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Diagnosis of chronic myocardial infarction (MI) is an im-
portant clinical task because the management of and 

treatment planning for patients is different for chronic MI 
versus acute MI (1,2). The extent of chronic MI, including 
location, size, and transmurality, provides rich information 
for patient diagnosis, prognosis, and therapy planning (3). 
Therefore, accurate delineation and comprehensive evalua-
tion of chronic MI is of great clinical interest.

Late gadolinium enhancement (LGE) MRI has been 
established as the ground truth reference technique for 
chronic MI evaluation (4–6). However, including LGE 
MRI in the MRI examination extends the scanning 

duration and there are also growing concerns about its 
safety (7–9). While LGE MRI is contraindicated in pa-
tients with severe renal impairment, a recent study has also 
shown that gadolinium might deposit into the skin, den-
tate nucleus, and globus pallidus of patients with normal 
renal function (10). A reliable technique to detect and de-
lineate MI without the need for gadolinium-based contrast 
agent would therefore be highly desirable.

T1 and T2 mapping techniques (11) are non–contrast 
material–enhanced approaches that show longer T1 and 
T2 relaxation times in acute MI compared with normal 
myocardium. In comparison, while T1 relaxation time is 
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Background:  Renal impairment is common in patients with coronary artery disease and, if severe, late gadolinium enhancement 
(LGE) imaging for myocardial infarction (MI) evaluation cannot be performed.

Purpose:  To develop a fully automatic framework for chronic MI delineation via deep learning on non–contrast material–enhanced 
cardiac cine MRI.

Materials and Methods:  In this retrospective single-center study, a deep learning model was developed to extract motion features 
from the left ventricle and delineate MI regions on nonenhanced cardiac cine MRI collected between October 2015 and March 
2017. Patients with chronic MI, as well as healthy control patients, had both nonenhanced cardiac cine (25 phases per cardiac 
cycle) and LGE MRI examinations. Eighty percent of MRI examinations were used for the training data set and 20% for the in-
dependent testing data set. Chronic MI regions on LGE MRI were defined as ground truth. Diagnostic performance was assessed 
by analysis of the area under the receiver operating characteristic curve (AUC). MI area and MI area percentage from nonenhanced 
cardiac cine and LGE MRI were compared by using the Pearson correlation, paired t test, and Bland-Altman analysis.

Results:  Study participants included 212 patients with chronic MI (men, 171; age, 57.2 years 6 12.5) and 87 healthy control 
patients (men, 42; age, 43.3 years 6 15.5). Using the full cardiac cine MRI, the per-segment sensitivity and specificity for detecting 
chronic MI in the independent test set was 89.8% and 99.1%, respectively, with an AUC of 0.94. There were no differences be-
tween nonenhanced cardiac cine and LGE MRI analyses in number of MI segments (114 vs 127, respectively; P = .38), per-patient 
MI area (6.2 cm2 6 2.8 vs 5.5 cm2 6 2.3, respectively; P = .27; correlation coefficient, r = 0.88), and MI area percentage (21.5% 6 
17.3 vs 18.5% 6 15.4; P = .17; correlation coefficient, r = 0.89).

Conclusion:  The proposed deep learning framework on nonenhanced cardiac cine MRI enables the confirmation (presence), detec-
tion (position), and delineation (transmurality and size) of chronic myocardial infarction. However, future larger-scale multicenter 
studies are required for a full validation.
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longer in chronic MI than in normal myocardium, resolution 
of edema within the infarct results in no significant difference 
in T2 (8,12,13). However, while reproducible (8,14), measured 
relaxation times are protocol and field-strength specific and nor-
mal ranges are broad (15–17). These techniques also require the 
acquisition of additional multiple breath-hold data sets with ap-
propriate MRI sequences and extend overall examination du-
ration. Alternatively, MRI feature tracking is an approach that 

differentiates regional myocardial morphology and cardiac wall 
motion abnormalities resulting from MI (18,19) on non–con-
trast-enhanced cardiac cine MRI, which is acquired as part of a 
standard cardiac MRI examination. However, only the presence 
and position information of the MI can be extracted from these 
examinations and these techniques may be further limited by 
the need for time-consuming processing after the examination.

We propose a fully automatic framework for chronic MI delin-
eation via deep learning on nonenhanced cardiac cine MRI and as-
sess its accuracy for identifying the presence, position, transmural-
ity, and size of the MI without the need for gadolinium injection.

Materials and Methods
This retrospective study was approved by our institutional review 
board in accordance with local ethics procedures. Further con-
sent was waived with approval.

Patients
Detailed demographics and left ventricle volumetric data are 
summarized in Table 1. Between October 2015 and March 
2017, 212 patients with chronic MI (based on clinical symp-
toms, electrocardiogram changes, and greater than twofold el-
evation of creatine kinase and/or positive troponin T) and 87 
control patients (without negative LGE MRI) were selected 
from a single center for retrospective inclusion in our study  
(Fig 1, Appendix E1 [online]). Major exclusion criteria were 
acute MI, angina without MI, all kinds of nonischemic cardio-
myopathy, cardiac neoplasm, valvular heart disease, congenital 

Abbreviations
AUC = area under the receiver operating characteristic curve, CI = con-
fidence interval, LGE = late gadolinium enhancement, MI = myocardial 
infarction

Summary
Deep learning on nonenhanced cardiac MRI data can detect the pres-
ence and extent of chronic myocardial infarction. This approach may 
have potential to reduce use of gadolinium contrast administration.

Key Points
nn A deep learning method to identify myocardial infarction on 

nonenhanced cardiac cine MRI achieved good diagnostic perfor-
mance for detecting chronic myocardial infarction (per-segment 
sensitivity, 90%; specificity, 99%; area under the receiver operating 
characteristic curve, 0.94).

nn There was no difference between the area of chronic MI detected 
on nonenhanced cardiac cine MRI and ground truth defined by 
expert manual segmentation of late gadolinium enhancement 
MRI (per-patient myocardial infarction area, 6.2 cm2 6 2.8 vs 5.5 
cm2 6 2.3, respectively; P = .27).

Table 1: Demographics of Patients and Control Patients with Left Ventricle Volumetric Data

Training Independent Testing

Characteristic

Patients with 
Chronic MI 
(n = 169)

Control Patients  
(n = 69) P Value

Patients with 
Chronic MI 
(n = 43)

Control Patients  
(n = 18) P Value

Male patient 131 (77.5) 33 (47.8) .001 40 (93.0) 9 (50.0) .001
Age (y)* 59.8 6 11.1 46.4 6 15.3 ,.001 56.8 6 11.0 40.1 6 13.5 ,.001
Weight (kg)* 76.6 6 12.3 77.8 6 24.1 .82 74.2 6 12.0 70.7 6 8.8 .26
Height (cm)* 169.2 6 6.1 165.1 6 15.3 .23 170.0 6 7.0 167.6 6 8.3 .58
Left ventricular ejection fraction (%)* 34.1 6 17.8 60.8 6 8.4 ,.001 38.0 6 18.4 58.6 6 8.0 ,.001
Left ventricular end-diastolic volume  
  index (mL/m2)*

155.3 6 89.0 89.0 6 18.3 ,.001 132.6 6 68.0 90.2 6 20.2 .001

Left ventricular end-systolic volume  
  index (mL/m2)*

112.9 6 88.9 36.6 6 19.5 ,.001 88.9 6 71.2 35.4 6 13.5 ,.001

Stroke volume (mL)* 43.9 6 20.6 57.8 6 13.3 ,.001 41.2 6 14.8 58.5 6 13.8 ,.001
Cardiac output (L/min)* 3.5 6 2.5 4.4 6 1.4 .002 3.2 6 1.5 4.2 6 1.2 .001
Coronary risk factors
  Hypertension 86 (50.9) 19 (27.5) .001 18 (41.9) 5 (27.8) .31
  Diabetes 60 (35.5) 15 (21.7) .03 13 (30.2) 3 (16.7) .28
  Smoking 98 (58.0) 22 (31.9) ,.001 17 (39.5) 3 (16.7) .09
  Dyslipidemia 43 (25.4) 5 (7.2) .001 17 (39.5) 4 (22.2) .20
  Family history 11 (6.5) 4 (5.8) .84 2 (4.7) 2 (11.1) .36

Note.—Unless otherwise indicated, data are medians. Data in parentheses are percentages. Independent t tests were used to compare the 
differences between two groups for continuous numerical variables. x2 tests were used to compare the differences between two groups for 
sex and coronary risk factors. MI = myocardial infarction.
* Data are mean 6 SD.
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heart disease, pulmonary heart disease, myocarditis, infective 
endocarditis, and pericarditis; control patients and patients with 
poor image quality due to arrhythmia were also excluded. A sub-
set of these (104 patients with chronic MI and 10 control pa-
tients) was included in a previous preliminary study (20).

Imaging Protocol
Cardiac MRI was performed using a 3-T MRI system (Verio; 
Siemens, Erlangen, Germany). Retrospectively gated balanced 
steady-state free-precession nonenhanced cardiac cine images with 
25 reconstructed phases were acquired (repetition time msec/echo 
time msec, 3.36/1.47; field of view, 286 3 340 mm2; matrix, 216 
3 256; average temporal resolution, ~40 msec) during repeated 
breath holds in short-axis views covering the whole left ventricle.

LGE MRI was performed in the same orientations and with 
the same section thickness using a two-dimensional segmented 
fast low-angle shot phase-sensitive inversion recovery sequence 
(4.09/1.56; field of view, 284 3 350 mm2; matrix, 163 3 256) 
10 minutes after intravenous injection of gadolinium-based 
contrast agent (Magnevist, 0.2 mmol/kg; Bayer Healthcare, 
Berlin, Germany).

Full details of both protocols are given in Appendix E1 (online).

Ground Truth Definition

Data standardization and left ventricle localization.—Images 
from nonenhanced cardiac cine and LGE MRI were cropped au-

tomatically into 64 3 64 pixels (pixel size, 1.46 3 1.46 mm2), 
which included the full left ventricle area. Sections beyond the 
most base and apex regions were excluded manually.

Endocardial and epicardial contours delineation.—Endo-
cardial and epicardial contours were manually delineated on the 
LGE MRI by a radiologist (N.Z., with 7 years of experience in car-
diovascular MRI) after rigid registration (21) of the end-diastole 
phase of the cine and LGE images. Following visual inspection 
and assessment by mutual information, any residual registration 
errors were corrected using a diffeomorphic image registration 
technique (22) with parameterized deformation fields.

MI delineation.—MI was manually outlined on the LGE im-
ages by the same radiologist (N.Z.) after appropriate setting of the 
display window level and width. Microvascular obstructions were 
included in the MI regions.

All manual segmentations (epicardial and endocardial con-
tours and MI) were reviewed by another expert (L.X., with 
10 years of experience in cardiovascular MRI) and in cases of 
disagreement, a consensus was reached. The MI area percent-
age (23) was calculated as (MI pixels/left ventricle myocardium 
pixels) 3 100%.

Segment model.—A 16-segment model proposed by the 
American Heart Association was used, in which the apex was 

Figure 1:  Flow diagram shows the selection and analysis of patients with chronic myocardial infarction (MI) (n = 
212) and control patients (n = 87), the latter being randomly selected from 376 patients scanned between 2015 and 
2017 with negative late gadolinium enhancement (LGE) MRI results. In the training data set (80% of study participants), 
a supervised deep learning framework was developed to locate the left ventricle (LV), to explore local and global motion 
patterns, and to compare with regions of MI manually outlined in LGE MRI. Predictive performance of the deep learning 
was assessed by using a further independent testing data set (20% of study participants). CMRI = cardiac MRI, ROI = 
region of interest, RNN = recurrent neural network.
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Deep Learning
Our deep learning model extracts representative local and 
global motion features in nonenhanced cardiac cine MRI 
and relates them to LGE images (details in Appendix E1 [on-

excluded (24). The MI area in each segment was calculated 
and each segment was categorized as having no MI, transmu-
ral MI (MI area . 50% of the myocardium), or subendocar-
dial MI (MI area  50% of the myocardium) (25).

Figure 2:  Major components of the proposed deep learning framework including left ventricle (LV) localization (upper 
panel); motion feature extraction (2D+t cine time-series input data, middle panel); and prediction and decision for the 
myocardial infarction (lower panel). LSTM = long short-term memory, ROI = region of interest.
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segmentation, which has stored the version we used to achieve 
the current reported results.

Experimental Settings
The performance of our trained deep learning model was eval-
uated using independent testing, that is, a data set was not used 
for model development (external validation as mentioned in 
Park et al [28]). The 299 participants were randomly divided 
80:20 into training data sets (169 patients with chronic MI, 69 
control patients) and independent testing data sets (43 patients 
with chronic MI, 18 control patients). Basal, midcavity, and 
apical sections were analyzed in each participant, resulting in 
a total of 3808 segments for training and 976 segments for 
independent testing.

In addition, 10-fold cross-validation (29,30) on the whole 
data sets (with 299 participants) was performed to further con-
firm the effectiveness of our proposed deep learning model (de-
tails and secondary results are shown in Appendix E1 [online]).

line]). Once the model is trained, predictions of MI location, 
size, and transmurality can be made without LGE images.

The deep learning framework consists of (Fig 2): (a) a 
localization deep network for detecting the left ventricle; (b) 
a motion feature extraction component incorporating local 
motion features extracted from a recurrent neural network 
and global motion features derived using an advanced opti-
cal flow method; and (c) a fully connected discriminative 
network (26) that distinguishes MI from normal myocar-
dium. The deep motion networks output a probability map, 
and a threshold of 0.5 was used to create the final binary 
segmentation. The MI determined from nonenhanced cine 
versus from LGE MRI were compared with Dice scores 
(27). Analyses were performed using the full 25-phase cine 
data set and using a single end-diastolic frame, the latter 
having significant time savings.

Our implementation is open source and it is accessible at  
https://github.com/xuchenchuzw/MI-Segmentation#mi- 

Table 2: Quantitative Results of Diagnosis of Chronic MRI (in Independent Testing Data Sets) Using Deep Learning 
Framework on a Single End-Diastolic Nonenhanced Cardiac Cine Image and Full Nonenhanced Cardiac Cine Images

Method Sensitivity (%) (n = 127) Specificity (%) (n= 849) AUC
Single nonenhanced cardiac cine MRI
  Overall MI segments 38.6 (49/127) [30.2, 47.7] 77.4 (657/849) [74.4, 80.1] 0.58 [0.52, 0.64]
Full nonenhanced cardiac cine MRI
  Overall MI segments 89.8 (114/127) [82.8, 94.2] 99.1 (841/849) [98.1, 99.6] 0.94 [0.91, 0.98]
    Apical sections 87.1 (27/31) [69.2, 95.8] 99.1 (211/213) [96.3, 99.8] 0.96 [0.86, 1.00]
    Midcavity sections 91.8 (45/49) [79.5, 97.3] 99.1 (314/317) [97.0, 99.8] 0.94 [0.91, 1.00]
    Basal sections 89.4 (42/47) [76.1, 96.0] 99.1 (316/319) [97.0, 99.8] 0.93 [0.89, 0.99]
  Subendocardial MI segments 81.8 (36/44) [66.8, 91.3] 99.2 (925/932) [98.4, 99.7] 0.91 [0.84, 0.97]
    Apical sections 75.0 (9/12) [42.8, 93.3] 99.1 (230/232) [96.6, 99.9] 0.87 [0.72, 1.00]
    Midcavity sections 81.3 (13/16) [53.7, 95.0] 99.1 (347/350) [97.3, 99.8] 0.90 [0.79, 1.00]
    Basal sections 87.5 (14/16) [60.4, 97.8] 99.4 (348/350) [97.7, 99.9] 0.94 [0.84, 1.00]
   Transmural MI segments 94.0 (78/83) [85.8, 97.7] 99.4 (888/893) [98.6, 99.8] 0.94 [0.90, 0.98]
    Apical sections 94.7 (18/19) [71.9, 99.7] 99.6 (224/225) [97.2, 99.9] 0.95 [0.91, 1.00]
    Midcavity sections 96.9 (32/33) [82.5, 99.8] 99.4 (331/333) [97.6, 99.9] 0.95 [0.90, 1.00]
    Basal sections 90.3 (28/31) [73.1, 97.5] 99.4 (333/335) [97.6, 99.9] 0.93 [0.89, 1.00]

Note.—Data are percentages. Data in parentheses are raw data (number of segments or sections) used to calculate percentages. Data in 
brackets are 95% confidence intervals. If more than half of the pixels in a segment were MI positive, then that segment was MI positive. 
AUC = area under the receiver operating characteristic curve, MI = myocardial infarction.

Table 3: Calculated P Values between Overall Groups in Table 2

P Value

Groups Compared Sensitivity Specificity AUC
Overall MI segments (single phase) vs overall MI segments (full 25 phases) ,.001 ,.001 ,.001
Overall MI segments (single phase) vs overall subendocardial MI segments (full 25 phases) ,.001 ,.001 ,.001
Overall MI segments (single phase) vs overall transmural MI segments (full 25 phases) ,.001 ,.001 ,.001
Overall MI segments (full 25 phases) vs overall subendocardial MI segments (full 25 phases) .17 .66 .29
Overall MI segments (full 25 phases) vs overall transmural MI segments (full 25 phases) .29 .35 .27
Overall subendocardial MI segments (full 25 phases) vs overall transmural MI segments (full 25 phases) .03 .61 .09

Note.—Statistical differences between groups for AUC was assessed by using the Hanley & McNeil method (31). Statistical difference 
between groups for sensitivity and specificity was assessed by using the x2 test. AUC = area under the receiver operating characteristic curve, 
MI = myocardial infarction.
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hort (training data sets, 131 of 169 [77.5%] vs 33 of 69 [47.8%], 
respectively [P = .001]; independent testing data sets, 40 of 43 
[93.0%] vs nine of 18 [50.0%], respectively [P = .001]). Patients 
with chronic MI were also older than control patients (Table 1) 
and had poorer cardiac function (eg, cardiac output: training data 
sets, 3.5 L/min 6 2.5 vs 4.4 L/min 6 1.4, respectively [P = .002]; 
independent testing data sets, 3.2 L/min 6 1.5 vs 4.2 L/min 6 
1.2, respectively [P = .001]). In addition, we found that with simi-
lar weight and height, the left ventricle chamber was dilated for 
the patients with chronic MI (left ventricular end-diastolic volume 
index: training data sets, 155.3 mL/m2 6 89.0 vs 89.0 mL/m2 6 
18.3, respectively [P , .001]; independent testing data sets, 132.6 
mL/m2 6 68.0 vs 90.2 mL/m2 6 20.2, respectively [P = .001]).

Computational Time
The parameters of our deep learning implementation are summa-
rized in Figure E1 (online). The training time of our deep learning 
on the entire 238 data sets is 373 minutes (~1.6 minutes per data 
set). In the test phase, the computational time is 191 seconds for 
one MRI data set and about 8 seconds for one MRI section.

Independent Testing on Single End-Diastolic Phase 
and Full Nonenhanced Cardiac Cine Images
The quantitative results of using our deep learning framework 
on single end-diastolic and full nonenhanced cardiac cine im-
age data sets are summarized in Tables 2 and 3. As expected, the 

Statistical Analysis
Statistical analysis was performed using SPSS 23.0 (SPSS, Chi-
cago, Ill). Independent t tests and x2 tests were used to compare 
differences between two groups for continuous and dichoto-
mous variables, respectively.

Using manually delineated LGE images as the ground truth, 
sensitivity and specificity of the delineated MI derived from non-
enhanced cardiac cine images with our deep learning framework 
were calculated. We also performed analysis of the area under the 
receiver operating characteristic curve (AUC).

MI area and MI area percentage at the segmental level were 
normally distributed (Kolmogorov–Smirnoff test) and differences 
from ground truth were assessed using paired t testing, Pearson 
correlation, and Bland-Altman analyses. Differences between 
count variables (per segment, per section, and per patient) were 
assessed by using the McNemar test. A two-sided P value less than 
.05 was considered to indicate a statistically significant difference.

Results
Study Population Characteristics
No significant differences were found in weight and height be-
tween patients with chronic MI and control patients (training data 
sets, P = .82 and P = .23; independent testing data sets, P = .26 
and P = .58). Table 1 and Table E1 (online) show that men were 
more common in the chronic MI cohort than in the control co-

Figure 3:  Each row shows data from a representative study participant. First column: Single frame from coregistered nonenhanced cardiac cine 
MRI. Second column: Coregistered late gadolinium enhancement (LGE) MRI. Third column: Coregistered LGE MRI with segmented myocardial in-
farction (MI) from nonenhanced cardiac cine images (in light green) and manually delineated ground truth (GT) from LGE images (yellow outlines) 
overlaid. Fourth column: Segmented MI areas (in light green) and normal left ventricle myocardium (blue). Last column: Estimated extent and trans-
murality (colormap shows the probabilities of the MI). a.u. = arbitrary unit.
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Figure 4:  Area under the receiver operating characteristic curve 
(AUC) (with the zoomed-in upper left corner) shows the diagnostic 
performance of the myocardial infarction (MI) detected with our deep 
learning framework in the independent testing data: A, for all MI seg-
ments, B, for the subendocardial MI, and C, for the transmural MI 
(lower right panel).

performance of our deep learning on full nonenhanced cardiac 
cine data with 25 phases is significantly better than that obtained 
using a single end-diastolic image of the nonenhanced cardiac 
cine data. AUC analysis also shows that using the full nonen-
hanced cardiac cine image data set yields an overall AUC of 0.94 
compared with an AUC of 0.58 for the single-phase data. The 
rationale for single-phase analysis is that it would be significantly 
faster to achieve. However, as shown in Tables 2 and 3, the re-
sults are substantially poorer and this was not pursued further.

By using the full nonenhanced cardiac cine image data, the 
overall sensitivity and specificity for the detection of MI segments 
were almost all higher than 90%, with the exceptions being sensi-
tivity for detection of subendocardial MI (36 of 44 [81.8%]; 95% 
confidence interval [CI]: 66.8%, 91.3%) and sensitivity for detec-
tion of all MI (114 of 127 [89.8%]; 95% CI: 82.8%, 94.2%). 
Results were similar for basal, midcavity, and apical sections. There 
were no MI segments found in control patients. In addition, the 
Dice score between the MI segmentation from nonenhanced car-
diac cine MRI and the ground truth segmentation in the indepen-
dent testing data sets was 86.1% 6 5.7.

Correlation with Manual Segmentation
Figure 3 shows three examples of the MI delineation results 
using the full nonenhanced cardiac cine image data sets com-
pared with the manually segmented MI on LGE MRI. The 
MI transmurality is visualized as the predictive probabilities 
output from our deep learning framework, with probability 
greater than 0.5 being transmural and 0.5 or less being sub-
endocardial MI. In so doing, we have a probability map to 
visualize the MI transmurality. Figure 4 shows AUC analy-
ses for total, transmural, and subendocardial MI segments in 
basal, midcavity, and apical sections. All AUC values are 0.87 

Table 4: Comparison of Per-Segment Results (in Inde-
pendent Testing Data Sets) for Deep Learning on Full 
Nonenhanced Cardiac Cine Images versus Ground 
Truth Delineated Manually on LGE Images

Type of MI Segment
Deep 
Learning LGE

P Value (LGE vs 
Deep Learning)

Overall 114 127 .38
  Apical sections 27 31 .68
  Midcavity sections 45 49 1.00
  Basal sections 42 47 .72
Subendocardial 36 44 1.00
  Apical sections 9 12 1.00
  Midcavity sections 13 16 1.00
  Basal sections 14 16 1.00
Transmural 78 83 .75
  Apical sections 18 19 .48
  Midcavity sections 32 33 1.00
  Basal sections 28 31 .69

Note.—LGE = late gadolinium enhancement, MI = myocardial 
infarction. Agreement of count variables was assessed by the 
McNemar test.
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results in Figure 6 also show strong correlations of the MI 
area and MI area percentage (correlation coefficients, 0.88 
for MI area and 0.89 for MI area percentage) measured from 
nonenhanced cardiac cine MRI and the manual delineated 
ground truth from the LGE MRI.

Discussion
In our study, we developed a fully automatic deep learning 
framework to detect chronic myocardial infarction (MI) in 
nonenhanced cardiac cine images based on extracted motion 
features. Using an independent testing data set, the Dice score 
(86.1% 6 5.7) and correlations (per-patient MI area, 6.2 cm2 
6 2.8 vs 5.5 cm2 6 2.3 [P = .27; r = 0.88] and per-patient MI 
area percentage, 21.5% 6 17.3 vs 18.5% 6 15.4 [P = .17; r 
= 0.89]) between chronic MI segmented from nonenhanced 
cardiac cine images and that manually delineated on LGE im-
ages show that our deep learning approach is able to detect the 

Table 5: Comparison of Per-Patient and Per-Section Results (in Independent Test-
ing Data Set) for Deep Learning on Full Nonenhanced Cardiac Cine Images versus 
Ground Truth Delineated Manually on LGE Images

Metric Deep Learning LGE P Value
Per patient
  Patients with MI
    Overall 36 43 .07
    Left ventricle area (cm2) … 29.5 6 15.5 …
    MI area (cm2) 6.2 6 2.8 5.5 6 2.3 .27
    MI area percentage (%) 21.5 6 17.3 18.5 6 15.4 .17
    Sensitivity* 36/43 (83.7) [68.7, 92.7] …
    Specificity* 17/18 (94.4) [70.6, 99.7] …
    AUC 0.89 …
  Patients with subendocardial MI
    Overall 12 14 .13
  Patients with transmural MI
    Overall 24 29 .22
  Patients without MI
    Overall 17 18 .07
Per section
  Overall 74 88 .11
    Apical 19 21 .34
    Midcavity 27 34 .80
    Basal 28 33 .42
  Sudendocardial 21 29 .38
    Apical 6 7 .61
    Midcavity 7 11 .10
    Basal 8 11 .72
  Transmural 53 59 .23
    Apical 13 14 .61
    Midcavity 20 23 .72
    Basal 20 22 .68

Note.—AUC = Area under the receiver operating characteristic curve, CI = confidence interval, 
LGE = late gadolinium enhancement, MI = myocardial infarction. MI area and MI area percentage 
at the segmental level were normally distributed (Kolmogorov–Smirnoff test) continuous variables, 
and differences from ground truth were assessed using paired t testing. Agreement of count vari-
ables was assessed by the McNemar test.

*Data in parentheses are percentages. Data in brackets are 95% confidence intervals.

or greater, which shows the robustness of the developed deep 
learning framework.

Table 4 summarizes the comparative results between our 
deep learning framework and LGE in the independent test-
ing data sets (per segment) for all MIs and for transmural and 
subendocardial MI subgroups, with no significant differences. 
Table 5 summarizes the per-patient and per-section results, re-
spectively. Ten-fold cross-validation showed very similar per-
segment, per-section, and per-patient results (Tables E2 and 
E3 in Appendix [online]).

Pearson correlation and Bland-Altman analyses for MI 
area and MI area percentage are shown in Figure 5 (per-sec-
tion results) with correlation coefficients of 0.94 and 0.95, 
respectively. The corresponding biases (limits of agreement) 
are 20.2 cm2 (20.72 cm2, 0.32 cm2) and 21.2% (213%, 
11%). Two example images—one with good correlation and 
one with poorer correlation—are also shown. Per-patient 
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Our framework only requires nonenhanced cardiac cine 
images, which are routinely acquired as part of a cardiac ex-
amination for function assessment. Other approaches using 
nonenhanced cardiac cine MRI combined with tagging and/
or feature-tracking techniques have also differentiated es-
tablished or chronic MI from healthy remote myocardium. 
However, while Ogawa et al (19) showed that MI presence 
and position could be assessed using both feature tracking 
and myocardial tagging, the sensitivity and specificity for de-
tecting MI segments were low (feature tracking: sensitivity, 
72%; specificity, 71%; tagging technique: sensitivity, 71%; 
specificity, 75%). Fent et al (34) also reported that feature 
tracking could identify prior MI but the AUC was low (0.66 
[95% CI: 0.54, 0.79], P = .012).

The feasibility of T1r
 cardiac MRI (35,36) for nonen-

hanced detection of chronic MI has also been shown but 
the contrast-to-noise ratio between healthy tissue and MI is 
low and further sequence developments are required. More 
recently, texture analysis has been investigated for detecting 
subacute and chronic MI from nonenhanced cardiac cine; 
sensitivity of 86% and specificity of 82% was obtained by 
Bessler et al (37) and overall AUC of 0.85 was achieved by 
Larroza et al (38).

Our study has a number of limitations: (a) It is a proof-of-
concept study using retrospective data from a single vendor 

presence, position, transmurality, and size of chronic MI with-
out requiring additional information from LGE images. Poorer 
overall sensitivity was obtained for subendocardial MIs (36 of 
44 [81.8%]; 95% CI: 66.8%, 91.3%) compared with trans-
mural MIs (78 of 83 [94.0%]; 95% CI: 85.8%, 97.7%) (P = 
.03), which may be attributed to their higher circumferential 
strain (19). The major contribution of our study is that chronic 
MI can be diagnosed from routinely acquired nonenhanced 
cardiac cine images.

Our study benefits from the fast development of deep learn-
ing techniques, which have demonstrated superior performance 
in medical image analysis by leveraging available big data 
(32,33). Previous studies have shown that some subtle changes 
in medical images, for example, progression of abnormality, can 
be distinguished with higher precision and sensitivity via deep 
neural networks than human visual inspection (32,33). Our 
study shows that myocardial wall motion may be used to ac-
curately predict chronic MI area via deep learning. Overall, the 
deep learning approach achieved high sensitivity, specificity, and 
AUC for chronic MI detection. Compared with previous mo-
tion feature tracking methods, our framework (based on a re-
current neural network) can compress local motion distribution 
while extracting the global motion field from region of interest 
time series and generate a dense motion field to comprehensively 
characterize both local and global motions.

Figure 5:  Pearson correlation (left) and Bland-Altman analysis (middle) of per-section analysis show that the myocardial infarction (MI) delin-
eated by our deep learning on nonenhanced cardiac cine MRI is in accordance with the ground truth MI regions segmented on late gadolinium 
enhancement (LGE) MRI (independent testing data set). Segmentation results (right) are shown for a well-correlated section (Sample 1) and for a 
less well-correlated section (Sample 2). Dotted yellow line = ground truth manual segmentation from LGE images, green shaded region = MI detected 
from deep learning on nonenhanced cardiac cine images.



Zhang et al

Radiology: Volume 291: Number 3—June 2019  n  radiology.rsna.org	 615

and single center. (b) Our independent testing data set was 
small, consisting of 43 patients with chronic MI and 18 con-
trol patients (20% of all patients). (c) Our ground truth en-
docardium, epicardium, and MI delineations were performed 
manually by a single expert due to limited resources. These 
were then reviewed by a second expert who either ratified the 
first expert’s segmentation or made minor modifications (by 
consensus following joint discussion). As such, we are unable 
to provide interrater agreement. It should also be noted that 
for our study, any microvascular obstructions were included 
in the MI regions, although this may affect the motion fea-
tures (39). (d) For the single-phase method, we only tested 
an end-diastolic phase but an end-systolic phase may have 
performed better. However, this is not due to any inherent 
limitations in the methodology itself but reflects the fact that 

the LGE data that we had available to train the model was 
acquired in end diastole. (e) We have not assessed how the 
number of cardiac phases in the cine study affects diagnostic 
accuracy of the technique.

In conclusion, a robust deep learning framework for using 
nonenhanced cardiac cine MRI to infer the likely location, ex-
tent, and transmurality of myocardial infarction (MI) has been 
described, which can be readily expanded to future prospective 
studies. Future larger-scale studies with data from multiple sites 
are required for a full validation of our deep learning frame-
work. These would also allow the accuracy of MI prediction to 
be determined for different myocardial segments with different 
motion characteristics. Further comparison with microvascular 
obstructions excluding data and texture analysis will be inves-
tigated in future work.

Figure 6:  Pearson correlation (left) and Bland-Altman analysis (right) of per-patient analysis show that the myocardial infarc-
tion (MI) delineated by our deep learning on nonenhanced cardiac cine MRI is in accordance with the ground truth MI regions 
segmented on late gadolinium enhancement (LGE) MRI (independent testing data set).
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