified variant of ELEC-

TRE TRI-B, using a majority rule and boundary class pro-

files (Leroy et al., 2011); the model parameters are selected

by minimizing the 0/1 loss using the IBM ILOG CPLEX solver;
the metaheuristic (META) for learning the parameters of MR-

Sort (Sobrie et al., 2019) which uses evolutionary algorithms

and mathematical programming to select parameter values

minimizing the 0/1 loss.

o UTADIS-G, i.e., UTADIS employing general marginal value
functions with the characteristic points corresponding to all
unique performances (Greco, Mousseau, & Stowinski, 2010);
the optimized objective is the same as for the standard
UTADIS; the method has been implemented by the authors
of this paper using the GLPK solver.

6.1. Estimation of hyperparameter values

In Section 4, we discussed the process of optimizing parame-
ter values taking into account hyperparameters. This section is de-
voted to estimating the values of these hyperparameters as well as
other hyperparameters involved in the operations of the proposed
preference learning algorithms that are needed to train the models
successfully.

To find the optimal values, we performed a grid search to verify
the classification quality for different values. Specifically, we tested
three hyperparameters:
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e learning rate o < {0.001,0.002,0.005,0.01,0.02,0.05} (in
addition, for ANN-OWA, all variants of ANN-Ch, and ANN-
TOPSIS, we considered {0.1, 0.2, 0.5});

e the number L € {10, 20,30} of components used by Mono-

tonic Block for ANN-UTADIS, ANN-PROMETHEE, and ANN-

ELECTRE - it is the only parameter whose value needs to

be provided before training for these methods;

standard deviation & < {0,0.01,0.02,0.05} of Gaussian noise

used in date augmentation, where 0 means there is no ad-

ditional noise added to the input data in each optimization
step.

The range of a learning rate for ANN-OWA, ANN-Ch, and ANN-
TOPSIS was extended due to the existing trend in the prelimi-
nary tests. They indicated that better results could be obtained
for higher values of «. However, the extended tests revealed that
this trend was valid only for a specific range of values, and after
exceeding a certain threshold, the classification outcomes deterio-
rated.

In a single test, we considered precise values for each of the
above hyperparameters. The test was repeated 100 times for three
sizes of the training and test sets. They correspond to the scenarios
where (i) the training set is small compared to the test set (20%
vs. 80%), (ii) both sets are equal in size (50% vs. 50%), and (iii) the
training set contains a significant number of alternatives compared
to the test set (80% vs. 20%), which is the most common setting. In
each run, the allocation of alternatives to the training and test sets
was performed randomly and independently. The selected values
of hyperparameters are the ones for which the best average value
of the performance measure was obtained for the training set in a
hundredfold experiment described above.

In the main paper, we present the results obtained for the ERA
dataset for 80% of training data and the AUC measure (see Fig. 15).
The results for ANN-UTADIS were similar for different hyperparam-
eter values, ranging from 0.7807 to 0.7935. The highest average
score was obtained for o = 0.02, L =20, and & = 0.02. However,
they cannot be claimed as the best hyperparameter values unan-
imously. The Student’s T-test with a confidence level of 0.95 in-
dicated that the AUC mean was statistically indistinguishable for
7 out of 72 configurations. On the other extreme, the lowest AUC
value was observed for & = 0.001, L = 10, and & = 0.05. There are
no strict trends here, however, it can be observed that the results
for L = 20 and L = 30 are more often better than for L = 10.

For ANN-PROMETHEE, we observe a trend indicating that bet-
ter results are achieved for lesser values of learning rate and stan-
dard deviation of the noise. The best AUC score (0.7840) is attained
for o = 0.005, L = 10, £ = 0.0, being, however, statistically indistin-
guishable for 41 out of 72 configurations. In turn, the best results
for the ANN-ELECTRE are achieved for a learning rate of 0.01 and
0.02. At the same time, the greater the learning rate and lower
noise std, the better the results. The number L of components has
no significant influence on the results. The best combination of pa-
rameters is o = 0.01, L =30, andé = 0.0 with mean AUC 0.7678
(we noted 20 other statistically indistinguishable configurations).

For ANN-Ch-Uncons., we observe the greatest differences in
classification outcomes among all methods. For different values of
hyperparameters, AUC ranges between 0.6387 and 0.7872. The best
outcomes are obtained for learning rates between 0.01 and 0.2.
The highest average score was obtained for & = 0.05 and & = 0.02.
However, no statistically sound difference between means was ob-
served for the other 13 out of 36 vectors of hyperparameter values.
Also, for ANN-Ch-Uncons, we did not observe a noticeable impact
of the input noise on the final results.

Similar trends occur for the remaining methods, i.e., the value
of a learning rate for which the best results are obtained is: for
ANN-Ch-Pos. - between 0.02 and 0.1, for ANN-TOPSIS - between
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Fig. 15. The AUC value attained for the training set by various methods for different hyperparameter values for the ERA dataset.

0.05 and 0.2, for ANN-Ch-Constr - it is above 0.1, and for ANN-
OWA - it is equal to 0.5. The best configurations for these methods
are: for ANN-Ch-Pos. - @ = 0.05 and & = 0.05, for ANN-TOPSIS -
o =0.1 and £ =0.02, for ANN-Ch-Constr - & = 0.2 and & = 0.05,
and for ANN-OWA - o = 0.5 and & = 0.05.

The above conclusions hold only for the ERA dataset. For some
other sets, the dependencies differed. The respective figures are
presented in the e-Appendix (supplementary material available on-
line).

6.2. Experimental results in terms of AUC and 0/1 loss

In this section, we report the experimental results for 17 ap-
proaches, including eight proposed in this paper. All experiments
were carried out on a single CPU 2300MHz Intel(R) Xeon(R) E5-
2650 v3 using Python 3.6 and the Pytorch 1.2.0 library. The training
times are shown in the e-Appendix. The outcomes for the state-of-
the-art methods are derived from Tehrani et al. (2012) and Sobrie
et al. (2019).

In Tables 4-6, we report the mean AUC values for nine bench-
mark datasets and different proportions of the training and test
sets. For each approach, we provide the standard deviation, rank
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according to the mean for a given problem, and an average rank
for all datasets (see the last column). A few missing values in the
tables for MIP indicate that this approach was not able to find a
solution within a pre-defined time limit. In what follows, we will
discuss in detail the results obtained for 80% share of the training
set (see Table 6). Then, we will indicate the major differences for
the remaining two settings.

Let us start by discussing the specificity of different datasets. In
general, the best AUC values were attained for CPU, ESL, DBS, and
CEV. For example, the mean AUC values for ANN-UTADIS for these
four datasets were 0.9998, 0.9885, 0.9676, and 0.9410, whereas the
respective means attained by ANN-ELECTRE were 0.9998, 0.9600,
0.9893, and 0.8786. Such high-quality scores for CPU or ESL indi-
cate that the best-performing approaches assigned such compre-
hensive scores to the alternatives that inversed the original pref-
erence relation only for a few or several pairs in the testing sets.
On the other extreme, the least AUC values were observed for BCC
and ERA. For these problems, ANN-UTADIS attained average val-
ues equal to 0.7830 and 0.7957, whereas for ANN-ELECTRE - these
were 0.7497 and 0.7695. This means that the input and output
orders were not consistent for about 20-25% of pairs in the test
set. Such differences confirm that the considered datasets posed
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Table 4

Classification performance in terms of the mean and standard deviation of AUC for 20% training data and 80% test data.
Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank
ANN-UTADIS 0.9159 +0.0230 (8) 0.9979 +0.0024 (1) 0.7513 +£0.0158 (4) 0.8870+0.0086 (9) 0.9839 +0.0030 (4) 0.7844 +0.0081 (1) 0.8955+0.0066 (2) 0.9384 +0.0041 (8) 0.8769 +0.0118 (13) 5.56
ANN-PROMETHEE 0.9289 + 0.0224 (3) 0.9918 +0.0089 (3) 0.7524 +0.0162 (2) 0.8750+0.0088 (10) 0.9840 +0.0030 (3) 0.7801 +0.0087 (2) 0.8923 +0.0075 (5) 0.8919 &+ 0.0060 (15) 0.8869 + 0.0162 (8) 5.67
ANN-Ch-Uncons. 0.9181 +£0.0150 (6) 0.9798 +0.0082 (9) 0.7292 +0.0211 (8) 0.9640 +0.0089 (6) 0.9835+0.0037 (5) 0.7758 +0.0081 (4) 0.8930 + 0.0069 (3) 0.9685 +0.0026 (6) 0.8866 + 0.0075 (11) 6.44
ANN-Ch-Pos. 0.9202 +0.0161 (5) 0.9751 +0.0072 (11) 0.7495 +0.0187 (5) 0.7394 + 0.0614 (17) 0.9834 £ 0.0029 (6) 0.7771 +0.0076 (3) 0.8929 + 0.0059 (4) 0.9284 +0.0038 (11) 0.8868 + 0.0128 (9) 7.89
ANN-Ch-Constr  0.9164 + 0.0242 (7) 0.9806 + 0.0073 (8) 0.7515+0.0169 (3) 0.8451 +0.0147 (12) 0.9848 +0.0030 (2) 0.7721 +0.0094 (5) 0.8918 +0.0059 (6) 0.9344 +0.0071 (9) 0.8920 +0.0081 (4) 6.22

ANN-ELECTRE 0.9285 +0.0210 (4)

0.9971 +0.0038 (2) 0.7325 +0.0177 (6)

0.8540 4 0.0219 (11) 0.9854 +0.0023 (1)

0.7640 + 0.0094 (9)

0.8852 4+ 0.0077 (10) 0.8753 +0.0160 (16) 0.8960 + 0.0119 (2) 6.78

ANN-OWA 0.9077 £ 0.0161 (10) 0.9411 £0.0110 (17) 0.7533 +£0.0180 (1) 0.6514 +£0.0159 (18) 0.9808 +0.0029 (7) 0.7654 & 0.0074 (8) 0.8688 +0.0064 (14) 0.7240 + 0.0070 (17) 0.8897 &+ 0.0057 (5) 10.78
ANN-TOPSIS 0.8919 4 0.0191 (12) 0.9130 4 0.0191 (18) 0.7243 +£0.0139 (9) 0.9533 +0.0046 (7) 0.7806 +0.0112 (18) 0.7369 + 0.0076 (14) 0.8137 & 0.0073 (17) 0.9655 + 0.0028 (7) 0.8527 +0.0080 (17) 13.22
CR 0.9290 + 0.0322 (2) 0.9822+0.0121 (5) 0.6400 + 0.0641 (18) 0.9788 +0.0160 (1) 0.9670 + 0.0074 (12) 0.7669 + 0.0334 (6) 0.8971 4+ 0.0098 (1) 0.9825+0.0080 (3) 0.8867 +0.0123 (10) 6.44
LR 0.8866 + 0.0511 (14) 0.9806 +0.0124 (7) 0.6970 +0.0411 (12) 0.9675 +0.0068 (5) 0.9721 +0.0060 (8) 0.7602 + 0.0331 (11) 0.8905 £ 0.0081 (7) 0.9332 +0.0033 (10) 0.8962 + 0.0080 (1) 8.33
KLR-ply 0.9359 £ 0.0218 (1) 0.9716 £0.0072 (13) 0.6509 £ 0.0568 (17) 0.9704 + 0.0075 (4) 0.9638 +0.0106 (13) 0.7555 £ 0.0139 (12) 0.8870 £ 0.0094 (8) 0.9818 £0.0058 (5) 0.8552 =+ 0.0203 (16) 9.89
KLR-rbf 0.9053 £ 0.0433 (11) 0.9843 4 0.0116 (4) 0.7124 +0.0290 (11) 0.9741 +0.0055 (3) 0.9705 4 0.0099 (9) 0.7662 +0.0098 (7) 0.8860 =+ 0.0128 (9) 0.9821+0.0076 (4) 0.8938 +0.0121 (3) 6.78
MORE 0.8731 +0.0481 (16) 0.9749 +0.0235 (12) 0.6639 £ 0.0567 (15) 0.9501 & 0.0263 (8) 0.9466 + 0.0484 (17) 0.7198 +0.0329 (17) 0.8137 0.0621 (18) 0.9888 +0.0063 (2) 0.8754 +0.0274 (14) 13.22
LMT 0.9151 £ 0.0228 (9) 0.9816 £0.0113 (6) 0.7310+0.0675 (7) 0.9753 £0.0092 (2) 0.9696 + 0.0086 (11) 0.7619 & 0.0160 (10) 0.8797 +0.0182 (11) 0.9902 +0.0042 (1) 0.8890 + 0.0259 (6) 7.00
META 0.8761 + 0.0462 (15) 0.9531 +0.0247 (15) 0.6810 + 0.0458 (13) 0.8337 £ 0.0291 (13) 0.9569 + 0.0114 (15) 0.7256 + 0.0238 (16) 0.8530 = 0.0258 (15) 0.8968 + 0.0116 (14) 0.8828 +0.0129 (12) 14.22
MIP 0.8637 +0.0463 (17) 0.9497 £ 0.0262 (16) 0.7155 £ 0.0365 (10) 0.8215 + 0.0368 (15) 0.9510 + 0.0166 (16) 0.7182 +0.0328 (18) 0.8424 +0.0291 (16) - 0.8877 +£0.0151 (7) 14.78
UTADIS 0.8886 + 0.0496 (13) 0.9789 £ 0.0283 (10) 0.6650 + 0.0527 (14) 0.8162 £ 0.0335 (16) 0.9704 £ 0.0095 (10) 0.7409 + 0.0175 (13) 0.8707 & 0.0146 (12) 0.9235 £ 0.0183 (13) 0.8650 + 0.0294 (15) 12.89
UTADIS-G 0.8564 + 0.0507 (18) 0.9552 =+ 0.0366 (14) 0.6617 £ 0.0489 (16) 0.8314 + 0.0328 (14) 0.9636 + 0.0122 (14) 0.7307 £ 0.0233 (15) 0.8705 £ 0.0134 (13) 0.9269 + 0.0149 (12) 0.8474 + 0.0284 (18) 14.89
Table 5
Classification performance in terms of the mean and standard deviation of AUC for 50% training data and 50% test data.

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank
ANN-UTADIS 0.9399 + 0.0292 (4) 0.9991 +£0.0017 (1) 0.7632 +0.0307 (3) 0.8911 +0.0164 (9) 0.9859 = 0.0047 (3) 0.7880+0.0144 (1) 0.8996 +0.0100 (4) 0.9395+0.0060 (8) 0.8815+0.0162 (14) 5.22
ANN-PROMETHEE 0.9446 =+ 0.0266 (2) 0.9971 +0.0044 (3) 0.7636 +0.0336 (2) 0.8746 +0.0180 (10) 0.9856 +0.0042 (4) 0.7839 +0.0136 (2) 0.8946 4+ 0.0131 (8) 0.8960 + 0.0099 (14) 0.8874 +0.0168 (11) 6.22
ANN-Ch-Uncons. 0.9301 +0.0234 (8) 0.9890 =+ 0.0060 (8) 0.7517 £0.0252 (6) 0.9713 +0.0084 (6) 0.9855+0.0045 (5) 0.7823 +£0.0163 (3) 0.8974+0.0110 (5) 0.9707 +0.0036 (6) 0.8923+0.0124 (8) 6.11
ANN-Ch-Pos. 0.9303 £ 0.0254 (7) 0.9821 +0.0082 (13) 0.7560 £ 0.0359 (5) 0.7538 £ 0.0489 (16) 0.9844 + 0.0048 (6) 0.7816 +0.0148 (4) 0.8963 +£0.0101 (6) 0.9302 + 0.0060 (13) 0.8878 & 0.0167 (10) 8.89
ANN-Ch-Constr ~ 0.9299 +0.0299 (9) 0.9865 +0.0056 (11) 0.7641 +0.0314 (1) 0.8494 +0.0224 (12) 0.9870 +0.0039 (1) 0.7769 +0.0138 (5) 0.8957 +0.0105 (7) 0.9357 +0.0088 (10) 0.8952 +0.0113 (7) 7.00
ANN-ELECTRE 0.9416 + 0.0251 (3) 0.9988 +0.0020 (2) 0.7318 +0.0368 (9) 0.8536 +0.0218 (11) 0.9864 + 0.0042 (2) 0.7652 +0.0150 (11) 0.8869 +0.0110 (11) 0.8751 +0.0192 (16) 0.9019 +0.0128 (1) 7.33
ANN-OWA 0.9117 £ 0.0296 (15) 0.9447 £+ 0.0138 (17) 0.7568 +0.0336 (4) 0.6575 +0.0281 (17) 0.9816 +0.0049 (7) 0.7665 =+ 0.0150 (10) 0.8714 &+ 0.0119 (15) 0.7236 +0.0113 (17) 0.8920 +0.0112 (9) 12.33
ANN-TOPSIS 0.9082 + 0.0284 (16) 0.9193 £ 0.0176 (18) 0.7402 £ 0.0293 (7) 0.9545 +0.0097 (8) 0.7844 =+ 0.0262 (18) 0.7416 + 0.0171 (14) 0.8203 +0.0125 (17) 0.9662 + 0.0033 (7) 0.8569 +0.0119 (16) 13.44
CR 0.9341 +0.0228 (5) 0.9920 +0.0073 (6) 0.6912 + 0.0469 (15) 0.9818 + 0.0075 (1) 0.9720 +0.0084 (12) 0.7705 £ 0.0310 (9) 0.9098 +0.0103 (1) 0.9912 +0.0024 (4) 0.9003 +0.0132 (2) 6.11
LR 0.9191 £0.0293 (11) 0.9914 +0.0056 (7) 0.7184 +0.0367 (11) 0.9803 +0.0084 (3) 0.9764 +0.0062 (8) 0.7633 +0.0241 (12) 0.8935+0.0113 (9) 0.9362 +£0.0071 (9) 0.8972+0.0125 (5) 8.33
KLR-ply 0.9492 +0.0198 (1) 0.9771 +0.0109 (14) 0.7001 +0.0396 (12) 0.9776 & 0.0083 (4) 0.9726 +0.0080 (11) 0.7740 +0.0148 (7) 0.8999 +0.0120 (3) 0.9950 +0.0019 (2) 0.8962 +0.0140 (6) 6.67
KLR-rbf 0.9174 + 0.0316 (13) 0.9925 +0.0056 (5) 0.7294 +0.0344 (10) 0.9752 +0.0068 (5) 0.9754 +0.0070 (9) 0.7745+0.0141 (6) 0.9012 +£0.0128 (2) 0.9907 +0.0031 (5) 0.8995+0.0091 (3) 6.44
MORE 0.9179 + 0.0403 (12) 0.9873 £ 0.0149 (10) 0.6980 + 0.0586 (13) 0.9563 +0.0313 (7) 0.9557 & 0.0301 (17) 0.7215+0.0381 (17) 0.8185 +0.0580 (18) 0.9921 & 0.0042 (3) 0.8839 +0.0305 (13) 12.22
LMT 0.9259 + 0.0289 (10) 0.9883 & 0.0077 (9) 0.7387 +£0.0656 (8) 0.9814 + 0.0074 (2) 0.9707 +0.0120 (14) 0.7719 4 0.0144 (8) 0.8920 +0.0164 (10) 0.9977 +0.0017 (1) 0.8976 +0.0153 (4) 7.33
META 0.9074 + 0.0366 (17) 0.9701 + 0.0140 (15) 0.6929 =+ 0.0398 (14) 0.8337 +0.0231 (14) 0.9640 + 0.0099 (15) 0.7366 + 0.0233 (16) 0.8721 + 0.0147 (14) 0.8960 =+ 0.0073 (15) 0.8862 + 0.0138 (12) 14.67
MIP 0.8998 + 0.0336 (18) 0.9645 + 0.0194 (16) - 0.9563 + 0.0114 (16) 0.7167 +0.0274 (18) 0.8511 +£0.0219 (16) - 17.33
UTADIS 0.9325 4 0.0345 (6) 0.9940 £ 0.0131 (4) 0.6650 £ 0.5270 (16) 0.8272 +0.0243 (15) 0.9747 £0.0116 (10) 0.7437 +0.0211 (13) 0.8746 + 0.0137 (12) 0.9339 +£0.0138 (11) 0.8667 + 0.0385 (15) 11.33
UTADIS-G 0.9117 £ 0.0332 (14) 0.9830 =+ 0.0201 (12) 0.6571 & 0.0524 (17) 0.8456 + 0.0205 (13) 0.9714 + 0.0069 (13) 0.7388 +0.0187 (15) 0.8738 + 0.0134 (13) 0.9329 +0.0114 (12) 0.8439 +0.0253 (17) 14.00
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Table 6

Classification performance in terms of the mean and standard deviation of AUC for 80% training data and 20% test data.

CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank

DBS

Method

0.9676 +0.0319 (1) 0.9998 +0.0007 (1) 0.7830 =+ 0.0656 (4) 0.9034 +0.0307 (9) 0.9885 +0.0086 (3) 0.7957 +0.0290 (1) 0.9044 +0.0218 (3) 0.9410 +0.0114 (8) 0.8856 + 0.0280 (14) 4.89

ANN-UTADIS

ANN-PROMETHEE 0.9574 + 0.0433 (4) 0.9988 +0.0029 (4) 0.7896 & 0.0584 (2) 0.8794 +0.0328 (10) 0.9885 + 0.0078 (4) 0.7891 +0.0291 (3) 0.8980 +0.0202 (9) 0.8977 +0.0168 (14) 0.8943 + 0.0249 (10) 6.67

ANN-Ch-Uncons.
ANN-Ch-Pos.

0.9492 + 0.0507 (7) 0.9937 +0.0072 (8) 0.8074 +0.0595 (1) 0.9788 +0.0123 (5) 0.9880 =+ 0.0077 (5) 0.7911 +0.0284 (2) 0.9035 + 0.0207 (4) 0.9726 + 0.0067 (6) 0.8988 = 0.0200 (7) 5.00
0.9368 + 0.0534 (11) 0.9892 + 0.0092 (13) 0.7712 + 0.0636 (5) 0.7650 + 0.0655 (16) 0.9867 + 0.0091 (6) 0.7856 + 0.0268 (4) 0.9019 + 0.0197 (6) 0.9303 + 0.0119 (13) 0.8923 + 0.0228 (11) 9.44

0.9522 + 0.0474 (5) 0.9905 + 0.0101 (12) 0.7865 + 0.0632 (3) 0.8503 = 0.0394 (14) 0.9886 + 0.0075 (2) 0.7812+0.0300 (5) 0.8998 + 0.0206 (7) 0.9376 + 0.0131 (10) 0.8981 + 0.0233 (8) 7.33

ANN-Ch-Constr
ANN-ELECTRE
ANN-OWA
ANN-TOPSIS

CR
LR

0.9600 +0.0393 (3) 0.9998 +0.0011 (2) 0.7497 +0.0621 (8) 0.8582 +0.0388 (12) 0.9893 + 0.0086 (1) 0.7695 + 0.0284 (10) 0.8880 + 0.0230 (11) 0.8786 + 0.0245 (16) 0.9066 + 0.0185 (2) 7.22

12.22

0.9293 + 0.0548 (14) 0.9531 + 0.0271 (17) 0.7660 + 0.0674 (6) 0.6614 + 0.0610 (17) 0.9838 + 0.0102 (7) 0.7696 + 0.0300 (9) 0.8726 + 0.0222 (14) 0.7304 + 0.0234 (17) 0.8954 + 0.0214 (9)
0.9322 + 0.0517 (13) 0.9318 + 0.0363 (18) 0.7573 +0.0548 (7) 0.9598 + 0.0180 (7) 0.7911 + 0.0615 (18) 0.7499 + 0.0337 (13) 0.8251 + 0.0233 (17) 0.9684 + 0.0054 (7) 0.8600 + 0.0305 (16) 12.89
0.9427 +0.0443 (9) 0.9971 +0.0063 (6) 0.7349 +0.0692 (9) 0.9855+0.0108 (1) 0.9766 = 0.0150 (10) 0.7670 + 0.0290 (11) 0.9122 + 0.0202 (1) 0.9959 £ 0.0027 (3) 0.9135+0.0233 (1) 5.67

0.9224 £ 0.0514 (15) 0.9907 £ 0.0085 (11) 0.7253 £0.0715 (12) 0.9843 £ 0.0138 (2) 0.9722 +0.0167 (13) 0.7630 £ 0.0281 (12) 0.8928 + 0.0234 (10) 0.9352 + 0.0095 (12) 0.9048 + 0.0237 (4) 10.11

7.11

0.9608 + 0.0347 (2) 0.9827 + 0.0167 (14) 0.7071 + 0.0720 (13) 0.9797 + 0.0121 (4) 0.9746 + 0.0141 (12) 0.7731 +0.0293 (8) 0.9048 +0.0201 (2) 0.9942 + 0.0018 (4) 0.9011 + 0.0199 (5)
0.9495 + 0.0459 (6) 0.9984 + 0.0052 (5) 0.7335+0.0690 (11) 0.9771 + 0.0142 (6) 0.9782 +0.0126 (8) 0.7759 +0.0315 (6) 0.9031+0.0172 (5) 0.9970+0.0013 (2) 0.8991 +0.0255 (6) 6.11

KLR-ply

KLR-rbf
MORE
LMT

0.9409 =+ 0.0539 (10) 0.9909 + 0.0167 (9) 0.7042 £ 0.0853 (15) 0.9551 +0.0372 (8) 0.9507 +0.0508 (17) 0.7228 + 0.0475 (18) 0.8078 + 0.0661 (18) 0.9936 + 0.0046 (5) 0.8889 +0.0363 (12) 12.44
0.9343 £ 0.0479 (12) 0.9959 + 0.0078 (7) 0.7342 +0.0791 (10) 0.9841 +0.0106 (3) 0.9713 £0.0176 (14) 0.7735+0.0296 (7) 0.8996 + 0.0222 (8) 0.9993 +0.0017 (1) 0.9063 +0.0215 (3) 7.22

0.9019 + 0.0606 (18) 0.9721 4 0.0219 (15) 0.7056 + 0.0864 (14) 0.8613 £ 0.0341 (11) 0.9613 £ 0.0170 (15) 0.7379 +0.0351 (16) 0.8663 + 0.0265 (15) 0.8941 + 0.0135 (15) 0.8860 =+ 0.0265 (13) 14.67

0.9080 + 0.0673 (17) 0.9656 + 0.0237 (16) -

META
MIP

17.11

0.9568 + 0.0165 (16) 0.7242 + 0.0477 (17) 0.8499 + 0.0332 (16) -

0.9476 + 0.0401 (8) 0.9989 + 0.0030 (3) 0.6651 + 0.0659 (16) 0.8210 + 0.0434 (15) 0.9778 + 0.0117 (9) 0.7497 + 0.0402 (14) 0.8741 + 0.0217 (13) 0.9399+0.0111 (9) 0.8682 + 0.0470 (15) 11.33

UTADIS

0.9127 + 0.0467 (16) 0.9909 + 0.0214 (10) 0.6309 + 0.0723 (17) 0.8507 + 0.0365 (13) 0.9748 & 0.0109 (11) 0.7448 + 0.0300 (15) 0.8752 + 0.0227 (12) 0.9373 +0.0110 (11) 0.8288 +0.0278 (17) 13.56

UTADIS-G
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various challenges to the preference learning algorithms. In the e-
Appendix, we discuss various characteristics that partially explain
such results. For example, CPU involves six criteria, each with at
least several different performances, and no single violation of the
dominance or indistinguishability relation in the desired assign-
ments. Analogously, the desired assignments for ESL agree with the
dominance relation for the vast majority of pairs of alternatives,
and only a tiny share of pairs are inconsistent with the dominance
or indistinguishability. On the other extreme, the seven criteria for
BCC involve just a few different performances, and almost 7% of all
pairs of alternatives assigned to different classes violate the domi-
nance.

Also, some datasets differentiated the considered sorting meth-
ods better than others. The greatest differences between mean AUC
values were observed for MPG (for CR - 9855 and for ANN-OWA -
6614), CEV (for LMT - 0.9993 and for ANN-OWA - 0.7304), ESL (for
ANN-ELECTRE - 0.9893 and for ANN-TOPSIS - 0.7911). This con-
firms that their specificity posed a significantly greater challenge
to some approaches. On the contrary, the least differences were
noted for DBS (for ANN-UTADIS - 0.9676 and for META - 0.9019)
and CPU (for ANN-UTADIS - 0.9998 and for ANN-TOPSIS - 0.9318).
Still, even for these benchmark problems, it was possible to distin-
guish the subsets of clearly better- or worse-performing methods.

The most favorable average ranks implied by the mean AUC
measures for the nine datasets are attained by:

o ANN-UTADIS (4.89), which attains the best results for DBS,
CPU, and ERA, positions in the top four for other three prob-
lems, and is ranked outside the top ten only for MMG;

o ANN-Ch-Uncons. (5.00), which is the most advantageous for
BCC, while never dropping outside the upper half of the
ranking; note that this method has a competitive advan-
tage of not having to respect the pre-defined preference di-
rections, which is particularly useful for datasets such as
BCC (1st rank), MPG (5th rank), and MMG (7th rank), for
which some originally nominal attributes have been arbitrar-
ily transformed to monotonic criteria in Tehrani et al. (2012);

e CR (5.67), which attains the highest mean AUC for MPG,

LEV, and MMG, while being ninth or lower for four other

datasets;

KLR-rbf (6.11), attaining ranks between second for CEV and

eleventh for BCC;

o ANN-PROMETHEE (6.67), ranked in the top four for most
datasets.

On the other extreme, the worst average ranks are attained by
MIP (17.11), META (14.67), UTADIS-G (13.56), ANN-TOPSIS (12.89),
MORE (12.44), ANN-OWA (12.22), and UTADIS (11.33). Hence,
only ANN-OWA and ANN-TOPSIS achieved relatively worse results
among the proposed algorithms. This can be attributed to simple
preference models employed by these methods.

Following Tehrani et al., (2012), we applied the statistical tests
to verify the significance of the performance differences. The Fried-
man test allowed us to reject the null hypothesis on all methods
performing equally for all sizes of the training set and both con-
sidered measures (AUC and 0/1 loss). The detailed outcomes of a
post hoc analysis for all pairs of algorithms conducted using the
Nemenyi and Wilcoxon tests with a confidence level of 90% are
discussed in the e-Appendix. In what follows, we directly com-
pare pairwise only the approaches using similar preference mod-
els. When claiming that some performance difference in terms of
AUC is significant, this is confirmed by the result of the Nemenyi
test applied to a subset of algorithms using related models.

ANN-UTADIS performs significantly better than UTADIS (the
Wilcoxon test) and UTADIS-G (the Wilcoxon and Nemenyi tests)
based on mathematical programming. The reasons are as follows.
First, minimizing the sum of regrets by UTADIS and UTADIS-G does
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Table 8

Classification performance in terms of the mean and standard deviation of 0/1 loss for 50% training data and 50% test data.

Method DBS

CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank

ANN-UTADIS 0.1093 + 0.0353 (2)
ANN-PROMETHEE 0.1210 + 0.0374 (6)
ANN-Ch-Uncons. 0.1178 +0.0306 (4)
ANN-Ch-Pos. 0.1207 £ 0.0313 (5)
ANN-Ch-Constr ~ 0.1032 +0.0323 (1)
ANN-ELECTRE  0.1120 4 0.0299 (3)

0.0104+0.0118 (2) 0.2276+£0.0165 (3) 0.1735+0.0197 (9) 0.0546 £ 0.0099 (1) 0.2640 = 0.0135 (4) 0.1566 = 0.0110 (8) 0.1126 + 0.0080 (8) 0.1717 £ 0.0192 (10) 5.22
0.1381 £ 0.0569 (18) 0.2709 + 0.0374 (11) 0.2031 £ 0.0232 (13) 0.0812 + 0.0122 (14) 0.2900 + 0.0138 (13) 0.1768 + 0.0119 (14) 0.2273 + 0.0138 (15) 0.1812 £ 0.0222 (16) 13.33
0.0430 + 0.0200 (4) 0.2196 +0.0199 (1) 0.0756 +0.0137 (7) 0.0582 +0.0114 (3) 0.2653+0.0116 (7) 0.1605 +0.0113 (10) 0.0731+0.0060 (6) 0.1711 +0.0138 (9) 5.67
0.0637 £ 0.0202 (11) 0.2391 = 0.0254 (4) 0.2691 + 0.0346 (17) 0.0605 £ 0.0121 (5) 0.2642 +0.0130 (5) 0.1648 £ 0.0125 (12) 0.1277 + 0.0078 (10) 0.1687 + 0.0161 (5) 8.22
0.0562 £ 0.0155 (9) 0.2201 +0.0235 (2) 0.2015 £ 0.0207 (12) 0.0559 £ 0.0104 (2) 0.2673 +£0.0117 (8) 0.1639+0.0122 (11) 0.1187 +0.0083 (9) 0.1596 +0.0132 (1) 6.11
0.0101 +£0.0111 (1)  0.3363 +0.0298 (17) 0.2335 + 0.0390 (15) 0.0668 £ 0.0097 (6) 0.3075 + 0.0150 (17) 0.1809 + 0.0116 (16) 0.2568 + 0.0187 (16) 0.1653 +0.0186 (2) 10.33

ANN-OWA
ANN-TOPSIS
CR

LR

KLR-ply
KLR-rbf
MORE

LMT

META

MIP

UTADIS
UTADIS-G

0.1363 +£0.0311 (8) 0.1207 £ 0.0230 (16) 0.2395 +0.0216 (5) 0.2577 £ 0.0175 (16) 0.0677 +0.0112 (7) 0.2651 +0.0119 (6) 0.1787 £ 0.0104 (15) 0.2629 £ 0.0065 (17) 0.1770 + 0.0124 (14) 11.56

0.1480 £ 0.0343 (11) 0.1374 + 0.0235 (17) 0.2453 £0.0196 (6) 0.1020 = 0.0148 (8)
0.1572 + 0.0416 (14) 0.0464 +0.0281 (5) 0.2687 +0.0282 (10) 0.0577 £ 0.0251 (1)
0.1708 + 0.0380 (18) 0.0626 + 0.0247 (10) 0.2799 + 0.0245 (14) 0.0654 + 0.0150 (2)
0.1333 £ 0.0333 (7) 0.0835 +0.0264 (15) 0.2591 £ 0.0287 (7) 0.0728 £ 0.0159 (4)
0.1692 + 0.0382 (17) 0.0547 +0.0233 (7) 0.2599 +0.0301 (8) 0.0744 + 0.0151 (5)
0.1457 + 0.0413 (9) 0.0489 + 0.0226 (6) 0.2640 +0.0288 (9) 0.0751 +0.0178 (6)
0.1473 + 0.0406 (10) 0.0674 £ 0.0243 (13) 0.2717 £ 0.0295 (12) 0.0672 + 0.0164 (3)

0.2678 £ 0.0371 (18) 0.2871 £ 0.0141 (11) 0.2246 + 0.0119 (18) 0.0880 = 0.0066 (7) 0.2093 £ 0.0130 (17) 12.56
0.0601 + 0.0126 (4) 0.2844+0.0306 (9) 0.1372+0.0125 (1) 0.0376 +0.0059 (4) 0.1667 +0.0144 (3) 5.67
0.0704 +0.0113 (10) 0.2851 +0.0303 (10) 0.1651 + 0.0133 (13) 0.1360 +0.0101 (12) 0.1701+0.0158 (8) 10.78
0.1023 + 0.0225 (17) 0.2926 £ 0.0151 (14) 0.1520 £ 0.0160 (5) 0.0328 £0.0057 (3) 0.1721+0.0164 (11) 9.22
0.0682 +0.0121 (8) 0.2882 +0.0142 (12) 0.1493 +£0.0165 (4) 0.0463 +0.0086 (5) 0.1693 +0.0130 (7) 8.11
0.0695 + 0.0139 (9) 0.3037 £ 0.0180 (16) 0.1486 +0.0157 (3) 0.0215 +0.0053 (2) 0.1691+0.0140 (6) 7.33
0.0709 £ 0.0135 (11) 0.2956 + 0.0148 (15) 0.1545 £ 0.0142 (6) 0.0174+0.0069 (1) 0.1671+£0.0167 (4) 8.33

0.1623 + 0.0469 (15) 0.0675 + 0.0237 (14) 0.2750 +0.0317 (13) 0.1781 +0.0237 (11) 0.1004 + 0.0186 (15) 0.2056 +0.0173 (2) 0.1592 +0.0122 (9) 0.1483 +0.0095 (14) 0.1732 +£0.0151 (12) 11.67

0.1627 + 0.0426 (16) 0.0640 + 0.0239 (12) - -

0.1018 + 0.0155 (16) 0.1958 +0.0137 (1) 0.1422 +0.0154 (2) - - 13.22

0.1480 = 0.0421 (12) 0.0230 +0.0238 (3) 0.2854 + 0.0246 (16) 0.2090 = 0.0236 (14) 0.0783 = 0.0163 (13) 0.2342 +£0.0171 (3) 0.1556 +0.0132 (7) 0.1324+0.0117 (11) 0.1758 +0.0152 (13) 10.22
0.1553 £ 0.0413 (13) 0.0555 +0.0328 (8) 0.2850 £ 0.0219 (15) 0.1753 £ 0.0251 (10) 0.0771 + 0.0148 (12) 0.3305 = 0.0491 (18) 0.1877 £ 0.0247 (17) 0.1430 = 0.0436 (13) 0.1796 £ 0.0271 (15) 13.44
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Table 9

Classification performance in terms of the mean and standard deviation of 0/1 loss for 80% training data and 20% test data.

Method

DBS CPU BCC MPG

ESL ERA LEV CEV MMG Avg. rank

ANN-UTADIS 0.0645 +0.0542 (1)
ANN-PROMETHEE 0.0932 + 0.0580 (6)
ANN-Ch-Uncons. 0.0864 =+ 0.0540 (3)
ANN-Ch-Pos. 0.0909 + 0.0526 (5)
ANN-Ch-Constr  0.0673 +0.0516 (2)
ANN-ELECTRE 0.0868 + 0.0553 (4)
ANN-OWA 0.1064 + 0.0604 (7)

0.0046 + 0.0137 (1) 0.2056 £ 0.0389 (3) 0.1587 +0.0324 (9) 0.0436 +0.0180 (1) 0.2527 +£0.0210 (4) 0.1447 +0.0144 (4) 0.1081+0.0154 (8) 0.1608 £0.0302 (7) 4.22
0.1080 + 0.0775 (17) 0.2656 +0.0591 (11) 0.1949 + 0.0378 (13) 0.0757 +0.0251 (14) 0.2814 +0.0317 (11) 0.1706 + 0.0212 (14) 0.2234 +0.0195 (15) 0.1691 +0.0235 (1) 12.44
0.0266 £ 0.0265 (5) 0.1816£0.0348 (1) 0.0614+0.0218 (4) 0.0482 +0.0186 (3) 0.2556 = 0.0260 (6) 0.1517 +0.0204 (8) 0.0672 +0.0119 (6) 0.1595 £ 0.0263 (6) 4.67
0.0385 £ 0.0261 (9) 0.2191 £ 0.0456 (5) 0.2669 + 0.0470 (17) 0.0500 + 0.0207 (4) 0.2552 +0.0245 (5) 0.1518 +£0.0217 (9) 0.1238 +0.0147 (11) 0.1595 £ 0.0295 (5) 7.78
0.0380 £ 0.0285 (8) 0.1909 +0.0412 (2) 0.1853 +0.0393 (12) 0.0455 + 0.0178 (2) 0.2587 +0.0252 (7) 0.1538 +0.0208 (10) 0.1124 + 0.0148 (9) 0.1486 +0.0221 (1) 5.89
0.0061 +0.0116 (2) 0.3200 + 0.0423 (17) 0.2242 + 0.0486 (15) 0.0593 + 0.0207 (7) 0.3010 + 0.0397 (17) 0.1777 +0.0205 (16) 0.2492 + 0.0281 (16) 0.1551 +0.0243 (2) 10.67
0.0973 + 0.0433 (16) 0.2169 + 0.0399 (4) 0.2583 £ 0.0426 (16) 0.0569 £ 0.0216 (6) 0.2589 £ 0.0249 (8) 0.1740 + 0.0250 (15) 0.2588 + 0.0144 (17) 0.1670 = 0.0239 (10) 11.00

ANN-TOPSIS 0.1076 + 0.0626 (8) 0.1180 4 0.0461 (18) 0.2224 £ 0.0340 (6) 0.0890 £ 0.0271 (8) 0.2469  0.0554 (18) 0.2789 £ 0.0236 (9) 0.2172 £ 0.0238 (18) 0.0814 + 0.0086 (7) 0.1987 +0.0268 (17) 12.11
CR 0.1416 +£0.0681 (13) 0.0212+0.0301 (4) 0.2496 +0.0485 (7) 0.0551 +£0.0160 (1) 0.0542 +0.0218 (5) 0.2813 +0.0280 (10) 0.1314+0.0176 (1) 0.0273 +0.0089 (4) 0.1584 +0.0251 (3) 5.33
LR 0.1616 £ 0.0743 (17) 0.0640 £ 0.0335 (14) 0.2773 + 0.0548 (14) 0.0611 £ 0.0263 (2) 0.0660 = 0.0203 (10) 0.2843 + 0.0302 (12) 0.1627 % 0.0249 (13) 0.1328 £ 0.0173 (12) 0.1657 +£0.0232 (9) 11.39
KLR-ply 0.1265 = 0.0663 (10) 0.0754 + 0.0372 (15) 0.2569 £ 0.0506 (8) 0.0727 +0.0268 (5) 0.0922 £ 0.0279 (15) 0.2918 + 0.0290 (15) 0.1472 +£0.0231 (5) 0.0286 & 0.0075 (5) 0.1741 +0.0246 (15) 10.33
KLR-rbf 0.1343 + 0.0672 (12) 0.0405 + 0.0284 (10) 0.2598 + 0.0529 (10) 0.0740 + 0.0284 (7) 0.0657 £ 0.0229 (9) 0.2905 +0.0312 (13) 0.1496 +0.0233 (7) 0.0239 +0.0066 (3) 0.1696 + 0.0271 (12) 9.22
MORE 0.1242 +0.0609 (9) 0.0412 +0.0299 (11) 0.2570 +0.0463 (9) 0.0737 +0.0269 (6) 0.0661 £ 0.0219 (11) 0.2988 + 0.0276 (16) 0.1397 +0.0214 (3) 0.0190£0.0070 (2) 0.1645 £ 0.0235 (8) 8.33
LMT 0.1433 + 0.0667 (14) 0.0338 +0.0352 (6) 0.2707 +0.0554 (13) 0.0614 + 0.0251 (3) 0.0691 £ 0.0228 (12) 0.2910 £ 0.0290 (14) 0.1474 £ 0.0232 (6) 0.0089 £ 0.0047 (1) 0.1595 +0.0283 (4) 8.11
META 0.1592 + 0.0698 (16) 0.0640 + 0.0304 (14) 0.2677 + 0.0547 (12) 0.1686 + 0.0369 (11) 0.1001 + 0.0297 (16) 0.2031 +0.0250 (2) 0.1616 + 0.0222 (12) 0.1506 + 0.0166 (14) 0.1698 + 0.0279 (13) 12.17
MIP 0.1480 +0.0811 (15) 0.0598 + 0.0315 (12) - 0.1008 + 0.0247 (17) 0.1856 +0.0260 (1) 0.1359 +0.0185 (2) - 13.22
UTADIS 0.1280 £ 0.0501 (11) 0.0152 +£0.0214 (3) 0.2913 + 0.0510 (15) 0.2080 £ 0.0388 (14) 0.0744 + 0.0235 (13) 0.2356 £ 0.0292 (3) 0.1572 +0.0222 (11) 0.1336 £ 0.0167 (13) 0.1734 £ 0.0265 (14) 10.78
UTADIS-G 0.1683 + 0.0667 (18) 0.0356 + 0.0386 (7) 0.3016 + 0.0478 (16) 0.1617 + 0.0383 (10) 0.0656 +0.0228 (8) 0.3259 + 0.0567 (18) 0.1781 % 0.0253 (17) 0.1166 + 0.0217 (10) 0.1778 +0.0246 (16) 13.33
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preference learning algorithm and their ability to differentiate be-
tween these approaches. For example, the 0/1 loss values attained
by ANN-UTADIS for CPU, ESL, and DBS are 0.0046, 0.0436, and
0.0645, indicating the inconsistencies in the suggested assignments
only for a marginal share of test data. On the other extreme, these
values for ERA and BCC are 0.2527 and 0.2056, respectively, con-
firming an incorrect classification for a significant share of alterna-
tives. When it comes to the differences between average 0/1 losses
for the best and worst-performing algorithms, they are the least
for MMG, LEV, and DBS, while being the greatest for CEV, MPG,
ESL, and BCC.

The most favorable average ranks implied by the 0/1 loss for
the nine datasets are attained by:

o ANN-UTADIS (4.22), which has the least 0/1 loss for DBS,
CPU, and ESL, while being ranked in the upper half of the
ranking for all problems;

e ANN-Ch-Uncons. (4.67), which is at the top for BCC, while
being ranked in the top six for 8 out of 9 datasets;

e CR (5.33), which attains the lowest mean of 0/1 loss for LEV
and MPG,

o ANN-Ch-Constr. (5.89) ranked first for MMP and second for
BDS, CPU, and ESL.

On the other extreme, the worst average ranks are attained
by UTADIS-G (13.33), MIP (13.22), ANN-PROMETHEE (12.44), META
(12.17), ANN-TOPSIS (12.11), LR (11.39), ANN-OWA (11.00), UTADIS
(10.78), and ANN-ELECTRE (10.67). Note that the differences be-
tween the average ranks for the approaches in the lower half of
the ranking are lesser than in the case of AUC.

When it comes to the direct comparison of the approaches us-
ing similar preference methods in terms of the 0/1 loss, ANN-
UTADIS performs better than UTADIS for all datasets except ERA
and better than UTADIS-G for all considered problems; ANN-
ELECTRE is more advantageous than META only for 4 out of 9
problems, whereas the algorithms using the Choquet integral at-
tain similar results for CPU, ESL, LEV, and MMG. Moreover, CR was
worse than the ANN-Ch methods on DBS and BCC, whereas ANN-
Ch-Constr. and ANN-Ch-Pos. were underperforming for MPG and
CEV. On average, the latter approach attained the worst average
rank among these four methods, most likely due to the least flexi-
ble model admitting only positive interactions for pairs of criteria.

With the decrease in the number of alternatives in the train-
ing set relative to the test set, the 0/1 loss increases for almost all
methods (see Tables 7 and 8). For example, for ANN-UTADIS and
DBS, its values are equal to 0.0645 for 80% training data, 0.1093 for
50%, and 0.1460 for 20%. The analogous results attained by ANN-
Ch-Constr. for BCC are 0.1816, 0.2196, and 0.2406. The least per-
formance deterioration can be observed for ANN-PROMETHEE and
ANN-ELECTRE for BCC, MPG, ERA, LEV, and CEV. In particular, for
PROMETHEE-ANN and BCC, the respective 0/1 losses are 0.2656 for
80/20, 0.2709 for 50/50, and 0.2659 for 20/80. In general, the av-
erage ranks for ANN-UTADIS, ANN-Ch-Uncons., and LR get slightly
worse with the decrease of the training set’s share, whereas the
ranks for LR, META, and MIP exhibit an inverse trend. In the case
of META and MIP, this can be explained by the greater efficiency of
these algorithms when dealing with smaller data sizes. For exam-
ple, for the 20/80 division, MIP identified the solutions for 8 out of
9 datasets, whereas for greater training sets, it failed to identify a
sorting model for the additional three problems.

The conclusions derived from the analysis of the 0/1 loss
agree with the ones formulated for AUC. On the one hand, ANN-
UTADIS, ANN-Ch-Uncons., and CR are the best performing algo-
rithms, whereas MIP, META, TOPSIS, OWA, UTADIS, and UTADIS-
G attain the least advantageous results. A noticeable difference
concerns the performance of ANN-ELECTRE and ANN-PROMETHEE,
which are among the best approaches in terms of AUC but are
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rated poorly when considering the 0/1 loss. This means that these
two outranking-based methods correctly reproduce the preference
relations for the vast majority of pairs of alternatives while making
more mistakes concerning their classification. It can be explained
given the nature of these methods and the learning process. ANN-
ELECTRE and ANN-PROMETHEE incorporate the NFS procedure
with a score for each alternative derived from pairwise compar-
isons against all remaining alternatives. However, these scores are
transformed into assignments by comparing them with the class
thresholds. It turns out that the threshold inferred for the train-
ing set might not generalize well for the test set, leading to the
misclassification of alternatives, which attain scores close to the
threshold. This is confirmed by Fig. 16, which indicates that for
ERA, changing the threshold value for the test set rather than us-
ing the one inferred from the learning data might improve the 0/1
loss even by a few percent.

In the e-Appendix, we report the experimental results for the
ANN-based algorithms in terms of the F1 score as well as the
outcomes given different performance measures obtained for the
training set.

7. Conclusions and future work

The availability of data resources helps individuals and groups
mine helpful information and make better-informed decisions. The
spectrum of practical problems that emphasize handling large
quantities of data becomes more extensive. This requires the de-
velopment of dedicated techniques. In recent years, an often em-
phasized aspect is that such methods should support both the ex-
plainability of recommended decisions and the interpretability of
the entire decision-making process.

In this paper, we have considered the problem of processing
data into explainable and interpretable models. This has been done
in the context of preference learning. It consists of training the
models on a set of alternatives for which the preferences are
known/available and predicting the preferences for all other op-
tions. Specifically, we considered learning the parameters of mono-
tonic sorting models from large sets of assignment examples. In
this kind of problem, alternatives need to be assigned to pre-
defined, preference-ordered classes in the presence of multiple, po-
tentially conflicting criteria.

We have advocated the use of intuitive models inspired by
the development in the field of MCDA. This is consistent with
the recent trends in Machine Learning (Rudin, 2019). The consid-
ered models offer measures for (i) quantifying the role of indi-
vidual criteria and subsets of criteria, (ii) understanding the im-
pact of particular performances on the decision, (iii) gaining in-
sights on which performance differences are negligible, significant,
or critical, and (iv) capturing the strength of criteria coalitions
sufficient for claiming that one alternative is at least as good as
another. Moreover, the applied operators offer a mathematically
sound and elegant manner for aggregating the arguments support-
ing each alternative’s strengths and weaknesses. Also, the consid-
ered threshold-based sorting procedure is easily understandable
and transparent in deriving the assignments by comparing alterna-
tives’ comprehensive scores with the separating class thresholds.

As a concrete Machine Learning application of these models, we
have proposed Artificial Neural Networks as a computation tech-
nique for conducting preference disaggregation. ANNs have been
used before for classification in the context of extensive data.
However, the non-linear models they derived could not be inter-
preted by human Decision Makers nor accepted by domain experts.
Thanks to the suitably adjusted components, units, and architec-
ture, we have made ANNs suitable for learning highly explainable
models.
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Fig. 16. The values of 0/1 loss (y-axis) for different separating class thresholds (x-axis) for the ERA problem.

The main benefits of the proposed preference learning algo-
rithms are three-fold. First, we infer the parameters of the sort-
ing models from decision examples, not requiring the Decision
Maker to specify their values directly. We allow for simultane-
ous inference of all parameters of the sorting model, such as, e.g.,
criteria weights, concordance and discordance functions, and the
comparison, veto, credibility, and separating class thresholds. This
cannot be done efficiently with mathematical programming tech-
niques that are traditionally applied in MCDA. Also, we avoid an
arbitrary indication of meta-parameters such as shapes of prefer-
ence functions or characteristic points of marginal values functions.
In turn, we apply more general per-criterion (value, preference,
concordance, or discordance) functions that offer greater flexibil-
ity in fitting the input data while maintaining the original spirit of
MCDA.

Second, we contribute to the stream of making the MCDA
methods suitable for handling inconsistent preference information
that is too large to be dealt with by most traditional methods
within an acceptable time. Sets of alternatives traditionally con-
sidered in MCDA consist of modestly-sized collections (Wallenius
et al., 2008) and the development of the algorithms scaling up
well with the number of alternatives has not been at the core
of MCDA (Corrente et al., 2013). For example, the basic MCDA al-
gorithms for dealing with inconsistency in the provided prefer-
ence information are based on Mixed-Integer Linear Programming
(MILP). Nonetheless, some existing MCDA and preference learning
methods are capable of dealing with large inconsistent sets of as-
signment examples (see, e.g., Chandrasekaran et al., 2005; Dem-
bczynski et al., 2009; Greco et al., 2001; Kottowski & Stowinski,
2013; Manthoulis, Doumpos, Zopounidis, & Galariotis, 2020; Sobrie
et al,, 2019; Tehrani et al., 2012; Zopounidis & Doumpos, 2000).
In this spirit, we demonstrate the feasibility of the proposed ANN-
based approaches to the collections of over one thousand alterna-
tives or the problems requiring comparing a few million pairs of
alternatives. We know that the volume of datasets considered in
some other sub-fields of ML is far more significant than in our
experiments. Hence, demonstrating the usability of the proposed
methods in areas typical for the ML applications remains a subject
for future research. These include, e.g., finance, medicine, econ-
omy, and information retrieval, in which even some MCDA meth-
ods have been already used in the context of data sets with sizes
exceeding those considered in this paper (e.g., bank failure predic-
tion (Manthoulis et al., 2020), prognosis for hospice referral (Gil-
Herrera et al., 2015), and recommender systems in numerous ap-
plication domains (Manouselis & Costopoulou, 2007)).

Third, the extensive experiments on various benchmark prob-
lems indicate that the introduced algorithms are competitive in
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terms of predictive accuracy. This is particularly true for the
three approaches called ANN-UTADIS, ANN-Ch-Uncons., and ANN-
PROMETHEE. They incorporate preference models in the form
of an additive value function with generalized marginal func-
tions, 2-additive Choquet integral admitting significant variability
of weights, and an outranking relation combined with the Net Flow
Score procedure. These methods perform well in terms of the AUC
measure, which focuses on preserving pairwise preference rela-
tions. In addition, ANN-UTADIS and ANN-Ch-Uncons. score favor-
ably also on the 0/1 loss, which is directly related to the classifi-
cation accuracy. On average, the predictions made by these algo-
rithms were slightly more accurate than the recommendations de-
livered by the state-of-the-art methods, including logistic regres-
sion and its generalizations, rule ensemble methods, approaches
based on mathematical programming, and a dedicated metaheuris-
tic for an outranking-based classification model. The advantage of
the ANN-based methods derives from a few factors, including in-
corporating more general preference functions, efficient optimiza-
tion methods, and techniques for increasing noise resistance, pre-
venting overfitting, and reducing the impact of the information
processing order on the attained results.

From a broader perspective, the variability of different algo-
rithms proposed in this paper gives a chance for adjusting the sort-
ing model to the provided preference information, as postulated
in Hanne (1997). In particular, we considered score-, distance-, and
outranking-based approaches that admit different compensation
levels, interactions between criteria, or per-criterion risk attitudes
or curvatures of marginal functions. In MCDA, such factors need to
be considered when selecting a single method a priori. However,
in the preference learning context, all presented neural networks
can be aggregated in a single ANN that would, in the end, activate
only the part and underlying approach leading to the most advan-
tageous results that fit the available indirect preferences in the best
way.

The directions for future research can be divided into experi-
mental and methodological. The former ones derive from the lim-
itations of our study. First, some data sets considered in the ex-
perimental comparison involve nominal attributes arbitrarily trans-
formed into monotonic criteria as described in Tehrani et al.
(2012). While this increases the difficulty of the preference learn-
ing task, such an interpretation neglects the original performance
scales without preference directions. In this perspective, we per-
ceive the need to further test the preference learning algorithms
on real-world data with correctly defined criteria and increase
the variety of publicly available properly designed benchmark data
sets. Second, when testing the performance of algorithms, we run
only those originally proposed in this paper. For the remaining
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methods, we recalled the results reported in the respective works
(e.g., Sobrie et al., 2019; Tehrani et al,, 2012) on the same bench-
mark problems. This could be questioned concerning the optimiza-
tion of hyperparameters which is an essential component of the
experimental study. We performed it differently than in Sobrie
et al. (2019) and Tehrani et al. (2012). In particular, the perfor-
mance of some algorithms (e.g., UTADIS) for which the results
were reported in other works could be improved if their hyper-
parameters were set more carefully. Given this limitation, we want
to emphasize the need for adopting proper processes for optimiz-
ing the hyperparameters of MCDA methods in future studies that
will focus on performing comparative analyses. In our understand-
ing, successfully implementing this postulate requires making the
source code of all so far proposed methods in the preference learn-
ing stream publicly available. Third, when optimizing the parame-
ters of the sorting model, one could investigate the impact of other
misclassification errors than a sum of regrets or different tech-
niques than AdamW.

Regarding future research related to the development of other
methods, we envisage the following four directions. First, we
will propose neural preference learning algorithms for other
intuitive MCDA approaches. The most appealing ones include
the ELECTRE (Costa, Rui Figueira, Vieira, & Vieira, 2019) and
PROMETHEE (Pelissari, Oliveira, Amor, & Abackerli, 2019) methods
with boundary or characteristic class profiles and value-based ap-
proaches admitting interactions between criteria (Liu et al., 2021)
and non-monotonicity (Liu et al., 2019) of marginal value func-
tions. Second, it is possible to combine different methods within
a single neural network and aggregate their results into a com-
prehensive quality measure. The form of an aggregation operator
and the weights associated with scores delivered by various ap-
proaches could be learned during the optimization process (Hanne,
1997). Third, it would be interesting to verify the impact of using
an ensemble of models that attained a pre-defined threshold of
the classification error. In this paper, we only used the model that
performed the best during learning. However, some other models
were only slightly worse, and their joint use on the test set could
increase the robustness of recommended assignments. Finally, an
appealing idea consists of adjusting the preference learning algo-
rithms to an online setting (Sahoo, Pham, Lu, & Hoi, 2018). Un-
like batch learning applied in this paper, it assumes preferences are
provided in sequential order, and the method needs to update the
classification model at each step. This would correspond to a com-
mon MCDA scenario in which the DM provides preferences in suc-
cessive iterations.
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