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Stochastic Dynamic Pricing for EV Charging
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Energy Storage
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Abstract—This paper studies the problem of stochastic
dynamic pricing and energy management policy for electric
vehicle (EV) charging service providers. In the presence of
renewable energy integration and energy storage system, EV
charging service providers must deal with multiple uncertainties
— charging demand volatility, inherent intermittency of
renewable energy generation, and wholesale electricity price
fluctuation. The motivation behind our work is to offer guidelines
for charging service providers to determine proper charging
prices and manage electricity to balance the competing objectives
of improving profitability, enhancing customer satisfaction, and
reducing impact on power grid in spite of these uncertainties.
We propose a new metric to assess the impact on power grid
without solving complete power flow equations. To protect service
providers from severe financial losses, a safeguard of profit
is incorporated in the model. Two algorithms — stochastic
dynamic programming (SDP) algorithm and greedy algorithm
(benchmark algorithm) — are applied to derive the pricing
and electricity procurement policy. A Pareto front of the multi-
objective optimization is derived. Simulation results show that
using SDP algorithm can achieve up to 7% profit gain over using
greedy algorithm. Additionally, we observe that the charging
service provider is able to reshape spatial-temporal charging
demands to reduce the impact on power grid via pricing signals.

Index Terms—Electric vehicle, charging station, dynamic
pricing, energy management, renewable energy, energy storage,
multi-objective optimization, stochastic dynamic programming

NOMENCLATURE

K Total number of planning horizons.

N Number of buses in a power network.

M Number of PQ buses in a power network.

sj The j-th charging station.

pkj Charging price of the j-th charging station at

the k-th horizon.

dkj Charging demand of the j-th charging station

at the k-th horizon.
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ck Real time wholesale electricity price at the k-th

horizon.

E Electricity storage capacity.

Ik Remaining electricity in storage at the begin-

ning of the k-th horizon.

Wk Profit at the k-th horizon.

Wmin Threshold for profit safeguard.

Gk Customer satisfaction at the k-th horizon.

Fk Impact on power grid at the k-th horizon.

ok Electricity purchase at the k-th horizon.

uk Renewable energy at the k-th horizon.

ηs Unit storage cost (measured in $/MWh).

ηc Charging efficiency.

ηd Discharging efficiency.

α Shape parameter in customer satisfaction

formula.

ω Shape parameter in customer satisfaction

formula.

φk Total charging demand at the k-th horizon.

Πk Total utility at the k-th horizon.

λ1 Profit weight coefficient.

λ2 Customer satisfaction weight coefficient.

λ3 Impact weight coefficient.

γi,j Price elasticity coefficient.

Pi Active power of the i-th bus.
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Qi Reactive power of the i-th bus.

vi Voltage magnitude of the i-th bus.

δi Voltage phase of the i-th bus.

Gik Conductance of the ik-th element of the bus

admittance matrix.

Bik Susceptance of the ik-th element of the bus

admittance matrix.

SAc
i Active power sensitivity of the i-th bus.

SRe
i Reactive power sensitivity of the i-th bus.

J(Ik, uk) Maximum expected aggregated utility from the

k-th horizon to the k-th horizon.

I. INTRODUCTION

Electric vehicles (EVs) exhibit many advantages over fossil

fuel driven vehicles in terms of operation and maintenance

cost, energy efficiency, and gas emission [1]-[3]. However, the

fear of limited driving distance (range anxiety) is hanging over

EV drivers’ heads like the Sword of Damocles. To alleviate

this range anxiety, the capacity of on-board battery should be

increased and more EV charging stations should be deployed.

Intensive research work has been carried out to study how to

strategically deploy charging stations [4]-[8]. Currently, EV

charging service is primarily provided for free as one of the

employee benefits in some organizations or as a perk to those

owners of some specific EV models (e.g. Tesla). There is a lack

of viable and profitable pricing and energy management model

for public charging stations. Our goal is to offer guidelines for

charging service providers to make informed and insightful

decisions on pricing and electricity procurement by jointly

optimizing multiple objectives under uncertainties.

There is a growing literature aimed at providing guidelines

for economic operation of EV charging stations. In [9]-[10],

the authors studied a dynamic pricing scheme to improve the

revenue of an EV parking deck. However, their model did

not take into account customer satisfaction and the impact

on power grid due to EV charging. In [11]-[14], several

algorithms have been proposed for a power aggregator to

manage EV charging loads and submit bids to electricity

market to provide regulation service (RS). Game theory based

approaches have been used to model the interplay among

multiple EVs or between EVs and power grid in [15]-[18].

Yan et al. presented a multi-tier real time pricing algorithm

for EV charging stations to encourage customers to shift their

charging schedule from peak period to off-peak period [19].

Nevertheless, they did not consider that some customers may

strategically change their charging schedule in response to

pricing signals. In [20], Ban et al. employed multi queues

to model the arrivals and departures of EVs among multiple

charging stations. Pricing signals were used to guide EVs to

different charging stations to satisfy the predefined quality of

service (QoS); but the interactions between EV charging and

power grid was not analysed in their model. A distributed

network cooperative method was proposed to minimize the

charging cost of EVs while guaranteeing that the aggregated

load satisfies safety limits [21]. Their model, however, did

not incorporate renewable energy generation and consider

charging demand volatility.

In our model, we take a comprehensive view of these

interweaving issues pertaining to EV charging pricing and

energy management. Specifically, we formulate our problem

to simultaneously optimize multiple objectives — improving

the profit, enhancing the customer satisfaction, and reducing

the impact on power grid in the light of renewable energy

generation and energy storage. Our model takes into account

multiple uncertainties including charging demand volatility,

inherent intermittency of renewable energy generation, and

real time wholesale electricity price fluctuation. For each

type of uncertainty, an appropriate model is proposed and

incorporated in the overall optimization framework. Finally,

a stochastic dynamic programming (SDP) algorithm is

employed to derive the charging prices and the electricity

procurement from the power grid for each planning horizon.

Besides, SDP algorithm has been used for water reservoir

operation in [22]-[23]. In terms of the electricity retail market,

a game theory based dynamic pricing scheme is studied in [24]

which also takes into account renewable integration and local

storage.

The main contributions of our work are as follows:

• We proposed a multi-objective optimization framework to

solve the problem, and the solutions provide us insights

into how to make a tradeoff among multiple objectives of

the profitability, the customer satisfaction, and impact on

power grid, and offer guidance to set charging prices to

balance the charging demand across the power system.

• We used Newton’s method to derive a fast-computing

metric to assess the impact of EV charging on power

grid, which frees us from solving the complete nonlinear

power flow equations. This metric also can be used to

analyze other electric load’s impact on power grid.

• We derived the active power and reactive power

sensitivities for the load buses in a power system

which can serve as a guideline for EV charging station

placement to alleviate the charging stress on the power

grid.

• In terms of market risk, we introduced a safeguard of

profit for EV charging service providers, which raises a

warning when the profit is likely to reach a dangerous

threshold. This mechanism is beneficial for the charging

service provider to safely manage its capital and avoid

severe financial losses.

The remainder of the paper is organized as follows:

Section II presents the general problem formulation. Section

III introduces charging demand estimation and Section IV

discusses how to assess the impact on power grid from EV

charging. Renewable energy and real time wholesale electricity

price forecast, the safeguard of profit, and SDP algorithm are
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Figure 1. Business Model of EV Charging Service Provider

introduced in Section V. Section VI presents simulation results

and discussions. Conclusions are provided in Section VII. A

nomenclature table is also provided as a reference.

II. PROBLEM FORMULATION

In this study, we assume that an EV charging service

provider operates a set of charging stations within a large

region. As a mediator between the wholesale market and

end customers (EVs), the charging service provider procures

electricity from the wholesale market and resells it to EVs.

We also assume that the service provider is able to harvest

renewable energy (i.e. solar or wind power) and save it in

an energy storage system. An overview of the EV charging

service provider’s model is illustrated in Fig. 1.

A. Profit of Charging Service Provider

In the United States, the Independent System Operator

(ISO) or the Regional Transmission Organization (RTO)

collects supply offers from power plants and demand bids

from load serving entities (LSEs) or market participants,

calculates the day-ahead wholesale prices and real time spot

prices, coordinates and monitors the economic dispatch of

electricity across a vast region [25]-[27]. We assume that

the charging service provider is an LSE, who purchases

electricity from the wholesale real time market and resells it to

EVs. Let S = {s1, s2, · · · , sL} denote the charging stations

operated by the service provider. A day is divided into K
planning horizons. At the start of each horizon, the service

provider will publish new charging prices during this horizon.

Price differentiation is allowed across charging stations. Let

P = {pk1, pk2, · · · , pkL}, k = 1, 2, · · · ,K denote the

charging prices in the k-th horizon, and ok denote electricity

procurement from the wholesale real time market. We use

wholesale real time electricity market prices in our theoretical

analysis. Let C = {c1, c2, · · · , cK} represent wholesale real

time electricity prices. In addition, we assume that the service

provider has an energy storage system with capacity E MWh.

Let Ik denote the electricity in the storage at the beginning of

the k-th horizon, and uk be the renewable energy generation

during the k-th horizon. The profit made in the k-th horizon

is given by

Wk =

L
∑

j=1

pkjdkj − ckok−

ηs(Ik + ηcuk + ηcok −
1

ηd

L
∑

j=1

dkj + wk),

(1)

where dkj corresponds to the charging demand (electricity

consumption) at the j-th station in the k-th horizon,
∑L

j=1 pkjdkj is the total revenue, ckok is the cost of electricity

procurement, and ηs($/MWh) is the unit storage cost, which

includes capital cost and maintenance cost. Besides, ηc (0 <
ηc < 1) and ηd (0 < ηd < 1) are charging efficiency and

discharging efficiency, respectively. And wk is the process

noise of the energy storage system, which has a Gaussian

distribution with zero mean and variance σ2
w.

B. Customer Satisfaction

Customer satisfaction helps to build up customer loyalty,

which can reduce the efforts to allocate market budgets

to acquire new customers. Poor customer satisfaction will

discourage people to purchase EVs, affecting the development

of entire EV industry. Customer satisfaction is one of the

objectives in our multi-objective optimization framework.

Several customer satisfaction evaluation methods have been

investigated in [28]-[30]. In this paper, we consider the

market-level customer satisfaction instead of the individual-

level satisfaction. We use a quadratic function to formulate the

overall customer satisfaction of all EVs in a horizon, namely,

Gk = −
α

2
φ2
k + ωφk, 0 ≤ φk ≤ E (2)

where E is the electricity storage capacity, ω and α are shape

parameters, φk is the aggregated charging demand (electricity

consumption) of all EVs in the k-th horizon which is defined

as,

φk =

L
∑

j=1

dkj . (3)

Eq. (2) with different shape parameters is plotted in Fig. 2.

In plotting Fig. 2, we choose the shape parameters α and

ω such that the concave function Gk has a minimum of 0,

which indicates that EV drivers have the least satisfaction,

and a maximum of 1, which indicates that they have the most

satisfaction. Note that Eq. (2) is a non-decreasing function

with a non-increasing first order derivative. This implies that

customer satisfaction will always grow as the total charging

demand φk increases, but the growth rate will decrease

and customer satisfaction tends to get saturated as the total

charging demand approaches the storage capacity E. This

is a standard assumption following the law of diminishing

marginal utility (Gossen’s First Law) in economics [31].
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Figure 2. Sample Customer Satisfaction Functions (E = 200)

C. Impact on Power Grid

Large-scale EV charging presents a substantial load to

power networks [32]-[33]. Many studies have shown that

uncoordinated EV charging can affect the normal operation

of power grid in terms of severe power loss, voltage

variation, frequency deviation, and harmonics problems [34]-

[38]. Usually, grid frequency can be well maintained either

by the power generator side using automatic gain control

(AGC) [37] or by the load side using certain demand response

techniques [39]-[40]. In our study here, we only consider the

impact of voltage variation (magnitude and phase). In addition,

we assume that a higher-level entity like an aggregator or

ISO/RTO can take care of network transmission constraint

issues within the power system under its supervision, so the

EV charging service provider does not need to worry about

transmission constraint problem. Let Fk denote the impact of

EV charging on power grid at the k-th horizon.

Fk = f(dk1, dk2, · · · , dkL), (4)

where dkj is the charging demand at the j-th charging station

in the k-th horizon, and f(.) is a function to be discussed in

Section IV. Function f(.) should reflect the basic assumption

that the impact on power grid increases when the charging

demands increase.

D. Multi-objective Optimization Framework

A multi-objective optimization problem arises naturally

from the fact that the charging service provider needs to

balance multiple competing objectives — maximizing profit,

maximizing customer satisfaction, and minimizing the impact

on power grid. For the k-th horizon, we formulate the multi-

objective optimization as follows,

max
Xk

{E(Wk),E(Gk),E(−Fk)}

s.t. Xk ∈ U(Xk),
(5)

where Xk = [pk1, pk2, · · · , pkL, ok]
T is the vector of decision

variables, and E(.) represents the expectation operation.

Clearly, there are several approaches to solve multi-

objective optimization problems: weighted sum approach,

adaptive weighted sum approach, ǫ-constraint approach, a

priori approach and a posteriori approach [41]-[43], among

others. The weighted sum approach is not suitable for

obtaining the whole Pareto front if the main objective function

is not convex. In this paper, we use an adaptive weighted sum

approach discussed in [43] to derive the Pareto front of Eq.

(5). The main idea of the adaptive weighted sum approach is

that firstly we use the ordinary weighted sum to obtain the

basic shape of Pareto front, and then refine it by recursively

reducing mesh size within the Pareto front. First, we rewrite

the problem as follows,

max
Xk

E(Πk) = E

{

λ1
Wk

Wmax
k

+ λ2
Gk

Gmax
k

− λ3
Fk

Fmax
k

}

s.t. Xk ∈ U(Xk),

(6)

where λ1, λ2, and λ3 are nonnegative coefficients, satisfying

the constraint of λ1 + λ2 + λ3 = 1. Different weight vectors

(λ1, λ2, λ3) generates different convex Pareto optima. The

non-convex part of this Pareto front can be found in the

refinement phase. Additionally, Wmax
k , Gmax

k , and Fmax
k are

the maximum values of each objective function in the k-th

horizon.

Our ultimate goal is to maximize the aggregated utility

across multiple horizons.

(X∗
1, · · · ,X

∗
K) = argmax

X1,··· ,XK

{

K
∑

k=1

E(Πk)

}

,

s.t. Xk ∈ U(Xk), k = 1, 2, · · · ,K.

(7)

To solve this multi-horizon and multi-objective optimization

problem, we face several challenges: (1) How do we accurately

estimate the charging demand dkj at each charging station?

(2) How do we develop an appropriate metric to assess the

impact on power grid defined in Eq. (4)? (3) How should we

incorporate a safeguard of profit to prevent severe financial

losses? (4) How can we solve this complex optimization

problem in an efficient manner? In the following sections, we

will address these challenges in details.

III. CHARGING DEMAND ESTIMATION

In practice, EV drivers will adjust their charging demands

and charging schedules in response to charging prices.

The charging demand function dkj thus should characterize

customers’ response to price fluctuations. In our work, an

online linear regression model [44]-[45] is employed to predict

the charging demand dkj . For each charging station, the

predicted charging demand is defined as























dk1 = γ0,1 − γ1,1pk1 + γ2,1pk2 + · · ·+ γL,1pkL + ǫk1,

dk2 = γ0,2 + γ1,2pk1 − γ2,2pk2 + · · ·+ γL,2pkL + ǫk2,
...

dkL = γ0,L + γ1,Lpk1 + γ2,2pk2 + · · · − γL,LpkL + ǫkL,

(8)

where γ0,j(j = 1, 2, · · · , L) is the intercept of the j-th

linear regression equation, γi,j = γj,i(i 6= j) are the cross-

price elasticity coefficients, reflecting how the change of the

charging price at station j can influence the charging demand
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at station i, and γi,i is the self-price elasticity coefficient,

reflecting how the change of the charging price of station

i can influence its own charging demand. Finally ǫkj(j =
1, 2, · · · , L) is assumed to be an independent Gaussian random

variable with mean 0 and variance σ2
kj . The variable ǫkj

captures the unknown random charging demand which cannot

be characterized by the linear terms.

Recursive least square (RLS) algorithm is a common

method applied to estimate the coefficients in Eq. (8) using

historical data [46]-[47]. Let Yj = [γ0,j , γ1,j , · · · , γL,j ]
T

denote the vector of price elasticity coefficients related to the

j-th charging station. Applying RLS, we have the following

update equations,























ekj = dkj −PT
kYj ,

gkj =
H(k−1)jPk

ν+PT
k
H(k−1)jPk

,

Hkj = ν−1H(k−1)j − gkjP
T
kν

−1Pk,

Yj ← Yj + ekjgkj ,

(9)

where ν is the forgetting factor. Besides, H0j is initialized to

be an identity matrix and P0 is initialized to be an all-zero

vector. In addition, the estimate for variance σ2
kj is given by







































mkj = νm(k−1)j + ǫkj ,

nkj = νn(k−1)j + 1,

ǭkj = mkj/nkj ,

ukj = (
mkj−1
mkj

)2 + ( 1
mkj

)2,

vkj = mkj(1− ukj),

σ2
j ←

1
vkj

[(νvkj)σ
2
j +

mkj−1
mkj

(ǭkj − ǫkj)
2],

(10)

where mkj and nkj are initialized to be 0.

Eq. (8) can characterize the spatial-temporal variation of

charging demand. Different locations may have different

charging demands. Thus, we use different linear regression

equations to model these geographically separated charging

stations. Furthermore, the price elasticity coefficients are

updated continually using RLS algorithm defined in Eq. (9)

and Eq. (10). The forgetting factor ν enables us to capture the

most recent trend in charging demand and forget the outdated

information. Thus, the RLS updating mechanism is able to

track charging demand fluctuation over time.

IV. IMPACT ON POWER GRID FROM EV CHARGING

For power flow analysis, we assume that an N -bus power

network has 1 slack bus, M load buses (PQ buses), and

N − M − 1 voltage-controlled buses (PV buses) [48].

Three phase balance operation and per-unit (p.u.) system

are basic assumptions here. Charging stations are deployed

across different PQ buses. Solving the power flow requires

determining N−1 voltage phases (corresponding to PQ buses

and PV buses) and M voltage magnitude (corresponding to

PQ buses). This is done by solving N + M − 1 nonlinear

power flow equations (N − 1 active power equations and M
reactive power equations). The active and reactive power flow

equations for each bus are given as follows,

Pi = vi

N
∑

k=1

vk(Gik cos(δi − δk) +Bik sin(δi − δk)), (11)

Qi = vi

N
∑

k=1

vk(Gik sin(δi − δk)−Bik cos(δi − δk)), (12)

where vi and δi are, respectively, voltage magnitude and

phase at the i-th bus; Pi and Qi are real power and reactive

power injections at the i-th bus; Gik and Bik are, respectively,

conductance and susceptance of the ik-th element of the bus

admittance matrix.

An increasing EV charging demand at PQ buses will lead to

network-wide voltage variation (magnitude and phase) if the

network does not provide sufficient active power and reactive

power. We will use voltage variation as a metric to assess

the impact of EV charging on power grid. Applying Newton’s

method, we can calculate the linear approximation of voltage

variation in the following way

[

∆V

∆Φ

]

=

[

∂P
∂V

∂P
∂Φ

∂Q
∂V

∂Q
∂Φ

]−1 [
∆P

∆Q

]

= J−1

[

∆P

∆Q

]

,

(13)

where ∆V and ∆Φ are, respectively, vectors of magnitude

variation and phase variation; ∆P and ∆Q are, respectively,

vectors of increased active power and reactive power due to

EV charging. In addition, ∂P
∂V

and ∂P
∂Φ

are partial derivatives of

active power with respect to voltage magnitudes and phases,

and ∂Q
∂V

, ∂Q
∂Φ

are partial derivatives of reactive power with

respect to voltage magnitudes and phases. In addition, J−1

is the inverse of Jacobian matrix from power flow equations,

which is given by

J−1 =











b1,1 b1,2 · · · b1,N+M−1

b2,1 b2,2 · · · b2,N+M−1

...
...

bN+M−1,1 bN+M−1,2 · · · bN+M−1,N+M−1











, (14)

Let the sequence [a1, a2, · · · , aL] denote the bus indexes

of all charging stations in the power network. For instance,

ai(i = 1, 2 · · · , L) means that the i-th charging station is fed

by the ai-th bus in the power network.

Finally, we use the 2-norm voltage variation (magnitude and

phase) to assess the impact of EV charging on power grid,

Fk =

∣

∣

∣

∣

∣

∣

∣

∣

J−1

[

∆P

∆Q

]∣

∣

∣

∣

∣

∣

∣

∣

2

. (15)

Moreover, we denote SAc
i and SRe

i as the active power

sensitivity and reactive power sensitivity of the i-th PQ bus.

And SAc
i is defined as follows,
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SAc
i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J−1

























0
...

0
1
0
...

0

























∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

, (16)

where SAc
i is the 2-norm voltage variation when the active

power injection of the i-th PQ bus is increased by 1 W.

Thus, 1 W is the i-th entry in the column vector in Eq. (16).

Similarly, SRe
i is defined as the 2-norm voltage variation when

the reactive power injection of the i-th PQ bus is increased by

1 var. A larger value of SAc
i or SRe

i indicates that the PQ

bus has a lower tolerance to load variation and more likely to

disturb the whole network.

V. STOCHASTIC DYNAMIC PROGRAMMING (SDP) FOR

PRICING AND ELECTRICITY PROCUREMENT

At first, this section introduces a safeguard of profit —

a minimum profit warning mechanism. In addition, major

modules in SDP like renewable energy, real time wholesale

electricity price, and system dynamics are discussed. Finally,

we introduce the procedure to use SDP to derive pricing and

electricity procurement policy.

A. A Safeguard of Profit

In practice, service providers make decisions on pricing

and electricity procurement based on the estimated charging

demands. Although Eq. (8) provides a viable way to estimate

the charging demand, uncertainties still exist in actual charging

demands. This subsection aims to develop a safeguard of

profit to remind that the charging service provider should

make a certain amount of profit under severe circumstance

of uncertainties. We incorporate the safeguard as a constraint

in the optimization framework. Wherever the optimal solution

touches this constraint (i.e. this constraint becomes active), a

warning will be raised for the service provider. The constraint

is given as follows,

Prob (Wk < Wmin) < ζ, (17)

where Wk is the profit made in the k-th horizon, Wmin is a

profit threshold, and ζ is a small positive number in the range

of (0, 1). Eq. (17) specifies that the probability that the actual

profit is less than the profit threshold should be less than ζ.

Expanding Wk and rearranging terms in Eq. (17) yields the

following

Prob
(

XT
kAXk +BTXk +ET

kZk + tk < Wmin

)

< ζ, (18)

where Xk = [pk1, pk1, · · · , pkL, ok]
T. Matrix A is given by

A =















−γ1,1 γ1,2 · · · γ1,L 0
γ2,1 −γ2,2 · · · γ2,L 0

...
...

...
...

γL,1 γL,2 · · · −γL,L 0
0 0 · · · 0 0















, (19)

and vector B is

B =

[

γ0,1 +
ηs
ηd

Γ1, · · · , γ0,L +
ηs
ηd

ΓL,−ck − ηsηc

]T

, (20)

where Γj is

Γj = −γj,j +

L
∑

i=1,i 6=j

γj,i, (21)

and vector E is

Ek =

[

pk1 +
ηs
ηd

, · · · , pkL +
ηs
ηd

,−ηs

]T

, (22)

and Zk = [ǫk1, ǫk2, · · · , ǫkL, wk]
T, and tk = ηs(Γ0/ηd− Ik−

ηcuk), where Γ0 is

Γ0 =

L
∑

i=1

γ0,i. (23)

Besides, we assume that [ǫk1, ǫk2, · · · , ǫkL, wk]
T are

independent Gaussian random variables. Thus, ET
kZk is also

a Gaussian random variable with mean 0 and variance
∑L

j=1(pkj + ηs/ηd)
2σ2

kj + η2sσ
2
w.

Finally, Eq. (17) can be rewritten as follows,

Prob
(

ET
kZk < Wmin −XT

kAXk −BTXk − tk
)

= Φ





Wmin −XT
kAXk −BTXk − tk

√

∑L
j=1(pkj + ηs/ηd)2σ2

kj + η2sσ
2
w



 < ζ,
(24)

where Φ(.) is the cumulative distribution function (CDF) of a

standard Gaussian random variable.

B. Renewable Energy and Real Time Wholesale Price

Literature abounds on various approaches to forecasting

renewable energy, e.g., physical approach [49]-[50], statistical

approach [51]-[52], and hybrid approach [53]. In this paper,

we use a Markov chain model [54]-[55] which is a statistical

approach, to demonstrate how renewable energy prediction

is incorporated into our optimization model. In fact, other

forecasting approaches can also be used in our model.

Markov chain characterizes the transition from the current

renewable energy uk to the next uk+1. We discretize renewable

energy into D levels, and the transition matrix at the k-th

horizon is given by

Tk =











tk,1,1 tk,1,2 · · · tk,1,D
tk,2,1 tk,2,2 · · · tk,2,D

...
...

tk,D,1 tk,D,2 · · · tk,D,D











, (25)

where tk,i,j is the transition probability of renewable energy
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from level i to level j in the k-th horizon, and
∑D

j=1 tk,i,j = 1.

All transition probabilities can be estimated from historical

data.

Similar to renewable energy, real time wholesale price

forecasting has also been extensively studied through time

series analysis, machine learning, big data, or hybrid approach

in [56]-[57]. Real time price forecasting is a topic beyond the

technical scope of our paper. Thus, we do not study specific

real time price forecasting approaches in this paper.

C. Stochastic Dynamic Programming

Eq. (7) is a complex multi-variable optimization problem

involving K(L + 1) variables. It may be mathematically

cumbersome and difficult to solve in a brute-force manner.

We observe that the original problem exhibits the properties

of overlapping subproblems and optimal substructure, which

can be solved efficiently using SDP. SDP solves a large-

scale complex problem by partitioning it into a set of

smaller and simpler subproblems [58]-[59]. The solution to

the original problem is constructed by solving and combining

the solutions of subproblems in a forward or backward manner.

In contrast to a brute-force algorithm, SDP can greatly reduce

computation and save storage.

In a wholesale real time electricity market, electricity is sold

on an hourly basis. So our problem should have a finite number

of planning horizons with K = 24. System dynamics are

governed by the evolution of system states, under the influence

of decision variables and random variables. In our case, system

dynamics are expressed by the following equations

Ik+1 = Ik + ηcuk + ηcok −
1

ηd
φk + wk,

uk+1 = h(uk, υk),
(26)

where Ik represents electricity storage at the beginning

of the k-th horizon, uk is renewable energy, ok is the

electricity procurement, ηc is the charging efficiency, ηd is the

discharging efficiency, and φk is the total charging demand.

Besides, wk and υk are independent process noises for the

energy storage system and the renewable energy generation.

The aggregated expected utility from the first horizon to the

K-th horizon is given by

E

{

ΠK+1(IK+1, uK+1) +

K
∑

k=1

Πk(Ik, uk)

}

, (27)

where ΠK+1(IK+1, uK+1) is a terminal utility occurred at

the end of this process, and the expectation is taken over

ǫkj(j = 1, · · · , L) defined in Eq. (8), wk, and υk. Therefore,

the maximum aggregated expected utility J(I1, u1) is given

by

J1(I1, u1) = max
X1,··· ,XK

E

{

ΠK+1 +

K
∑

k=1

Πk

}

,

s.t.






































Prob(Wk < Wmin) < ζ

0 ≤ ok ≤ omax; k = 1, 2, · · · , N

pkj ≥ 0; j = 1, 2, · · · , L

Ik + uk + ok −
∑L

j=1 dkj ≥ 0

Ik + uk + ok −
∑L

j=1 dkj ≤ E

dkj ≥ 0; j = 1, 2, · · · , L.

(28)

Applying SDP we can partition the problem into multiple

small subproblems, which can be calculated recursively as

follows,

Jk(Ik, uk) = max
Xk∈Uk(Xk)

E {Πk + Jk+1(Ik+1, uk+1)}

= max
Xk∈Uk(Xk)

{E{Πk(Ik, uk)}+

E{Jk+1(Ik+1, uk+1)}} .

(29)

Furthermore, we can rewrite each subproblem into a nice

quadratic form by combining like terms as follows,

Jk(Ik, uk) = max
Xk∈Uk(Xk)

{

E{
1

2
XT

kQXk

+BT
kXk}+ E{rk}

}

,

(30)

where Q, Bk, and rk are given by

Q =

















−2γ1,1λ1 − αλ2Γ
2
1 − 2λ3

∑N+M−1
j=1 Θ2

1,j · · · 2γ1,Lλ1 − αλ2Γ1ΓL − 2λ3

∑N+M−1
j=1 Θ1,jΘL,j 0

2γ2,1λ1 − αλ2Γ2Γ1 − 2λ3

∑N+M−1
j=1 Θ2,jΘ1,j · · · 2γ2,Lλ1 − αλ2Γ2ΓL − 2λ3

∑N+M−1
j=1 Θ2,jΘL,j 0

...
...

2γL,1λ1 − αλ2ΓLΓ1 − 2λ3

∑N+M−1
j=1 ΘL,jΘ1,j · · · −2γL,Lλ1 − αλ2Γ

2
L − 2λ3

∑N+M−1
j=1 Θ2

L,j 0

0 · · · 0 0

















, (31)

Bk =















λ1(γ0,1 +
ηs

ηd
Γ1) + λ2

(

ω
∑L

j=1 γ1,j − αΓ0Γ1

)

− 2λ3

∑N+M−1
j=1 Θ0,jΘ1,j

...

λ1(γ0,L + ηs

ηd
ΓL) + λ2

(

ω
∑L

j=1 γL,j − αΓ0ΓL

)

− 2λ3

∑N+M−1
j=1 Θ0,jΘL,j

−(ck + ηsηc)λ1















, (32)
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rk =λ1ηs(Γ0/ηd − Ik − ηcuk) + λ2



ωΓ0 −
α

2



Γ2
0 +

L
∑

j=1

σ2
k,j







−

λ3





N+M−1
∑

j=1

Θ2
0,j + λ3

N+M−1
∑

j=1

L
∑

i=1

b2j,ai
σ2
k,j



+ Euk+1
{Jk+1(Ik+1, uk+1)},

(33)

where Θn,j is

Θn,j = −bj,an
γn,n +

L
∑

i=1,i 6=n

bj,ai
γi,n, (34)

and an is the bus index of the power network for the n-th

charging station, and

Θ0,j =

L
∑

i=1

bj,ai
γ0,i. (35)

Finally, Jk+1(Ik+1, uk+1) is the total aggregated utility

starting from the (k+1)-th horizon to the K-th horizon. Fig. 3

illustrates the schematic of the entire optimization framework.

The charging service provider should run the SDP engine at

the beginning of every planning horizon.

VI. SIMULATIONS AND DISCUSSIONS

The simulation coefficients are given in Table I. Tesla’s

home rechargeable Lithium-ion battery system — Powerwall

has a 92.5% round-trip DC efficiency with 100% depth of

discharge [60]. Eos Energy Storage has a battery-based energy

storage with a round-trip efficiency of 75% and a 100% depth

of discharge [61]. In our simulation, we assume the charging

efficiency ηc and discharging efficiency ηd are both 0.9. For

simplicity, we use the day-ahead wholesale electricity price

data from PJM [62] to represent the real time wholesale price

forecasting in the simulations, but other forecasting approaches

can be used. In addition, we assume that the charging service

provider procures electricity at a single locational marginal

price (LMP). We use solar power to represent the renewable

energy source. The solar radiation data is from National

Renewable Energy Laboratory (NREL) [63], and the typical

daily solar radiation is depicted in Fig. 4. Note that solar

radiation begins at 6:00 am and ends at 8:00 pm. Additionally,

we assume that solar cell efficiency is 20%. We use IEEE 57

Bus Test case for the power network in our simulations [64].

A. SDP Algorithm versus Greedy Algorithm

The greedy algorithm aims to optimize the current planning

horizon without considering the future. We use the greedy

algorithm as a benchmark, to which we compare the SDP

algorithm in terms of profitability. The profit percentage gain

of SDP algorithm compared to greedy algorithm is shown

in Fig. 5. The simulation reveals that the SDP algorithm

can achieve up to 7% profit gain compared to the greedy

algorithm. The reason why SDP is able to obtain a higher

Figure 3. Dynamic Pricing and Energy Management Algorithm

profit is that it fully exploits the information of day-ahead

wholesale electricity prices and renewable energy prediction,

and makes decisions to optimize the aggregated utility over

multiple horizons. However, the greedy algorithm lacks a

forward-looking vision, which solely maximizes the utility of

the current horizon. As far as the computational complexity

is concerned, greedy algorithm has a linear time complexity

with O(K), and SDP has a quadratic time complexity with

O(K2), where K is the number of planning horizons. This

is because the greedy algorithm only involves one loop from

horizon 0 to horizon 23. However, the SDP algorithm has two

loops with the outer loop starting from horizon 0 to horizon

23 and the inner loop for backward recursive SDP calculation.

In essence, the SDP algorithm trades complexity for a higher

profit.

B. Aggressive or Conservative Electricity Procurement

Strategy

An electricity storage enables the charging service provider

to store the intermittent renewable energy or excessive

electricity when the wholesale price is low, and sell it to

EVs when the wholesale price is high. In this subsection,

we analyse how this “buy low and sell high” strategy will
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Figure 6. Electricity Procurement with Different Storage Cost
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Table I
SIMULATION PARAMETERS

Coefficient Description Unit Value

N Number of horizons - 24

E Energy storage capacity MWh 200

λ1 Weight for profit - 0 to 1

λ2 Weight for customer satisfaction - 0 to 1

λ3 Weight for impact - 0 to 1

ζ Revenue safeguard probability - 0.2

α Shape parameter - 5e-5

ω Shape parameter - 0.01

ηs Unit storage cost $/MWh 0 to 4

ηc Energy storage charging efficiency - 0.9

ηd Energy storage discharging efficiency - 0.9

ρ0 Knee point threshold - 1
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Figure 12. Customer Satisfaction vs Impact on Power Grid
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change when the unit storage cost (ηs = 0 to 4) changes. In

Fig. 6, electricity procurement strategies with different unit

storage costs are depicted in the first four subplots, and the

last subplot shows the real time wholesale electricity prices.

We can make three observations: (1) From 8:00 to 16:00,

the service provider tends to procure less electricity from the

wholesale market because of renewable energy generation at

this period of time, and (2) The service provider tends to

procure more electricity during the low wholesale price period

(from 3:00 to 6:00) and procure less electricity during the high

wholesale price period (from 11:00 to 17:00), and (3) When ηs
is small, the service provider becomes aggressive in electricity

procurement during low price period, and when ηs is large, it

becomes more conservative.

C. Charging Price with Safeguard of Profit

In the simulation, we investigate the interplay between

charging prices and the safeguard of profit. From Fig. 7,

we note that the charging prices increase as the profit

threshold Wmin increases. According to Eq. (24), we must

ensure the probability ζ does not change even if Wmin

increases. In other words, (Wmin − XT
kAXk − BTXk −

tk)/(
√

∑L
j=1(pkj + ηs/ηd)2σ2

kj + η2sσ
2
w) should not change

as Wmin increases. The simulation results show that the

charging service provider ends up raising charging prices to

ensure the probability ζ.

D. Pareto Optima and Knee Points

We need to simultaneously maximize multiple objectives

— profit, customer satisfaction, and the negative of impact

on power grid. Each point in Fig. 8 is a Pareto optimum in

which it is impossible to increase any one individual objective

without decreasing at least one of the other objectives [41].

The Pareto front is obtained by using the linear interpolation

fitting method [65].

Knee points in the Pareto front provide the best tradeoff

among multiple objectives, which yield largest improvement

per unit degradation. Following the metric discussed in [66]-

[67], we define ρ(Yi, S) to represent the least improvement

per unit degradation by replacing any other Pareto optima in

S with Yi. The entries in Yi = [y1i, y2i, y3i]
T represent the

profit, the customer satisfaction, and the impact on power grid,

respectively.

ρ(Yi, S) = min
Yj∈S,j 6=i

∑3
k=1 max(0, yki − ykj)

∑3
k=1 max(0, ykj − yki)

. (36)

Then we set a threshold ρ0 to select the knee points as follows,
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Sρ0

knee = {Yi|ρ(Yi, S) > ρ0;Yi ∈ S}. (37)

We use ρ = 1 in the simulations. The knee points are marked

in red in Fig. 9. We notice that there are several knee regions

among the Pareto optima, which reflect different preference

over the three objectives — profit, customer satisfaction, and

the impact on power grid.

E. Interplays between Profit, Customer Satisfaction, and

Impact on Power Grid

The projection of Pareto optima on the Profit-Customer

plane is plotted in Fig. 10. We observe that customer

satisfaction decreases when profit increases. This is because

the charging service provider raises charging prices to decrease

the total charging demand. The decreased total charging

demand leads to a decreased customer satisfaction. However,

the net effect of raising charging prices is that the service

provider achieves a higher profit. Therefore, the service

provider should strike a balance between the two competing

objectives of profit and customer satisfaction.

The projection of Pareto optima on the Profit-Impact plane

is plotted in Fig. 11. It turns out that the impact and the profit

are not competing objectives since the impact on power grid

decreases when profit increases. The increased charging prices

cause a decrease in total charging demand, relieving the stress

on power grid. However, the profit is improved even though

the total charging demand decreases.

Fig. 12 shows the projection of Pareto optima on the

Customer-Impact plane. Note that customer satisfaction and

the impact are competing objectives since the impact on

power grid increases as customer satisfaction increases. It is

obvious that customer satisfaction and impact on power grid

are both related to the total charging demand. According to

Eq. (2), customer satisfaction increases when the total charging

demand increases. However, the increased charging demand

will inevitably pose a heavier stress on the power grid.

F. Spatial Charging Demand versus Impact on Power Grid

The relationship between spatial charging demand and

impact on power grid is shown in Fig. 13. Due to limited

space, we only plotted the charging stations with even indices.

We observe that as the impact on power grid (Qk) decreases,

the charging demands of Charging Station #2 (CS#2) and

Charging Station #20 (CS#20) decrease while the charging

demands of other charging stations increase. This is because

the PQ buses feeding CS#2 and CS#20 have larger active

power sensitivity metric SAc
i than the others. The active

power sensitivity for charging stations with even indices are

[0.80, 0.61, 0.33, 0.17, 0.31, 0.29, 0.22, 0.60, 0.29, 1.33]. Note

that CS#8 has the smallest active power sensitivity 0.17, its

charging demand increases very fast as the impact decreases.

While CS#20 has the largest active power sensitivity 1.33, its

charging demand decreases fast. Thus, the service provider has

to shift the charging demands from the PQ buses with large

SAc
i to those with small SAc

i to reduce the impact on power

grid.

VII. CONCLUSION

This paper proposes a multi-objective optimization frame-

work for EV charging service provider to determine retail

charging prices and appropriate amount of electricity to

purchase from the real time wholesale market. A linear

regression model is employed to estimate EV charging

demands. To cope with multiple uncertainties, SDP algorithm

is applied to simplify the optimization problem. Compared

to greedy algorithm (benchmark), SDP algorithm can make a

higher profit at the cost of increased algorithm complexity.

A lost-cost electricity storage is beneficial for the service

provider to harvest the intermittent renewable energy and exert

the “buy low and sell high” strategy to improve profits. In

addition, the service provider can shift charging demands from

high-sensitive buses to low-sensitive buses to alleviate the

impact on power grid by changing charging prices.

REFERENCES

[1] A. Simpson, “Cost-benefit Analysis of Plugin Hybrid Electric Vehicle
Technology”, The 22nd International Battery, Hybrid and Fuel Cell

Electric Vehicle Symposium and Exhibition (EVS-22), 2006.
[2] M. Hajian, H. Zareipour, and W. Rosehart, “Environmental benefits of

plug-in hybrid electric vehicles: The case of Alberta”, IEEE Power &

Energy Society General Meeting (PES ’09), pp. 1-6, 2009.
[3] R. Sioshansi, and P. Denholm, “Emissions Impacts and Benefits of Plug-

In Hybrid Electric Vehicles and Vehicle-to-Grid Services”, Environmental

Science and Technology, vol. 43, no. 4, pp. 1199-1204, 2009.
[4] C. Luo, Y.-F. Huang, and V. Gupta, “A Consumer Behavior Based

Approach to Multi-Stage EV Charging Station Placement”, 2015 IEEE

81st Vehicular Technology Conference (VTC Spring), pp. 1-6, 2015.
[5] C. Luo, Y.-F. Huang, and V. Gupta, “Placement of EV Charging

Stations—Balancing Benefits Among Multiple Entities”, IEEE Transac-

tions on Smart Grid, vol. 8, no. 2, pp. 759 - 768, 2017.
[6] Z. Yi and P. Bauer, “Optimization Models for Placement of an Energy-

Aware Electric Vehicle Charging Infrastructure”, Transportation Research

Part E, vol. 91, no. 1, pp. 227 - 244, 2016.
[7] A. Lam, Y. Leung, and X. Chu, “Electric Vehicle Charging Station

Placement: Formulation, Complexity, and Solutions”, IEEE Transactions

on Smart Grid, vol. 5, no. 6, pp. 2846 - 2856, 2014.
[8] Z. Yi, and P. Bauer, “Spatiotemporal Energy Demand Models for Electric

Vehicles”, IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp.
1030 - 1042, 2016.

[9] Y. Guo, X. Liu, Y. Yan, N. Zhang, and W. Su, “Economic Analysis of
Plug-In Electric Vehicle Parking Deck with Dynamic Pricing”, 2014 IEEE

Power and Energy Society General Meeting, pp. 1-5, 2014.
[10] Y. Guo, J. Xiong, S. Xu, and W. Su, “Two-Stage Economic Operation

of Microgrid-Like Electric Vehicle Parking Deck”, accepted by IEEE

Transactions on Smart Grid, 2015 (to be published).
[11] J. Foster, and M. Caramanis, “Optimal Power Market Participation

of Plug-In Electric Vehicles Pooled by Distribution Feeder”, IEEE

Transactions on Power Systems, vol. 28, no. 3, pp. 2065-2076, 2013.
[12] S. Han, S. Han, and K. Sezaki, “Development of an Optimal Vehicle-to-

Grid Aggregator for Frequency Regulation”, IEEE Transations on Smart

Grid, vol. 1, no. 1, pp. 65-72, 2010.
[13] E. Sortomme, and M. El-Sharkawi, “Optimal Charging Strategies for

Unidirectional Vehicle-to-Grid”, IEEE Transations on Smart Grid, vol.
2. no. 1, pp. 131-138, 2010.

[14] S. Beer, T. Gomez, D. Dallinger, I. Momber, C. Marnay, M. Stadler,
and J. Lai, “An Economic Analysis of Used Electric Vehicle Batteries
Integrated Into Commercial Building Microgrids”, IEEE Transations on

Smart Grid, vol. 3, no. 1, pp. 517-525, 2012.
[15] Y. Han, Y. Chen, F. Han, and K. Liu, “An Optimal Dynamic Pricing

and Schedule Approach in V2G”, 2012 Asia-Pacific Signal & Information

Processing Association Annual Summit and Conference (APSIPA ASC),
pp. 1-8, 2012.

[16] A. Ovalle, A. Hably, and S. Bacha, “Optimal Management and
Integration of Electric Vehicles to the Grid: Dynamic Programming
and Game Theory Approach”, 2015 IEEE International Conference on

Industrial Technology (ICIT), pp. 2673-2679, 2015.



12

[17] H. Nguyen, and J. Song, “Optimal Charging and Discharging for
Multiple PHEVs with Demand Side Management in Vehicle-to-Building”,
Journal of Communications and Networks, vol. 14, no. 6, pp. 662-671,
2012.

[18] R. Couillet, S. Perlaza, H. Tembine, and M. Debbah, “Electrical Vehicles
in the Smart Grid: A Mean Field Game Analysis”, IEEE Journal on

Selected Areas in Communications, vol. 30, no. 6, pp. 1086-1096, 2012.
[19] Q. Yan, I. Manickam, M. Kezunovic, and L. Xie, “A Multi-tiered Real-

time Pricing Algorithm for Electric Vehicle Charging Stations”, 2014

IEEE Transportation Electrification Conference and Expo (ITEC), pp.
1-6, 2014.

[20] D. Ban, G. Michailidis, and M. Devetsikiotis, “Demand Response
Control for PHEV Charging Stations by Dynamic Price Adjustments”,
2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1-8,
2012.

[21] N. Rahbari-Asr, M.-Y. Chow, Z. Yang, and J. Chen, “Network
Cooperative Distributed Pricing Control System for Large-Scale Optimal
Charging of PHEVs/PEVs”, IECON 2013 - 39th Annual Conference of

the IEEE Industrial Electronics Society, pp. 6148-6153, 2013.
[22] C. Ozelkan, A. Galambosi, E. Fernandez-Gaucherand, and L.

Duckstein, “Linear quadratic dynamic programming for water reservoir
management”, Applied Mathematical Modelling, vol. 21, no. 9, pp. 591-
598, 1997.

[23] A. Kerr, “Stochastic Utility Maximising Dynamic Programming
Applied to Medium-term Reservoir Management”, University of

Canterbury. Management 2003 Networked Digital Library of Theses and

Dissertations, 2003.
[24] L. Jia, and L. Tong, “Dynamic Pricing and Distributed Energy

Management for Demand Response”, IEEE Transactions on Smart Grid,
vol. 7, no. 2, pp. 1128-1136, 2016.

[25] R. Huisman, C. Huurman, and R. Mahieu, “Hourly electricity prices
in day-ahead markets”, Energy Economics, vol. 29, no. 2, pp. 240-248,
2007.

[26] G. Hamoud, and I. Bradley, “Assessment of Transmission Congestion
Cost and Locational Marginal Pricing in a Competitive Electricity
Market”, IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 769-
775, 2004.

[27] M. Ventosa, A. Baillo, A. Ramos, and M. Rivier, “Electricity Market
Modeling Trends”, Energy Policy, vol. 33, no. 7, pp. 897-913, 2005.

[28] P. Yang, G. Tang, and A. Nehorai, “A Game-Theoretic Approach for
Optimal Time-of-Use Electricity Pricing”, IEEE Transactions on Power

Systems, vol. 28, no. 2, pp. 884-892, 2013.
[29] M. Fahrioglu, and F. Alvarado, “Designing Cost Effective Demand

Management Contracts Using Game Theory”, IEEE Power Engineering

Society 1999 Winter Meeting, vol. 1, no. 1, pp. 427-432, 1999.
[30] R. Faranda, A. Pievatolo, and E. Tironi, “Load Shedding: A New

Proposal”, IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 2086-
2093, 2007.

[31] G. Hermann Heinrich, “The Laws of Human Relations and the Rules
of Human Action Derived Therefrom”, Cambridge, Mass. : MIT Press,
1983.

[32] H. Turker, S. Bacha, D. Chatroux, and A. Hably, “Low-Voltage
Transformer Loss-of-Life Assessments for a High Penetration of Plug-
In Hybrid Electric Vehicles (PHEVs)”, IEEE Transactions on Power

Delivery, vol. 27, no. 3, pp. 1323-1331, 2012.
[33] K. Kumar, B. Sivaneasan, P. So, and D. Wang, “Methodology for

Optimizing the Number of Electric Vehicles Deployed under a Smart
Grid”, IECON 2013 - 39th Annual Conference of the IEEE Industrial

Electronics Society, pp. 4647-4652, 2013.
[34] J. Lopes, F. Soares, and P. Almeida, “Integration of Electric Vehicles in

the Electric Power System”, Proceedings of the IEEE, vol. 99, no. 1, pp.
168-183, 2011.

[35] K. Schneider, C. Gerkensmeyer, M. Kintner-Meyer, and R. Fletcher,
“Impact Assessment of Plug-In Hybrid Vehicles on Pacific Northwest
Distribution Systems”, 2008 IEEE Power and Energy Society General

Meeting - Conversion and Delivery of Electrical Energy in the 21st

Century, pp. 1-6, 2008.
[36] W. Su, J. Wang, K. Zhang, and M. Y. Chow, “Framework for

Investigating the Impact of PHEV Charging on Power Distribution System
and Transportation Network”, IECON 2012 - 38th Annual Conference on

IEEE Industrial Electronics Society, pp. 4735-4740, 2012.
[37] P. Kundur, “Power System Stability and Control (1st edition)”, McGraw-

Hill Education, 1994.
[38] RENAC Online Academy, “ReGrid: Frequency and Voltage Regulation

in Electrical Grids,”[Online], available at http://docplayer.net/6038884-

Regrid-frequency-and-voltage-regulation-in-electrical-grids.html,
accessed on October, 2015.

[39] C. Zhao, U. Topcu, and S. Low, “Optimal Load Control via
Frequency Measurement and Neighborhood Area Communication”, IEEE

Transaction on Power System, vol. 28, no. 4, pp. 3576-3587, 2013.

[40] M. Moghadam, S. Member, R. Zhang, S. Member, and R. Ma,
“Distributed Frequency Control via Randomized Response of Electric
Vehicles in Power Grid”, IEEE Transactions On Sustainable Energy, vol.
7, no. 1, pp. 312-324, 2016.

[41] C.-L. Hwang, and A. Masud, Multiple Objective Decision Making

Methods and Applications. Berlin Heidelberg: Springer, 1979.

[42] K. Miettinen, “Nonlinear Multiobjective Optimization”, Springer
Science & Business Media, 1999.

[43] I. Kim, and O. Weck, “Adaptive weighted sum method for multiobjective
optimization: a new method for Pareto front generation”, Structural and

Multidisciplinary Optimization, vol. 31, no. 2, pp. 105-116, 2006.

[44] R. Christensen, Plane Answers to Complex Questions: The Theory of

Linear Models.(Third ed.) New York: Springer, 2002.

[45] A. Dobson, and A. Barnett, An Introduction to Generalized Linear

Models.(Third ed.) CRC Press, 2008.

[46] J. Proakis, “Digital Signal Processing (4th ed.)”, Pearson Prentice Hall,
Upper Saddle River, N.J., 2007.

[47] J. Lu, and R. Niu, “False information injection attack on dynamic state
estimation in multi-sensor systems”, 17th International Conference on

Information Fusion (FUSION), pp. 1 - 8, 2014.

[48] S. Frank, and S. Rebennack, “A Primer on Optimal Power Flow: Theory,
Formulation, and Practical Examples”, IDEAS Working Paper Series from

RePEc, 2012.

[49] L. Landberg, “Short-Term Prediction of the Power Production from
Wind Farms”, Journal of Wind Engineering and Industrial Aerodynamics,
vol. 80, no. 1, pp. 207-220, 1999.

[50] M. Lange and U. Focken, Physical Approach to Short-Term Wind Power

Prediction, Berlin; New York : Springer, 2006.

[51] Y.-Z. Li and J.-C. Niu, “Forecast of power generation for grid-connected
photovoltaic system based on grey model and Markov chain”, 2008 3rd

IEEE Conference on Industrial Electronics and Applications, pp. 1729-
1733, 2008.

[52] E. Izgia, A. Oztopalb , B. Yerlib, M. Kaymakb, and A. Sahin, “Short-
mid-term solar power prediction by using artificial neural networks”,
Solar Energy, vol. 86, no. 2, pp. 725-733, 2012.

[53] G. Giebel, L. Landberg, A. Joensen, and H. Madsen, “The Zephyr
Project: The Next Generation Prediction System”, Proc. of the 2001

European Wind Energy Association Conference, pp. 777-780, 2001.

[54] J. Norris, Markov Chain. Cambridge : Cambridge University Press,
1997.

[55] P. Bremaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and

Queues. New York : Springer, 1999.

[56] Y. Ji, J. Kim, R. Thomas, and L. Tong, “Forecasting real-time locational
marginal price: A state space approach”, 2013 Asilomar Conference on

Signals, Systems and Computers, pp. 1-5, 2013.

[57] R. Weron, “Electricity price forecasting: A review of the state-of-the-art
with a look into the future”, International Journal of Forecasting, vol.
30, no. 4, pp. 1030-1081, 2014.

[58] J. Lu, R. Niu, and P. Han, “Optimal space-time attacks on system state
estimation under a sparsity constraint”, Proc. of SPIE 9838, Sensors and

Systems for Space Application IX, pp. 1 - 10, 2016.

[59] D. Bertsekas, Dynamic Programming and Optimal Control (2nd ed.),
Athena Scientific, Belmont, Massachusetts, 2000.

[60] Tesla.com, “Powerwall — Energy Storage for a Sustainable Home”,
available at: https://www.tesla.com/powerwall, accessed: Oct. 6, 2016.

[61] EosEnergy.com, “Products: Eos Aurora”, available at:

http://www.eosenergystorage.com/products/, accessed: Oct. 6, 2016.

[62] PJM.com, “Daily Day-Ahead LMP”, available at:

http://www.pjm.com/markets-and-operations/energy/day-

ahead/lmpda.aspx, accessed: Oct. 17, 2016.

[63] E. McKenna, and A. Andreas, South Park Mountain Data: South
Park, Colorado (Data); NREL Report No. DA-5500-56521, available at:

http://dx.doi.org/10.5439/1052562, 1997.

[64] I. Dabbagchi, and R. Christie,“Power Systems Test Case
Archive: 57 Bus Power Flow Test Case”, available at:

http://www2.ee.washington.edu/research/pstca/pf57/pg tca57bus.htm,
accessed: Otc. 5, 2016.

[65] P. Davis, Interpolation and approximation. New York: Blaisdell Pub.
Co., 1963.

[66] L. Rachmawati, and D. Srinivasan, “Multiobjective Evolutionary
Algorithm with Controllable Focus on the Knees of the Pareto Front”,
IEEE Transactions on Evolutionary Computation, vol. 13, no. 4, 2009.



13

[67] X. Zhang, Y. Zhou, Q. Zhang, V. Lee, and M. Li, “Multi-objective
Optimization of Barrier Coverage with Wireless Sensors”, Evolutionary

Multi-criterion Optimization, pp. 557-572, 2015.

Chao Luo received the B.Eng degree with
distinction in Communication Engineering from
Harbin Institute of Technology (HIT), China, in
2012. Currently, he is pursuing his Ph.D. in
Electrical Engineering in the University of Notre
Dame, USA. Chao’s research interests include
electric vehicle (EV) integration into power system,
machine learning in smart grid, power system
architecture, and electricity market.

Yih-Fang Huang is Professor of Department of
Electrical Engineering and Senior Associate Dean of
College of Engineering at University of Notre Dame.
Dr. Huang received his BSEE degree from National
Taiwan University, MSEE degree from University of
Notre Dame and Ph.D. from Princeton University.
He served as chair of the Electrical Engineering
Department at the University of Notre Dame from
1998 to 2006. His research interests focus on theory
and applications of statistical signal detection and
estimation, and adaptive signal processing.

In Spring 1993, Dr. Huang received the Toshiba Fellowship and was
Toshiba Visiting Professor at Waseda University, Tokyo, Japan. From April
to July 2007, he was a visiting professor at the Munich University of
Technology, Germany. In Fall, 2007, Dr. Huang was awarded the Fulbright-
Nokia scholarship for lectures/research at Helsinki University of Technology
in Finland (which is now Aalto University).

Dr. Huang received the Golden Jubilee Medal of the IEEE Circuits and
Systems Society in 1999, served as Vice President in 1997-98 and was a
Distinguished Lecturer for the same society in 2000-2001. At the University
of Notre Dame, he received Presidential Award in 2003, the Electrical
Engineering departments Outstanding Teacher Award in 1994 and in 2011, the
Rev. Edmund P. Joyce, CSC Award for Excellence in Undergraduate Teaching
in 2011, and the College of Engineerings Teacher of the Year Award in 2013.
Dr. Huang is a Fellow of the IEEE.

Vijay Gupta is a Professor in the Department of
Electrical Engineering at the University of Notre
Dame. He received his B. Tech degree from the
Indian Institute of Technology, Delhi and the M.S.
and Ph.D. degrees from the California Institute of
Technology, all in Electrical Engineering. Prior to
joining Notre Dame, he also served as a research
associate in the Institute for Systems Research at the
University of Maryland, College Park. He received
the NSF CAREER award in 2009, and the Donald
P. Eckman Award from the American Automatic

Control Council in 2013. His research interests include cyber-physical
systems, distributed estimation, detection and control, and, in general, the
interaction of communication, computation and control.


