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Preface 

These notes grew out of a course at the University of Jyv5skyld in Jan-
uary 1996 as part of Finland's new graduate school in mathematics. The 
course was suggested by Professor Kari Astala, who asked me to give a series 
of ten two-hour lectures entitled "Algebraic Geometry for Analysts." The 
audience consisted mainly of two groups of mathematicians: Ph.D. students 
from the Universities of Jyväskylä and Helsinki, and mature mathemati-
cians whose research and training were quite far removed from algebra. 
Finland has a rich tradition in classical and topological analysis, and it was 
primarily in this tradition that my audience was educated, although there 
were representatives of another well—known Finnish school, mathematical 
logic. 

I tried to conduct a course that would be accessible to everyone, but that 
would take participants beyond the standard course in algebraic geome-
try. I wanted to convey a feeling for the underlying algebraic principles of 
algebraic geometry. But equally important, I wanted to explain some of 
algebraic geometry's major achievements in the twentieth century, as well 
as some of the problems that occupy its practitioners today. With such 
ambitious goals, it was necessary to omit many proofs and sacrifice some 
rigor. 

In light of the background of the audience, few algebraic prerequisites 
were presumed beyond a basic course in linear algebra. On the other hand, 
the language of elementary point-set topology and some basic facts from 
complex analysis were used freely, as was a passing familiarity with the 
definition of a manifold. 

My sketchy lectures were beautifully written up and massaged into this 
text by Lauri Kahanpda and Pekka Kekaldinen. This was a Herculean effort, 
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no less because of the excellent figures Lauri created with the computer. 
Extensive revisions to the Finnish text were carried out together with Lauri 
and Pekka; later Will Traves joined in to help with substantial revisions to 
the English version. What finally resulted is this book, and it would not 
have been possible without the valuable contributions of all members of 
our four-author team. 

This book is intended for the working or the aspiring mathematician who 
is unfamiliar with algebraic geometry but wishes to gain an appreciation of 
its foundations and its goals with a minimum of prerequisites. It is not in-
tended to compete with such comprehensive introductions as Hartshorne's 
or Shafarevich's texts, to which we freely refer for proofs and rigor. Rather, 
we hope that at least some readers will be inspired to undertake more se-
rious study of this beautiful subject. This book is, in short, An Invitation 
to Algebraic Geometry. 

Karen E. Smith 
Jyväskylä,  Finland 
August 1998 
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A' Affine n-space 
Bi(V) blow up of V along the ideal I 
Bp (V) blow up of V at the point p 
By  (V) blow up of V along the subcariety Y 
C complex numbers 
C[V] coordinate ring of the variety V 
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dF differential of F 
IFp field of p elements 
F# pull-back of a morphism F 
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11(V) ideal of functions vanishing on V 
a-  radical of the ideal I 
IL I complete linear system 
maxSpec(R) maximal spectrum of a ring R 
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Ov structure sheaf of V 
Qx sheaf of sections of the cotangent bundle 
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SL(n, C) group of n x n complex matrices with determinant 1 
Spec(R) spectrum of a ring R 

Segre mapping 
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TV total tangent space to V 
ex sheaf of sections of the tangent bundle 
U(n) group of unitary (n x n)-matrices 
17 projective closure of V 
V({Fi }) common zeros of the polynomials Fi  
vd  Veronese mapping of degree cl 
Z integers 



1 
Affine Algebraic Varieties 

Algebraic geometers study zero loci of polynomials. More accurately, they 
study geometric objects, called algebraic varieties, that can be described 
locally as zero loci of polynomials. For example, every high school mathe-
matics student has studied a bit of algebraic geometry, in learning the basic 
properties of conic sections such as parabolas and hyperbolas. 

Algebraic geometry is a thriving discipline with a rich history. In ancient 
Greece, mathematicians such as Apollonius probably knew how to count 
the number of fines tangent to five conics in a plane, a problem that would 
cause many modern algebraic geometers to pause. But it was not until the 
introduction of the Cartesian coordinate system in the seventeenth century, 
when it became possible to study conic sections by considering quadratic 
polynomials, that the subject of algebraic geometry could really take off. 

By the mid-nineteenth century, algebraic geometry was flourishing. On 
the one hand, Riemann realized that compact Riemann surfaces can al-
ways be described by polynomial equations. On the other hand, particular 
examples of algebraic varieties, such as quadric and cubic surfaces (zero 
loci of a single quadratic or cubic polynomial in three variables) were well 
known and intensely studied. For example, it was understood that every 
quadric surface is perfectly covered by a family of disjoint lines, whereas 
every cubic surface contains exactly twenty-seven lines. Detailed studies of 
the ways in which these twenty-seven lines can be configured and how they 
can vary in families occupied the attention of numerous nineteenth-century 
mathematicians.  

The remarkable intuition of the turn-of-the-century algebraic geometers 
eventually began to falter as the subject grew beyond its somewhat shaky 
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logical foundations. Led by David Hilbert, mathematical culture shifted 
toward a greater emphasis on rigor, and soon algebraic geometry fell out 
of favor as gaps and even some errors appeared in the subject. Luckily, the 
spirit and techniques of algebraic geometry were kept alive, primarily by 
Italian mathematicians. By the mid-twentieth century, thanks to the efforts 
of mathematicians such a s  David Hilbert and Emmy Noether, algebra was 
sufficiently developed so as to be able once again to support this beautiful 
and important subject. 

In the middle of the twentieth century, Oscar Zariski and André Weil 
spent a good portion of their careers redeveloping the foundations of alge-
braic geometry on firm mathematical ground. This was not a mere process 
of filling in details left unstated before, but a revolutionary new approach, 
based on analyzing the algebraic properties of the set of all polynomial func-
tions on an algebraic variety. These innovations revealed deep connections 
between previously separate areas of mathematics, such as number the-
ory and the theory of Riemann surfaces, and eventually allowed Alexander 
Grothendieck to carry algebraic geometry to dizzying heights of abstrac-
tion in the last half of the century. This abstraction has simplified, unified, 
and greatly advanced the subject, and has provided powerful tools used 
to solve difficult problems. Today, algebraic geometry touches nearly every 
branch of mathematics. 

An unfortunate effect of this late-twentieth-century abstraction is that it 
has sometimes made algebraic geometry appear impenetrable to outsiders. 
Nonetheless, as we hope to convey in this Invitation to Algebraic Geome-
try, the main objects of study in algebraic geometry, affine and projective 
algebraic varieties, and the main research questions about them, are as 
interesting and accessible as ever. 

1.1 Definition and Examples 

An algebraic variety is a geometric object that locally resembles the zero 
locus of a collection of polynomials. The idea of "locally resembling" is 
familiar to those who have studied manifolds, which are geometric objects 
locally resembling Euclidean space. We begin our study of algebraic geom-
etry by considering this local picture in detail, the study of affine algebraic 
varieties. 

Definition: An affine algebraic variety is the common zero set of a 
collection {F, }, E 1 of complex polynomials on complex n-space Cn. We write 

V = V({Fi }, E i)  c Cn 

for this set of common zeros. Note that the indexing set I can be arbitrary, 
not necessarily finite or even countable. 
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For example, V = V(xi, x2) C C 3  is the complex line in C3  consisting of 
the x3-axis. 

This definition of an affine algebraic variety should be considered only a 
working preliminary definition. The problem is that it depends on consid-
erations extrinsic to the objects themselves, namely the embedding of the 
affine variety in the particular affine space C.  Later, in Section 4.1, we 
will refine and expand our definition of an affine algebraic variety in order 
to make it a more intrinsic notion. 

Strictly speaking, what we have defined above should be called a complex 
affine algebraic variety, because we are considering our varieties over the 
complex numbers. The field of complex numbers may be replaced by any 
other field, such as the field R of real numbers, the field Q of rational 
numbers, or even a finite field. For reasons we will see later, using complex 
numbers instead of real numbers makes algebraic geometry easier, and in 
order to keep these lectures as close as possible to familiar territory, we 
will work only over the complex numbers C. However, the reader should 
bear in mind the possibility of using different fields; this flexibility allows 
algebraic geometry to be applied to problems in number theory (by using 
the rational numbers or some p-adic fields). 

Examples: (1) The space Cn; the empty set; and one-point sets, singletons, 
are trivial examples of affine algebraic varieties: 

Cn = V(0); 
0 = V(1); 

{(ai,... , an)} = V(xi — ai,... , xn — an). 

We call the space C the complex line, and the space C 2  the complex plane. 
Confusing as it may seem, the complex line C is called the "complex plane" 
in some other branches of mathematics. In general, the space Cn is called 
complex n-space or affine n-space. 

When drawing a sketch of an affine algebraic variety V we will, of course, 
draw only its real points V n Rn . 

(2) An affine plane curve is the zero set of one complex polynomial in the 
complex plane C 2 . Figures 1.1, 1.2, and 1.3 show examples of plane curves. 

Figure 1.1. V1 = V(y — x 2 ) C C2 
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Figure 1.2. V(x 2y xy2  — x4  — y4 ) C C2  

Figure 1.3. V(y2  — x 2  — x 3 ) C C 2  

(3) The zero set of a single polynomial in arbitrary dimension is called a 
hypersurface in Cn. The quadratic cone in Figure 1.4 is a typical example 
of a hypersurface. 

...10.11.---,....1.111111111.M.111.4.11411PRAIPe 10710111/.... UMMISIEUX/4.4.41174,00, #41killigragara=”0"70/AritiOjt.' 
•■■■,, 	

1...%.1%/10107- 
serer 

Figure 1.4. The quadratic cone V(x2 ± y 2 z 2) in  c3 
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(4) The zero set of a linear (degree-one) polynomial is an affine algebraic 
variety called an affine hyperplane. For example, the line defined by ax + 
by = c is a hyperplane in the complex plane C2 , where here a, b, and c are 
complex scalars. A linear affine algebraic variety is the common zero set of 
a collection of linear polynomials of the form 

aixi + a2x2 + +  axn  — b 

in  C.  If there are k linearly independent polynomials, the linear variety is 
a complex space of dimension n — k. 

(5) The set of all n x n matrices can be identified with the set Cn2 . This 
space contains some familiar objects as affine algebraic varieties. For in-
stance, the subset SL(n, C) of matrices of determinant 1 forms an affine 
algebraic variety in Cn2 , the hypersurface defined by the polynomial A — 1, 
where A denotes the determinant 

[

A(xii ) = det 

X11 	Xln 

Xn1 	Xnn 

which is obviously a polynomial in the n2  variables xii. 

(6) A determinantal variety is the set in Cn 2  of all matrices of rank at most 
k, where k is some fixed natural number. For k > n the determinantal 
variety is the whole space Cn2 , but for k < n the rank of a matrix A is 
at most k if and only if all its (k + 1) x (k + 1) subdeterminants vanish. 
Because the subdeterminants are polynomials in the variables xii, the set 
of matrices of rank at most k is an affine algebraic variety. 

Nonexamples: 
(1) An open ball in the usual Euclidean topology on Cn is not an algebraic 
variety. In fact, every affine algebraic variety in Cn is closed in the Euclidean 
topology, as we will show in Exercise 1.1.1. For this reason, the set GL(n, C) 
of invertible matrices is not an affine algebraic variety as so far defined. 
Indeed, GL(n, C) is the complement of the algebraic variety in Cn2  defined 
by the vanishing of the determinant polynomial, and so is open in the 
Eucliean topology on Cn2  . Actually, we later expand our definition of an 
affine algebraic variety in Section 4.1, and the set GL (n, C) will be an affine 
variety in this expanded sense. 

The set U(n) of unitary matrices is not a complex algebraic variety, even 
under our expanded definition. Recall that an n x n matrix with complex 
entries is unitary if its columns are orthonormal under the complex inner 
product (z, w) =  z • Tut  -=  >ii  
(2) The closed square {(x, y) E C2  : Ix' < 11 	< 1} in C2  is an example 
of a closed set that is not an algebraic variety. This follows from the fact 
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that no nontrivial algebraic variety in C2  can have interior points, since the 
zero set of one nonzero polynomial has no interior points. 

(3) Graphs of transcendental functions are not algebraic varieties. For 
example, the zero set of the function y — ex is not an algebraic variety. See 
Exercise 6 in Section 2.3. 

Exercise 1.1.1. Show that every affine algebraic variety in Cn is closed in 
the Euclidean topology. (Hint: Polynomials are continuous functions from 
Cn to C, so their zero sets are closed.) 

Exercise 1.1.2. A subvariety of an affine algebraic variety V c Cn is an 
affine algebraic variety W c Cn that is contained in  V.  Show that the set 
U(n) is not an affine algebraic subvariety of Cn2  . Show, however, that it 
can be described as the zero locus of a collection of polynomials with real 
coefficients in R2n2 , that is, it is a real algebraic variety. 

1.2 The Zariski Topology 

The intersection of any number of affine algebraic varieties in Cn is an affine 
algebraic variety. Indeed, the intersection is defined by the union of the sets 
of polynomials defining the given varieties. For example, an intersection of 
two algebraic varieties can be written 

V({Fi } ie l) n V({Fi }je j ) = V({17,,} iE/uj). 

The twisted cubic curve pictured in Figure 1.5 offers a concrete example 
of an intersection of two surfaces. 

Figure 1.5. V = V(x 2  — y, x3  — z) = V(x2  — y) n v(x3  — z). 
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The union of two affine algebraic varieties in en is an affine algebraic 
variety. For example, it is easy to see that the union of two hypersurfaces 
is defined by the product of the corresponding polynomials: 

V(Fi ) U V(F2 ) = V(F1 F2). 

Indeed, the polynomial F1F2 vanishes at a point p if and only if one (or 
both) of F1  or F2 vanishes at p. For example, the union of the x and y-axes 
in the plane is the zero set of the single polynomial xy. 

More generally, the union of two arbitrary affine algebraic varieties is 
defined by the set of all pairwise products of the polynomials defining the 
original varieties: 

V({Fi} tEi) U V({Fi}i € J) = V({FiF3}(i,i)Eix..7)• 

For example, Figure 1.6 depicts the union of the yz-plane (defined by the 
vanishing of x) and the x-axis (defined by the vanishing of both y and z). 
This union is the common vanishing set of the polynomials xy and xz. 

Figure 1.6. V = V(y, z) U 11(x) = V(xy, xz) 

We have verified that the empty set, the whole space Cn, the intersection 
of arbitrarily many affine algebraic varieties, and the union of two (and, by 
induction, finitely many) affine algebraic varieties are all affine algebraic 
varieties in Cn. Therefore, the set Z of all complements of affine algebraic 
sets satisfies the four axioms defining a topology in Cn: The whole space and 
the empty set are in Z, as well as the intersection of finitely many elements 
of Z and the union of arbitrarily many elements of Z. So, Z turns en 
into a topological space, where the open sets are exactly the complements 
of affine algebraic varieties. This topology is called the Zariski topology 
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on  C. To emphasize the difference between the vector space Cn and the 
set CT' considered as a topological space with its Zariski topology, we will 
denote the topological space by An, and call it affine n-space. In particular, 
there is no distinguished "origin" in An . Despite this, we often implicitly 
choose coordinates and refer to "the origin in An." 

Because every affine algebraic variety is closed in the Euclidean topology, 
every Zariski-closed set is closed in the Euclidean topology. The converse, 
however, is false; the Zdriski topology is much coarser than the Euclidean 
topology on Cn. The Euclidean topology has a basis generated by open balls 
of arbitrarily small radius; in contrast, the nonempty Zariski-open sets are 
very large, like the complements of curves or surfaces in 3-space. Every 
nonempty Zariski-open set is dense in both the Zariski topology and in the 
Euclidean topology, so in particular, no Zariski open set is bounded in the 
usual Euclidean topology. The intersection of two nonempty Zariski-open 
sets of An is never empty, so the Zariski topology cannot be a Hausdorff 
topology. A set may well be Zariski-compact without being Zariski-closed 
or even closed in the Euclidean topology. 1  See Exercise 2.3.5. 

In contrast to the Euclidean topology, the Zariski topology also makes 
sense when we are dealing with fields other than the complex numbers. If 
we wish to study zero sets of polynomials in the space Kr', where K is an 
arbitrary field, the Zariski topology is at our disposal, though the Euclidean 
topology is not. 

Every affine algebraic variety inherits a topology from the ambient space 
An. The Zariski topology on an affine algebraic variety V is the subspace 
topology on V induced by the Zariski topology of An. In particular, the 
closed sets in V will be the intersections V n W of V with affine algebraic 
varieties W c An. In other words, the closed sets of V are the affine 
algebraic subvarieties of V. 

Example: All proper Zariski-closed sets of the parabola V = V(y — x2 ) C 
A2  are finite. Indeed, the Zariski topology on any plane curve is the cofinite 
topology, provided that the curve is not a union of two other curves. 

In algebraic geometry, varieties are considered with their Zariski topol-
ogy. Unless otherwise stated, topological concepts in these lectures will 
always refer to the Zariski topology. 

Exercise 1.2.1. Show that the union of two affine algebraic varieties in 
complex n-space is an affine algebraic variety. 

Exercise 1.2.2. Show that the Zariski topology on A2  is not the product 
topology on A 1  x A 1 . (Hint: Consider the diagonal.) 

1 A compact space is a topological space for which every open cover has a finite 

subcover. Some authors call these spaces quasicompact, reserving the term "compact" 

for Hausdorff spaces with this property. 
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Exercise 1.2.3. Show that the twisted cubic curve depicted in Figure 1.5 
consists of all points in A3  of the form (t, t2 , t3 ), where t G C. 

1.3 Morphisms of Affine Algebraic Varieties 

Just as an algebraic variety is given by polynomials, a morphism of algebraic 
varieties is also given by polynomials. 

The simplest example of a morphism of algebraic varieties is a polynomial 
map 

(Fi (x), F2(x), 	, F,(x)) 

where by polynomial map we mean that each of the components Fi of F is 
a polynomial in the n coordinates x l , , xn  of An. In general, a morphism 
of affine algebraic varieties is defined as follows. 

Definition: Let V C An and W C Am be affine algebraic varieties. A map 

V Z4 W is a morphism of algebraic varieties if it is the restriction of a 
polynomial map on the ambient affine spaces An —> A. 

A morphism of algebraic varieties V W is an isomorphism if it admits 
an inverse morphism, that is, if it is bijective and its inverse is also a 
morphism. We will say that two affine algebraic varieties are isomorphic if 
there exists an isomorphism between them. 

Example: An affine change of coordinates of An is an example of an 
isomorphism of An with itself, or an automorphisrn. Explicitly, let 

Li(S) = AiiXi 	 AinXn 

be a degree one polynomial in  xi,...  , sn , where each A ti and pi  is in C. 
Then the the map 

An  —)  A'2 , 
(L i (x),. 	, L„(x)), 

is a morphism of algebraic varieties. It is an isomorphism if and only if the 
matrix (Aii ) is invertible. 

Example: The projection A 2  -4 A l  sending (s, y) to x is a morphism of 
algebraic varieties. It cannot be an isomorphism because it is not bijective. 

Example: Let C be the plane parabola defined by the vanishing of the 
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polynomial y — x 2 . The morphism 

C, 

	

t 	(t,t2 ), 

is easily seen to be an isomorphism. Its inverse map is given by the 
(restriction of) the projection 

A2  3 	C 
	

A 1 , 

(II Y) 

This correspondence is indicated in Figure 1.7. 

Figure 1.7. The parabola is isomorphic to the line 

The other projection (x, y) 	y defines a two-to-one morphism from the 
parabola C to the affine line. 

It is important to realize that a morphism of algebraic varieties need not 
send subvarieties to subvarieties, that is, a morphism need not be a closed 
map. A simple example is given by the projection 

ir 	A 1 ta 7  

( X I Y)  

The hyperbola V(zy — 1) = {(t, 	t 0} is a closed set of A2  that is 
mapped onto the set Al  N {0}, which is not a Zariski-closed subset of A l . 

Exercise 1.3.1. Let V b-  W be a morphism of affine algebraic varieties. 
Prove that F is continuous in the Zariski topology. 

Exercise 1.3.2. Show that the twisted cubic V of Figure 1.5 is isomorphic 
to the affine line by constructing an explicit isomorphism A 1  —> V. (Hint: 
See Exercise 1.2.3) 
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1.4 Dimension 

Developing a good theory of dimension is a challenging problem in any 
branch of mathematics, and algebraic geometry is no exception. On the 
other hand, most readers already have some feeling for what we mean by 
the dimension of an algebraic variety. To develop the subject carefully, it 
is best to take a more algebraic approach. Here, we will simply define and 
discuss the basic facts about dimension, relying on the reader's intuition 
and referring to [37, Chapter I, Section 6]  for technical details. 

First, a basic example: The affine n-space An has dimension n. 
Likewise, it seems reasonable to say that the dimension of the subvariety 

of A3  defined by the vanishing of the single polynomial x2 ± y2 ± z2 1 is 

 two, since this variety can be thought of as a complex 2-sphere. 
What is the dimension of the subvariety of A 3  formed by the union of 

the yz-plane and the x-axis, V = V(xy, xz)? This variety has two compo-
nents: The yz-plane, which has dimension two, and the x-axis, which has 
dimension one. In this case, we adopt the convention that the variety V 
has dimension two. 

Figure 1.8. A variety with two components 

Varieties which cannot be written as the nontrivial union of two sub-
varieties are said to be irreducible. The yz-plane and the x-axis are the 
irreducible components of the variety V above. 

We now define the dimension of an algebraic variety precisely. The di-
mension dim V of a variety V is defined to be the length d of the longest 

possible chain of proper irreducible subvarieties of V, 

V=Vd DVd_ I D•..DVI DV0 . 

In particular, the line A1  has dimension 1 because its only proper irre- 
ducible subvarieties are singletons: {line} 9 {poing. With this definition, 
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the dimension of a variety is the same as the maximum dimension of its 
irreducible components. A variety is said to be equidirnensional if all of its 
irreducible components have the same dimension. The variety in Figure 1.8 
is not equidimensional. 

The codimension of the algebraic variety V c An  is the number 
codimV -= n — dim V. Of course, the codimension depends on the am-
bient space: A line in the plane has codimension one, whereas a line in 
3-space has codimension two. 

We can also speak of the dimension dim s (V) of V near a point x in 
V. This is just the length of the longest possible chain of irreducible 
subvarieties ending with {x}, 

V = Vd D Vd_i D • • • D Vi Vo = {x}. 

Note that 

dim V = sup{dimx  V:  x E V} 

It can be proven that the dimension of an irreducible variety is the same 
at all points. 

Admittedly, it is not obvious from our definition of dimension that An 
is n-dimensional. However, it is easy to verify that the dimension of An 
is at least n, by considering an increasing chain of linear subvarieties. To 
show that the dimension of An is exactly n we would need to develop more 
algebraic machinery; see [37]. We will at least show in Section 2.3 that the 
dimension of any variety, and An  in particular, is finite. Given that the 
dimension of An is n, it is of course clear that the dimension of any proper 
subvariety of An is at most n — 1. 

Our definition of dimension is compatible with the concept of dimension 
for manifolds: It turns out that every variety contains a dense Zariski-open 
subset of "smooth points," where the variety admits the structure of a 
complex manifold. At such points, our definition of dimension agrees with 
the dimension as a complex manifold. A proof can be found in the book by 
Shafarevich [37, Book I, Section 6, Theorem 1, page 54], where the reader 
will also find a more rigorous development of dimension theory for algebraic 
varieties. 

Exercise 1.4.1. Show that dimension is an invariant of the isomorphism 
class of a variety. That is, affine algebraic varieties that are isomorphic to 
each other have the same dimension. 

Exercise 1.4.2. Show that if X -4 Y is a surjective morphism of affine 
algebraic varieties, then the dimension of X is at least as large as the 
dimension of Y. 

Exercise 1.4.3. Show that a hypersurface in An is irreducible if and only 
if the defining equation F is a power of an irreducible polynomial G (that 
is, G cannot be written as a product of two nonconstant polynomials). 



2 
Algebraic Foundations 

2.1 A Quick Review of Commutative Ring Theory 

Much of the power and rigor of algebraic geometry cornes from the fact 
that geometric questions can be translated into purely algebraic problems. 

Consider the set C[si, 	, x n ] of all complex polynomial functions in n 
variables. Because the sum of two polynomials is a polynomial and the prod-
uct of two polynomials is a polynomial, this set forms a commutative ring 
in a natural way; the constant polynomial 1 is the multiplicative identity 
and the constant polynomial 0 is the additive identity. Indeed, because the 
ring Clx i , ,  x i,]  contains the constant polynomial functions, this poly-
nomial ring naturally forms a C-algebra, that is, it is a (commutative) ring 
containing C as a subring. 

There is a surprisingly close relation between the study of the algebraic 
variety An and the study of the ring C[xi, , x n ] of polynomial functions 
on it. As we will soon see, the subvarieties of An correspond precisely to 
certain kinds of ideals in the ring C[x i , , rn ]. 

We now quickly recall some basic definitions and facts from algebra that 
will be needed in the coming sections. The reader is encouraged to skim 
over this section quickly and return to it as necessary. 

For us, a ring will always be associative, commutative and contain a 

multiplicative unit 1. A mapping R ±- > S between rings is called a ring 
homomorphism or just a ring map if it preserves sums, products, and the 
unit. A nonempty subset I C R of a ring R is an ideal if it is closed under 
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addition and under multiplication by elements of R. The trivial ideals are 
the zero ideal {0 }  and the unit ideal R. 

Example: The set of all polynomials with zero constant term is an ideal 
in the polynomial ring R = Cfx, y]. 

An intersection of arbitrarily many ideals is also an ideal. So it makes 
sense to talk about the ideal generated by a set J C R. This is just the 
ideal 

(J) = nu , J C 1,1 c R an ideal 1. 

From this, it is clear that the ideal (J) is the smallest ideal containing the 
set T We can also think of the ideal (J) generated by a set J C R as the 
collection of all finite R-linear combinations of elements in J, that is, all 
elements of the form riji + • • + rrijn where ri e R and ji G J. 

An ideal / is said to be finitely generated if there is a finite set J = 

{ii, • • 	C R generating I.  In this case we write I = (J) -= 01, 

Example: The elements of the ideal I C C[x,y] of polynomials with zero 
constant term are of the form xP (x, y) + yQ(x, y), where P, Q E CIx, yj. 
Thus the ideal I is generated by the polynomials x and y; we write I = 
(x, Y). 

The preimage of any ideal under a ring map is an ideal. In particular, 

the kernel f -1 ({0}) of a ring map R 	S is an ideal. 
There are some particularly important types of ideals: 

• An ideal m C R is maximal if the only ideal strictly containing it is 
the unit ideal R. 

• An ideal p C R is called prime if fg E p only when f E p or g e p. 

• An ideal I c R is called radical if it is equal to its radical, where the 
radical of I is defined to be 

J7 := {f E RI 	E for somen> 0}. 

If / c R is an ideal, then the set of cosets RII-={[x]-=x+IlsER} 
forms a ring with the natural operations [s]+ [y] = [x+ y] and  [s] [y]  = [xy]. 
There is a canonical surjection R RI I sending an element x to the 
corresponding coset [x]. The kernel of this map is the ideal I.  

Because the canonical surjection R 	RI I is a homomorphism, the 
preimage ir -1 (J) of any ideal J c RhI is an ideal of R containing I. On 
the other hand, Tr also maps every ideal K C R containing I onto an ideal 
in the quotient ring. Therefore, the ideals of the quotient ring stand in a 
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one-to-one correspondence with the ideals of R that contain /: 

{ideals in R/I} 	{ideals in R containing /}. 

This bijection carries maximal (respectively prime, radical) ideals to 
maximal (respectively prime, radical) ideals. 

In these notes, nearly all the rings we consider will be C-algebras. Recall 
that a ring R is called a C-algebra if it contains C as a subring. Every 
C-algebra is also a C-vector space, where the addition of vectors is defined 
by the addition in R and the multiplication of a scalar A E C and a vector 
r E R is defined by the multiplication in R. 

We can define concepts for C-algebras that are analogous to those for 
rings and ideals: 

• The C-subalgebra generated by a subset J of a C-algebra R is 

n{A. J C A, Ac R a C-subalgebra}. 

This is the smallest C-subalgebra containing J. The C-subalgebra 
generated by J consists of all elements of R that can be written as 
polynomials in the elements of J with coefficients in C. 

• The algebra R is finitely generated if it is generated by some finite 
set J C R. For example, the polynomial ring C[x, y] is a C-algebra, 
because it contains the subring C of constant functions. It is finitely 
generated as a C-algebra by the elements x and y. 

• If R and S are C-algebras, then a map 

R S 

is said to be a C-algebra homomorphism if it is a ring map and if it 
is linear over C, that is, 0(Ar) = AO(r) for all A E C and r E R. 

An example of a ring map that is not a C-algebra map is the complex 
conjugation map 

C [x] 	C [x] , 
ao + ai x + . . . + an xn  

although this does define an R-linear map. 
Any C-algebra map is determined by the images of any set of C-algebra 

generators. For example, a C-algebra map 

C[x  , y]  
C[zi 

(x 2  + y3 ) 

is completely determined by the images of the generators x and y of 	 

For instance, 0 would be determined by the data 0(x) = z3  and (1)(y) = —z2 . 
Note that the images of the C-algebra generators cannot be arbitrary: The 
images must satisfy the same relations satisfied by the generators. 
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Exercise 2.1.1. Prove that every maximal ideal is prime, and every prime 
ideal is radical. Also prove that the radical -II of an ideal I is an ideal. 

Exercise 2.1.2. Prove that an ideal m is maximal if and only if R/m is 
a field. Prove that an ideal P is prime if and only if the ring RI P is a 
domain, that is, R/P has the property that whenever sy = 0, either x = 0 
or y = O. 

Exercise 2.1.3. Let I C S be any ideal. Prove that any ring map a : R 
S induces an injective homomorphism of rings: R/a-1 (/) —> S//. Conclude 
that if I is prime, so is  a 1 (/). 

Exercise 2.1.4. A ring R is reduced if for all f E R and each n E N, 

fn 0 	> f = 0.  

That is, R is reduced if it contains no nonzero nilpotent elements. Prove 
that a ring R is reduced if and only if the zero ideal is radical. 

Exercise 2.1.5. Prove that the quotient ring R// is reduced if and only 
if I is a radical ideal. 

Exercise 2.1.6. Let R be a C-algebra, and let I be an ideal of R. Prove 
that the natural surjection R -+ RII is a C-algebra map. 

2.2 Hilbert's Basis Theorem 

Although the definition allows arbitrarily many polynomials, it turns out 
that every affine algebraic variety is the common zero set of finitely 
many polynomials. This follows from the important Noetherian property 
of polynomial rings. 

Definition: A ring R is Noetherian if all its ideals are finitely generated. 

Hilbert's Basis Theorem: If a ring R is Noetherian, then the polynomial 
ring over R in one variable, R[x], is also Noetherian. 

The details of the following proof are left as an exercise. 

Sketch of Proof: Take any ideal J C R [xi and define h c R to be the 
ideal consisting of those elements ai E R that are leading coefficients of 
some degree-i polynomial 

a x  + • + aix + ao E J. 

The ideals I C R form an increasing sequence 

C Ii c • . 
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By the Noetherian property of R (see the exercise at the end of the section), 
eventually we have equality, 

C 	C • • • c 	= /r+ i = • • • . 

For i = 0, 	, r, take generators ail, 	am, for I. Choose degree-i poly- 
nomials F,, G J (i --= 0, 	,r and j =- 1,... ,ni) with leading coefficient 

By induction with respect to the degree of f E J we can prove that J 
is generated by the polynomials F» 	 D 

Hilbert's Basis Theorem immediately implies that any polynomial ring 
over a Noetherian ring R is also Noetherian. This follows from induc-
tion on the number of variables, using the fact that R[xi, ,x,  = 
R[x i ,... ,x,i_][xn]. In particular, the fundamental ring of algebraic geom-
etry, C[xi, , xn ] , is Noetherian. 1  We only need to check that C is 
Noetherian, and this is obvious because a field has only two ideals, the 
zero ideal and the unit ideal (which is generated by 1). 

Now we turn to an important application. Consider an affine algebraic 
variety V in An. We claim that the set 

1I(V) 	{f E C[xi,... ,x„1 I f(x)= 0 for all x E V}. 

is an ideal of C [xi , 	, x i)]. Indeed, if f and g both vanish on V, then 
clearly f + g vanishes on V; likewise, if f vanishes on V, and r is an 
arbitrary polynomial, then  ri  vanishes on V. Thus 11(V) is an ideal. 

Now, by definition, V is contained in V(I[(V)). On the other hand, it is 
also easy to see that V(II(V)) is contained in V. Indeed, if x E V(II(V)), 
then f(x) = 0 for all f E 11(V). But because V is defined by the vanishing 
of {Fi } E 1, evidently F, E 11(V), so x is in the common zero set of the  F. 
Therefore, for all affine varieties V in A', we have 

V(I(V)) = V. 

Now we can put our observations together to conclude that every al-
gebraic variety can be described as the common zero locus of finitely 
many polynomials. Because C [xi, ,x,] is Noetherian, the ideal II(V) 
of polynomials vanishing on V C An is finitely generated, say 

11(V) =(F1 ,... , Fr). 

So by the previous remarks, 

	

V = V(II(V)) =- V((/)., 	, Fr)) -=V(Fi ,... 

and V is the set of common zeros of the finite collection of polynomials 

1 1n algebraic number theory there is a similarly fundamental Noetherian ring, the 
ring of integers Z. 
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The fact that every affine algebraic variety can be described by finitely 
many polynomials is an important and useful fact. 

Historical Remarks: Hilbert was motivated by his interest in invariant 
theory, the study of those polynomials left invariant under the action of 
some group of linear transformations contained in GL(n). The basis theo-
rem implies the finite generation of the ring of polynomials invariant under 
the action of a finite group; see [9, Section 1.4.1]. This had been viewed as 
the central problem in invariant theory at the time Hilbert's paper appeared 
in 1890. Hilbert's lecture notes are still a good introduction to invariant 
theory [23]. 

Because invariant theory had been primarily concerned with the explicit 
computation of bases, Hilbert's nonconstructive proof was controversial. 
Paul Gordan, the leading expert in invariant theory at the time, exclaimed, 
"This is not mathematics, this is theology!" When Hilbert refined his ideas 
to produce a method that could (theoretically) be used to compute gener-
ators, Gordan was forced to concede, "Theology also has its advantages." 
See Reid's entertaining biography of Hilbert [35]. 

The problem of whether or not the ring of invariants is finitely generated 
for any group G was proposed by Hilbert in his famous speech at the 1900 
International Congress of Mathematicians. This problem came to be known 
as Hilbert's fourteenth problem, and remained open until the late fifties, 
when Nagata found a ring of invariants that is not finitely generated. 

The existential approach taken by Hilbert dealt a powerful blow to com-
putational algebra, as mathematicians quickly turned to more abstract 
methods. With the advent of the computer, computational methods have 
recently resumed their position in the mainstream of mathematical re-
search. For a nice introduction to this topic, see [5] and its companion 
volume [6]. 

Exercise 2.2.1. Show that a ring R is Noetherian if and only if every 
strictly ascending sequence of ideals I C 12  c • • • is finite. 

Exercise 2.2.2. Show that every affine algebraic variety is the intersection 
of finitely many hypersurfaces. 

Exercise 2.2.3. Let the group S3 of permutations of three letters act on 
the polynomial ring C[xi, x2, x 3 ] by permutation of the variables. Find the 
ring of invariant polynomials. 

2.3 Hilbert's Nullstellensatz 

We now turn to a fundamental theorem of algebraic geometry, Hilbert's 
Nullstellensatz. 
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We have seen that the set of polynomials vanishing on an affine algebraic 
variety V forms an ideal in the polynomial ring. However, such ideals are 
of a special sort: They are radical. 2  Indeed, if f is a polynomial such that 
f n  vanishes on V, then for all x E V, r(x) = (f(x))' = O. This means 
that f(x) = 0 as well, and f also vanishes on V. This proves that ll(V), the 
ideal of all polynomials vanishing on V, is a radical ideal. 

We have already seen that V = V(II(V)) for any affine algebraic variety V. 
Hilbert's Nullstellensatz states that the mappings V 1-4 11(V) and I 1-4 V(/) 
are essentially inverse to each other, at least if we restrict our attention 
to radical ideals I. This famous theorem is the first entry in a dictionary 
that will help us translate statements about geometry into the language of 
algebra. 

Hilbert's Nullstellensatz: For any ideal I c C [x l , 	, xn), 

11(V(/)) = 177. 
In particular, if I is radical, then 

11(V(/)) = I. 

Proof: See any book on commutative algebra, for instance 19, page 134, 
(also see pages 142-144)1, or books on algebraic geometry, for example, [17, 
page 57] . 

Hilbert's Nullstellensatz implies a one-to-one correspondence: 

affine algebraic' 
varieties in An f 

radical ideals 1 
C [xi, .. •  , x,,]  

Note that if V is a subvariety of W, then functions vanishing on W are 
forced to vanish on V, so II(W) C E(V). Thus, Hilbert's correspondence is 
order-reversing. 

The order-reversing correspondence given by Hilbert's Nullstellensatz im- 
plies that every maximal ideal in the polynomial ring C[x i , 	, x n ] is the 
ideal of functions vanishing at a single point (ai, 	, an) E An . In particu- 
lar, each maximal ideal has the form ma  = (X1 ai, 	,  x,,  - an ), and the 
corresponding variety is the singleton V(ma ) = {a} =  {(a 1 ,...  , an,)} C 

In other words, Hilbert's Nullstellensatz identifies the set of maximal ideals 
of the polynomial ring C[s i  , 	, x,,]  with the points in affine space An. 

Hilbert's Nullstellensatz can be viewed as a multidimensional version 
of the Fundamental Theorem of Algebra. The ideal generated by a single 
polynomial in one variable is radical if and only if it has no repeated roots. 
The Fundamental Theorem amounts to the fact that a radical ideal in 

2 Recall that an ideal / is radical if r" G / implies that r E  I.  See Section 2.1. 
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C[z] is completely determined by the zero set of a generator. Hilbert's 
Nullstellensatz says that a radical ideal I C C[xi,... ,  x i,]  is completely 
determined by its zero set V(/). 

A natural question that arises regarding Hilbert's Nullstellensatz is 
whether it can be made "effective." Consider an ideal I , Fr ) C 

xn ] and the corresponding variety V ,--- V(/) c An. By the Null-
stellensatz II(V). So, if g(x) = 0 for all x E V, then gm  e I for 
some M > O. Can we bound the exponent M in terms of, say, the de-
grees of the polynomials Fi ? What is the smallest possible M that works 
in general? Until recently, very little was known about such an "effective 
Nullstellensatz," but in 1988, JAnos Kollár provided a virtually conclusive 
answer. For example, Kollár shows that if I is generated by r homogeneous 3 

 polynomials Ft  of degree di > 2, then 

g E V7  r  gm  E I 

for some M < fl di . If r < n, this result is sharp: No smaller value of 
M will work in general. Kollár also finds sharp bounds for M when r > n; 
see [26]. 

Algebraic geometry over fields other than C: Algebraic geometry can 
be applied to the zero loci of polynomials over fields other than C. Given 
any field IK, we can study the zero sets in 11(' of polynomials with coeffi-
cients in K. The Zariski topology is defined in  K. The set of polynomials 
vanishing on a variety in DC' forms an ideal in K[xi, xid, and this ideal 
is finitely generated. Thus, much of the basic machinery we have discussed 
goes through unchanged. However, there are some serious difficulties with 
Hilbert's Nullstellensatz. 

Like the Fundamental Theorem of Algebra, Hilbert's Nullstellensatz fails 
over the real numbers. For instance, it is easy to check that the ideal (x2 +1) 
is a radical ideal in the ring R[x], since R[x]/(x 2  + 1) C is a field. The 
real null set V(x2  + 1) of this ideal is empty, so it coincides with the null 
set of the trivial ideal generated by 1 in R[x]. Thus, two different radical 
ideals define the same variety in Rn , and Hilbert's Nullstellensatz fails. 

However, Hilbert's Nullstellensatz holds for varieties defined over any 
algebraically closed field. (Recall that a field K is said to be algebraically 
closed if every nonconstant polynomial with coefficients in K has a root 
in K.) Provided that K is algebraically closed, Hilbert's Nullstellensatz 
guarantees a one-to-one correspondence between subvarieties of Kn and the 
radical ideals of the polynomial ring Kix i , , x,.]. This holds, for example, 
for fields as exotic as F2, the algebraic closure of the field with two elements. 

3 A polynomial is homogeneous when its terms all have the same degree; see Section 
3.2 for the geometric importance of homogeneous polynomials. 
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Algebraic geometry over non-algebraically closed fields (and especially 
R) is a difficult and active area of research today. See, for example, [281 
and [38]. 

Besides the fact that C is algebraically closed, another property of C that 
is often very useful is that C is a field of characteristic zero, that is, the 
integers Z form a subring of C. For a prime number p, we say that a field 
has characteristic p if it contains the field Fp of p elements as a subring; 
otherwise, we say that it has characteristic zero. The field F2 above has 
characteristic two. We will not treat fields of nonzero characteristic in these 
lectures, although occasionally we point out where trouble may arise if the 
field does not contain the integers. 

Exercise 2.3.1. Check that prime ideals correspond to irreducible vari-
eties. (Recall that a variety V is irreducible if it cannot be decomposed as 
the union of two distinct proper subvarieties.) Check that the ideal (xy, xz) 
defines a reducible variety and is radical but not prime. 

Exercise 2.3.2. Show that the dimension of an affine algebraic variety is 
finite. 

Exercise 2.3.3. Show that a radical ideal I in the ring C[xi, 	, x r ] is 
the intersection of all the maximal ideals (x i  — a 1 , 	, 	ari ) containing 
I. 

Exercise 2.3.4. Prove that the Zariski topology on an affine algebraic 
variety is compact: Every open cover has a finite subcover. 

Exercise 2.3.5. Prove that the complement of a point in An is an open 
set that is compact in the Zariski topology. 

Exercise 2.3.6. Show that the zero set in A 2  of the function y — ex is not 
an affine algebraic variety. 

2.4 The Coordinate Ring 

One theme in modern mathematics is that in order to understand certain 
objects we ought to study natural classes of functions on them. In topology 
we study continuous functions on topological spaces, in differential geome-
try we study smooth functions on manifolds, and in complex geometry we 
study holomorphic functions on complex manifolds. In algebraic geometry, 
varieties are defined by polynomials, and it is most appropriate to look at 
polynomial functions on them. 

Let V C An  be an affine algebraic variety. Given any complex polynomial 
in n variables, the restriction to V defines a function V C. Under the 
usual pointwise operations of addition and multiplication, these functions 



22 	2. Algebraic Foundations 

naturally form a C-algebra 

C[xi, • • , xnliv, 

which we call the coordinate ring of V and denote by C[V]. In particular, 
the coordinate ring of affine space An  is the polynomial ring C[AnI = 
C[xi, • • • xr ] . 

The elements of C[V] are restrictions of polynomials on An, but we usu-
ally denote them by the original polynomials. This can be slightly confusing, 
since two different polynomials may well have the same restriction to V. For 
example, the zero polynomial and the polynomial P(x, y, z) = x 2  + y2  + z2  
obviously restrict to the same function on the variety V(x2  + y2  + z2 ) in 
A3  defined by the vanishing of P. 

Obviously, restriction defines a surjective ring homomorphism 

C[x , 	, x7, ]  --* C[xi , • • • 

with kernel precisely the ideal of functions ll(V) vanishing on V. So the 
coordinate ring C[V] is isomorphic to the ring 

C [xi, . • • ,x,,]  
It(V) 

in a natural way. Equivalence classes in C[V] correspond to functions on 
V. Each equivalence class is usually denoted by some representative, a 
polynomial like x, y, x i , or x2  + xy. 

Sometimes we write the restriction of a polynomial in a form that hides 
its polynomial character. As an example, think of the function I defined 
on the variety V = V (xy — 1) c A2 . Because xy = 1 everywhere on V, 
the function is evidently the same as the restriction of the polynomial 
function y to V. 

. 3 .  Example: Consider the cone V =__ v( x2 + y2 _ z2) in P,‘ Because the 
polynomial X2  + y2  — z2  is irreducible, it generates a prime, and hence radi-
cal, ideal. By Hilbert's Nullstellensatz, 11(V) is generated by the polynomial 
x2  + y2  — z2 . The coordinate ring of our cone is therefore the quotient ring 
C[x, y,  z]/(x 2  + y2  — z2 ). It is customary to call this ring C[x, y, z ] equipped 
with the relation x2  + y2  — z 2  0, meaning just that the polynomial 

+ y2 Z2  can be interpreted as zero, wherever it appears. For example, 
in this ring we have 

X 3  + 2Xy2  — 2XZ2  + X = 2X (X2 + y2 _2 ■ z ) + X — X 3  = X —  r3 .  

Just as each affine algebraic variety determines a unique C-algebra (its 
coordinate ring), every morphism of affine varieties determines a unique 
C-algebra homomorphism between the corresponding C-algebras. 
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Indeed, given any morphism V 	W of affine algebraic varieties, there 
is a naturally induced map of coordinate rings 

	

C[W1 	C[V], 

	

g 	g o F, 

called the pullback of F, given by composing a function g on W with F. 
It is easy to check that the pullback g o F of a polynomial function g 

on W is indeed a polynomial function on V because the map V -L. * W 
is itself given by polynomials, and the composition of two polynomials is 
again a polynomial. It is also easy to check that this pullback map defines 
a C-algebra homomorphism from C[W] to C[V]. 

Example: Consider the morphism of algebraic varieties 

A2 , 
(x, y, z) 	(x 2 y,x — z). 

Letting (u, v) denote the coordinates of A2 , the pullback defines a map 

	

C[u, v] 	C[x, y, z], 

	

u 	x 2 y , 
— z. 

Note that this C-algebra map is completely determined by where it sends 
the generators u and v. For example, the polynomial u2  + v3  in  du,  v] is 
sent to the polynomial (x2 y) 2  + (x — z) 3  in C[x, y, x]. 

Example: The pullback is a generalization of the dual map in linear alge-
bra. To make this clear we look at a morphism F with homogeneous linear 
components F1 , , Fm . The map F is a linear mapping Cn —> Cm, whose 
matrix is made up of the coefficients of the linear forms F. The pullback 
operation on the coordinate ring can be restricted to the linear function-
als (degree-1 polynomials). Denote the restriction of the pullback of F by 
F*. Then F* defines a vector space map (Cm)* -.4 (Cn)*, and this is the 
standard dual map in linear algebra. 

Exercise 2.4.1. Prove that the coordinate ring of an affine algebraic va-
riety is a reduced, finitely generated C-algebra. (Recall that a ring is said 
to be reduced if it has no nonzero nilpotent elements.) 

Exercise 2.4.2. Remember that a radical ideal in the ring C[x l  , 	, x11 1 is 
the intersection of all the maximal ideals containing it. Now prove the same 
statement for a radical ideal in the coordinate ring C[V] by considering 
the correspondence between ideals in a quotient ring and ideals of R 
containing I.  
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2.5 The Equivalence of Algebra and Geometry 

We have seen that each affine algebraic variety V determines a unique 
C-algebra C[V], its coordinate ring, and that each morphism V —> W 
of affine algebraic varieties determines a unique C-algebra homomorphism 
C[W] C[VI, its pullback. The defining feature of algebraic geometry is 
the remarkable fact that not only does the geometry determine the algebra, 
but conversely, the algebra determines the geometry. That is, given any 
finitely generated C-algebra R without nilpotent elements, there exists an 
affine algebraic variety V, uniquely defined up to isomorphism, such that 
R is isomorphic to the coordinate ring of V. Moreover, any homomorphism 
between such C-algebras uniquely defines a morphism of the corresponding 
varieties. In fancy language, there is an equivalence of categories between 
the category of affine algebraic varieties and finitely generated, reduced 
C-algebras. Our next task is to explain this equivalence. 

To start, note that the coordinate ring C[V] — c l x1 ' )' s"I of an affine li(v 
algebraic variety is a finitely generated reduced C-algebra. The functions 
xi, • • , xn are C-algebra generators for C[V], and since I[(V) is a radical 
ideal, the quotient ring C[V] has no nilpotent elements (that is, C[V] is 
reduced). 

Conversely, every reduced finitely generated C-algebra R is isomorphic 
to the coordinate ring of some variety. To see this, fix any finite set of C-
algebra generators for R and note that R is isomorphic to C[xi, , 
where I is the kernel of the surjective homomorphism 

	

C[xi,... ,x rd 	R, 

	

xj 	jth generator of R. 

Because the quotient ring C[x i , 	, x i-j// is reduced, the ideal I is a radical 
ideal of C[xi, 	, xn ]. Hence the ideal I defines a variety V(/) C An whose 
coordinate ring is isomorphic to R. 

Furthermore, we have seen that a morphism of algebraic varieties V —> W 
gives rise to a C-algebra homomorphism C[W] C[V] by the pullback. 
Conversely, every C-algebra homomorphisni between finitely generated re-
duced C-algebras is the pullback of a uniquely defined morphism between 
the corresponding varieties, as we prove below. 

Theorem: Every finitely generated reduced C-algebra is isomorphic to the 
coordinate ring of some affine algebraic variety. 

If V 	W is a morphism of affine algebraic varieties, then its pullback 
F# is a homomorphism between the coordinate rings C[W] 	C[V]. 

If 
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is a homomorphism  of reduced finitely generated C-algebras, then there 
exists a morphism F of affine algebraic varieties corresponding to R and 
S such that a is the pullback of F. This morphism F is unique up to 
isomorphism. 

Proof: The first part of the theorem just repeats what we have already 
discussed. What remains to be seen is how we can construct a morphism 
of affine algebraic varieties from an abstract C-algebra homomorphism. 

Fix a C-algebra map R 	S. Because R and S are finitely generated 
reduced C-algebras, we may choose presentations for them and write 

	

C[xi,• • • ,xn] 	CEY11 •  • • Yrni  

where I and J are radical ideals. We are looking for a morphism, that 

is, a polynomial mapping Am ±-4 An  such that F sends the subvariety 
V V(J) of Am into the variety W = V(/). Furthermore, we must have 
F# = a. 

For j -= 1, 	, n, let Fi  E CLyi , 	, ynd be any polynomials representing 

the image o-(x 2 ) of x, under the map C[x i , 	, x]// 	C[y i , 	, y„,]/J. 
Define the polynomial map 

A' 	>' 	, 

a = (ai , . • , am,) 1-4 (Fi (a), • • , Fri (a))• 

We claim that F maps V to W. To see this, let a E V = V(J). We want 
to show that F(a) E W. For this, it is sufficient to check that F(a) is in 
the zero set of every polynomial G in I. Using the fact that Fi = 
we see that for G in I, 

G(F(a)) = 	 , Fn (a)) 
= G(o- (xi)(a), • • ,a(x.)(a)) 
-= a(G)(a). 

Because G E I, it represents the zero class of C[xi, • • • , x]/I; so its 
image a(G) under the ring homomorphism 0" must represent the zero class 
of C[y i , ,y,11J. In other words, o(G) lies in J, the ideal of all functions 
vanishing on V. Now for a E V, we see that a(G)(a) = 0 for all G E I, so 
that G(F(a)) = 0 for all G E I. Thus F(a) E W = V(/) and F maps V to 
W. The reader should verify without difficulty that F# = a. 

There was an arbitrariness in the choice of representative F3  of cr(xj); 
can be replaced by any polynomial F; in C[yi , 	, ynd that represents the 

same equivalence class in c i91—Y-1  . Since the difference .F - F vanishes 3 
on V, the resulting morphisms of Am to An restrict to the same morphism 
on V. 

Finally, we address the point that this morphism is unique up to isomor-
phism. As constructed, our morphism appears to be unique, and in fact, it 
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is unique once we fix the presentation of our original algebras in the form 

C[xi, ... , xn]  
I 

A different set of algebra generators for the algebras R and S would produce 
different ideals of relations (in possibly a different number of variables). 
Therefore, the resulting varieties V' and W' would be different from (but 

isomorphic to) V and W, and so would the corresponding morphism V' 2--- , 
 W'. However, F is isomorphic to F' in the sense that the following diagram 

commutes: 

V FW H 

	

V' 	W' 
F' 

We leave it to the reader to chase through the definitions and verify 
this. 	 0 

The theorem shows that affine varieties and their morphisms are es-
sentially equivalent to finitely generated reduced C-algebras and their 
morphisms, only with the arrows reversed. In other words, the categories 
of affine algebraic varieties and of finitely generated reduced C-algebras are 
equivalent (or anti-isomorphic if we want to emphasize the order-reversing 
feature of the equivalence). Obviously, (F o G) 4  = G# o F# whenever 
defined, so forming the pullback is in itself a kind of direction-reversing 
"homomorphism," a so-called contravariant functor. This is essential for 
the identification of categories. 

As a consequence of the theorem, we see that two varieties are isomorphic 
if and only if their coordinate rings are isomorphic. The next few examples 
illustrate the usefulness of this idea. 

Example: We have seen that the morphism 

A' -- V(y — x2 ) c A2 , 
t 1--* (t, t2 ), 

is an isomorphism. See Figure 2.1. 
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Figure 2.1. The parabola and the line are isomorphic 

Notice that the pullback 

C[x, yl/(y — x 2 ) —> C[t], 
t, 

y 	t2 , 

is surjective with zero kernel, and hence it is an algebra isomorphism. Alter-
natively, one can check that projection onto the first coordinate (t, t 2 )  t 
defines an inverse morphism. 

This example should be compared with 

	

Al 	v(y2 _ x3 ) c A2 , 

	

t 	(t2 , t3 ), 

which is bijective but not an isomorphism. Here we should think of t E Al 
as the slope of a line L(t) passing through the origin; the line L(t) meets 
the curve V(y2  — x 3 ) in another point, (t2 , t3 ). See Figure 2.2. 

Figure 2.2. V(y 2  — x3 ) 
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Here the pullback is 

	

C[x, y]/(y2  — x3 ) 	C[t], 
t2 , 

	

y 	t3 , 

clearly not an isomorphism of C-algebras, since the element t is not in the 
image. Thus our morphism is not an isomorphism. This seems reasonable: 
If it were an isomorphism between varieties, its inverse would be an iso-
morphism too. However, the inverse (x, y) 1-4 y/x does not appear to be a 
polynomial. 

F# 

	

Exercise 2.5.1. Show that the pullback C[W] 	C[V] is injective if and 
only if F is dominant; that is, the image set F (V) is dense in W. 

F# 

	

Exercise 2.5.2. Show that the pullback C[W] 	C[VI is surjective if and 
only if F defines an isomorphism between V and some algebraic subvariety 
of W. 

Exercise 2.5.3. If F --= (F1 , . . .  ,F) 
show that the Jacobian determinant 

	

det 	: 

aF,  
ax, 	a., 
aF,  

Stax'i 	 a., 

is a nonzero constant polynomial. It is not known whether the converse is 
true. This is a famous open problem known as the Jacobian conjecture. 

2.6 The Spectrum of a Ring 

As we have seen, Hilbert's Nullstellensatz allows us to identify the points of 
any affine algebraic variety V with the maximal ideals of its coordinate ring 
C[V]. We now want to explain how the maximal ideals of any commutative 
ring can be considered as a topological space that is like a variety in many 
respects. 

The maximal spectrum of a ring R is the set of maximal ideals in R: 

maxSpecR =- {In CRIm is a maximal ideal}.  

The identification of an affine algebraic variety V with the maximal spec-
trum of its coordinate ring maxSpecC[V] is deeper than a mere set-theoretic 
correspondence. We can transport the Zariski topology on V to a topol-
ogy on maxSpecC[V] as follows: The points of a Zariski-closed set W C V 
correspond to the set of maximal ideals in the coordinate ring C[V] that 
contain the ideal IE(W) corresponding to W. In other words, the closed 
sets of the Zariski topology on maxSpecC[V] are sets of maximal ideals of 

: An 	An is an isomorphism, then 
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C[1/1 containing some given ideal of C[V). This approach defines the Zariski 
topology on maxSpecC[V] without any direct reference to varieties. 

Similarly, consider a morphism of algebraic varieties V -2-4 W, inter-
preted as a map maxSpecC[V] 	maxSpecC[Wl. Hilbert's Nullstellensatz 

F* 
allows us to reconstruct the mapping F from its pullback C[W1 	C[V]. 
Indeed, given a point p of V, we think of it as a maximal ideal m in 
maxSpecC[V]. Then the image of p under F corresponds to the maximal 
ideal (F#) -1 (m) in maxSpecC[1471, as the reader should check. Thus, any 
homomorphism R 24 S of finitely generated reduced C-algebras induces 
a map of associated spectra 

	

maxSpec(S) 	maxSpec(R), 
m 

Our success in identifying an algebraic variety with the set of maximal 
ideals in a suitable ring encourages us to try to develop a theory of algebraic 
geometry on the set of maximal ideals in any ring. 

Given any commutative ring R, we can equip its maximal spectrum 
maxSpecR with the Zariski topology by defining the closed sets to be the 
sets 

V(/) {m E maxSpecR m D /}, 

where I is an ideal in R. This gives rise to a topological space, but unfor-
tunately it is not exactly what we want. We would like our generalization 
to mimic the case above. For instance, if R S is a homomorphism of 
rings, we would like 

	

maxSpecS 	maxSpecR, 
m 

to be a well-defined, continuous map of topological spaces. But unfor-
tunately, the inverse image of a maximal ideal under an arbitrary ring 
homomorphism need not be a maximal ideal. An example is given by the 
inclusion Z Q. The inverse image of the maximal ideal {0} in Q is the 
prime ideal {0} in Z, which is not maximal. 

However, the inverse image of any prime ideal under an arbitrary ring 
homomorphism is prime, an easy fact that we leave as an exercise. This 
suggests that instead of focusing on the set of maximal ideals of R, we 
ought to switch our attention to the larger set of all prime ideals. 

Definition: The spectrum SpecR of a commutative ring R is the set of all 
of its prime ideals. We equip the spectrum SpecR with a (Zariski) topology 
by declaring the closed sets to be the sets of the form V(/) = fp G SpecR 
p D 1-1, where I is an ideal of R. This turns the spectrum into a topological 
space that contains the maximal spectrum as a topological subspace. 



30 	2. Algebraic Foundations 

The spectrum of a ring, equipped with its Zariski topology, is what 
Grothendieck called an affine scheme. The theory of schemes revolution-
ized algebraic geometry, and Grothendieck was awarded a Fields medal 
in 1966 for this huge body of work. Serious students of algebraic geom-
etry must eventually struggle with the massive tome fondly known as 
"EGA", Eléments de Géométrie Algébrique, where the theory of schemes 
is developed. 

One of the first and most natural classes of schemes is obtained by consid-
ering the maximal ideal space of a finitely generated C-algebra, but without 
assuming that it is reduced. Even if one is primarily interested in varieties, 
one is often led to consider at least these very special types of schemes. In 
this book we will occasionally mention these types of schemes for cultural 
purposes, although they will not be central to our discussion. 

The idea of a scheme can be used in algebraic number theory to deal with 
rings like R = (xnZix,y,—z.) 

z1  Considering SpecR leads one to the study of
• +y"  

arithmetic geometry and ultimately to Wiles's celebrated proof of Fermat's 
Last Theorem. It is a great tribute to the unity of mathematics that the 
subject of algebraic geometry, fundamental also in the study of Riemann 
surfaces, is applicable to arithmetic questions. 

Exercise 2.6.1. Prove that the spectrum SpecR of a commutative ring 
can be given the structure of a topological space whose closed sets are of 
the form V(/) = {P c SpecRIP I}, for I an ideal in R. 

Exercise 2.6.2. Prove that a point in SpecR is closed if and only if it is 
a maximal ideal. 

Exercise 2.6.3. Prove that the maximal spectrum of the ring of integers 
Z consists exactly of the ideals generated by prime numbers: maxSpecZ = 
{(2), (3), (5), (7), ... }. Prove that the only other prime ideal (0) = {0} is a 
dense point in SpecZ, that is, it is contained in every nonempty open set. 
(The singleton {M} is, of course, compact, but you have now proved that 
rather than being closed, it is in fact dense.) 

Exercise 2.6.4. Let R be the quotient ring ` 11,i21 . Prove that the topo- (x 
logical space maxSpecR is homeomorphic to A l . This example illustrates 
the flavor of a scheme: We ought to think of maxSpecR as the y-axis 
V(x2 ) c A2  "counted twice," since it is defined by x2  instead of the radical 
ideal generated by x. 

Exercise 2.6.5. Fix a complex number t E C. Describe the scheme 
Spec c fs 'l■ How does it vary with t? What happens as t approaches (x(s--t ) )• 
zero? 

4 Strictly speaking, an affine scheme comes equipped with a "sheaf of rings" (see the 
appendix), but because this additional data is completely determined by the ring, we 
are not abusing terminology very much by ignoring it. 
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Projective Varieties 

3.1 Projective Space 

Affine space A' has a natural compactification, the projective space P", 
obtained by adding an infinitely distant point in every direction. The goal 
of this chapter is to introduce projective space and projective varieties and 
to interpret them as natural compactifications of affine varieties. 

Definition: Projective space, denoted by Pn, is the set of all one-
dimensional subspaces of the vector space Cn+ 1 . That is, HD is the set 
of all complex lines through the origin in Cn+ 1 . 

Of course, projective n-space can be defined over any field IK as the set 
of one-dimensional subspaces of the vector space IKn+ 1 . While projective 
spaces over fields other than C are important in algebraic geometry, even 
if one is primarily interested in complex algebraic varieties, for the sake of 
concreteness we focus our attention on the case where the ground field is 
the field of complex numbers. 

Projective n-space can be interpreted as the quotient 

pn = 
cn+1 

 

where denotes the equivalence relation of points lying on the same line 
through the origin: (z o ,... , x n ) 	(yo ,... , yr,) if and only if there exists a 
nonzero complex number À such that (y o , 	, yn ) = (Axo, • . • , Ax). 
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A point in projective space Ir can be thought of as an equivalence class 

[(xo, • ,xn)] = {(Axo, • • • , Axn)1A E CI, 

where in this notation at least one of the coordinates xo , 	, x n  must be 
nonzero. As with any equivalence class, a point p G Pn  is usually denoted 
by one of its representatives. To distinguish the class from its representative 
we write colons between the coordinates of the representing point and call 
them homogeneous coordinates of the point in projective space. We also 
write the class with square brackets rather than round brackets, 

[xo :  z 1 :  • • : x n 1 E Pn. 

This notation emphasizes that the homogeneous coordinates are defined 
only up to nonzero scalar multiple. 

We can think of projective space as the usual complex n-dimensional 

affine space together with an "infinitely distant point in every direction". 
This is illustrated by the following examples. 

Example: One-dimensional projective space IP 1  consists of all complex 
lines through the origin in C2 . By fixing a reference line—a complex line 
not through the origin—we can choose a representative for each point p 
in IP 1 , namely, the unique point where the reference line meets the line 
through the origin defining p. Only one point in fails to have such a 
representative, namely, the point in projective space corresponding to the 
unique line through the origin parallel to our reference line. It is natural 
to call this leftover point in projective space the point at infinity. This 
identifies P1  with the Riemann sphere: 

= CU fool, 
{ LI. 	for  x0 	O, ' 

oc, for xo  =0.  

- 

- - - - ..... 

cl  

Figure 3.1. The projective line IP I  
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In Figure 3.1, two different points of  IN  are indicated by the dotted lines; 
these points are also represented by the two marked intersection points on 
our fixed bold line labeled C 1 . The line labeled "oc" is also a point in P1 , 
which we think of as "the point at infinity" on the complex line C 1 . 

We can do a similar thing for the projective plane. See Figure 3.2. Again, 
by fixing any reference plane not passing through the origin, a typical point 
in P2  will have a unique representative on the reference plane. The excep-
tions consist of lines in C3  through the origin and lying in the plane parallel 
to our fixed reference plane. These points at infinity make up another copy 
of P l . So we can think of P2  as an ordinary complex plane together with a 
copy of P 1  at infinity. That is, 

ffp2 _ (c2 u  pl 	(c2 u c u  { 00 } .  

For example, if we choose coordinates x o , x i  , 	,x for Cn+ 1 , so that our 
reference plane is given by xo -= 1, this identification takes the point [So 
x 1  : x2 ] to ( 11x0  , -%') in the complex plane whenever xo 0, and to [Si 52] 
in the projective line when xo = O. 

Figure 3.2. The projective plane P 2  

Generalizing this idea to arbitrary dimension, we have 

Pn  = Cn  Pn-1 , 

[Xo : Xi : 	: X n ] 
( L.. 	3 	) 

k X0 

[sl 	 s71]) 

for  X 4  0, 
for xo = O. 
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With this mapping, we identify the set U0  in Pn where the coordinate 
xo  is nonzero with the hyperplane so = 1 in Cn+ 1 , that is, 

X1 	Xn 	 X1 	Xn 
[X0 X1 ' • • Xnj = [1 	: • • • —] 1-4' (1, 	 —) 

Xo 	So 	 X0 	X0 

which of course can be identified with Cn. We can think of this copy of C".  as 
the "finite" part of Ir. In this case, the remaining points, in which xo  = 0, 
are called the points at infinity; these are the lines in Cn+ 1  through the 
origin and parallel to the reference hyperplane x o  = 1; thus they naturally 
form an (n — 1)-dimensional projective space 

The choice of xo above was arbitrary: We could have done the same 
with any of the homogeneous coordinates xi, or indeed with any linear 
combination of the x i . In other words, what is "finite" and what is "infinite" 
is just a matter of perspective. In fact, by defining Ui to be the subset of 
Pr' where the coordinate sa  is nonzero, we get a useful cover of Pn by n + 1 
copies of V'. That is, 

Pn  = Un Ui' 
j=0 

where U3  -= f[X0 	: Sn ] E Pn  I X 3 	= {[X0 : 	: 	E Pn  I Xi = 

can be identified with Cn (or we may wish to use the notation A", since this 
complex n-space has no preordained origin). In fact, we need not use the 
complements of the hyperplanes defined by x i  to define a cover {U,}. Given 
any set of n + 1 linearly independent hyperplanes not passing through the 
origin, the lines in Cn+ 1  intersecting the ith hyperplane form a set Ui  that 
can be identified with IC", and together these give a cover of Pn that differs 
from the one we first described only by a change of coordinates in Cn+ 1 . 

Note that there is a natural Euclidean topology on Pr' induced by virtue 
of the fact that Pn is a quotient of Cn+ 1  — {0}. In particular, two points of 
Ir are close together if the corresponding lines in C 2+ 1  have a small angle 
between them. In this Euclidean topology on II", each of the sets Ui  is 
open, and the identification of Ui  with C" described above defines a home-
omorphism of topological spaces when 0 1  is considered with its Euclidean 
topology. Note that each Ut  is dense in Dr, and in fact, its complement is 
a lower-dimensional space (namely, Pn -1 ). The intersection of U, with U; 

 when i j is also dense. 
The open cover {Ui }  of Pn defines an atlas making projective space a 

complex n-dimensional manifold. The coordinate mappings U3 	C" are 
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essentially the normalized homogeneous coordinates 

[xo  : . 	: 

[X0 	• • xn] 

o • • • ' :0 

a.  a.  
xl xi 	• • 	 ' 

'On 	Exo • • • : xrd 	, 

To convince ourselves that these coordinates make projective space a 
complex manifold, we have only to check that changes of coordinates 

n 	—4 03 (U, n u; ) are holomorphic mappings. In fact, they 
are more than that: They are rational. For instance, 

o rpo  kai, • • . , an ) = on ({1 ai  ... : an]) = 	
1 

 
ay, an an 

The space Ir can thus be realized as a complex manifold obtained by 
gluing together n + 1 copies of complex ri-space. In fact, because Cn can 
be considered instead with its Zariski topology, and the "gluing maps" 
are rational, it is possible to put the structure of an "abstract algebraic 
variety" on projective space in a similar way. In the appendix, Section  Al, 
we define precisely the concept of an abstract algebraic variety, an object 
very much like a manifold. An abstract algebraic variety is essentially a 
topological space that has an open cover by affine algebraic varieties, glued 
together by morphisms of affine algebraic varieties. Rather than embark on 
this discussion here, we instead show in the next section how the Zariski 
topology can be defined on projective space in a very concrete way. 

Exercise 3.1.1. Show that the complex manifold Pn is compact. 

3.2 Projective Varieties 

Before giving any definitions, we remind the reader that there are no non-
constant analytic functions on the Riemann sphere P. In particular, we 
cannot expect to find nontrivial polynomial functions on IP 1  or on higher-
dimensional projective spaces. So we cannot hope to define a projective 
variety as the common zero set of a collection of polynomial functions on 
pli  

We can get around this problem by instead looking at certain kinds of 
polynomial functions on Cn+ 1 . A polynomial F E C[xo, , x n ] is called 
homogeneous if all its terms have the same degree. The zero set of a ho-
mogeneous polynomial in projective space is well-defined. To see this, note 
that if F E C[xo, , xn] is homogeneous of degree d, then 

F(Axo, 	, Axn ) = A dF(xo, .. • ,xn). 



At*, 15,1k.„ 	 ANoto, 
womMWM"10,0,g2V; 
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Now, if a point (x0 , ... 	E Cn+ 1  is in the zero set of F, then every point 
of the form (Ax0, 	, Axa), where A is any constant in C, also lies in the 
zero set of F. Thus the set of zeros in Cn+ 1  of a homogeneous polynomial 
is the union of complex lines through the origin. Therefore, although a 
homogeneous polynomial in n + 1 variables does not define a function on 
Pn, it makes sense to speak of its zero set in P' 2 . 

Figure 3.3. Zero set of a homogeneous polynomial 

Definition: A projective algebraic variety in Pn is the common zero set 
of an arbitrary collection of homogeneous polynomials in n + 1 variables: 
V = V({F,}) C Pn . 

Example: The projective variety V = V(x2 + y2 z2‘ ) C P2  is called a 
conic curve. 

Figure 3.4. V(x2  + y2  — z 2 ) C P2  

The conic is the union of its coordinate charts: 

= (v n ur ) u (v n uy ) u n 
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On the chart Uz  defined by z 0, the conic looks like a complex circle: 
Identifying Uz  with C2 , the curve in riz  is defined by the vanishing of 

+ y2 1. On the charts where s or y is not zero, the same variety 
is defined by equations that look more like that of a hyperbola, namely 
1 + y2  — z2  and x2  + 1 — z2 , respectively.' In the exercises we will see that 
any complex conic section can be constructed as an affine chart of this 
variety. 

As in the example, the intersection of any projective variety V with 
one of the affine coordinate charts of Pn is an affine algebraic variety. For 
example, let Ui be the open set of Fin where the coordinate si is not zero, 
and recall that Ui can be identified with affine space A.  Then setting the 
variable si to 1 in the defining polynomials for V gives a set of defining 
polynomials for V n  U. Thus, as in the case of projective space itself, we 
can think of a projective variety as being covered by affine charts: 

V = (V n uo ) u (v n ui ) u u (v n un), 

	

VnU c 	An . 

Another way to think about a projective variety in Pn  is to imagine a 
cone-shaped variety in Cn+ 1 , but then to identify all points lying on the 
same line through the origin. The variety in Cn+ 1  defined by a collection 
of homogeneous polynomials in x0, , xn  is called the affine cone over the 
projective variety in Pn defined by these same homogeneous polynomials. 
Care is required in writing V(Fi, 	, Fr) to denote a variety defined by 
homogeneous polynomials in C[x0, 	, zit], since this notation has two dif- 
ferent meanings depending on whether we compute the zero set in C".+ 1  or 
in Pn. To distinguish the  two  cases, we will speak of the "affine variety" or 
the "projective variety" defined by the Fi 's. 

Definition: Let V c Pn be a projective variety. The ideal of polynomials 
in n + 1 variables vanishing on V, 

	

11(V) = 	E C[x0,... ,Sn] F(V) = 	
J. 

is called the homogeneous ideal of the projective variety V. 

It is elementary to check that 11(V) is a radjedi ideal, and it follows from 
Hilbert's basis theorem that 11(V) is generated by finitely many polynomials. 
Furthermore, it can be checked that if a polynomial F is in 11(V), then  eaçh  

of its homogeneous components Fi  is in 11(V), so the generators of  11(V) 
may be assumed to be homogeneous polynomials. By considering the affine 
cone over a projective variety, it is easy to prove the following version of 
Hilbert 's correspondence for projective varieties. 

I NVe often use the words "hyperbola" or "parabola" to describe varieties, but really 
these words describe only the set of real points on them. 
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The Homogeneous Nullstellensatz: The projective subvarieties of Pn 
stand in one-to-one correspondence with the radical ideals of the ring 
C[xo, , xn ] that admit a set of homogeneous generators, with the ex-
ception of (x0, . . , x n) (which defines the origin in the space  

This motivates us to define the homogeneous coordinate ring of a 
projective variety V c Pn to be the ring 

C[xo, • • •  , x]  
II(V) 	• 

The homogeneous coordinate ring of a projective variety V C IPn is 
identical to the coordinate ring of the affine cone over V in An+1 . However, 
we cannot consider the elements of this ring as functions on  V.  

Just as in the affine case, finite unions of projective varieties in Pn  are 
projective varieties and arbitrary intersections of projective varieties in IPn  
are projective varieties. Thus, the projective varieties in Pn  form the closed 
sets of a topology, called the Zariski topology on Pn . Again, any projective 
variety in Pn  can be equipped with the subspace topology. The closed sets of 
this Zariski topology on a projective variety are its projective subvarieties. 

If V is a projective variety, then there is an induced subspace topology 
on each of the affine sets V n u, making up V. Fortunately, this induced 
topology agrees with the Zariski topology on the affine variety V n  U , as 
the reader will check using Exercise 3.2.2 below. 

Exercise 3.2.1. Show that every projective variety in Pn  is compact in 
the induced Euclidean topology. Show that projective varieties are corn-
pactifications of affine varieties, in both the Zariski topology and, more 
significantly, in the Euclidean topology. 2  

Exercise 3.2.2. Find a bije,c*n between the set of all homogeneous poly-
nomials in two variables of degree d and the set of all polynomials of degree 
d in one variable. (Hint: Set one of the variables to the constant 1.) Use this 
to show that the subspace topology induced on the affine patches V n A2  
from the Zariski topology on a variety V C P2  is the same as the Zariski 
topology on the affine variety V n A2 . Generalize to arbitrary dimension. 

14)(12_61, hl r2c,„ 	iv,  AV 

3.3 The Projective Closure of an Affine Variety 

Let V be an affine algebraic variety in An. We can visualize An  as one of the 
coordinate leaves of Pn , and hence, in a natural way as a dense open subset 

2  A compactification of a topological space is a compact extension of the original space 
such that the original space is dense in the extension. 
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of Ir. In this case, Pn is a natural "compactification" or "completion" of 
An. Thus, we can also visualize V as a subset of Pn. 

Definition: Let V be an affine algebraic variety, considered with fixed 
embeddings V C  A C Pn. The projective closure of V, denoted by V, is 
the closure of V in the projective space Ir. The closure may be computed 
either in the Zariski topology on  Pi',  or in the Euclidean topology on Pm; the 
result is the same, and both correspond to our intuitive idea of a closure. 

Forming the projective closure of an affine algebraic variety gives a 
natural way to compactify any affine algebraic variety in the Euclidean 
topology. On the other hanS, it is important to realize that the projective 
closure depends on the embedding of V in  P. In particular, isomorphic 
varieties can have non-isomorphic projective closures. See Exercise 3.4.4. 

Example: Consider the parabola V = V(y — x 2 ) c A2  c P2 , illustrated in 
Figure 3.5. The variables x and y are the affine coordinates for V, that is, 
the coordinates of A2 . In the projective plane we use homogeneous coordi-
nates, x, y, and z, thinking of A2  as the open set Uz  where z is nonzero (in 
the figure, A 2  is identified with the plane z = 1 in C3 ). 

Figure 3.5. The projective closure of the parabola in P2  

Imagine the parabola in the projective space IP2 : Its points are the lines 
through the origin in C3  connecting to the points on the parabola in the 
plane z = 1. There is obviously one line "missing" from the cone over the 
parabola, namely, the line x = z = 0, the y-axis, where the two branches 
of the parabola come together. As a projective variety, our parabola ought 
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to be defined by the equation zy — x 2  in P2 . Note that it consists of our 
original parabola y — x2  in the open set Uz , plus one "infinitely distant 
point"  [0: 1:  0]. 

If we know the ideal of an affine variety in An, it is not difficult to find 
the ideal for its projective closure in P". We now explain this process, called 
homogenization. 

The polynomial zy — x2  is called the homogenization of y —  x 2 .  In general, 
a degree-d polynomial F in n variables is homogenized to become a degree-
d homogeneous polynomial P in n + 1 variables  as  follows: Decompose 
F into the sum of its homogeneous components of various degrees, F = 
Go + G1 + . . . + Gd, where G, has degree i and some Gi 's may be zero (but 
Gd 0). Now, Gd already is homogeneous of degree d. The term Gd-1 E 

xn ] is homogeneous of degree d — 1. We repair it, multiplying by 
a new variable xo, to obtain a degree-d homogeneous polynomial xoGd_i E 
C[xo,  Xi,...  x n ). Every term Gi can be made homogeneous of degree d by 
multiplying by x. The sum of the modified terms is the homogenization 
of F, a degree-d polynomial 

P = xgGo + 	.. • +Gd• 

Obviously, the restriction of P to the plane xo  = 1 recovers our original 
polynomial F. 

It is natural to guess that if V = V(Fi, 	, 	c A' is an algebraic 
variety, then the projective closure V of V in Pn might be defined by the 
ideal obtained by replacing each of the polynomials F by its homogeniza-
tion F. This is the case, for example, with the parabola defined by x2  — y, 
whose projective closure is defined by x2  — yz. Unfortunately the situation 
is not so simple in general. 

For example, let V be the subvariety of A 3  defined by the two polyno-
mials y — x 2  and z xy. It is easy to see that V consists of the triples 
{(A, A 2 , A3 )1, that is, V is the twisted cubic we met earlier (see Exercise 
1.2.3). Furthermore, the ideal generated by y — x2  and z — xy is the full 
radical ideal of polynomials vanishing on V. The homogenizations of these 
polynomials are wx — y 2  and wz — xy. However, the reader can check that 
the subvariety of r defined by these two polynomials consists of two corn-
ponents: The  closure  V of the twisted cubic plus the line defined by the 
vanishing of w and y. This extra  line  lies "at infinity" 'With respect to the 
affine chart U„, which is why we did not see it before,'This example shows 
that the closure V of V is not simply the variety n P3  defined by the 
homogenizations of a set of generators for II(V). NoOtheless, we have the 
following theorem. 

Theorem: Let V C A' C Pr' be an affine algebraic variety, and let I C 

C[xi • • • • , xrd be the radical ideal of all polynomials vanishing on V. Then 
the ideal f of C[xo, 	, xn] generated by the homogenization of all the 
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elements of I is the radical homogeneous ideal of polynomials vanishing on 
the projective closure V in Pn• The ideal / is called the homogenization of 
the ideal I. —` Po,  r 1-  

Of course, because I is finitely generated, we know that I has some set of 
generators whose homogenizations produce I, but the preceding example 
shows that we must be careful about the choice of generators. 

Proof of theorem: Let / be the radical ideal defining V in An, and let I 
be its homogenization. We need to show that V = Ir(I ) c Pn. 

To show that V cV(i), it is enough to show that each G in I vanishes 
on V. For this, note that setting xo = 1, G is sent to a polynomial g in the 
ideal I. Thus G restricts to g on the open set U0  where the homogeneous 
coordinate xo is nonzero, which is the affine patch of Pn containing V. This 
means that G vanishes on V = V n uo . So V, and hence its closure V, is 
contained in the closed set V(/). 

For the converse we need to show that any polynomial vanishing on V is 
contained in  I. If G is a homogeneous polynomial vanishing on V, then G 
vanishes on V n Uo. Thus the polynomial G(1, xl, 	xn) = 9(x1, • • • , xn) 
vanishes on V, and g is in  I. By definition, the  homogenization 'y of g is 
in  I. It is easy to check  that "44 = G  for some t, so G is in  I as well. We 
leave it to the reader to check that I is radical in Exercise 3.3.3 below. 

Exercise 3.3.1. Show that if V is an irreducible affine variety, then its 
projective closure V is also irreducible. v 	 r  

Exercise 3.3.2. Show that the twisted cubic curve V in A3  can also be 
defined by the polynomials z  — y2  and  z  — z3 , and that these polynomials' 
generate the full radical ideal of polynomials vanishing on V. Show that the 
two homogeneous polynomials obtained by homogenizing these polynomials 
define the projective closure V in P3 , but that the ideal they generate is 
not radical. 

Exercise 3.3.3. Show that the homogenization of a radical ideal is radical. 
(Hint: It suffices to show that if a power of a homogeneous polynomial is 
in the homogenization, then so is the polynomial) 

3.4 Morphisms of Projective Varieties 

We turn our attention to morphisms between projective varieties, beginning 
with an example. 

Consider the map 

Pi 	p2, 

[S : 	[s2  : st : t21. 
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This map is well-defined. Indeed, if [s : t] E Pl , then 

	

[s : t] = [As : At] 	[A2 s2  : A 2 st : A2 t2 ] = [S2  : St : t2 ] 

for any nonzero constant A, so that the map does not depend on our choice 
of a representative for a point in IP1 . Also, at least one of the coordinates 
s2  or t2  of the image is nonzero. 

Since s2 t2  = (st) 2 , the image of this map lies on the curve C = V(x.z— y2 ) 
p2 . So the map defines a map from P 1  to the curve C. 
In the affine patch A 1  Ut  = fis : t] I t OE denoting the coordinate 

by the letter u, this map can be written 

A2 	Ux  = {[x :  y:  z] I z 0 } . 
U 
	

(u2 , 	[u2  :  u:  1]. 

The image of this map is the parabola V(x — y2 ) C A2 . Similarly, in the 
other affine patch, A 1  Us  -=  fis  : t] s 01, the map is described by 

A 1 	A2  Ux  = {[x : y : z]  I x  01, 
V F-'). 
	(v, v2 ) 	[1: V  : v2 ], 

where v 1. Again, the image is a parabola in the plane. 
The map IP 1 	C thus restricts, locally on the coordinate charts covering 

IP) 1 , to a morphism of affine algebraic varieties as defined in Chapter 1. This 
motivates the following definition. 

Definition: Let V C Pn and W C Pm be projective algebraic varieties, 
and suppose that 

V -f+' 

is a map from the set V to the set W. We say that F is a morphism 
of projective varieties if the following holds: For each p G V, there exist 
homogeneous polynomials Fo , 	, Fm  E C[xo, 	, x72 ] such that for some 

Flu nonempty open neighborhood U c V of p, the map U 	W agrees with 
a polynomial map 

U 	Frn 
q 	[Fo (q) : Fi (q) : • • : Fm (q)]. 

Of course, implicit in the definition is the fact that the homogeneous 
polynomials Fi  all have the same degree. Otherwise, they will not describe 
a well-defined map to pm. Furthermore, the Fi  must not vanish simultane-
ously on the open neighborhood U of p. It is important to realize that for 
different points p, it may be necessary to make a different choice of poly-
nomials (and neighborhoods) to see that F is locally a polynomial map 
(we give an example below). The definition ensures that when a morphism 
of projective varieties is restricted to the coordinate charts, it defines a 
morphism of affine algebraic varieties. 
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By convention, when we say "open neighborhood" in the above definition, 
we mean a Zariski—open neighborhood. But those who have studied some 
complex analysis will quickly realize that it doesn't matter at all whether 
we use Zariski—open neighborhoods or  open neighborhoods in the Euclidean 
topology. The main advantage of the Zariski topology is that it is available 
to us also in situations where the Euclidean topology is not, for instance if 
we work with algebraic varieties in projective space over some field other 
than C or R. 

Example: Let C -= V(zx — y2 ) C IP'2  be a plane conic. Consider the map 

C 	IP 1 , 

{[x : y] if x 	0, 

This map is defined at all points of C: Given a point of C, either its x or 
its y coordinate is nonzero, for if both were to be zero, then the relation 
y2  -- xz would force y to be zero as well. To see that the map is well defined, 
note that if [x : y : z] is a point of C with both its x and z coordinates 
(and hence its y coordinate) nonzero, then because the points of C satisfy 
xz -= y2 , we see that 

[x : y] = [yx : y2 1  = [xy : xz] = [y : z]. 

This illustrates the important local nature of morphisms of projective va-
rieties: The map C IPI is locally polynomial, but no single choice of 
polynomials will work for all points of C. 

In the chart Ux  n C, the morphism C IP 1  restricts to the projection of 
the parabola 

(u, u2 ) 	u 

to the affine line. This map is the familiar stereographic projection of the 
conic curve C to the line IP' 1 .1 Our choice of affine coordinates so as to make 
C look like a parabola places the point from which we are projecting at 
infinity. For  ex ample,  the point at infinity is [0 : 0 : 1] when we consider 
the chart U.  

Of course, whenever we have morphisms, we can also define isomor-
phisms. An isomorphism between projective varieties V and W is a 

G morphism V —+ W such that there exists a morphism W —4 V that 
is inverse to F.  

Example: The simplest example of an isomorphism is given by change 
of coordinates in Pn. Explicitly, let Fo, F1 , , FT, be linearly independent 
linear forms in n + 1 variables. Then we have a morphism 

--> 
x 	[Fo (x) : Fi (x) : . . . : F71(x)j. 

[x : y : z] 1-4 
[y : z] if z 	O. 
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The map is induced by the corresponding linear map of the vector space 
Cn+ 1 , and it is sometimes convenient to represent it by an (n + 1) x (n + 1) 
invertible matrix. The inverse morphism Pn  Pn is given by the inverse 
matrix. 

Example: For a less trivial example, note that the conic curve C C P2  is 
isomorphic to P i . Indeed, the morphisms 

jpi 

[s : t] 	[82  : st : t2 ], 

and 

C 

{

[x : y] if x 	0, 

[y : z] if z 	0, 

are easily checked to be inverse to each other. 

Here we see a big difference between the theory of affine and projective 
varieties. Two affine algebraic varieties are isomorphic if and only if their 
coordinate rings are isomorphic as C-algebras. However, the corresponding 
statement is quite false for projective varieties. In the example above, C 
and IP 1  are isomorphic, but their homogeneous coordinate rings, 

C[x,y, z] 
	 and C[s,t], 
(xz — y2 ) 

are not isomorphic as C-algebras. Indeed, an isomorphism of the C-algebras 
would correspond to an isomorphism between the affine cones over C and 
P1 . These are the varieties 

V(xx — y 2 ) C A 3  and A2 . 

It is intuitively clear that these varieties ought not be isomorphic, because 
the former looks like a cone, with a singular point at the origin, while the 
affine plane has no singularities. 

A projective variety is determined, up to isomorphism, by its homoge-
neous coordinate ring, but not conversely. However, there is a stronger 
type of isomorphism between projective varieties that does guarantee an 
isomorphism between the corresponding homogeneous coordinate rings. 

Definition: Two subvarieties of Pn are said to be projectively equiva-
lent if there exists a (linear) change of coordinates on Pri that defines an 
isomorphism between them. 

For example, the lines V(x) and V(y) are projectively equivalent 
subvarieties of P2 . The necessary change of coordinates is 

p2 	p2 

[X : y z] 	[y x : z]. 

[x :  y:  z] 
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Exercise 3.4.1. Find the matrix that describes the projective equivalence 
above. 

Exercise 3.4.2. Show that the homogeneous coordinate rings of projec-
tively equivalent varieties are isomorphic. 

Exercise 3.4.3. Find an example of two plane projective curves that are 
isomorphic but not projectively equivalent. 

Exercise 3.4.4. Show that the affine varieties V(x) and V(x — y4  z4)  in 

A3  are isomorphic but that their projective closures in P3  are not. (Hint: If 
you find it difficult to show rigorously that the projective closures are not 
isomorphic, try again after reading about smoothness in section 6.2.) 

3.5 Automorphisms of Projective Space 

We now determine all isomorphisms from projective space to itself, the 
automorphisms of Pn. 

If you have seen some complex analysis, you know that the conformal 
mappings from the Riemann sphere to itself are exactly the Möbius trans-
formations, also known as the fractional linear transformations. Because 
every automorphism of Pl is locally polynomial, and hence holomorphic, it 
follows that every automorphism of the projective variety 1111  is a conformal 
map of the Riemann sphere to itself. On the other hand, it is easy to see 
that a Möbius transformation is a morphism of the projective variety P', as 
we will soon explain below. In other words, the automorphisms of the pro-
jective line are exactly the Möbius transformations. This idea generalizes 
to projective spaces of arbitrary dimension. 

Recall that an invertible matrix g E GL(n + 1, C) defines a vector space 
map 

c .+1 

	

(x0 , ... ,x 7,) 	g (x o , 	,x),  

which determines an automorphism of projective space 

	

pn 	pn ,  

	

[X0 : • • • : X n ] 	g ([xo : • • • : sn,]). 

This automorphism is simply a linear coordinate change in Pfl, and its 
inverse automorphism is given by the inverse matrix g-1 . Because the co-
ordinates of Pn are defined only up to scalar multiple, the matrices g and Ag 
define the same isomorphism, for any nonzero scalar A in C. On the other 
hand, matrices differing in some other way produce different isomorphisms. 

It turns out that every automorphism of projective space has this form, 
that is, the only automorphisms of Pn are linear changes of coordinates. It 
is a tedious job to prove this by elementary calculations, but those familiar 
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with complex analysis can easily show that every biholomorphie automor-
phism of Pn is a linear change of coordinates. There is an elegant algebraic 
proof, but it requires tools not presented here (see [20, page 151]). 

A fancy way to say that every automorphism of Pn is a linear coordinate 
change is to say that the automorphism group of Pn is 

PGL(n + 1,C) = GL(n + 1,C) /C*, 

the group of (n + 1) x 	+ 1) matrices modulo the subgroup of nonzero 
scalar matrices. 

We easily check that this result generalizes the familiar one dimensional 
case, that is, that PGL(2, C) is the group of Möbius transformations. To 
wit, an element of PGL(2, C) determines a map 

[z : w] 1---> [az + bw : cz + dw], 

in other words, a Möbius map, 

[ az 	b  
[z :1] 	 : ] 

cz + d 
1. 

 

Conversely, a Möbius transformation of the form z 	(az + b)I(cz + d) 
gives rise to the automorphism of 1111  given by [z : w] 	[az + bw : cz dw]. 

We can now state the definition of projective equivalence given in Section 
3.4 in a slightly different form. Two subvarieties of projective space are 
projectively equivalent if and only if they differ by an automorphism of the 
ambient projective space. That is, the equivalence classes of projectively 
equivalent subvarieties of are precisely the orbits of the natural action 
of PGL(n + 1, C) on the set of all projective subvarieties of Pn. 

Our discussion indicates that there is no difference between the algebraic 
automorphisms and the biholomorphic automorphisms of Pn. In fact, there 
is no difference between the algebraic and the complex analytic categories 
in much more general settings: 

Chow's Theorem: Every compact complex manifold embedded in Pn is 
the common zero set of some homogeneous polynomials F1 , , So 
every compact complex submanifold of projective space is a projective va-
riety. Furthermore, every holomorphic mapping between such manifolds is 
a morphism of varieties. 

We do not prove this here; instead, we refer the reader to [37, part III]. 
Chow's theorem fails without the compactness hypotheses. Serre vastly 
generalized Chow's theorem in his famous "GAGA" paper [36]. 

There is a partial converse to Chow's theorem in the one-dimensional 
case. Every complex one-dimensional compact manifold (that is, every Rie-
mann surface) can be embedded as a complex manifold in projective space, 
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and hence is defined by polynomial equations. Thus, a smooth3  projective 
one-dimensional algebraic variety is "the same as" a compact Riemann 
surface: There is a unique way to define a complex structure on a smooth 
projective curve, and a unique way to define the structure of a projective 
variety on each compact Riemann surface. 

Exercise 3.5.1. Let F and G E C[x, y, z] be two irreducible homoge-
neous quadratic polynomials. Show that there exists an automorphism of 
P2  mapping V(F) isomorphically onto V(G). This shows that there exists 
only one (nondegenerate) projective conic up to a linear change of coordi-
nates (Hint: An irreducible quadratic polynomial defines a nondegenerate 
quadratic form on C3 ). 

Exercise 3.5.2. Show that up to affine change of coordinates in the affine 
plane, there exist exactly two nonisomorphic affine (nondegenerate) conic 
plane curves. That is, the zero set of any irreducible quadratic polynomial 
F e C[x, y] is—up to a linear change of coordinates—either a parabola 
V(y — x 2 ) or a hyperbola V(xy — 1), but the parabola and hyperbola are 
nonisomorphic. 

Remark: After completing the first Exercise above, you might hope that 
there is only one plane cubic up to isomorphism. However, there is a con-
tinuum of nonisomorphic plane cubics, the elliptic curves, parametrized by 
Al using the so-called j-invariant (see [20, Chapter IV, Section 4]). 

3 Smoothness of an algebraic variety will be defined precisely in Section 6.2, here we 
rely on the reader's intuitive idea. 





4 
Quasi-Projective Varieties 

4.1 Quasi-Projective Varieties 

We have developed the theory of affine and projective varieties separately. 
We now introduce the concept of a quasi-projective variety, a term that 
encompasses both cases. More than just a convenience, the notion of a 
quasi-projective variety will eventually allow us to think of an algebraic 
variety as an intrinsically defined geometric object, free from any particular 
embedding in affine or projective space. 

Definition: A quasi-projective variety is a locally closed subset of Pm, con-
sidered with the Zariski topology induced from P. Recall that a locally 
closed set of any topological space is a closed subset of an open subspace, 
in other words, an intersection of an open set and a closed set. 

The class of quasi-projective varieties includes all projective varieties, all 
affine varieties, and all Zariski open subsets of these. The set of quasi-
projective varieties is closed under taking open or closed subsets. For 
brevity, we often say "variety," instead of quasi-projective variety. 

We can define a morphism between quasi-projective varieties in exactly 
the same way we defined a morphism between projective varieties. To be 
precise, if V C IPm and W C Pm are quasi-projective varieties, then a 

MOrphiSM V ---+ W is a map such that for each p e  V,  there exist 
homogeneous polynomials F0 ,.. . , Fm  in n + 1 variables such that the map 

V 	Pm, 
q 	[F0 (q) : • • • : Fm(q)], 
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is well-defined at p and agrees with F on some nonempty open set 
containing p. 

One disadvantage of this definition is that it refers to a specific embed-
ding of the quasi-projective varieties in projective space. We will give an 
equivalent definition in Section 4.3 that avoids this inconvenience. 

Example: Let U = A 1  N {0} and let V = V(xy – 1) C A 2 . Both U and V 
are quasi-projective varieties, and we have a well-defined map 

U 	V, 
t 

We claim that this is a morphism of quasi-projective varieties. To see this, 
we identify U with a locally closed (in fact, open) subset of P I  by the map 
t 1–> [t : 1]. Likewise, we identify V with a closed subset of P2  defined by 
xy – z2  = 0 via the map (x, y) [x : y : 1]. It is easy to check that the 
map F agrees everywhere on U with the morphism 

pi ±p2  

[a : b] 1—> [a2  : b2  : ab]. 

Indeed, on U neither a nor b is zero, so setting t = 	we see that Ê sends 
[t : 1] to 

[t2  : 	: t] 	{t : –
t 

: 	. 

The image of this map is precisely V C P2 , and the map obviously agrees 
with the original map F. 

By enlarging our world to include all quasi-projective varieties, we gain 
flexibility. However, we must redefine the concept of an affine variety. 

Definition: A quasi-projective variety is said to be affine if it is isomorphic 
as a quasi-projective variety to some affine algebraic variety. From now on, 
when we want to refer to the original definition of an "affine variety in An," 
we will call it a Zariski-closed subset of An. 

Thus an affine algebraic variety is a variety that can be embedded in 
affine space as a Zariski-closed subset. With this refined definition of an 
affine variety, we emphasize the intrinsic nature of the variety, rather than 
the extrinsic feature of a particular embedding in affine space as in Section 
1.1. This change of definition actually enlarges the class of affine varieties, 
as the next example shows. 

Example: The open set U = Al N {0} in A l  is an affine variety. The 

projection map V V(xy – 1) 	U given by G(x, y) = x is a morphism 
of varieties (see Figure 4.1). Letting F denote the morphism U –> V defined 
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above, we see that F o G is the identity map on V and  Go  F is the identity 
map on U. So A' N {0} is a quasi-projective variety that is isomorphic to 
the Zariski-closed set V(xy — 1) in A 2 . Accordingly, we now call A l  N {0} 
an affine variety. 

V 

o 	 

Figure 4.1. An isomorphism of quasi-projective varieties 

The coordinate ring of an affine variety W is defined to be the coordinate 
ring of any closed subvariety of affine space isomorphic to W. To be precise, 
fix an isomorphism of quasi-projective varieties 

W V, 

where V is a Zariski-closed set of some affine space. The coordinate ring 
C[W] on W is defined to be the ring of all functions W C that are 
pullbacks of functions f in C[V]. It is not difficult to check that this is 
well-defined, that is, it does not depend on the choice of V or on the choice 
of the isomorphism F between W and V. In checking this fact, the reader 
will need to verify that if two Zariski closed subvarieties of affine spaces are 
isomorphic as quasi-projective varieties, then they are also isomorphic as 
affine algebraic varieties as defined in Section 1.3. That is, any isomorphism 
of quasi-projective varieties that are Zariski-closed subsets of some ambient 
affine spaces is in fact the restriction of a polynomial map on the- ambient 
spaces. 

In the example above, the coordinate ring of A 1  N {0} is isomorphic to 

C[x, y] 	[ 1 
C[V] = 

(xy — 1) 
C x

' 	' 
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the Laurent polynomials in one variable. 

We can also reinterpret the definition of a projective variety as any quasi-
projective variety that is isomorphic, as a quasi-projective variety, to some 
Zarisld-closed subset of some projective space. Unlike the case of affine 
varieties, it turns out that this does not enlarge the class of projective va-
rieties: A quasi-projective variety in fpn is isomorphic to a Zariski-closed 
subset of some pm if and only if it already forms a Zarisld-closed subset of 
Pn . On the other hand, redefining projective varieties this way does lead 
to an important shift in our point of view. A projective variety should be 
interpreted as one that can be embedded in some projective space, rather 
than one that comes equipped already with a particular embedding. This 
is more in keeping with the modern view of algebraic varieties as intrin-
sic geometric objects, separate from the extrinsic information of a fixed 
embedding in projective space. 

Exercise 4.1.1. Prove that the complement of a line in A2  is an affine 
variety and determine its coordinate ring. 

\ 

"•4 v 	_ 

V - 1  

Figure 4.2. The complement of a line in A2  is affine 

4.2 A Basis for the Zariski Topology 

The Zariski topology for any quasi-projective variety has a basis of open 
affine sets. This important fact allows us to think of every quasi-projective 
variety as "locally affine" in the same way that a manifold is "locally Euclid-
ean": Each point p of the variety has an open neighborhood that is an affine 
algebraic variety. 

To see this, first we observe that the complement of any hypersurface in 
an affine variety is again an affine variety. More precisely, if V is a Zariski- 
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closed subset of affine space An, and f is any function in the coordinate 
ring C[V] of  V,  then the open set 

U=  V NV( f) 

is again an affine algebraic variety (though not usually a closed subvariety 
of  V,  and hence not a Zarislci-closed set of the ambient An ). 

Figure 4.3. Complement of a Hypersurface 

Indeed, think of U as a subset of An and consider the map 

An±i 

(x1, . . .  ,x) 
	

(xl, • • • ,xn, f(s,L,s„)) ' 

Because f does not vanish on U, this map is well-defined. Furthermore, if 
x n , z denote the coordinates for A72+ 1 , then the original defining 

polynomials Fi(xi, ••• , xn), • • • , Fr(xi, • • , x)  for V in An  all vanish at 
the image points of iras does the polynomial zf(x i ,... , xn ) — 1. In other 
words, the image of flies in the Zarisld-closed subset of An+ 1  defined by 
W = ,Fr , z f — 1). 

The reader can easily check that this map of sets 

U —> V(Fi, , Fr , z f — 1) C An+1  

is an isomorphism of quasi-projective varieties, following exactly the same 
argument as in the case of the complement of a point in Al. This shows 
that the open subset U of the affine variety V defined as the complement of 
the vanishing set of a single polynomial function f on V is again an affine 
variety. By definition, the coordinate ring of U is isomorphic to C[W] = 

  The reader will easily verify that C[W] C[V][ 1] (Fi ,...,F,,zf-1) • 	 f 

Caution: Not all open sets of affine or projective space are affine. Indeed, 
the punctured plane, A2  N {O}, is not affine. We do not yet have the tools 
to give a concise proof that this is not affine, but we will return to this 
example in the next section. 
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We can now see why every quasi-projective variety V has a basis of open 
affine sets. As we have seen, thinking of V as a subset of projective space 
Pn, V is the union of its intersection with each of the coordinate charts 
Ui in Pn. Now, each V n  U is a quasi-projective variety in Ui An, and 
because a locally closed subset of a space can be written as an open subset 
of a closed set, each has the form V(Fi , 	, Fs ) N V(Gi,... ,Gt), where 
the  F 	the Gi are polynomials on An, . This set is evidently covered 
by the open sets V(Fi, 	, Fs ) N V(G), which are the complements of 
the hypersurfaces defined by the restrictions of the G3  to the closed set 
V(Fi , , F3 ). Because each of these sets is the complement of a hyper-
surface in an affine variety, each is affine; furthermore, each is open in V. 
Thus the quasi-projective variety V has a cover by open affine sets. 

It follows immediately that the Zariski topology of any quasi-projective 
variety has a basis of open affine sets, since each open set of a quasi-
projective variety is itself quasi-projective. 

Exercise 4.2.1. Let V be an affine variety and f a function in its coor-
dinate ring. Show that if f vanishes nowhere on V, then f is invertible in 
C[11. 

Exercise 4.2.2. Find an open affine cover of the punctured plane A 2  \ 
{(0, 0)}. 

Exercise 4.2.3. Show that the set GL(n, C) of invertible n x n matrices 
has the structure of an affine algebraic variety (see Section 1.1). 

4.3 Regular Functions 

Regular functions on a quasi-projective variety are a natural generalization 
of polynomial functions on an affine variety. 

Behind the definition of a regular function is the idea that quasi-
projective varieties are like manifolds in many respects. Whereas manifolds 
look locally like the Euclidean space Itr, varieties look locally like affine 
varieties. The existence of a basis of open affine sets means that we can 
think of a variety as a union of affine varieties, and so we define a regular 
function locally—its restriction to each affine patch should be a polynomial 
function. 

First consider a Zariski-closed subset of An, say V. Given any two func-
tions f and g in the coordinate ring C[V], the rational expression tog  can be 

thought of as a locally defined function: 	is well-defined on the open set 

V N V(g). As we have seen, this open set is isomorphic to an affine variety 

with coordinate ring gill a Zariski-closed set in An+ 1 ; the  correspond-
ing isomorphism is analogous to a chart map for a manifold that sends an 
open set in the manifold to an open set in Euclidean space. On our chart 
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V \ V(g), the function is identified with the polynomial function z on 

An±', and the function L is identified with the polynomial function z f on g 
An+ 1 . In this sense each rational function on V is a polynomial function 
on some open subset of V. 

Now we define a regular function on an affine variety that is not 
necessarily a closed subset of A'. 

Definition: Let U be any open set of an affine variety V. A complex-valued 

function U ±> C is regular at a point p G U if there exist functions g and 
h in C[V] such that h(p) 0 and f agrees with the function f in some 
neighborhood of p. The function f is regular on U if it is regular at every 
point of U. The set of all regular functions on U is denoted by Ov(U). 

If V is a Zariski-closed subset of A', then obviously each element g E 
C[V] in its coordinate ring defines a regular function V —> C. In other 
words, there is a natural inclusion C[V] C Ov(V). Actually, we will soon 
see that a regular function f E Ov(V) must be the restriction of some 
polynomial function on A" to V, so that  C[V] = Ov (V). Before giving the 
proof, we discuss some examples. 

Examples: (1) The slope function 

U = A2  NV(x) 
(x, y) 

is regular on the set U. 

(2) Projection from a point in the plane defines a regular function as follows. 
Take any p E A2 . Choose a line E c A2 , not passing through p, and identify 
L  with the complex line A l . Let e be a line, parallel to E and passing through 
p. 

9 0 

Figure 4.4. Projection from a point 

Define a function 

A2  N e —t> i = C, 
q 1-- the only element in To n  L.  
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The reader will easily verify the regularity of on the open set A2  \.e' by 
expressing it as a rational function of the coordinates of A2 ; see Exercise 
4.3.2. 

Theorem: Let V be an irreducible Zariski closed subset of A'. Then every 

regular function V .-L> C is the restriction of some polynomial A" 	C 
to V. In other words, Ov(V) =-- C[V]. 

Proof: We have already seen that C[V]  c  Ov(V). 
Now let g E Ov(V) be any regular function on V. By definition, for 

each p G V, we can find an open neighborhood Up  of p such that g agrees 

with some rational function where h p  and k, are elements of C[V] with 

k(p) 	O. 
Because the affine open sets of the type Up = V \ V(F) form a basis for 

the Zariski topology on V, we can assume that each of the open sets Up 
 is of the form Up for some F (depending on p). Furthermore, because the 

Zariski topology on V is compact, there is a finite subcover of the cover 
{Up } pe v of V consisting of sets of the form UF1 ,... ,UF, where g agrees 
with on Up, V \ V(F). Thus 

glup, = h, 
	

for each i 	1, ... t. 

Because the open sets {UF }L 1  cover V, the polynomials k, cannot all 
simultaneously vanish on V. Thus V(ki, , kt) = 0, and Hilbert's Null-
stellensatz implies that the ideal generated by the ki 's must be the unit 
ideal of C[V]. This means that we can write 

1 = E 
j-i 

for some polynomial functions Li  E C[V]. Then, in every Up, we have 

t 	/12  
g =1. g = E ii k, E qv]. 

Set 

f = E hit;  e C(11. 
i= 

We claim that f = g as functions on V, and this will complete the proof. 
To see this, first note that because g restricts to Ili:- on Up, for all i, we 
must have that 

h i 	hi  

T 17.; 
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on the dense open set UF•  fl Upj , whence the polynomials hiki and hi k, 
agree as functions on V, for all pairs i, j. Thus on each U„ 

( t 
	 t 	 t 

g =1- g -= Etiki • (—
hi

) = Eti(hiki)— = Et 
ki 

1 

j=i 	ki 	j=i  
j=1 

Because g agrees with f on each open set in the cover Ui  of V, we conclude 
that g = f C[V]. 

The theorem is true even when V is not irreducible, but the proof in this 
more general case requires more technical algebra. 1  The problem is that 
while = on UF, n upp  the set Up, n UF, may not be dense, so this 
does not imply that h,ki  = hi  ki  in the general case. 

The preceding theorem is important because it ensures that our local 
definition of a regular function on an affine variety produces precisely the 
same functions we have already adopted as the natural ones to look at 
when studying affine varieties, namely, the restrictions of polynomial maps 
on the ambient affine spaces. We can now confidently state the definition 
of a regular function on an arbitrary quasi-projective variety. 

Definition: Let U be an open subset of a quasi-projective variety V.  A 

complex-valued function U 	C on U is regular at p G U if there exists 
some affine open set containing p on which f is regular at p. A function 
is regular on U if it is regular at every point of U. The set of all regular 
functions on U is denoted by Ov(U). 

If the quasi-projective variety V happens to be affine, this definition 
agrees with the definition of a regular function on an affine variety. 

Fix a quasi-projective variety V and consider the set Ov(U) for each 
open set U in V. The local nature of regular functions can be summarized 
in the following properties. 

1. Every Ov (U) is a ring (in fact, a C-algebra) with respect to pointwise 
addition and multiplication. 

2. If a function is regular in U, it will also be regular in any open subset 
of U, and if U1 C U2 are open subsets of V, then restriction defines a 
natural ring homomorphism Ov(U2) -4  Ov(U1)• 

3. If two regular functions fi and 12, defined in U1  C V and U2 C V 
respectively, agree in the intersection U1  n U2, they uniquely define 
a function f on the union U1 U U2. The function f is regular on 
the union, and fi  and f2 are the restrictions of f to the original 
sets. The same can be done for more than two functions, in fact for 

'See [20, Proposition 2.2 on page 71]. 

= f. 
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infinitely many, provided that the functions f  agree on all pairwise 
intersections of the sets  U. 

4. Regularity of functions is preserved by pullbacks with respect to mor-

phisms. More precisely, if V W is a morphism of quasi-projective 
varieties and U c W is an open set, then for any f e ow (u), 

f F E Ov(F(U)). 

A formal way to phrase the first three properties above is that every 
quasi-projective variety comes equipped with a natural sheaf of C-algebras, 
denoted by Ov and called the structure sheaf of  V.  Property 4 says 
that every morphism of algebraic varieties induces a natural morphism 
of the corresponding sheaves of regular functions. The appendix contains 
more about sheaves and the use of sheaves to define schemes and abstract 
algebraic varieties. 

The definition of a morphism of quasi-projective varieties can also be 
rephrased in a local way, using regular functions. 

Definition: A map V 	W of quasi-projective varieties is a morphisra 
if for all p E V, there exist open affine neighborhoods U of p and U' of 
0(p) such that O(U) C U' and Olu  agrees with a map of affine varieties 
as defined in Section 1.3, that is, Olu  should be given by a set of regular 
functions in the coordidnates of U. 

The reader can check that this agrees with our previous definition of a 
morphism of quasi-projective varieties. The advantage of this new definition 
is that it does not require us first to embed the quasi-projective variety into 
projective space in order to describe the morphism. 

Exercise 4.3.1. Show that the projection map described in the example 
is regular. (Hint: Choose (or change) coordinates for the plane so that the 
point p is the origin, is the y-axis, and  L is the line z  = 1.) 

Exercise 4.3.2. Show that the ring Ov(U) of regular functions on the 
punctured plane A2  N 1(0, 0)1 is the polynomial ring Clx, yl. Conclude that 
this quasi-projective variety is not affine. 
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Classical Constructions 

5.1 Veronese Maps 

Veronese maps provide an important example of morphisms of quasi- 
projective varieties. A Veronese map embeds a projective space 1P11  as a 
subvariety of some higher-dimensional projective space in a nontrivial way. 

Consider the set of all homogeneous polynomials of fixed degree d in the 
polynomial ring C[x0, 	, x r ] . This is a finite-dimensional C-vector space, 
and the (d+d n) monomials of the form xdo° • • x nd' with Ed, 	d form a 
basis. 

Definition: The dth Veronese mapping of Pr is the morphisrn 

Pn 
[xo  : • • • : x n ] 

pm  , 
d [xod  : x 1  x1 : • • • : xn } 

all monomials of degree d 

where m = (d+dn) — 1. 

This is a well-defined morphism of projective varieties, because the defin-
ing polynomials all have the same degree and do not all simultaneously 
vanish at any point of Pa. 

Proposition: The Veronese mapping lid defines an isomorphism of Pn 
onto its image. In other words, the Veronese mapping is an embedding 
of algebraic varieties. 
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Proof: We describe the inverse map. Let W C Pm be the image of 
vd . Note that the homogeneous coordinates of Pm are indexed by the 
degree-d monomials in (n + 1) variables; we can write them as zi for 
/ = (i0 , , N" 1  with  Il  =- io + + = d. 

At each point of W, at least one of the coordinates indexed by the mono- 
mials 4 	, ein  must be nonzero. Let U.,: C W be the subset of W where 
the coordinate indexed by x ìi  is nonzero. The sets U0, 	, Un  cover W and 
we can define a map 

Z 	[Z(1,0, .. ,d-1,.. ,0) 	Z(0,1,0,... ,d-1,0,... ,0) 	' ' ' 	Z(0,. ,d-1,0,... ,1)11 

for z E  U.  That is, we send z to the (n + 1)-tuple of its coordinates 
indexed by sox id-1 ,... , sn X id-i . These maps agree on the overlaps (./i, nui , 
so these maps patch together to define a map W -4 Pn. The composition 
Pn W Pn  looks like [so  : : x n] Lid(s) [x04-1  : • • • : 

d-1 
X iiS t 	= [so : • • • : Sid, the identity map. Equally easily, one checks that 
W P' W is the identity map on W, and the proof is complete. El 

The easiest way to understand Veronese maps is by looking at the lowest-
dimensional nontrivial examples. 

Example: We begin with the case n = 1 and d = 2. Then the Veronese 
map is 

p 1 L./24  P2 

	

[.9 : t] 	[S2  : St : t2 ]. 

Its image is the conic curve V(sz - y2 ) in P2 . We have already seen in 
Section 3.4 that this map defines an isomorphism onto its image. So the 
Veronese map y2 induces an isomorphism between P 1  and a conic in P2 . 

Example: The Veronese map 

	

pl 	p3 ,  

	

[s : t] 	[ s3  : s2  t • st2  • t 3  

z 	w 

is also an isomorphism onto its image. Its image is called the rational normal 
curve of degree 3. This is the projective closure of the twisted cubic we met 
in Section 3.3. (Since the meaning is usually clear from the context, we 
will refer to both the affine and projective curves as the twisted cubic.) It 
can be checked that the image of v3 is the projective variety defined by 
the polynomials xw - yz, y2  - xz, and wy - z 2 , where x, y, z, w are the 
homogeneous coordinates on V. 

The other Veronese maps give similar embeddings. In general, the image 
of the Veronese mapping IP'n L=`.■ Pm is the projective subvariety of ili'm 
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defined by the equations 

{z/zj — ziczL, I I,J,K,L E Nn+ 1 ,I + J = K + L } , 

where the zi are the homogeneous coordinates of Pm with multi-index 
notation as described in the proof of the previous theorem. One can prove 
this by considerations similar to those in the example Pl 1P2 . 

Example: The image of the Veronese map P1 	Pd is a curve in Pd  iso- 
morphic to 1131  as a quasi-projective variety. It is called the rational normal 
curve of degree d. The remark above ensures that the defining equations 
of the rational normal curve in Pd  are the 2 x 2 subdeterminants of the 
2 x (d -I- 1) matrix 

[

ZO,d 	Z1,d-1 

Z1,d-1 Z2,d-2 

Zd-1,1 Zd,0 

Zd,0 	ZO,d] • 

Veronese maps vd can be defined for any quasi-projective variety V.  One 
simply considers V as a subset of some projective space Pn and defines the 
Veronese map on V to be the restriction of the Veronese map on Pn. The 
same proof shows that vd will define an isomorphism between V and its 
image. 

Because the Veronese mappings define nontrivial (that is, not a mere 
change of coordinates) isomorphisms of quasi-projective varieties, they are 
a useful source of examples demonstrating that various properties of pro-
jective varieties may not be preserved under isomorphism. We will see an 
example of this phenomenon in Section 5.5 when we discuss the degree of 
a projective variety. 

Exercise 5.1.1. Consider the Veronese map P2  -̀Z3- P5 . Its image is called 
the Veronese surface. Describe the images of the lines in P2  on the Veronese 
surface. 

5.2 Five Points Determine a Conic 

The following theorem is a simple example of enumerative algebraic geom-
etry. This type of algebraic geometry was popular in the nineteenth and 
early twentieth centuries, especially with the Italian school, and is currently 
enjoying a renaissance today. A typical goal of enumerative algebraic geom-
etry is to count varieties with certain properties; for example, the number of 
lines in three-space that intersect four given lines' or the number of conics 
through four points tangent to a given line. These problems can usually be 
rephrased so that one is counting the number of points in the intersection 

1 For a detailed answer to this fun problem, see [25]. 
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of various varieties. One might also wish to count, for example, the number 
of lines lying on a cubic surface 2 . A more sophisticated question along the 
same lines would be to count the curves isomorphic to P 1  on a particular 
surface. "Counting curves" on algebraic varieties is a method for classifying 
varieties up to isomorphism that is a focus of current research. 

The following theorem answers the elementary enumerative question, 
how many conics (possibly degenerate) pass through five general points in 
the plane? 

Theorem: Given any five points in P2 , there exists a conic containing them 
all. This conic is unique unless four of the points are collinear, and it is 
nondegenerate unless three of the points are collinear. 

By a degenerate conic we mean that the conic is the union of two lines 
in P2 , or that it is a "double line." Equivalently, the conic is degenerate if 
its equation factors into linear factors, with the "double line" case being 
the case where the factors are not distinct. 

Proof: A conic in projective space is the zero set of a quadratic 
homogeneous polynomial: 

v(ax2 r 2 
Dy CZ 2  dxy + ex z + f yz) c P2 . 

Here the coefficients a, b, c, d, e, f E C are not all zero. Multiplying the 
coefficients a, b, c, d, e, f by some common factor  À produces a different 
quadratic polynomial, but it defines the same conic in IP2 . That is, each 
line through the origin in C6 , denoted by [a :b:c:d:e: fb defines a 
conic in P2 . Furthermore, no two distinct lines in C6  define the same conic. 
Therefore, we can naturally identify the set of (possibly degenerate) conics 
in P2  with projective space P5 . We say that P5  parametrizes the conics in 
p2 .  

The conic sections passing through a fixed point [a : : -y] E P2  form a 
hyperplane H in P5 . This is easily seen by substituting [x :  y:  z] =  [ci  : : 
-y] into the equation for the conic ax2  + by2  + cz-  2  + dxy + ex z + f yz = 0, 
which leads to a linear equation satisfied by [a :b:c:d:e: f]. So the 
conics passing through P1, P2, P3, P4, and P5 form an intersection of hy-
perplanes H 1  n H2 n H3 n H4 n H5 C P5 . With each successive intersection, 
the dimension drops by one (unless the linear form is dependent on its pre-
decessors, in which case the intersection is unchanged), so the intersection 
is nonempty. The points in P5  in this intersection correspond to the conics 
passing through P1 , , P5. If the hyperplanes are linearly independent, 
the intersection H1  n H2  n H3 n  H n H5 contains exactly one point, so 
there is exactly one conic passing through the five points. We leave the 

2 The answer, by the way, is twenty-seven; see [20, V.4]. 
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degenerate case where the hyperplanes are not linearly independent as an 
exercise. 

It was precisely these kinds of degenerate special cases that led to prob-
lems in some proofs in algebraic geometry around the turn of the century. 
In the 1930s and 1940s Zariski, Weil and others reworked the foundations of 
algebraic geometry to put these enumerative results back on a firm footing. 

Although interest in enumerative geometry waned in the twentieth cen-
tury, there has been a burst of activity in this field in the last decade. This 
is due to the deep connections that have been discovered between enumer-
ative algebraic geometry and theoretical physics (see [18]). Both Edward 
Witten, a physicist, and Maxim Kontsevich, a mathematician, have been 
honored with Fields medals because of their work in this area. 

Exercise 5.2.1. Given five points in P2  as above, prove that there is a 
unique conic passing through these points unless four of the points lie on a 
line. Show that the conic is nondegenerate unless three of the points lie on 
a line. 

Exercise 5.2.2. Show that the set of all nondegenerate conics form a non-
empty Zariski-open set of the parameter space P 5  of all conics. In fact, show 
that the set of degenerate conics forms a Zariski-closed set of P5  isomorphic 
to the Veronese surface (the image of the Veronese map P2  -L24 P5 ). 

Exercise 5.2.3. Given four points and a line in P2 , show that typically 
two conics pass through the four points and are tangent to the line. Under 
what special conditions on the positions of the points and the line do we 
fail to get exactly two? (Hint: As we will discuss in detail in Section 6.1, 
a line is tangent to a conic if the defining quadratic function has a double 
root when restricted to the line; on the other hand, a quadratic polynomial 
has a double root if and only if its discriminant, a degree two polynomial 
in its coefficients, is zero.) 

Exercise 5.2.4. How many conics in P2  do we expect through three given 
points and tangent to two given lines? Through two points and tangent to 
three lines? Tangent to five lines? 

5.3 The Segre Map and Products of Varieties 

The Segre map is an important tool that enables us to define, in a natural 
way, the structure of a quasi-projective variety on a Cartesian product 
V x W of two quasi-projective varieties. It is important to remember that 
the naive approach does not work: The product topology induced on A' x A l 

 is not the Zariski topology on A2  (see Exercise 1.2.2). The Segre map will 
embed the set Pn x Pm as a closed subset of a higher-dimensional projective 
space in a natural way, enabling us to speak of the product Pr' x Pm as a 
projective variety. 
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Let us begin with a low-dimensional example. 

Example: The Segre map E LI  is the map 

	

pl x  pl 	.,i).. p3 , 

	

as :  t], [u  : v]) 	i-- [.,,...slet ,: sv : tu : tv ]• 
•-.....-• •—..--• '--...--' 

This map is well-defined because the coordinates of the image do not all 
simultaneously vanish, and because it does not depend on the choice of the 
representatives [s : t] and [u : y] for elements of Pl x Pl. 

If the homogeneous coordinates of P3  are denoted by x, y, z, and w, 
then one easily checks that the image of the Segre map EL, is the quadric 
surface V(xw — yz) C P3 . 

Using local affine coordinates the map EL, takes the form 

Gs : 1], [u : 1]) 1--4 [su : s : u : 1]; 

that is, 

(s, u)  i---+ (su, s, u). 

From this we see that the image is a ruled surface, that is, it can be covered 
by a family of disjoint lines. To see this, first fix s so that the mapping 
u i-+ [su : s :  u:  1] parametrizes a line on the image surface, then vary s to 
see the family of disjoint lines. Interchanging the roles of s and u presents 
the quadric surface as the union of a different family of disjoint lines. The 
quadratic surface V(xw — yz) can be written as the disjoint union of lines 
in two different ways, which is exactly what we expect of the product of 
two lines. 

Figure 5.1. The ruled surface V(xw — yz) 
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Definition: We define the general Segre mapping Em,n  by 

Prn x Pfl  

axo : • • • : xmi, [Yo : • • • : Yn] 

EmT  p(m+1)(n+1)-1 ,  

: X0Y1 : • • • : XiYj : • • • : XTnYnl. 
s••••..-•••" 

ZOO 	ZO1 	 Zii 	 Zmn 

It is easy to remember how this map is defined: Label the homogeneous 
coordinates of P(m+ 1)(n+1)-1  as  z , where 0 < i < m and 0  < j  < n, and 
notice that the image of E m,,, is given by 

zoo 	ZOn 	 X0 

• 
	

[y0 	• • • 	yri ]  • 

Zm0 
	

Zmn 	 X m  

Theorem: The image of the Segre map Enz ,n  is a projective variety defined 
by the 2 x 2 minors of the matrix 

{(zzi)}, 

where the zi3 's are the homogeneous coordinates of the projective space 
p(m+ x (n+1)-1, doubly indexed and arranged in matrix form. Further-
more, the Segre map is one-to-one, and the projection taking (zii) to any 
one of its nonzero columns [zoi : zi 3  : : zmi] induces a morphism from 
the Segre image onto Pm. Likewise, the projection taking (zi,i) to any one 
of its nonzero rows [z w  : z 1  : : z.m] induces a morphism from the Segre 
image onto Fn. 

Proof: The image of the Segre map consists of the entries of the (m +1) x 
(n + 1) matrix obtained by multiplying the matrices 

X0 

[Yo 

Xm  

In particular, each column of this product matrix is a multiple of every 
other column, which is to say, the product matrix has rank 1. Of course, 
the 2 x 2 subdeterminants of any rank 1 matrix must vanish, so the image 
of the Segre mapping is contained in the set defined by the 2 x 2 minors of 
the matrix (z,3 ). 

On the other hand, suppose a point in IP(m+1)(n+1) —1  satisfies the equa-
tions ziizki — ziizk 3  = 0 for all indices 0 < j , k < m and 0 < j,  t n. 
Arranged into matrix form, the coordinates of this point form a matrix 
all of whose 2 x 2 minors vanish. This is equivalent to the condition that 
the matrix (zii) has rank at most one. But we know from linear algebra 
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that every (m + 1) x (n + 1) matrix of rank k factors as a product of an 
(m + 1) x k matrix and a k x (n + 1) matrix. In particular, 

X0 

(zi3 ) = 	[Yo 
xm  

for some choice of vectors [x0, 	, x m ] and [yo, ... Ynl, determined up to 
scalar multiple. Since (zu ) is not the zero matrix, neither (xi) nor (y 2 ) is 
the zero matrix. Thus, (zii) is in the image of the Segre map. 

We now consider the projection from the Segre image onto Pn  and Pm. 
Again think of the coordinates of P(n+1)(m+1)-1  as the entries in an (n + 
1) x (m + 1) matrix. Because the image of Pn  X Pm  consists only of the 
rank-one matrices, all columns of the matrix (zii) representing a point in 
Pm X Pn  are multiples of each other. The projection 

E(Pm x Pn) 71 .. pm 

(zii ) 
	

[ZOi . . . Zmil 

is defined by mapping (z i3 ) to any of its nonzero columns. Because the 
columns differ only up to multiplication by a scalar, this map is well defined. 
The projection E(Pm x Pr') 	Pn  is defined similarly, with rows instead 
of columns. 	 El 

Given two quasi-projective varieties, X C Pm  and Y c Pn , the Segre 
mapping allows us to define the structure of a quasi-projective variety 
on the product X x Y: We simply restrict the Segre map to the subset 
X x Y (see Exercise 5.3.1). When speaking of the product of two quasi-
projective varieties X and Y, we always mean this quasi-projective variety 
in P(n+1)(m+ ' )— '• We often denote the Segre image by X x Y. The product 
projection maps 

X > Y X 

and 

X x 	Y 

are the restrictions of those defined in the theorem. 

Exercise 5.3.1. Fix any point p = [A0 : 	: An ] E  P.  Show that the 
composition 

Pm _y  pinn±n±m 1_14 liinn,  

E(x,p) 1-4 ri(x,p) 

defines the identity map on Pm. 

Exercise 5.3.2. If X and Y are projective varieties, show that the Segre 
product X x Y is also a projective variety by expressing its defining 
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equations in terms of those for X and Y. Show that the product of two 
quasi-projective varieties is quasi-projective. 

Exercise 5.3.3. Show that the product of two affine varieties is affine. 
Note that even in the affine case, our definition of product uses the Segre 
map, the affine varieties being thought of as quasi-projective varieties in 
some projective spaces. 

Exercise 5.3.4. Show that the topology defined on the product above is 
not the product topology, except when one of the varieties is just a finite 
collection of points. 

5.4 Grassmannians 

Grassmannians are natural generalizations of projective spaces, and share 
many of their properties. 

Definition: The Grassmannian Gr(k,n) is the set of all k-dimensional 
vector subspaces of Cn. 

The simplest example of a Grassmannian is the set of one-dimensional 
subspaces in Cn+1 , the projective space Gr(1,n + 1) = Pn. 

Grassmannians can be thought of as a set of linear subvarieties of a 
projective space. A linear subvariety of P" is a closed subvariety defined 
by linear homogeneous polynomials. An m-dimensional linear subvariety of 
Pn  is a projective subvariety determined by an (m + 1)-dimensional vector 
subspace of the vector space Cn+ 1. . Of course, the projective closure of a 
linear subvariety in An is a linear subvariety in  F.  

Figure 5.2. A line in IPn is a 2-dimensional subspace of Cn+1 
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Since a k-dimensional linear subspace of Cn+ 1  is essentially the same as a 
(k— 1)-dimensional linear subvariety in IP'n, we can think of a Grassmannian 
Gr(k, n) as the set of all (k— 1)-dimensional linear subvarieties of projective 
space IP-1  . This is analogous to thinking of Pn  as the set of points in IPn 
or as the set of lines in Cn+ 1 . Because of this, some mathematicians use 
the notation Gr(k — 1, n — 1) for our Gr(k, n). 

Grassmannians are themselves projective varieties. This fact follows from 
the following theorem. 

Theorem: The Grassmannian Gr(k, n) can be embedded as a complex 

submanifold of  

Proof: Let A C Gr(k, n) be a k-dimensional vector subspace in Ci'.  Choose 
basis vectors (agi, .. •  ,a,,),  j = 1, , k, for A, and form the row matrix 
of basis vectors 

Lin 

aki 	akn 

This matrix has full rank, since its rows are linearly independent. Two 
matrices of full rank (aig ) and (k g  ) span the same subspace if and only if 
there exists a matrix g C GL(k) = {invertible k x k matrices} satisfying 
(azg ) -= g (kg). Therefore we can identify the set Gr(k, n) with the factor 
set 

G = {k x n; matrices of rank k} /action of GL(k). 

Let us denote the k x k subdeterminant of (azg ) formed by the columns 
1 < i1 < • • • <j  < n by 	 The mapping 

[11 	ai n  

['6`0-,••• ,k) 	• • • 	 • • • 
	 (n—k+1 ..... n)]  

aki 	akn 

is well-defined on the factor set G. To see this, note that any two equivalent 
matrices (azg ) and g (azg ) are mapped to the same point, as the action of 
g on the determinants is just multiplication by the nonzero constant det g. 
Also, because the matrix (azg ) has full rank, at least some determinant is 

nonzero. So we have a well-defined map Gr(k, n) -4 P(Z) -1 . Furthermore, 
it is easy to see that this map is one-to-one. It is known as the Phicker 
embedding. 

Under this identification, Gr(k, n) is at least a subset of projective space. 
We now want to give it the structure of a complex manifold. That is to say, 
we want to equip it with an atlas. This will allow us to think of Gr(k, n) as 
both a complex manifold and, by Chow's theorem, as a projective variety. 
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Consider a subspace A, where the corresponding matrix (aii) satisfies 
,k) O. This kind of subspace A corresponds to a unique matrix of 

the form 

as we can see by multiplying by g E GL(k), the inverse of the k x k matrix 
formed by the first k columns of the matrix representing A. Each matrix of 
this form determines a unique subspace A E Gr(k, n). So there is a bijective 
map 

U( l , k) = {A E Gr(k,n)  I Ao ,  ,k) 0}  —4 

Because the open sets U( 1 ,..,,, k ) where A(i1 ,... , i,) 	0 cover Gr(k, n), these 
mappings form an atlas of Gr(k, n). We can use the same technique that we 
used to show that IPn is a complex manifold to prove that the chart changes 
are given by multiplications by the rational functions Ai/Aj, hence the 
chart changes are manifestly analytic. Also, because the Plücker embedding 
is given by holomorphic (in fact, rational) maps on the coordinate charts, 
we know that Gr(k, n) is described as a complex submanifold of projective 
space. 

Theorem: Gr(k, n) c P(Z) -1  is a projective algebraic variety. 

We have already checked that the Grassmannian Gr(k, n) is, abstractly, 

a complex manifold and that it embeds in P(:) -1  as a complex manifold. 
We can invoke Chow's theorem to conclude that Gr(k, n) is a projective 
variety: It is defined by the vanishing of a collection of homogeneous poly-
nomials in (:) variables. Indeed, since the chart transformations are given 

by regular functions on the algebraic varieties A k(1") , we should expect 
the Grassmannian to be an "abstract algebraic variety" in analogy with a 
manifold. We do not develop this point of view here, preferring to refer the 
interested reader to the appendix. 

Alternatively, one can easily verify that the image of the Plücker map is a 
projective variety by finding homogeneous polynomials vanishing precisely 
on the image (see [17, page 65]). Finding the radical ideal of all polynomials 

vanishing on Gr(k, n) C p(Z) -1  is somewhat more involved. Let us say only 
that the generators for this ideal are certain quadratic polynomials called 
Plücker relations. They can be derived from certain simple identities about 
determinants (see [13, page 132]). 

Instead of going into these details, we introduce an alternative way of 
looking at the Grassmannian varieties. This interpretation is based on ex- 



70 	5. Classical Constructions 

tenor products. 3  Let Ak  V C Ak (Cn) be the kth exterior power of a vector 
space V C Cm. We define the mapping 

Gr(k, n) 	P(AkCm) PC0 -1 , 
V f—+ A k  V. 

If the vectors v 1 , 	, vk are a basis for V c Cm, then Ak V is the one- 
dimensional subspace of A k Cm spanned by vi A • • • A vk. As a mapping 
into projective space, c,o is well-defined, since a subspace V determines its 
volume form (p(V) uniquely up to a constant. 

To verify that cp is an isomorphism onto its image set involves some 
calculations, which we omit (see [17, page 63]). 

Exercise 5.4.1. Fix an irreducible conic C in P2 . Show that the set of 
lines in P2  that fail to meet the conic in exactly two distinct points is a 
closed subvariety of the Grassmannian of all lines in P2 , Gr(2, 3). 

5.5 Degree 

Classifying all projective varieties up to projective equivalence (up to 
change of coordinates) is a nearly impossible task. Nonetheless, algebraic 
geometers have spent the last century trying to sort out this problem. As a 
first step, it helps to identify invariants of projective varieties: Numbers (or 
other types of data) that partition the collection of projective subvarieties 
of Pm. One such numerical invariant is the "degree." 

The degree of a variety is defined by intersecting the variety with a 
linear subvariety of the appropriate dimension and counting the number of 
intersection points. 

Definition: The degree of the projective variety V in Pm is the greatest 
possible finite number of intersection points of V with a linear subvariety 
L C Pn  of dimension equal to the codimension of V: 

deg V = max{#(V n L) < oo L linear in Pm, dim L + dim V = 

In fact, the maximal number of intersection points is almost always 
achieved: The degree of V is the number of points common to V and a 
(codimV)-dimensional generic linear subvariety. One should interpret the 
word "generic" here to mean the intuitive idea of a typical, representa-
tive, or "sufficiently general" linear subvariety. To make this idea precise, 

3 For basic information about exterior algebras, see a linear algebra book, such as 
[241. 
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the reader should prove that there is a dense open subset U of the Grass-
mannian of all (codimV)-dimensional subspaces of Ir such that for any 
plane A in this open set, V n A consists of precisely d distinct points. In 
this case, "generic" would mean simply "member of U." 

Some examples will clarify the concept of degree. 

Example: The degree of the conic V(yz — x 2) C P2  is two, because a 
typical line meets a conic in two points. In Figure 5.3, the conic is depicted 
as a parabola in the affine chart A2  where z 0, and a typical line is shown 
intersecting the parabola in two points. Although in a real drawing the line 
may miss the parabola, in the complex case the line always intersects the 
conic at least once, but usually twice. A line parallel to the y-axis has one of 
its intersection points "at infinity," in which case a different choice of affine 
chart will reveal the two intersection points. The only other possibility is 
that the line is tangent to the conic, so that there is only one intersection 
point. In this example we see that the generic number of intersection points 
coincides with the maximal number of intersection points, which is two. 

Figure 5.3. Generic line intersecting a conic 

Our comments about the parabola extend to arbitrary hypersurfaces. 

Theorem: If F is an irreducible homogeneous polynomial of degree d, the 
degree of the hypersurface V(F) c Pri is d. 

The reason F is assumed irreducible in the above theorem is so that F 
generates the full ideal of polynomials vanishing on the hypersurface V(F). 
For example, the polynomials F and F2  define the same hypersurface, but 
the degree of F2  is twice the degree of F. All that is really needed in this 
theorem is that F has no repeated factors. 

Proof: Given an arbitrary line L c Pn, the intersection points of V and L 
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can be identified with the zeros of the polynomial function on L obtained 
by restricting F to the line L. The restriction of F to L produces a degree-d 
polynomial on L C; which, by the Fundamental Theorem of Algebra, has 
d roots. For a generic choice of L these roots are distinct, and correspond 
to the d intersection points of V with L. 

At this point, we can begin to appreciate the idea of a scheme. Schemes 
allow us to interpret the intersection of a line and a conic, for example, as 
two points, even when the line is tangent. One simply counts a tangent point 
with multiplicity two. The intersection of a line L with the hypersurface 
V(F) always consists of a collection of exactly d points, provided that these 
are counted with the appropriate multiplicities. 

To elaborate, consider the function FIL as a degree d-polynomial in one 
variable t, so that it factors as 

F(t) = (t — Om • • (t — ar )" . 

The variety defined by the vanishing of this polynomial in Al is simply a 
collection of r points, but clearly this is not the correct way to consider 
the geometric object associated to F(t). We should think of this as a set 
of points {a l , , ar } with multiplicities, with each point  a assigned the 
multiplicity rai . This set of points with multiplicities is an example of a 
subscheine of Al . Its associated coordinate ring is the quotient ring 

C [t]  

(F(t)) ;  

the ideal generated by (F(t)) consists of functions that vanish at ai to order 
rni  for all i = 1, , r. This ring differs from the coordinate ring of a variety 
in that it may have nilpotent elements. The geometric object associated to 
this coordinate ring is the simplest example of a scheme. 

Schemes arise naturally as degenerations of varieties. Here, the variety 
of d distinct points degenerates into a scheme when some of these points 
are brought together. This suggests that we may be forced to consider 
schemes, even if varieties are our primary interest. Just as subvarieties of 
A' correspond to radical ideals in the ring C[zi, , x n ], subschemes of An 
correspond to arbitrary ideals of C[zi, • • , xrd• 

We now return to our discussion of degree. Degree is important because 
it helps us partition the subvarieties of Pn into classes within which we may 
begin to investigate which are projectively equivalent. 

Proposition: The degree of a projective variety is a projective invariant: If 

Pn 	Ir is an automorphism, then the varieties V C Pn  and T(V) C Pn  
have the same degree. 

Proof: An automorphism of Pn is nothing more than a linear change of 
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coordinates (see Section 3.5), and linear changes of coordinates preserve 
linear subspaces. 

Some caution is necessary in dealing with degree. Degree is not an invari-
ant of the isomorphism class of a projective variety: Isomorphic subvarieties 
of Pn may very well have different degrees. The rational normal curves 
provide an example of this phenomenon. 

Example: Recall that the Veronese mapping 

Pi 	vd(p1)  

[S : t] 	[sd sd—i t 	td], 

is an isomorphism onto its image set. The image is called the rational 
normal curve of degree d because it has degree d as a subvariety of Pd. 
The reader should verify this fact by intersecting the curve with a generic 
hyperplane in Pd  (that is, a linear subspace defined by a single homogeneous 
polynomial )oxo + • • +AdXd = 0). On the other hand, the linear embedding 

	

1111 	pl c  pd ,  

[S 	t1 	[S : t : 0 : • • • : 0], 

makes P1  a degree-1 curve (a line) in Pd, since it intersects a hyperplane 
in exactly one point (except in the "atypical" case where the image is 
contained in the hyperplane). Thus, although the rational normal curve 
in Pd and the line in Pd  are isomorphic as quasi-projective varieties (both 
being isomorphic to P 1 ), they have different degrees as subvarieties of Pd 

 and hence are not projectively equivalent. 
We can verify these claims about the degree of the rational normal curves 

pictorially. 
We have already seen in Figure 5.3 that the intersection of a line and a 

conic is typically a set of two points. We also verified in Section 5.1 that the 
rational normal curve of degree two is simply the conic V(xz — y2) c  p2 .  

We conclude that the rational normal curve in P2  indeed has degree two. 
The rational normal curve of degree 3 is the image set of the Veronese 

mapping 

	

P 1 	P3 , 

	

is : t) 	[s3  : s2 t : st2  : 

On the first coordinate chart, this map is 

	

Is : 	1] 	Is3  : s2  : s :1]. 

So the first coordinate chart is mapped to V = {(s 3 , s 2 , s) G A3  s E 
CI = V(z2  — y, z 3  x), which we recognize as the twisted cubic. As we 
discussed in Section 3.3, the twisted cubic is the intersection of the two 
surfaces V(z 2  — y) and V(z3  — x), as depicted in Figure 5.4. This figure also 
depicts a typical plane intersecting the twisted cubic curve. As we see, a 
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typical plane intersects the curve in three points, thus the rational normal 
curve in IP3  has degree three. 

Figure 5.4. The twisted cubic has degree three 

Is there any easy way to determine the degree of an arbitrary projective 
variety? For hypersurfaces this is easy: The degree of the defining polyno-
mial is the degree of the hypersurface. This might lead to a guess that the 
following could be a general formula: 

deg V(Fi, 	,F) = deg Fi • deg F2 • • • deg  F. 

At least the formula seems to hold for intersections of any number of 
hyperplanes with a hypersurface of arbitrary degree. 

Unfortunately, the situation is not so simple in general. For exam- 
ple, the twisted cubic in P3  cannot be written as V(Fi, ,Fc ) with 
3 = deg Fi • deg F2 • • • deg  F. If we could do this, then one of the ho-
mogeneous polynomials F, would have degree 3 and the others would have 
degree 1. But it is easy to see that no nonzero linear form vanishes on the 
twisted cubic. Indeed, if ax + by + cz + dw vanishes on the twisted cubic, 
then as3  + bs2  + cs + d = 0 for all nonzero s E C and soa=b=c=d-= O. 
The only possibility is that the twisted cubic is V(Fi), a hypersurface in 
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P3 . This is patently false, as a hypersurface in three space has dimension 
two, while the twisted cubic is a curve, having dimension one. 

Although the twisted cubic in P3  is the intersection of the two surfaces 
defined by xw = y2  and xw2  = z3  (see Exercise 3.3.2), the radical homoge-
neous ideal of V cannot be generated by two elements. However, this ideal 
can be generated by three polynomials, 

11(V) = (y2  — xz, z2  — wy, xw — yz) C C[x, y, z, 

It can be checked that no two of these polynomials suffice to generate 11(V): 
Any two cut out a reducible variety consisting of the twisted cubic plus a 
line. 

The problem with the twisted cubic curve in P3  is that although it has 
codimension two, its radical homogeneous ideal requires more than two gen-
erators. The twisted cubic is not a "complete intersection" of two surfaces. 

Definition: A projective variety V in P" is called a complete intersection 
if its radical homogeneous ideal 11(V) of all polynomials vanishing on V can 
be generated by exactly codim(V) elements. 

A complete intersection V is the intersection of codimV hypersurfaces, 
namely, the hypersurfaces whose equations generate the radical ideal of V. 
However, the twisted cubic reminds us that not every variety is a complete 
intersection, even when the variety is the intersection of codimV hypersur-
faces. The twisted cubic belongs to the somewhat broader class of varieties 
that are "set theoretically" like complete intersections. 

Definition: A projective variety V of codimension c in Pn is called a set- 
theoretic complete intersection if V is the intersection of c hypersurfaces. 

Of course, every complete intersection is a set-theoretic complete inter-
section. The difference is that while a set-theoretic complete intersection 
is defined by an ideal generated by c elements, we do not require that this 
ideal be radical. 

An Open Problem: Much is known about complete intersections, but 
it remains a difficult problem to identify them. Indeed, we do not even 
know how to determine whether a given projective variety is isomorphic 
to a complete intersection. There are a number of interesting questions 
about set-theoretic complete intersections as well. For example, "Is every 
irreducible curve in projective three-space the intersection of two sur-
faces?" Amazingly, this problem remains open despite the best efforts of 
a number of mathematicians. 

In many respects, complete intersections are easier to work with than 
arbitrary varieties. For example: 
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Theorem: If V = 	, Fc ) is a complete intersection, then 

deg V = deg Fi  deg F2 • • deg Fc , 

where c --= codimV. 

The proof of this theorem is not difficult, but it requires developing the 
rudiments of intersection theory. Rather than go into this here, we refer to 
[37, page 198]. 

As a special case of this theorem, we consider two curves in the projective 
plane. This gives us the classical theorem of Bézout. 

Bézout's theorem: Consider two curves in IP defined by polynomials of 
degrees d and e, respectively. If they have no common components, their 
intersection consists of de points. The de points are distinct, provided that 
the curves are not tangent to each other at any of their intersection points. 

In the generic case, the two curves are not tangent at any point, and 
there are precisely de intersection points. In order to interpret the number 
of intersection points as exactly de in general, the points must be counted 
with "multiplicities." The simplest example of Bézout's theorem is given 
by a generic irreducible curve C (defined by an irreducible polynomial of 
degree d) intersecting a generic line L (defined by a linear polynomial). We 
have already seen that C n L consists of d distinct points. If the line is 
in special position relative to C, which in this context means tangent to 
C at one or more points, the intersection of C with L still consists of d 
points as long as we count these points with multiplicities. In general, it is 
somewhat more difficult to assign intersection multiplicities; we return to 
this subject briefly in Section 6.1. See [14, page 112]  or [20, page 54 ]  for a 
proof of Bézout's theorem. 

More generally, algebraic geometers look at intersections of higher-
dimensional varieties in Ir or in some other ambient space. If the varieties 
have complementary codimension, we "expect" a finite number of inter-
section points and would like to have a formula or method for computing 
this intersection number. This is the beginning of the beautiful and difficult 
subject of intersection theory, still an area of active research today. 

One context in which it is easy to compute intersection numbers is that 
of linear varieties in projective space. This suggests the idea of "deform-
ing" a variety in Pn to a linear subvariety, or more accurately, to a formal 
combination of linear subvarieties with assigned multiplicities. This is the 
beautiful and classical topic of "Schubert calculus," accessible in the very 
readable American Mathematics Monthly article of Kleiman and Laksov 
[25]. See also [11] for a more advanced, but still elementary, treatment, or 
[12 ]  for a more thorough treatment of intersection theory. 
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Exercise 5.5.1. Show that a subvariety of P n  has degree one if and only 
if it is a linear subvariety. 

Exercise 5.5.2. Find an example of two plane curves that are isomorphic 
as quasi-projective varieties but that have different degrees. Are the curves 
projectively equivalent? 

Exercise 5.5.3. Find an example of two curves in P2  that have the same 
degree but are not isomorphic. 

5.6 The Hilbert Function 

The degree is a useful invariant for partitioning the set of projective vari-
eties in some fixed Pri into manageable classes. A related, but much more 
sophisticated, invariant is the Hilbert polynomial. 

Let V be a projective variety in Pn and let C[V] be its homogeneous 
coordinate ring. The collection of all homogeneous polynomials in C[V] of 
some fixed degree i forms a finite-dimensional vector subspace Ri  of this 
algebra. The algebra C[V] is the direct sum of all these subspaces: 

C [V] Ro 	ED R2 63 • • • , 

where Ro =-- C and Ri R.7  C Ri+i. In other words, the homogeneous 
coordinate ring of an algebraic variety is a graded ring. 

Definition: The Hilbert function of the projective variety V c Pr is the 
function N N given by mi-4 dim  Rm. 

Theorem: For large m the Hilbert function agrees with a polynomial, 
called the Hilbert polynomial, 

P(m) = egad  + eimd-1  + • + ed 

with degree d  = dim V and leading coefficient eo = 

For a proof, see almost any book on algebraic geometry or commutative 
algebra; for example, [20, page 51] or  19, page 43]. 

Each coefficient of the Hilbert polynomial is a projective invariant of the 
variety V c Pn, meaning that any automorphism of Pn maps V to a sub-
variety V' with the same Hilbert polynomial. This gives us a host of new 
invariants of a projective variety, refining the notion of the degree. In the 
case of a smooth 4  projective variety V c Pn, the Hilbert polynomial is es-
sentially just a compact way to record information provided by the famous 

4 We will discuss smoothness in more detail later. For now, we can just think of a 
smooth variety as a complex manifold. 
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Riemann-Roch formula. The Riemann-Roch formula tells us how the coef-
ficients of the Hilbert polynomial can be described in terms of intersection 
numbers (or Chern numbers) for certain vector bundles of differential forms 
on V and other natural bundles on V. See [20, Appendix]. 

Although the Hilbert polynomial is unaffected by change of coordinates, 
it is not an invariant of the isomorphism class of the projective variety—it 
is not preserved under isomorphism of varieties in general. For instance, 
the Hilbert function of the variety P 1  is 

dim (C[x, yp n., = m +1, 

but the Hilbert function of the twisted cubic v3  (P 1 ) c P3 , which is 
isomorphic to P 1  as a quasi-projective variety, is 

m 	dim (C[x, y]) 3 	3m+ 1. 

The two isomorphic curves 1P 1  and v3(111 ) have different Hilbert polynomi-
als, namely hi (m) = m+1 and h2 (m) = 3m+1. However, these polynomials 
have the same degree; this is what we expect, since the degree of the Hilbert 
polynomial is the dimension of the variety, and dimension is an invariant 
of the isomorphism class of a variety. The leading coefficients of these poly-
nomials confirm that the degrees of P1  and the twisted cubic are one and 
three, respectively, as we have already seen. 

Hilbert polynomials are an essential part of the modern theory of classifi-
cation for algebraic varieties. Indeed, fixing an arbitrary polynomial P, one 
may ask, what subvarieties of Pn have Hilbert polynomial P? It turns out 
that the set of all subvarieties with Hilbert polynomial P form, in a natural 
way, a quasi-projective variety—or more accurately a scheme—called the 
Hilbert scheme. The Hilbert scheme is thus a parameter space for subvari-
eties of Pfl,  and understanding its structure helps us understand the way 
in which subvarieties of Pn are related to each other. Interesting questions 
abound: What is the dimension of this quasi-projective variety? What does 
it mean if there is a path from one point to another on the Hilbert scheme? 
What geometric interpretation can be given to the different components 
of the Hilbert scheme? The study of Hilbert schemes is an active area of 
research in algebraic geometry today. 

To get a rough idea of how the Hilbert scheme is constructed, first recall 
that every variety in Pn is uniquely defined by its radical homogeneous ideal 
I in the polynomial ring S in n +1 variables. For large r, one can check that 
I is determined by its elements of degree r. For example, if I is the principal 
ideal generated by a homogeneous element F, then the degree-r elements 
of I are spanned over k by the elements of the form 4°4' • • • en. F where 
deg F + E a7, = r; from this we can recover F and hence I. Although it 
is not at all obvious, Grothendieck showed that for a fixed polynomial P, 
there exists an r that works universally for all ideals I. That is, there exists 
an r (depending on P) such that for all ideals I defining a variety whose 
Hilbert polynomial is P, I is the radical of the subideal generated by its 
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elements of degree r. Thus to give a variety with Hilbert polynomial P 
is to give a vector subspace Ir  of the r+71-dimensional vector space Sr 
of all homogeneous polynomials of degree r. All these vector subspaces IT 
have the same dimension, namely dim dim(S I), --= (n+, r  — P(r); 
call this dimension dr . Thus to give a variety with Hilbert polynomial P 
is to give a point in the Grassmannian of  d,.-dimensional subspaces in the 
('r) -dimensional vector space Sr . In this way, every variety in Ir with 
Hilbert polynomial P corresponds to a unique point in this Grassmannian. 
On the other hand, not every point in this Grassmannian corresponds to 
the ideal of a variety (really, a scheme) with Hilbert polynomial P: It turns 
out that those that do lie in a closed subvariety of this Grassmannian 
defined by certain determinantal equations. To carry out the details of this 
construction is a somewhat technical but worthwhile process; see [19]. 

It is natural to try to find a parameter space for projective varieties up 
to projective equivalence. Hilbert schemes do not serve this purpose: Two 
distinct but projectively equivalent varieties determine two distinct points 
of the Hilbert scheme. However, the automorphism group PGL(n+1) of Pn  
acts on the set of varieties in Pn with a fixed Hilbert polynomial, inducing 
a natural action of each Hilbert scheme. Therefore, the quotient of the 
Hilbert scheme by this PGL(n + 1) action ought to give us a parameter 
space for projective varieties up to projective equivalence, at least as we 
range over all possible Hilbert polynomials. Unfortunately, it is not a simple 
matter to define the structure of an algebraic variety on this quotient set 
in general. This leads to the difficult and beautiful subject of geometric 
invariant theory, developed by Fields medalist David Mumford in his quest 
for moduli spaces for algebraic varieties [16]. 

Exercise 5.6.1. Assume that the variety V c Ir has the Hilbert polyno- 
mial P(n). Calculate the Hilbert polynomial of the image variety vd(V) C 

of the Veronese map. 

Exercise 5.6.2. Find the Hilbert polynomial P of a k-dimensional linear 
subvariety of Pn. Describe the Hilbert scheme of varieties in Ir with Hilbert 
polynomial P. 

Exercise 5.6.3. Find the Hilbert polynomial of a degree-d hypersurface 
in Ir. What is the Hilbert scheme of varieties with this polynomial? 





6 
Smoothness 

6.1 The Tangent Space at a Point 

The tangent space to an algebraic variety at a point can be defined purely 
algebraically in such a way that it agrees with the concept familiar to 
students of calculus. The definition generalizes the observation that the 
tangency of the x-axis to the parabola defined by y = x2  can be detected 
by the fact that the polynomial function 1 (x) =  X2  has a "double root" at 

= O. 
Because tangency is a local issue, we discuss tangent spaces first only 

in the affine case, and assume that our variety V is a Zariski-closed set in 
some fixed A. Furthermore, in considering the tangent space to V at a 
point p, we first choose our coordinate system so that the point p is the 
origin. 

We begin by considering an arbitrary line L in An passing through the 
origin and through some fixed point, q -= (ai , . . . , an ). This line can be 
parametrized by the formula t = {(ta i , , tan )! t E C}. When is this line 
tangent to V at the origin? 

If Fi, 	, Fr are generators for the radical ideal 11(V) defining V C A", 
then the intersection of V with t is found by solving for t in the system of 
equations 

(tai , 	, tan ) = 0, 

Fr(tai, 	,ta,)  = 0.  
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This intersection will consist of (possibly) several points along L, but be-
cause we have assumed that the origin lies on both V and t, we know that 
at least t 0 is a solution. 

Because the point g = (ai, 	, an) is fixed, each of the expressions 
Fz (tai , 	,tan ) is a polynomial in the one variable t, and hence factors 
completely into linear factors. The intersection points V n  L correspond 
to the common roots. Some of the intersection points may appear "with 
multiplicities," corresponding to simultaneous multiple roots of the r poly-
nomials Fi (ta i , , tan ) in t. In particular, the multiplicity of V n t at 
the origin is the exponent of the highest power of t that divides all the 
polynomials fi (t) = Fi (ta i , , tan ). This leads to the following definitions. 

Definition: The line t is tangent to V at p if the multiplicity of n V 
at p exceeds one. Moreover, we say "t is tangent to V of order n" if the 
multiplicity is n + 1. The tangent space TV  of V at p is the union of all 
points lying on lines tangent to V at p. 

Figure 6.1. Tangent space to an algebraic variety 

In order to be sure that these definitions make sense, we need to verify 
that they are independent of the choice of generators Ft  for ll(V). We also 
want to ensure that the-union of all points lying on tangent lines really 
forms a linear variety in An . 

First, some examples may help clarify the definition. 

Examples: (1) The variety V C A2  defined by the equation y = /72  inter-
sects the line t parametrized by {(ta, tb) It E A 1 }  in the subset of defined 
by the solutions to 

tb — t2 a2  = O. 
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That is, the intersection consists of 2 points, the origin (corresponding to 

the solution t = 0) and the point 	(D 2 ) . However, if b = 0, then these 

points coincide, and t intersects V at the origin with multiplicity 2. Thus, 
the only tangent line to V at the origin is the line through the origin and 
a point of the form (a, 0). As expected, the tangent space to the parabola 
at the origin is the x—axis. 

Figure 6.2. The line is tangent only when b = 0 

(2) The nodal curve V = V(y2  — X2  - x3 ) C A2  intersects itself at the origin. 
The line through the origin and (a, b) is tangent to V at the origin if and 
only if t = 0 is a multiple root of the polynomial (tb) 2  — (ta) 2  — (ta) 3  . Since 
for any values of a and b, t is a multiple root, we see that all lines through 
the origin are tangent to V. 

(3) The variety V = V(y2  — x3 ) also has tangent space at the origin equal 
to the full affine plane, as the reader will easily check. This is again due to 
a singular point at the origin. 

Figure 6.3. Tangent space at a cusp or a node is the plane 
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It may seem confusing at first that the tangent plane to the origin in 
example (3) is all of A2  and not simply the x-axis. It is important to 
follow through the definition and convince yourself that the tangent plane 
is indeed A2 . 

There is a related concept, called the tangent cone at the origin of a 
plane curve defined by F(x,y) = O. This is the variety defined by the 
lowest-degree terms of the polynomial F(x,y). Thus, in example (2), the 
tangent cone to the origin is V(x2  — y2 ) V(x — y) U V(x + y), while in 
example (3) the tangent cone to the origin is V(y2 ), which defines the x-
axis. More accurately, the tangent cone in example (3) is defined by the 
vanishing of y2 , and should be interpreted as "the x-axis counted twice." 
The language of schemes enables us to make such ideas precise, but this is 
the subject of a more advanced course in algebraic geometry. 1  

Figure 6.4. The tangent cone to the cusp and to the node 

As in calculus, we would like to characterize tangent spaces using deriv-
atives. Differentiating polynomials is a purely algebraic process over any 
ground field, since you can simply define derivatives by the well-known 
formula for polynomials without any reference to limits. 

The differential of a polynomial F E C  [x1,...  , 	at the origin is its 
linear part, that is, the sum of the homogeneous terms of degree one in 
F. The differential at any point p can be defined by choosing coordinates 
so that the point p is the origin. This is made precise in the following 
definition. 

Definition: The differential d.Flp  of a polynomial F at an arbitrary point 

P = ,p,i ) in Cn is the linear part of the Taylor series expansion of 
F at p. That is, writing F uniquely in the form 

F(x) 	F(p) + L(xi — Pi,. • • •xn — pr,) + G(xi — Pi,- • • >xn — Pn), 

1 For example, see [37, pages 79 and 80]. 
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where L is linear and G is a polynomial with no linear or constant terms, 
the differential of F at p is the linear term L(x — p). The coefficient of 
the linear term (x, — pi ) is the partial derivative of F with respect to 
evaluated at p. Symbolically, we have 

n  aF gx-p) dFlp (x — p) = E --aT (p) (x i  — pi ). 
3-1 

Recall from calculus that when F(p) = 0, L(x — p) is the linear function 
that best approximates F(x) in a neighborhood of p. 

Using differentials, we can explicitly describe the equations of the tangent 
space to a variety at a point. 

Theorem: Let V be an affine algebraic variety in An  defined by the vanish-
ing of the polynomials with F1 , , Fr , which we assume to be generators 
of the radical ideal of V. Let p be a point in V. Then the tangent space to 
V at p is the linear variety 

Tp V =V(dFiip(x — p),... ,dFr i p (x — p)) C A n . 

Moreover, the tangent space is independent of the choice of the generators 
F. 

Because it is a linear space, the tangent space TV  can and should be 
interpreted as a vector space with the origin at p. 

Proof: By choosing appropriate coordinates, p may be taken to be the 
origin. Consider a line t through the origin and a fixed point (x1, 	xn), 
so that is parametrized by {(tx i , 	, tx n) t E C}. Because p (the origin) 
lies on V, we have F,(0) = 0, so that 

	

Fi(txi,... ,tx,i) = L(tx1,... ,tx,)+ Gi(tx l , 	,tx„), 

where Li(txi,. • • ,tx.) -= t Lz(xi, • • . , xn), and the polynomial Gt(tai, • - tan) 
is divisible by t2 . So the intersection of t and V at p has multiplicity at 
least two if and only if 

Li(xi,... ,xn) = • • • = 	, xn ) = O. 

We see that (x1, 	, x n ) lies on a tangent line of V if and only if it satisfies 
these linear equalities. Since the tangent space to V at p is the union of all 
the points lying on all the tangent lines, we see that the tangent space is 
precisely the linear variety defined by V(Li, , L r) C 

We must verify independence of the choice of generators. So let 
, Ps be another set of generators for 11(V). Then 

= 11,1Pi + • • • + His Ps 

for some functions Ho in C[V], so 

dFi  = dH1i + • • • + dH3  + H1 d + • • + HisdPs • 
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In particular, since the Pi  vanish at p G V, we have 

dFilp  = 11,1(p)dP1l, +•• • + His (Ad PsiP• 

So 17(dFl i p , 	,c1FrIp) D 	 ,dPf l p ), with the reverse inclusion 
following by symmetry. 

Finally, because all the defining equations dFd p  are linear, the variety 
TV is a linear subvariety of A". 

In order to define the tangent space to a quasi-projective variety V at 
a point p using this idea, we must think of V as an open subset in a 
closed subvariety W of some fixed projective space. We can then choose 
an affine chart A' containing p and look at the tangent space to the affine 
variety W n A'. This will be a linear subspace in the affine chart A'. This 
definition is somewhat unsatisfactory, however, because a different choice 
of affine chart will of course produce a different linear space. On the other 
hand, any two such choices will have the same closure in Ir. Thus it makes 
more sense in this case to consider the projective tangent space to V at 
p, which is defined as the projective closure of any of the tangent spaces 
to V at p in an affine chart. The projective tangent space to V at p is 
independent of the choice of affine chart. 

An alternative way to define the projective tangent space to a quasi-
projective variety is as follows. First, because every quasi-projective variety 
is an open subset of closed subset in 1?", it is enough to define the projective 
tangent plane to a point p on a projective variety V in P". Let V be the 
affine cone over V in A"+ 1 , and let 15 be any point of V representing the 
point p on V. Consider the tangent plane TV  in An+1 . Because the line 
through the origin and through )5 lies in 17 , this line also lies on T7-5 17. This 
means that the linear subvariety  TV  of A'+ 1  passes through the origin 
of An+ 1  and thus gives rise to a unique linear projective subvariety (of 
dimension one less) in the projective space Ir. Furthermore, the reader 
can easily check that any points 1-5 lying on the same line through the 
origin in A"+' share the same tangent space to V, so they give rise to the 
same linear projective variety in Pn . This linear projective variety is the 
projective tangent plane to V at p. 

The definition of a projective tangent space is still unsatisfactory, how-
ever, because as stated there is no good way to compare the resulting 
spaces if we interpret our variety V as embedded in different projective 
spaces. This difficulty can be surmounted by taking a more algebraic and 
abstract point of view, but we will not pursue this here (see [37, Chapter 
II, Section 1.4] ). 

It is clear from our discussion that at least the dimension of the tangent 
space TV makes sense for any quasi-projective variety, and that it is in-
dependent of the manner in which we interpret V as a subset of projective 
space. This dimension is always greater than or equal to the dimension of 
V at p. Admittedly, this is not obvious, since V may be defined by many 
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more equations than its codimension, and then this is also true of Tx  V. For 
a proof, see Shafarevich [37, Chapter II, Section 1.4]. 

Exercise 6.1.1. Using the theorem describing the defining equations for 
TV  in terms of the equations for V, compute the tangent spaces of the 
curves in examples (1), (2), and (3) at the origin. 

Exercise 6.1.2. Show that the two different ways of defining the pro-
jective tangent space to a projective variety in Pr` yield the same 
space. 

Exercise 6.1.3. Let V be a projective variety in Pn whose homogeneous 
radical ideal is generated by homogeneous polynomials F 1 , , Fm . Show 
that the projective tangent space to V at p is defined by the homogeneous 
linear polynomials dFi  ,dFm 1 p . (Hint: Consider the affine cone over 
V and use the corresponding theorem for affine varieties.) 

Exercise 6.1.4. Let V C Pr' be a hypersurface defined by a homogeneous 
irreducible polynomial F. Find an explicit description of the tangent space 
to V at a point p. What conditions on p ensure that the tangent space to 
V at p has dimension n – 1? 

6.2 Smooth Points 

We can finally define what it means for a variety to be smooth, an important 
concept the reader probably already has a feeling for. The idea is that a 
variety is smooth at a point p if the tangent space at p has the expected 
dimension. 

Definition: A point p on a quasi-projective variety V is smooth if 

dim TV dimp  V. 

Otherwise, p E V is singular. 

Because the dimension of the tangent space to a variety V at p is indepen-
dent of the choice of embedding of V in projective space and independent 
of the affine neighborhood of p used to find the tangent space, the notion 
of a smooth point of V is intrinsic to V, that is, smoothness is invariant 
under isomorphism and does not depend on extrinsic features such as a 
particular embedding as a locally closed subset of Pn. 

It is interesting to note that the definition of smoothness is purely 
algebraic—it makes sense for varieties defined over an arbitrary field. 

Examples: The projective space P71  is smooth at every point, since P" 
has a cover by affine open sets A". The tangent space to any point of A' 
is all of A', so dim TpPn = n = dim P" for all points p of Pn. Likewise, 
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Veronese surfaces and rational normal curves (Section 5.1) are smooth at 
every point, because they are isomorphic as algebraic varieties to P2  and P1 , 
respectively, and smoothness is invariant under isomorphism. Similarly, the 
product variety Pn x Pm is smooth, because any point has a neighborhood 
isomorphic to An x Am An+m, which is smooth. 

The set of singular points of a variety is easy to describe explicitly. This 
singular locus is a proper closed subset of the variety. Thus, the smooth 
locus, namely, the set of smooth points of an algebraic variety V, is a 
nonempty Zariski-open subset of V, and so is a very large subset of V. 

Theorem: The locus of singular points of a quasi-projective variety V 
forms a proper closed subset of  V.  Explicitly, if V is an irreducible affine 
variety in An of dimension d whose radical ideal Il(V) is generated by 
F1, , Fr, then the singular locus of V is the common zero set in V of 
the polynomials obtained as the (n — d) x (n — d) minors of the Jacobian 
matrix 

'Fa  [ 	8F11  

oF 	OF 
ax, 	ax,‘  

Sketch of Proof: Because a quasi-projective variety has a basis of affine 
open subvarieties, it suffices to prove that the singular locus of an affine 
variety is a proper closed set. Let p be a point on an affine variety V in 
An. The tangent space at p =  (pi,.. ,p,z ) is defined as the zero set of the 
r linear polynomials dFi ip(x p), dFr Ip(x  — p),  which can be obtained 
as the matrix product 

p  [ 

OF , 	

-el  X1 PI 

 

[ - 1  
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Thus, we can think of the tangent space as the kernel of a linear map given 
by the Jacobian matrix. Now, p E V is singular if and only if the dimension 
of the tangent space exceeds d. This occurs if and only if the rank of the 
Jacobian matrix is strictly smaller than n — d at p. The rank is less than 
n — d if and only if all (n — d) x (n — d) minors vanish. Thus the singular 
locus is defined by the vanishing of the minors of the Jacobian matrix as 
claimed. This shows that the singular locus is a closed subvariety of V. 

It remains only to show that the singular locus is a proper subvariety 
of V, that is, it is not possible that every point of V is a singular point. 
We first consider the case where V is a hypersurface, defined by a single 
polynomial V = V(F) C An. In this case, Sing Vr--- V(-E, ... , ir—) n V. If 

V is everywhere singular, then each Ej must vanish everywhere on V. This 
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means that 	is in the ideal 1E(V) = (F) defining V. But since the degree ux 
of 4-kl is strictly less than the degree of F, this is impossible (provided that 
x - 	in F, but we know that some x i  does). 

The proof can be completed by showing that every affine irreducible 
variety has a dense open set that is isomorphic to a hypersurface. This 
is accomplished by a succession of projections of the variety to lower-
dimensional spaces. This is not difficult, but we postpone the details until 
Section 7.5. 

The theorem does not require that V be irreducible. The statement holds 
whenever V is equidimensional, that is, when all irreducible components 
have the same dimension. 

The theorem implies that an affine variety V is "almost everywhere 
smooth" or "generically smooth." Since every quasi-projective variety 
contains a dense open affine subvariety, it is also true that every 
quasi-projective variety is generically smooth. 

In the proof of the theorem, we have, for the first time, made use of 
the assumption that the characteristic of the field of complex numbers 
is zero. Indeed, the claim that LE cannot be in the ideal generated by 
F when x i  appears in F is false in characteristic p > O. For example, if 
F(x, y, z) = xP + y z, then S = pxP -1  = 0 is in the ideal generated by 
F. Nonetheless, the theorem remains true over an arbitrary algebraically 
closed ground field, although some more technical algebra is required for 
the proof in nonzero characteristic. 2  

It is also possible to describe the singular points of a projective vari-
ety, and hence of a quasi-projective variety, in terms of its homogeneous 
defining equations. Consider an equidimensional projective variety V CIF', 
defined by homogeneous polynomials F1, , Fr  c  C[xo, ,x, ] , generat-
ing a radical ideal. The reader should be able to show that the previous 
theorem implies 

OF 
Sing(V) = V (the c x c subdeterminants of [-H)nv 

ox, 

where c = codim V in 	Thus, a projective variety is smooth if and only 
if the corresponding cone-shaped affine variety in one higher dimension has 
at worst one isolated singularity—the vertex of the cone at the origin in 
An+ 1 

Example: Consider the conic curve in  1F'2  defined by the homogeneous 
polynomial x 2  + y2  — z 2 . Both this projective plane curve and the affine 
cone over it have codimension one in their respective ambient spaces, since 
each is defined by the vanishing of the single polynomial X2 ± y2 z2 in 

2 See [37, Chapter II, Section 1.4] 
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P2  and in A3 , respectively. Thus the singular locus of both the projective 
curve and the affine cone over it is given by the vanishing of the 1 x 1 
minors of the Jacobian matrix 

Therefore, the singular locus of the projective conic is the subvariety 
V(2x, 2y, —2z) in P2 , that is, the empty set. Likewise, the singular locus of 
the affine cone is the subvariety V(2x, 2y, —2z) in A 3 , the origin. In partic-
ular, the affine cone over a smooth projective variety can have a singular 
point at the vertex. 

Figure 6.5. A singular cone over a smooth projective variety 

Just as in other branches of geometry, it is possible to define a total 
tangent bundle to any smooth affine variety V C An  of dimension d. For 
each p G V, let  TV  C An  be the tangent plane to V. Now consider the set 

TV = {(p, y) I y E  TV} C V x An C An x An. 

We leave it as an easy exercise to check that TV is a closed subvariety 
of V x An. Furthermore, the natural projection TV —> V produces the 
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structure of a rank-d vector bundle on TV: The fiber over each point p E V 
is the variety TV.  The variety TV  can be identified with a d-dimensional 
affine space, together with a marked point p, which we can think of as a 
d-dimensional vector space (p corresponds to the origin). The variety TV is 
called the tangent bundle to V. Vector bundles will be discussed in greater 
detail in the final chapter. 

If V C Ir is a smooth projective variety, one can similarly construct 
the total tangent bundle as a projective space bundle over V. This is the 
subvariety of V x Ir consisting of pairs  (p, TV),  where now TV denotes 
the projective tangent space to V at p. 

It is not obvious from this point of view that the variety TV is indepen-
dent of the choice of the embedding of V in affine (or projective) space, but 
this is true. One can also develop the tangent bundle TV to an arbitrary 
quasi-projective variety in a more abstract and algebraic way, which makes 
such concerns transparent. 

Exercise 6.2.1. Find defining equations for the total tangent bundle of a 
Zariski-closed set in A" in terms of its defining equations. For a projective 
variety, show that the total projective tangent bundle is a projective variety. 

6.3 Smoothness in Families 

We have seen in numerous examples that a family of algebraic varieties 
is often parametrized in a natural way by another algebraic variety. For 
example, in Section 5.2, we saw that the family of plane conics is naturally 
parametrized by P5 , and in Section 5.4 we saw that the family of all d-
dimensional linear subvarieties of Ix' is naturally parametrized by a variety 
called the Grassmannian. This tendency of families of algebraic varieties 
to themselves form an algebraic variety in a natural way is one of the 
most beautiful and powerful aspects of algebraic geometry. Because the 
parameter spaces of objects we want to understand are themselves varieties, 
we again have all the tools of our subject on hand to understand them. 

A useful general principle that applies to most families of algebraic va-
rieties is that a general (or "typical") member will be smooth. Indeed, if 
a family of varieties is parametrized by an irreducible variety V, then we 
can infer the smoothness of the general member of V from the smoothness 
of just one member. The reason is that the smooth members form an open 
subset of the parameter space. Like all open sets of an irreducible variety, 
this subset of smooth members is dense, provided that it is nonempty. 

We will not prove this general principle, called the "property of generic 
smoothness." The interested reader can consult [20, Chapter III, Section 
10] for more details and a proof. Instead, we illustrate the principle with 
some examples. 
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Figure 6.6. A one-parameter family of hyperbolas 

Example: Let us look at the one-parameter family of hyperbolas {V(xy - 
t) t E C} in affine space A2 . This family of hyperbolas is naturally 
parameterized by the points of the variety A'. We can understand this pa-
rameterization as a map Tr from a variety V to A1 , where the members of 
the family are the fibers of the map 7r. More specifically, let V be the affine 
subvariety of A3  defined by the vanishing of the polynomial xy - z, and let 
7r be the (restriction to V of) the natural projection to the z-coordinate. 
The parameterization t 1-4 V(xy - t) assigns to each fixed t in A1  the fiber 
7r-1 (t), which is the hyperbola V(xy - t) in the plane A2  V(z - t) c A3 . 

 

1 

o 

-1 

  

Figure 6.7. The hyperbola family forms a variety V(xy — z) 
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The members of our family thus fit together nicely into the algebraic 
variety V, the surjective morphism 7r describes the parameterization. 

Note that the fiber over any nonzero point of A 1  is a nondegenerate 
(smooth) hyperbola of the form V(xy — t). Only the fiber over the ori-
gin is exceptional: This member of the family is the degenerate hyperbola 
V(xy) c A2 , the union of 2 lines. 

We see that the generic (or typical) member of the family is smooth. 
The dense open set A 1  N {0} of the parameter space A 1  parametrizes the 
smooth members in our family. 

More generally, when an algebraic geometer speaks of a family of alge-
braic varieties, what is intended is simply a surjective morphism X 24 B 
of varieties. The base of the family is the variety B, and the members of 
the family are the fibers of this morphism. 

The theorem of generic smoothness of families says that, provided some 
member of the family is smooth, almost all members of the family are 
smooth. To be precise, there is a Zariski-open subset of the base U C B 
such that for all p E U, the fiber Xp  = ii- '(p) is a smooth algebraic 
variety. Thus whenever the parameter space B is irreducible, the set of 
smooth members of the family is dense, provided it is non-empty. 

The types of families that are the most useful are called flat families. 
Roughly speaking, a flat family (or a flat morphism X B) is one whose 
members (the fibers of 7r) vary continuouly, as in the hyperbola family ex-
ample. In particular, all members of a flat family (over an irreducible base 
B) have the same dimension and any other numerical invariants must be 
locally constant in a fiat family. For example, if X B is a family of 
projective varieties, meaning that each fiber is a projective variety, then 
all the members have the same degree and even the same Hilbert polyno-
mial. In fact, it can be shown that a family of projective varieties over an 
irreducible base B is flat if and only if all members have the same Hilbert 
polynomial. Of course, there are many important examples of surjective 
morphisms that are not flat. In section 7.1, we will introduce blow-ups—
surjective morphisms with the fiber over almost every point being just a 
single point, but the fiber over some special points being a large, com-
plicated projective variety. Because the fibers vary so wildly, blowups are 
essentially never flat. See [20, III 9] for more about flatness. 

The preceding example of a hyperbola family has a nice interpretation in 
terms of scheme theory. The corresponding ring homomorphism between 
coordinate rings is the map 

	

C [t] 	, 

	

t 	Z. 

The ring map 7r# defines a map of schemes 
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SPeC C(xixy' Y 'zz 	SpecC [t] , 

	

P 	(714 ) -1 (P), 

whose restriction to maximal ideals recovers the original projection 7r. 
The elements of SpecC[t] are the prime ideals of the ring C[t]. These are 

just the zero ideal (0) plus all the maximal ideals, which can be identi-
fied with the complex numbers. We have already encountered a surprising 
property of the nonmaximal prime ideal (0) of C[t] in the exercises: It is a 
dense point in the topological space SpecC[t]. 

The fibers over points corresponding to numbers are the original hyper-
bolas, including the degenerate hyperbola over zero. It turns out that the 

c  fiber over the dense point is Spec (r.z)[x
(xv-Z) 7  where C(z) is the field of 

complex rational functions—the fraction field of C[z]. The indeterminate z 
here should now be treated as a constant in the ground field. 

Thus the generic point also defines a hyperbola V(xy - z) in the plane 
A2  with coordinates x and y, but now the ground field is the field C(z) 
of rational functions in one variable. This "generic" hyperbola is smooth 
(as can be checked using the Jacobian criterion for smoothness described 
in the previous section), and this suggests that the set of smooth fibers is 
nonempty, and ought to be dense as well, since after all, this is a member 
of the family corresponding to a dense point of the parameter space. 

6.4 Bertini's Theorem 

The idea that a "general member" of a family of varieties ought to be 
smooth is also reflected in Bertini's theorem. 

Before stating Bertini's theorem we recall that any hyperplane in Pn  
is the zero set of a linear functional >j  az x, on Cn+ 1 . The hyperplane 
determines the linear functional up to a nonzero multiplicative constant, so 
the hyperplane can be identified with a point [ao  : : an ] in P". Therefore, 
it is natural to think of the set of hyperplanes in Pn as the points in dual 
projective space (ilin). 

Bertini's theorem: Let V c P" be a smooth irreducible projective variety. 
Consider the set 

W =- {H E (Irin) H n  V is a smooth variety } 

of all hyperplanes in Pn  intersecting V in a smooth variety. Then W is an 
open subvariety of (P-"). That is, the set of hyperplanes having singular 
intersection with V forms a Zariski-closed subset of 115". 
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As H varies through the dual space (IF°n), the intersections H n V form 
a family of varieties parametrized by (Pi'),  called the hyperplane sections 
of V . 

Figure 6.8. A general hyperplane section is smooth 

Loosely, Bertini's theorem says that "the generic hyperplane section of 
V is smooth". For example, Figure 6.8 shows a few hyperplane sections of a 
fixed smooth variety. According to Bertini's theorem, a typical hyperplane 
section ought to be smooth, and it is easy to visualize that this is indeed 
true in this example. Indeed, a hyperplane section fails to be smooth if and 
only if the hyperplane is tangent to the variety at some point. For a proof 
of Bertini's theorem, see, for instance, [20, page 179]. 

Bertini's Theorem illustrates the general principle that a generic member 
of a family of algebraic varieties is smooth, provided that some member is 
smooth. Note that it is possible that no member of a family of algebraic 
varieties is smooth. Although the set of smooth members must be an open 
subset of the parametrizing variety, this open set can be empty. For exam-
ple, consider the family of all tangent hyperplane sections of a fixed smooth 
variety. It is not very difficult to prove that no member of this family is 
smooth. 
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There are many variants of Bertini's theorem. For example, Figure 6.9 in-
dicates a one-dimensional "linear" subfamily of the family of all hyperplane 
sections of a variety, namely, the family of hyperplane sections obtained by 
intersecting with planes parallel to a given plane. Because one such hyper-
plane section in this one-parameter family is smooth, a generic member of 
this family must be smooth. 

Figure 6.9. A one-dimensional subfamily of the family of all hyperplane sections 

Note that Figure 6.9 suggests an alternate interpretation of the hyper-
bola family discussed in the preceding section. Instead of thinking of the 
members of the hyperbola family as the fibers of a map, we may think 
of them as hyperplane sections of the fixed variety in A3  defined by the 
vanishing of z — xy. We intersect only with the one-parameter family of 
hyperplanes given by z = A where A varies. Refined versions of Bertini's 
theorem tell us that for generic A, the corresponding member of the hy-
perbola family is a smooth variety. See [29] for a survey of the most recent 
progress in Bertini type theorems. 

Exercise 6.4.1. Let V be the hypersurface in A 3  defined by z — xy -= O. 
Show that a plane H in A3  is tangent to V if and only if the intersection 
V n H is singular. 
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6.5 The Gauss Mapping 

Using the fact that the Grassmannian is a projective algebraic variety, 
we can create many useful embeddings of quasi-projective varieties into 
projective space. One important example is the Gauss map. 

Let V be a smooth d-dimensional irreducible quasi-projective variety sit-
ting inside some fixed projective space PI'. Because V is smooth and of 
dimension d, the tangent plane to V at each point p E V has dimension 
d. Because we are considering V as subvariety of projective space, we con-
sider the projective tangent plane TV  C Pn. For each p in V,  TV  is a 
d-dimensional linear subspace of Il,  that is, it is an element of the Grass-
mannian Gr(d + 1, n + 1) of d-dimensional linear subspaces of Pn. In other 
words, we have a well-defined map 

V —4 Gr(d + 1,n + 1), 
p 	TV = the projective tangent space to V at the point p. 

This is called the Gauss map of V. 

Theorem: If V C Pn is a smooth d-dimensional irreducible quasi-
projective variety, then the Gauss map 

V —> Gr(d + 1, n + 1) 
p 	TV  =- the projective tangent space to V at the point p 

is a morphism of algebraic varieties. If V is projective, then the image 
of the Gauss map is a closed subvariety of the Grassmannian, and hence 
projective as well. 

As a trivial example of the Gauss map, let V be a linear subvariety of 
Pn . Then for each p in  V,  the projective tangent plane to V at p is simply 
V itself. (The tangent space is, after all, the linear subvariety that best 
approximates V.) Thus for every p in V, the Gauss map associates the 
point in the Grassmannian corresponding to V itself. In other words, the 
image of the Gauss map for a linear variety is a single point. The case of a 
linear subvariety, however, is quite exceptional, as the next theorem shows. 

Theorem: The image of the Gauss map is a quasi-projective variety of the 
same dimension as the original variety, unless the original variety is a linear 
subvariety of projective space (in which case the dimension of the image of 
the Gauss map is zero). 

Harris [17, page 188] gives further information about the Gauss map. For 
a proof of the above theorem, see [15]. 

One special case of the Gauss map was extensively studied in the 
nineteenth century: The case where the variety is a plane curve. 

If C C P2  is a smooth plane curve, then the tangent space to each 
point of C is a line in P2 . On the other hand, the lines in P2  can be 
identified with another copy of P2 , called the dual projective plane and 
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denoted by 02  . The correspondence is simple: Each line in P2  is the zero 
set of a linear polynomial aoxo + ai xi + a2x2, where ao,  ai, a2 are complex 
numbers, not all zero. Two such triples (ao ,  a 1 , a2 ) and (bo , b 1 , b2 ) determine 
the same line if and only if they are multiples of each other, which is to 
say that the line V(aoxo + ai xi + a2s2) in P2  corresponds uniquely to 
the point (ao  : a l  : a2] E 0.2  determined by the coefficients of its defining 
equation. Therefore, the set of lines in P2 , Gr(2, 3), is identified with the 
dual projective plane  P2 .  

Now, the Gauss map can be expressed as a map 

C 	1152 , 
x 1---÷ (coefficients of the defining equation of the tangent line to x). 

By the theorem above, the image of this map is again a curve in 1152 , called 
the dual curve. Studying the dual curve can sometimes reveal interesting 
properties of the original curve C. 

Exercise 6.5.1. Convince yourself that the image of the Gauss map in 
the case of a plane curve is indeed a curve in  p2•  

Exercise 6.5.2. Study the Gauss map for a plane curve given by y = x3 . 
What geometric feature of this curve causes singularities in the dual curve? 

Exercise 6.5.3. Let V C P2  be the curve defined by the equation x d  
yd zd =_ 07  for  d>  2. Describe the Gauss map V -4 02  explicitly. (Hint: 
Use elementary calculus to find the tangent line to V). 3  Find the defining 
equation of the dual curve when d -= 2 and when d = 3. Is the dual curve 
smooth in general? 

Exercise 6.5.4. Show that the Gauss map for a projective variety V de-
pends on the choice of the embedding of V in projective space by comparing 
the Gauss map for a line and for a conic in the projective plane. 

Exercise 6.5.5. Prove that the hyperplanes in Pn are in one-to-one corre-
spondence with the points in another copy of Pfl, called the dual projective  
space, and denoted by 115n. More generally, prove that the hypersurfaces 
iii Pn of degree d are in one-to-one correspondence with the points in 
a projective space of dimension (n±d  d) — 1. (Hint: Revisit Section 5.2 on 
conics.) 

3 Solution: 	: y : z]1-4 
	d — 1 	— 11. 
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7.1 Resolution of Singularities 

In 1964, Heisuke Hironalca proved a fundamental theorem: Every quasi-
projective variety can be deszngularized, or equivalently, every variety is 
"birationally equivalent" to a smooth projective variety. Before we can 
state this theorem, we need to introduce some new ideas. 

Definition: A morphism of varieties X 11  V is called a projective 
rnorphisrni if X is a closed subvariety of a product variety 

XcVxlr 

and X 	V is the restriction of the projection onto the first coordinate. 

Projective morphisms have the property that the preimage of any point 
is a projective variety. A projective morphism is a proper mapping in the 
Euclidean topology, that is to say, the preimage of any compact set is 
compact in the Euclidean topology. 

Definition: A morphism X —54 V of quasi-projective varieties is called a 
birational morphisrn if its restriction to some dense open set U c X is an 
isomorphism onto some dense open subset U' c  V.  

A birational morphism need not be one-to-one, nor surjective. 

'Do not confuse a projective morphism with a morphism of projective varieties. 
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Hironalca's Desingularization Theorem: Let V be a quasi-projective 
variety. Then there exists a smooth quasi-projective variety X and a pro-
jective birational morphism X V. Furthermore, it may be assumed 
to be an isomorphism on the smooth locus of V, and if V is a projective 
variety, then so is X. 

The theorem says that every quasi-projective variety V, no matter how 
badly singular, admits a desingularization X, which is a smooth variety 
projecting to V that looks just like V everywhere except at the singular 
points of V. When we say that it is an isomorphism on the smooth locus 
of V we mean that it restricts to an isomorphism of varieties on the dense 
open sets 

X 7r —i (Sing V) 	V Sing V. 

Figure 7.1. Two desingularizations 

On the proof: The case where V is one-dimensional, the curve case, is rel-
atively easy and requires no restrictions on the ground field. It follows from 
the algebraic process called "normalization" (see [37, Chapter II, Section 
5.4]). The case of surfaces was understood by the Italian school of early-
twentieth-century algebraic geometers and can be understood by students 
of algebraic geometry without too much difficulty (see [2]). However, by 
modern standards it may be argued that they did not really have a proof 
for the general case of Hironaka's theorem for abstract algebraic surfaces. 
In the forties, Zarisld gave a "purely algebraic" proof of resolution of sin-
gularities for any algebraic surface or three-fold defined over the complex 
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numbers, or over any field of characteristic 0. Abhyankar later established 
resolution for surfaces and three-folds of nonzero characteristic. 

Hironaka's proof of the higher-dimensional case is quite difficult, span-
ning two issues of the Annals of Mathematics [21], and is valid only for 
varieties defined over a field of characteristic zero. This beautiful and fun-
damental work was recognized with a Fields medal in 1970. Although one 
might argue that in theory Hironaka's theorem is algorithmic, in practice it 
is virtually impossible to use it to construct a resolution of singularities for 
a given variety. Recently, Villamayor [39] and, independently, Bierstone and 
Milman [3] have clarified the process of resolution of singularities in charac-
teristic zero, explicitly describing the algorithmic nature of the resolution 
process. Lipman's review of Bierstone and Milman's paper [31] surveys this 
history and describes recent developments in the problem of resolution of 
singularities, including numerous references to the literature. 

Recently, exciting developments have grown from the deep ideas of Johan 
de Jong, who proved that projective maps exist in very general situations 
that are as good as desingularizations for many purposes. Using de Jong's 
ideas, simple proofs of Hironaka's theorem have been discovered by de Jong 
and Abramovich [1] and by Bogomolov and Pantev [4]. 

El 

Hironaka's theorem is founded on a very concrete construction, called 
blowing up. Let us look at some examples of blowups. To start, we will 
forget about singularities and just describe the blowup of a point in affine 
space. 

In blowing up a point p in An , the idea is to leave An  unaltered except 
at the point p, which is replaced by the set of all lines through p, a copy 
of Pn-1 . To make this precise, let us choose a suitable coordinate system 
for An  so that the point p may be assumed to be the "origin." Let B be 
the set of all pairs (x, f), where x E An  and  L G ED"' is a line through the 
origin of An  containing x. That is, 

B = {(x , i) e An x pn-11XEi} C An x  pn-1 .  

The blowup of An  at p is by definition the natural projection to the affine 
factor 

	

B 	An, 

	

(x, t) 	x. 

Let us check that the blowup B 
considering the fibers of this map. 
than the origin is simply the single 
through x and the origin. However, 
copy of Pn-1 , namely ({ c 

An  has the desired properties by 
The fiber of  it over any point x other 
point  (x, L),  where L is the unique line 
the fiber over the origin p is an entire 

XPn-1 , since the origin lies on every 
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line through the origin. The blowing up morphism B 	An collapses this 
fr'n -1  to a point and is bijective everywhere else. See Figure 7.2. 

Figure 7.2. Blowup of a point in the plane 

We claim that the set B is a quasi-projective variety. Indeed, if 
(X17 • • • x i,) are the coordinates of An and [yi  : • • : yn ] are the coordinates 
of Pn-1 , then (xi, , xn; : • • : yn ) are coordinates for An XP''. Now, 
a point x -= (xl, . . .  ,x)  C An  lies on the line represented by [yi. : • • • yn ]  
in Pn-1  if and only if the vector (x l , , xn ) is a multiple (possibly 0) of 
the vector (yi, 	, yn ). That is, x lies on f if and only if the matrix 

[ Xi 	xn 1 
Yi 	Yrt 

has rank less than or equal to 1. This holds precisely when all the 2 x 2 
minors of this matrix vanish. That is, the point  z  =  (xl, 	, x n ) lies on 

[Yi " • yn] if and only if the coordinates (xi, ••• , x;y 1  : • • Yn) 

satisfy the polynomial equations xiy3  — xiyi = 0 for all i and j. Thus 
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The reader should have no trouble checking that such a zero set is indeed 
a quasi-projective variety (however, B is neither affine nor projective!). 
Indeed, B is a closed subset in the quasi-projective variety An x 11)n-1 . 

The blowing up morphism B A' is obviously a projective, birational 
morphism. Indeed, since B is a closed subvariety of An x Pn-1  and 7r is 
the restriction of the natural projection to A', the map 7r is projective by 
definition. Furthermore, the map 

An N {p} -> B C An x 
(x1, ... ,Xn ) 	(X1, 	Xn ; X1 : • • • : X n ), 

is easily seen to be a morphism of quasi-projective varieties inverse to ir on 
the dense open set An N {p}. 

The variety B, together with its natural projection B 	An , is some- 
times called the one-point blowup of An . We also denote the space B by 
Bp  (An ). We think of this variety as obtained by removing the origin from 
An  and replacing it by the set of all lines through p in An . 

We will later treat the projection onto the other factor 

B 

(x, 

which makes B into a line bundle over projective space P' 1 , called the 
tautological line bundle over  1p n-1 . 

The blowup of affine space at a point can be generalized in several direc-
tions. We can blow up a larger subvariety of A" instead of a point, or we 
can blow up points in a more general quasi-projective variety. Ultimately, 
we would like to blow up arbitrary closed subvarieties of an arbitrary quasi-
projective variety (and even closed subschemes of an arbitrary scheme!). 
We start with the blowup of a point in an arbitrary affine variety. 

Definition: Let V C An  be an affine algebraic variety and p a point of V. 
The blowup of V at p is the Zariski closure of the preimage 

7-1 (V N {P}) 

in the variety B obtained by blowing up p in An , together with the natural 
projection ir to V. We denote the blowup of V at p by B(V). 

Because B(A) 1—> A" is an isomorphism when restricted to the open 
set Bp  (An) N 7r -1 (p), the restriction of  IT  to Bp (V) N 7r -1 (p) is an isomor-
phism onto V N {p}. An example of such a blowup is illustrated in Figure 
7.3 on page 104. 

\ Example: Let us blow up the cone V(x2 ± y2 z2 ) c A3  at the origin. As 
illustrated in Figure 7.4 on page 104, the cone looks like a union of lines, 
tied together at the origin. 



104 	7. Birational Geometry 

Figure 7.3. Blowup of node on a nodal curve 

Figure 7.4. Lines tied together at a point form a cone 
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The singularity of the cone is a result of this tying together of lines. 
To desingularize the cone, we must separate these lines. Intuitively, the 
desingularization of the cone is the disjoint union of the lines, in other 
words, a cylinder. The desingularizing process is depicted in Figure 7.5. 

ikaimmun summut muumuu ,nannunn unommunnumnminnu 
mmuumumuummiumt 
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IMI,InumunuM110111111H 
---11111111111lililliMMIR 
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Figure 7.5. Desingularizing the cone 

The "origins" of the lines have been separated, and they correspond to 
a circle on the cylinder. 

We now work this out explicitly by blowing up. The blowup map is 

B = {(x , i) E A 3  x P2  x E}  !* A3 , 
(x, t) 	x. 

Because projective space P2  can be covered by its three standard charts 

p2 A2x u  A2v u  A2 x,  

the blowup is also covered by three charts: The intersection with each chart 

B c A 3  x P2  (A 3  x  A 2 )  u (A 3  X A2 y ) U (A3  X A2  Z ) 

r 1 

A3  
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of the preimage of the cone is easily found. For instance, the last one is 

V  ,___ 7.--1(v( x2 + y2 _ z2)) n  (A3 X A2 z ) 
= ((X, y, z), (x :  y:  z)) i x2  +y2  = z2} 

2:2  (x,y,z, u, y) 1 x = uz, y -= vz , u2  + y2  = 1} c A5 
 1 

Projecting A5  into 3-dimensional space A3 , with coordinates z, u, and y 
the preimage set 

{ (z, u, y) I u2  +v2  = 1} 

is a variety isomorphic to V. This is a cylinder in A3 . We have blown up the 
vertex of a cone V(x2  + y2  — z2 ) C A3 , producing a variety B c A3  X P2 , 
which contains an open dense set isomorphic to a cylinder. Under these 
identifications, the preimage of the vertex point (0, 0, 0) E V(x 2 + y2  — z2 ) C 
A3  is the circle {x = 0, u 2  + y 2  = 1} on the cylinder. 

To desingularize more complicated varieties, we need to blow up more 
general subvarieties: It is not sufficient simply to blow up points. We will 
return to this problem after discussing rational maps, on which the idea of 
a general blowup is founded. 

7.2 Rational Maps 

In the context of Hironaka's theorem we have defined what we mean by a bi-
rational morphism. The birational morphisms are well defined everywhere, 
but everything interesting occurs only on a nonempty Zariski-open set, that 
is, "almost everywhere." The definition of a rational map formalizes this 
"almost everywhere" thinking. 

The first thing to stress about a rational map of a variety X is that 
it is not actually a map in the usual set-theoretic sense. Rather, it is an 
equivalence class of maps defined only on an open subset of X. 

Definition: Let X be a quasi-projective variety, and let U and U' be 
dense open subsets of X. Suppose we are given two morphisms U `' Y 

and U' 	Y of quasi-projective varieties. We say that (U, ça) and (U', V) 
are equivalent if the mappings y9 and y9' coincide on the intersection Un U'. 

Definition: A rational map X --+ Y is an equivalence class of morphisms 
defined on dense open sets of X as above. 

We think of a rational map as a morphism defined only on a dense 
open set, and we do not concern ourselves with the particular open set 
on which it is defined. Nevertheless, a rational map has a unique extremal 
domain of definition. Since the domain of definition of every representative 
is dense, inspecting the domain of definition of the rational map is usually 
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superfluous. On the domain of definition (which, as it turns out, is open) 
the rational map is a morphism of varieties. Thus a rational map is a 
"morphism defined almost everywhere." 

A rational map, despite its name, is not an actual mapping, which is 
the reason we use a broken arrow to denote it. This can lead to trouble, 
for example, when composing two rational maps. One must take care that 
the image of (a representative of) (pi is dense in Y in order to define a 
composition 

X 211+ Y ---ça-2-■ Z. 

Example: Projection from a point in projective space is an example of a 
rational map. Let H C Ir be a fixed hyperplane in Dr and let p E lEr be 
any point not on H. The projection from p onto the hyperplane H is the 
rational map 

ipn _ _ H  = pn - 

cp(x) = the unique intersection point of H and the line - L•. 

The rational map is a well-defined morphism everywhere outside p. 

Figure 7.6. Projection from p onto H 

In homogeneous coordinates the projection is most easily expressed by 
choosing the origin and axes in such a way that p = [0 : 	: 0 : 11  and 
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H  = V(x) C 11'n is identified with a copy of IP-1 . Then the projection 
from p takes the form 

pn 	pn-1 ,  

[Xo . .. : Xn] I-4  [z0 : . . . : Xn _ii =-- cp(x). 

7.3 Birational Equivalence 

Definition: Let X and Y be irreducible algebraic varieties. We call them 
birationally equivalent if there are mutually inverse rational maps 

X -- Y 

and 

 

G 
Y --+ 

This means that the compositions F o G and G o F are defined and that 
each is the identity rational map, that is, both F o G and G o F agree with 
the identity map on dense open sets where the compositions make sense as 
morphisms of algebraic varieties. 

Basically, X and Y are birationally equivalent if they are isomorphic on 
a (dense) open set. That is, after removing some closed subvariety of X and 
of Y, the remaining open sets are isomorphic as quasi-projective varieties. 
In particular, birational equivalence preserves dimension and certain other 
invariants of a variety. 

Example: Any isomorphism of varieties is a birational equivalence. Note 
also that every nonempty open subset of an irreducible variety V is bi-
rationally equivalent to V. Any quasi-projective variety is birationally 
equivalent to any of its projective closures. Furthermore, every variety V 
is birationally equivalent to any of its blowups. 

Definition: The graph of a rational map X --e Y is the closure of the 
set-theoretic graph of any one of its representatives U --  

rF  = {(x, yo(x))1xEU}CXxY. 

The closure is taken in the Zariski topology of the product variety X x Y, 
but we get the same result by taking the closure in the Euclidean topology 
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on the product X x Y. The reader should check that the closure is well-
defined: graphs of different representatives all have the same closure. 

Exercise 7.3.1. Let r be the graph of a rational map X 	Y.  Prove 
that the projection r —+ X is a birational equivalence. 

Exercise 7.3.2. The function field of an irreducible affine variety is de-
fined as the fraction field of its coordinate ring. More generally, the function 
field of a nonaffine irreducible variety is defined as the function field of any 
nonempty affine open subset. Show that this is independent of the choice 
of the affine open set. 

Exercise 7.3.3. Prove that two irreducible varieties X and Y are bira-
tionally equivalent if and only if their function fields C(X) and C(Y) are 
isomorphic as C-algebras. 

Exercise 7.3.4. Prove that .1P2  is birationally equivalent, but not isomor-
phic, to PI  x 

Exercise 7.3.5. Find the equation defining the graph of the rational map 
A2 	Al sending (x, y) to y I x as a subvariety of A3 . 

7.4 Blowing Up Along an Ideal 

Now we can define the blowup of more general subvarieties. To facilitate 
our understanding, we introduce an alternative interpretation of blowing 
up a point in  A.  

Consider the map 

	

A" N {0} 
	pn-1 ,  

x 	(xi, • • • ,xn) 
	

Az) = [XI : • • • : Xn17 

attaching to each point x E An  \ {0} the line .e(x) through 0 and x. 
As a set, the graph of this map is 

{(x,i(x)) E An N {0} x Pn -1 1. 

It is not hard to see that the blowup Bp (An) is the closure of this graph in 
the product variety An x  1ln -1 . Thus, the blowup of the origin in An can 
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be identified with the graph of the rational map 

A' 
,x.) 	[xi : • • : xn]. 

	

Figure 7.7. Graph in A2  x IP' 	of the rational map A2 	IF" 

We use this idea to blow up an arbitrary subvariety Y of a variety X.  

Definition: Let 	, Fr  be functions in the coordinate ring CPC] of an 
affine algebraic variety X,  and let I be the ideal they generate. Assume 
that I is a proper non-zero ideal of C[X]. The blowup of the variety X 
along the ideal I is the graph B of the rational map 

X -F-+ Pr-1 7  

	

x 	[Fi (x) 	: 	: Fr (x)], 

together with the natural projection map BcXx Pr -1  '1. > X. The 
blowup of X along I is denoted B1  (X).  

The projection 

	

BI (X) 	X, 

	

(x, F(x)) 	x, 

defines an isomorphism of quasi-projective varieties between the open sets 

./3/ (X) N ri--1 (Y) --> X N Y, 
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where Y is the closed set in X defined by the vanishing of  F1 ,... Fr. 
Indeed, the inverse morphism can be defined as 

X N Y ---+ Bi(X) C X x Pr-1 , 
x 	(x,[Fi(x) : • • • : Fr(x)D, 

which is well-defined on X N Y because the functions F1, 	, Fr  do not 
simultaneously vanish anywhere on X N  Y.  In other words, the rational 
map 

X - - B (X), 
x 

is an inverse of the blowing up map B1 (X)  '7. > X, showing that X and 
B1 (X)  are birationally equivalent varieties. 

Although it is not obvious, the isomorphism class of the blowup B1 (X)  
depends only on the ideal I and not on the particular choice of generators. 
Furthermore, if I happens to be the maximal ideal corresponding to a point 
x in X, then the blowup Bi(X) agrees with the the blowup of X at the 
point x defined in Section 7.1. For more on blowing up from this point of 
view, see [10, Section IV.2]. 

We have not made any assumptions as to whether the ideal is radical or 
not. Different ideals may produce different blowups, even if both have the 
same radical, which is to say, even if they define the same closed subset of 
V. This means that we are really blowing up along an ideal, not just the 
subvariety defined by that ideal. 

Definition: Let Y be a subvariety of an affine algebraic variety X. The 
blowup of X along the subvariety Y is the blowup along the radical ideal 
11(Y). We also denote this by By (X). 

So far, we have considered only affine varieties, but this restriction is not 
necessary. The discussion also makes sense for a quasi-projective variety 
X c Pm. For example, we can take a homogeneous ideal, generated by 
homogeneous polynomials F1 , , Fr  of the same degree, and consider the 
rational map 

X - - 
[Fi(x) : 	: Fr(x)], 

The graph of the rational map F (together with its projection to X) is 
the blowup of X along the ideal (F1, , Fr) in X. Blowing up along an 
arbitrary ideal that is not necessarily radical is also called blowing up along 
the subscheme defined by the ideal I. 

As the reader might suspect, it is in fact possible to blow up along any 
subvariety (or subscheme) in any variety. To do this correctly, one should 
introduce the machinery of an ideal sheaf I in the structure sheaf Ox of 
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the variety, and define the blowup of X along the ideal sheaf I by patching 
together the blowups on affine charts of X (see [20, Chapter II, Section 7]). 

As we have seen, every blowup morphism —+ X is a projective bira-
tional map. In fact, although it is not obvious, the converse is also true: 
Every projective birational map .3-C —> X of quasi-projective varieties is a 
blowup of some sheaf of ideals in X (see [20, Theorem 11.7.17]). 

We return to Hironaka.'s desingularization theorem. Let V be an affine 
variety; say V is a Zariski-closed set in  A. Hironaka's theorem says that 
there exists a set of polynomials Fo, , Fr  in n variables such that the 
graph of the rational map 

V --+ Pr, 
x 	[Fo (x) : • • :  Fr()]  

is a desingularization of  V.  Denoting this graph by X, we know that X is 
a closed subvariety of V x IF, and the natural projection X V onto 
the first factor is a birational equivalence, called the blowup of V along the 
ideal (F0 ,.. . , Fr). 

The remarkable fact proved by Hironaka is that the Fi  can be chosen so 
that the variety X is smooth. Furthermore, Hironalca's theorem guarantees 
that the  F can be chosen so that the closed subset V(Fo, , Fr) C V 
where the map fails to be an isomorphism is precisely the singular locus of 
V. Because the projection X V is an isomorphism on the dense open 
set complementary to the singular locus, we see that X looks "just like V" 
except on the singular set of V. 

It is important to realize that the ideal (Fo, 	, Fr ) may not be the same 
as the Jacobian ideal defined in Section 6.2, although both ideals define the 
singular locus of V. The fact that they define the same closed set of V means 
only that they must have the same radical. Indeed, although we know that 
a desingularizing ideal exists, it is difficult to identify one explicitly. 

The statement of Hironaka's theorem can be refined as follows. Rather 
than blowing up the nonradical ideal (Fo, , Fr), a variety can be desin-
gularized by successive blowings up of ideals that are radical and define 
smooth subvarieties contained in the singular locus. Sometimes this is more 
useful in practice, because blowing up a smooth subvariety has a geometric 
interpretation similar to the interpretation of blowing up a point. Instead 
of replacing the point by the set of all lines through that point, blowing up 
Y replaces Y by all normal directions to Y. To make this precise requires 
more machinery than we develop here; see [37, Book II Chapter VI, Section 
2]. 

Hironaka's theorem does not claim that the desingularization is unique 
or in any way canonical. Every variety (of dimension greater than one) has 
many nonisomorphic desingularizations. In Section 7.6 we discuss some of 
the research that has been done on the question of whether there is some 
sort of canonical or "minimal" smooth projective variety that is isomorphic 
to a given variety on a dense open set. 
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Exercise 7.4.1. Show that the variety obtained by blowing up a maximal 
ideal in an affine variety is the same as the variety obtained by blowing up 
any power of that ideal. (Hint: Recall the Veronese mapping.) 

Exercise 7.4.2. Let X C An+ 1  be the affine cone over a smooth projective 
variety. Show that the cone X can be desingularized by blowing up its 
vertex. What is the fiber of the desingularizing map over the vertex? 

7.5 Hypersurfaces 

Our goal in this section is to explain why every irreducible projective vari-
ety is birationally equivalent to a hypersurface. In other words, given any 
irreducible projective variety of dimension d, there exists a hypersurface 

X = V(F) C Pd+1  

such that V and X contain isomorphic dense open sets. The easiest way to 
prove this uses a purely algebraic argument in field theory; see [20, page 
27]. However, we would like to sketch a more intuitive geometric argument. 
This will complete the proof of the nonemptiness of the smooth locus as 
promised in Section 6.2. 

Sketch of the proof: Let V C Pn be an irreducible projective variety. We 
first substantiate the claim that if V has dimension n — 1, then V must 
be defined by a single equation; that is, every codimension-one irreducible 
subvariety of Pi is a hypersurface. 

To see this, first note that the ideal 1(V) of functions vanishing on V 
must contain some irreducible homogeneous polynomial F. Indeed, take 
any F in II(V). If it factors as GH, then because 1I(V) is prime, G or H 
must be in 11(V). By induction on degree, eventually II(V) contains some 
homogeneous irreducible polynomial. Using the fact that every polynomial 
factors uniquely (up to units) into irreducible factors, one checks easily that 
the ideal generated by an irreducible polynomial is prime, so that we have 
an inclusion of prime ideals 

(F) clI(V) 	C[xo , 	,x,,]. 

If (F) 'KV), then V is a proper subvariety of the irreducible codimension 
one subvariety V(F), and hence must have codimension at least two. This 
contradiction ensures that 'KV) = (F), and so V V(11(V)) = V(F). Thus 
every irreducible codimension-one subvariety of Ft is a hypersurface. 

The proof of the theorem can now be completed by induction on the 
codimension of V in Pn . We have just established the codimension-one 
case. 
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Suppose codimV > 1. Fix a point p E Pn N V and a hyperplane H 
not containing p. Let r be the projection from p onto H: 

pn _ 11", H pn-1 

ir(x), 

as defined in Section 7.2. Let V' C Pu -1  be the image of V under this map. 
It is easy to see that p and H can be chosen so that the projection 

V 	V' 

is one-to-one on a dense open set. Then an inverse map can be con-
structed on a dense open set, and one easily verifies that this defines a 
birational equivalence. Because the codimension of V' in Pn-1  is one less 
than the codimension of V in Pn, the proof is complete by induction on 
the codimension. 0 

While it is intuitively obvious that the projection V -7-` V' is a bira-
tional equivalence for generic choices of p and H, the reader may have 
trouble finding a precise geometric proof. This should help one appreci-
ate the simple algebraic proof given in Hartshorne's book, which, however, 
requires a certain amount of field theory. 

Exercise 7.5.1. An algebraic variety is said to be rational if it is bira-
tionally equivalent to projective space (of some dimension). Show that the 
nodal plane curve defined by the equation y 2  — X2  — X3  = 0 is rational. 
(Hint: Project from the node.) 

7.6 The Classification Problems 

We start with a list of guiding problems that motivate much of the research 
in algebraic geometry. For the most part, these problems are hopelessly 
difficult to answer in general, but progress can be measured against them. 

• Classify all varieties up to isomorphism. 

• Classify all smooth projective varieties up to birational equivalence. 
Notice that this would give a birational classification of all quasi-
projective varieties, since every quasi-projective variety is birationally 
equivalent to a projective variety and, by Hironaka's theorem, every 
projective variety is birationally equivalent to a smooth projective 
variety. This problem is equivalent to the purely algebraic problem of 
classifying finitely generated field extensions of C up to isomorphism. 

• Classify the varieties in each birational equivalence class up to 
isomorphism. 

• Choose a canonical representative for each birational equivalence 
class. 
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For curves (one-dimensional varieties) all of these questions have satis-
factory answers, which have been developed during centuries of beautiful 
mathematics. 

We summarize the theory for curves without indicating the proofs. Every 
rational map between curves extends uniformly to a well-defined morphism; 
hence birational maps and isomorphisms are the same for curves. It is rel-
atively easy to prove that each birational equivalence class has a unique 
smooth projective model (see [20, page 45]). Because complex curves are 
Riemann surfaces, classifying complex curves has led to an algebraic ana-
logue of Teichmiller theory, which studies the moduli of Riemann surfaces 
up to conformal isomorphism. From the viewpoint of algebraic geometry 
the main results are as follows 

• There exists only one genus-zero curve up to isomorphism, namely 
PI 

• There exists a one-parameter family of isomorphism classes of curves 
of genus one, the so-called elliptic curves, indexed by the j-invariant, 
a parameter varying over A' (see [20, Chapter IV, Section 4]). 

• The curves of genus greater than one are parametrized by the mod-
uli spaces 97i9 . These moduli spaces were first constructed by David 
Mumford as abstract (3g — 3)-dimensional varieties 2  [33] but soon 
afterward were shown to be, in fact, irreducible quasi-projective va-
rieties by Deligne and Mumford [8]. The structure of these moduli 
spaces and their generalizations is an active field of research, es-
pecially since interesting connections with theoretical physics were 
discovered in the past ten years by Witten, Kontsevich, and others; 
see [18]. 

As the above summary indicates, quite a lot is known about the classifi-
cation of curves. Nonetheless, questions still abound. For example, although 
we will prove in the next section that every smooth projective curve can 
be embedded into projective three-space, it is still unknown whether or not 
every such curve is the intersection of two surfaces. 

One of the most active areas of research in algebraic geometry today 
is the search for a distinguished representative for each birational equiva-
lence class of smooth projective varieties. For curves, we mentioned that 
every class is represented by a smooth projective curve and that this rep-
resentative is unique up to isomorphism. In contrast, we cannot find a 
unique representative for surfaces (two-dimensional varieties). Each bira-
tional equivalence class of surfaces contains infinitely many nonisomorphic 
smooth "models," that is, smooth projective varieties representing the class. 
For example, it is not very difficult to prove that if we blow up ri points 

2 Abstract varieties are defined in the Appendix. 
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on P2 , we obtain a smooth projective variety birationally equivalent to P 2 , 
but for different values of n these varieties are not isomorphic. 

A beautiful fact of classical algebraic geometry is that with some describ-
able exceptions, every birational equivalence class of surfaces has a unique 
minimal model. A minimal model is a variety V to which every variety bi-
rationally equivalent to V admits a birational, regular (that is, everywhere 
defined) morphism. Thus the minimal model is a distinguished representa-
tive of the birational equivalence class. The exceptions are the birational 
equivalence classes of ruled surfaces—surfaces birationally equivalent to 
Pi  x C, where C is a curve. For example P2  is birationally equivalent to 
the ruled surface IP' x Pl. Both models are "minimal" in a certain weaker 
sense: There are no nontrivial birational morphisms from either to any 
other variety in this birational equivalence class. However, because there 
are no morphisms from P2  to IP" x P", or from P 1  x P 1  to P2 , this class does 
not admit a (unique) minimal model. A fun exposition of this topic can be 
found in the article by Miles Reid [34]. 

There is a similar theory for three-folds (algebraic varieties of dimension 
3), a beautiful subject for which Mori was awarded the Fields medal in 1990. 
Again, with certain describable exceptions, each birational equivalence class 
of three-folds admits a "minimal model," although it is not quite unique 
and we must allow certain mild singularities, called "terminal singularities." 
Furthermore, again with certain exceptions, every binational equivalence 
class contains a "canonical model" to which all other members of the class 
map, although its singularities are somewhat more complicated. 

The higher-dimensional theory is the subject of current research. An 
enjoyable and very accessible introduction to this topic can be found in 
Kollgr's article [26]. 



8 
Maps to Projective Space 

One of the main goals of algebraic geometry is to understand the geometry 
of smooth projective varieties. For instance, given a smooth projective sur-
face X, we can ask a host of questions whose answers might help illuminate 
its geometry. What kinds of curves does the surface contain? Is it covered 
by rational curves, that is, curves isomorphic to PI? If not, how many ra-
tional curves does it contain, and how do they intersect each other? Or is it 
more natural to think of the surface as a family of elliptic curves (genus-1 
Riemann surfaces) or as some other family? Is the surface isomorphic to 
IP or some other familiar variety on a dense set? What other surfaces are 
birationally equivalent to X? What kinds of automorphisms does the sur-
face have? What kinds of continuously varying families of surfaces does it 
fit into? 

In trying to understand a variety X, we might try to make X as concrete 
as possible. Preferably, we know how to embed X in a particular projective 
space. It would be even better if we could view X from several different 
perspectives, by embedding it into projective spaces of different dimensions, 
and in different ways. More generally, it may be helpful to know whether 
the variety admits a map to some other projective variety. 

Basically, we would like to understand all the maps from a variety to 
projective space. The main goal of this chapter is to describe how line 
bundles can be used to completely describe these maps. A comprehensive 
development of this topic would occupy an entire semester in an advanced 
algebraic geometry course. We hope that our brief treatment here will give 
the reader an appreciation of this important topic. 
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Before dealing with line bundles, we first discuss the more elementary 
topic of embedding a smooth curve in ?3 . 

8.1 Embedding a Smooth Curve in Three—Space 

Suppose that we are given a smooth projective variety. What is the smallest 
dimensional projective space in which it can be embedded? The following 
theorem answers this question in the one-dimensional case. 

Theorem: Every smooth projective curve can be embedded in P3 . 

Before describing the main ideas of the proof we state some definitions. 

Definition: Let X C Pi be a smooth projective variety. The tangent 
variety and the secant variety of X are defined to be the sets 

Tan X = {p G Pn 1 p lies on a line tangent to X} c Pn, 
Sec X = fp E Pn I p lies on a line secant to XI c Pn, 

where a line is secant to a variety X if it intersects X in at least two distinct 
points. It is not hard to prove that Tan X and Sec X are quasi-projective 
varieties (see 120, page 310]). While Tan X is closed for smooth projective 
X,  the variety Sec X is virtually never closed; in fact, tangent lines can be 
thought of as limits of secant lines, so Tan X is contained in the closure of 
Sec X. 

If X is a smooth curve in  P's, it has only one tangent line at each point 
x. Let us parametrize the tangent line at x by P1 : 

pi 2_4  pn ,  

A 1—. (ps  (A). 

Figure 8.1. Parameterizing the tangent line to a curve 
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The tangent variety Tan X of a smooth curve X is the image set of the 
map 

X x P 1 
 ___>,  Pli ,  

(x, A) 1--  

Since X x P1  has dimension two, the image variety Tan X is at most 
two-dimensional. 

Similarly, each secant is determined by two points on X and is 
parametrized by P 1 . This defines a rational map 

XxXxP1  --+Pn, 
(x, y, A) --+ cpx ,v (A), 

where yo(A) is the point on the secant line between x and y corresponding 
to A E IP I  under the parametrization cp x ,y . This map is a morphism on the 
open set where x and y are distinct, and the image of this morphism is the 
secant variety. Thus the secant variety has dimension at most three. 

Sketch of proof of theorem: Let X C Pn be a smooth curve. Since we 
want to embed X into projective space 1F3 , there is no problem at all unless 
n is at least four. Choose some hyperplane H c  P.  Also choose a point 

it 

p G Pn, outside both the curve and the hyperplane. Let Pn ---9 H  
be the projection from p to H. Restricted to the curve X, the projection 7r 
defines a well-defined morphism X -4 H, because the only point at which 
it is not defined is p, and p is not on X. We will show that when n is greater 
than three, there is a choice of p (in fact, almost all choices work) such that 
the map 71x is an embedding, completing the proof by induction on n. 

Figure 8.2. Projection of the curve X to H 

Evidently, if p does not lie on any secant line to X, then it  is one-to-one 
on X. If 7ix is one-to-one, then the following statements are equivalent: 

(a)  it induces an isomorphism X -3 71 - (X) cif'''. 
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(b) 7r induces an injection on each tangent space 

Tx X 	T, s  ( ( X ) ). 

Figure 8.3. Projection of the tangent space 

More accurately, the induced map on tangent spaces should be denoted 
by dx 7r, but in this case dx 7r is the same as 7r restricted to the linear variety 
TX  in Pn because 7r is a projection. The equivalence of (a) and (b) is 
not completely trivial, although it should be believable if you have studied 
differential or complex geometry, since the analogue is true in those settings. 
The proof depends on Nakayarna's Lemma, a standard theorem in every 
book on commutative algebra. The proof of the equivalence of statements 
(a) and (b) can be found on page 152 of [20]. 

Let us go on with the proof. Statements (a) and (b) are also equivalent 
to p not being a point on any tangent line to X. To see this, note that a 
tangent vector at x is sent to zero under 7r if and only if it lies on a tangent 
line to x passing through p. Thus, 7r induces an isomorphism on X if and 
only if it does not collapse any tangent line of X to a point, which is to 
say, no tangent line to X passes through p. 

To summarize, we have shown that when n is at least four, the projection 
induces an isomorphism from the curve X to a curve in a lower-dimensional 
projective space, provided that p is not in Tan X nor in Sec X. Of course, 
there is plenty of room to choose p to satisfy these conditions, since the 
subvariety Tan X U Sec X is of dimension at most three and can never fill 
all of Pn when n is greater than three. 

Exercise 8.1.1. Use the same techniques to show that every smooth 
quasi-projective variety of dimension d can be embedded in P2d+1. 
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8.2 Vector Bundles and Line Bundles 

Maps from a variety X to projective space are governed by line bundles on 
X. A line bundle is the one-dimensional avatar of a vector bundle. 

Roughly speaking, a vector bundle on X is a morphism of varieties E 
X, where E is locally a product of X with Cn, and the map E —> X is 
locally the natural projection X x Cn 	X. The precise definition follows. 

Definition: A vector bundle of rank n on an algebraic variety X is an alge-
braic variety E, together with a morphism E R > X called the projection, 
such that the following conditions are satisfied: 

• There is an open cover U Ut: of X such that r-1 (U,) is isomorphic to 
the product U, x Cn by fiber-preserving maps. More precisely, there 

are isomorphisms r-1 (Ui) x Cn such that the diagram 

(Pi 
ir -1 (Ui) Ui x Cn 

Ui  

71\ 

commutes, where Ui x Cn 	is the natural projection onto the 
first factor. 

Figure 8.4. A vector bundle L of rank 1 
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• The isomorphisms (pi  are linearly compatible in the following sense: 
On  U n  U , the composition 

—> (ui  n u; ) x Cn, 

	

(x,v) 	(x, ((pi  0 ‘,0;7 1 )(v)), 

is a linear map of Cn for each fixed value of x. 

The variety E is called the total space of the vector bundle, but we often 
denote the entire vector bundle by the notation for its total space. Vector 
bundles of rank 1 are called line bundles. 

Let E 	X be a vector bundle of rank n on X, and let x E X be 
any point. The fiber of 7r over x is a closed subvariety 71-1 (x) denoted by 
E.  Fixing some U containing x, the isomorphism (p i  induces a variety 
isomorphism of Ex  with C. Using this isomorphism, we can transfer the 
vector space structure on Cn to a vector space structure on  E.  It is easy to 
verify, using the linear compatability condition (2) above, that this vector 
space structure on Ex  is independent of the choice of the open set Ili and 
the isomorphism (pi. Thus, we can think of the vector bundle E —> X as a 
continuous family of n-dimensional vector spaces Ex  parametrized by the 
points of X. 

Every vector bundle admits a unique zero section. Indeed, one easily 
checks that the map X 	E defined by 

x  

where U is any open set containing x and 0 is the zero element in Cn, is 
a well-defined morphism of algebraic varieties. This morphism is called the 
zero section of the bundle because it chooses for us a distinguished point 
s(x) of each fiber Ex , namely, the zero element of the vector space E.  Note 
that 7r o s is the identity map on X, so that we can interpret this map as an 
embedding of X into E. Thus we can think of a vector bundle as a way of 
continuously attaching an n-dimensional vector space by its origin to each 
point of X. 

The open cover Ui together with the choice of the isomorphisms (pi is 
called a local trivialization of the bundle. The cover and the maps are by no 
means unique, and should not be considered as part of the structure of the 
vector bundle. However, the induced vector space structure on each Ex  is 
unique, which is to say, it is independent of the choice of local trivialization, 
as the reader should check. 

Given a map of algebraic varieties X 	Y and a vector bundle E .7 >" Y 
on Y, there is a natural way to construct a pullback bundle f* E on X. To 
get an idea how the pullback is constructed, first recall the notion of a 

fibered product of sets. If X ±> Y and E 	Y are two maps of sets, the 
fibered product is the set 

X xy  E= {(x,v)if(x) = 7r(v)} c X x E, 
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together with the natural projections X xy E 14 X and X xyE E. 
If X 	Y and E 7-±-  Y are both morphisms of algebraic varieties, then 
the fibered product Xx y E has the structure of an algebraic variety, and 
the projections are morphisms of varieties. If E 2—t.  Y is a vector bundle 

of rank n over Y, then it can be checked that X Xy E -21-4 X is a vector 
bundle, also of rank n, on X. Indeed, for any x E X, the fiber of 71- ' over 
x is the vector space {(x, v)iv E ir-1 (f (x))1, which is identified with the 
fiber of E Y over the point f(x) and so is isomorphic to Cn. We leave 
the detailed verification of the vector bundle properties to the reader. The 
vector bundle X Xy X is usually denoted by f*E. 

In particular, if X and Y are isomorphic algebraic varieties, then every 
line (vector) bundle on X corresponds to a unique line (vector) bundle 
on Y, its pullback under the isomorphism. Thus the collection of all line 
bundles on an algebraic variety is an invariant of the variety. 

Exercise 8.2.1. If MI is a local trivialization of a vector bundle E on Y 

and X 	Y is a morphism of algebraic varieties, show that {f -1 (U)} is 
a local trivialization of f* E. 

8.3 The Sections of a Vector Bundle 

In algebraic geometry it is common to take a different approach to vector 
bundles, emphasizing the equivalent data of the sheaf of sections, rather 
than the definition above. 

Definition: Let E 	X be a vector bundle, and let U C X be an open 
set. A section of the vector bundle over the set U is a morphism U 	E 
such that ir o s is the identity map on U. The set of all sections of E over 
U is denoted by E(U). 

Figure 8.5. Section of a line bundle 
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Of course, by our definition of vector bundle, we already know that every 
vector bundle admits at least one section over each open set, namely the 
zero section, assigning to each x the zero element in the fiber E. 

If  81,82  E E(U) are two sections over U of a vector bundle E on X, 
then si +82 is also a section over U. Furthermore, for any regular function 
f E Ox (U), it is easy to show that the product f s is a section of E(U): The 

map U —>fs  ir-1 (U) is defined by x 	f (x) • s(x), where f(x) E C simply 
acts by multiplication on the vector s(x) in the vector space 

The sections of a vector bundle are another example of a sheaf. The 
reader familiar with the definition of a sheaf (see the Appendix, Section 
A.1) should have no trouble proving that E is a sheaf of modules over the 
sheaf of rings Ox: For each open set U C X, E(U) is a module over the 
ring  Ox  (U)  of regular functions on U. In fact, closer inspection reveals that 
because E looks locally like X x Cn, E is a locally free sheaf of  Ox -modules 
of rank n. That is, on sufficiently small open sets, 

E(U) 0 x (U) e • • • e Ox  (U). 
••■■.„,„.. ■/ 

n copies 

Indeed, for such U, a section is a morphism 

U 	7r -1 (U) U x Cn, 
x 	(x, 	, fn (x)), 

where each of the fi  is a regular function from U to C. 
A frequent abuse of notation in algebraic geometry is to use the same 

symbol to denote both the vector bundle and its sheaf of sections, but 
we will try to emphasize the difference in our discussion. The sheaf of 
sections of a vector bundle is one example of what algebraic geometers call 
a coherent sheaf on X. The theory of coherent sheaves, in which one studies 
more general sheaves of Ox-modules than those that are locally free, is an 
essential part of algebraic geometry, but we will not go into it here (see [20, 
Chapter II]). 

The global sections of a vector bundle are simply the sections E(X) of 
E over the whole variety X. Some authors denote the global sections by 
r(x, E) or by H° (X , E). Like the sections over any open set, the set of 
global sections naturally forms a complex vector space. 

It turns out that if X is projective, then the set of global sections E(X) 
forms a finite-dimensional C-vector space. The reader familiar with complex 
geometry will have no trouble believing this, at least when X is smooth, be-
cause in this case X is a compact complex manifold. For a precise algebraic 
proof of much more general facts, see [20, page 122, Theorem 5.19]. 

Exercise 8.3.1. Let E be the sheaf of sections of a vector bundle E —> Y 

and let X —+ Y be a morphism of algebraic varieties. Describe the sheaf 
of sections of the pullback bundle f*E. 
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8.4 Examples of Vector Bundles 

Let X c Pn be a projective variety. 

The trivial bundle : The trivial line bundle over X is 

X x C  

(P, A) 1---4  p• 

The sections are the morphisms p i— (p,  1(p)),  so giving a section of the 
trivial bundle over an open set U is the same as giving a regular function 

f U --4 C. Thus, the sheaf of sections of the trivial line bundle over X can 
be identified with the structure sheaf Ox of the variety X.  If we assume 
that X is connected as well as projective, then there are no global sections 
of the trivial sheaf except constants: Ox (X) = C. 

Similarly, the trivial vector bundle on X is the variety X x Cn, together 
with the natural projection. Its sheaf of sections is isomorphic to 

Ox ED • • • ED Ox . ..._..„—.., 
n copies 

The tautological line bundle: All projective varieties embedded in Pn 
have a natural line bundle called the tautological bundle which is inherited 
because of the embedding. Indeed, since the points of Pn  are precisely the 
lines through the origin in Cn+ 1 , we can associate to each point [x0 : • - • : 
x,,,] E Pn the corresponding line L := {(txo, . .. ,txn)1 t E CI in Cn+ 1 . By 
restricting to any subvariety X of Pn , we similarly associate a line to each 
point of X. 

pn 

Figure 8.6. The tautological bundle over P I  
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More precisely, the tautological bundle over Pn is constructed as follows. 
Consider the incidence correspondence of points in CH-1  lying on lines 
through the origin, 

B = {(x, t)! x E C Cn+1 pn, 

together with the natural projection 

B r. 
(The same set B, taken with the other projection B -4 An+1 , defines the 
blowup of the origin in An+1 .) The fiber over a fixed point t E 	is the 
set f (x,£)1 x E 	of points x on L. It is easy to verify that the projection 
B 	* Ir satisfies the definition of a line bundle. 

The tautological bundle over the projective variety X C Ir is obtained 
by simply restricting the correspondence to the points of X: 

B = {(x,t)1 E X and x E el C Cn+I  x X C Cn+1  x Pn . 

It is important to realize that the tautological bundle is not intrinsic to X: 
It depends on the choice of the embedding of X in a particular projective 
space. In otherwords, the pullback of the tautological bundle under an 
isomorphism may fail to be tautological for a different embedding. See the 
exercise at the end of this section for an example of this phenomenon. 

Tautological line bundles have no nonzero global sections at all. To under-
stand why this is true, it helps to consider first the case of the projective 
line. A global section of the tautological bundle of P 1  defines, for each 
point p in P1 , a point (a(p), b(p)) G C2  lying on the line through the origin 
corresponding to p. Since the assignment 

	

pi 	c2 ,  

	

P 	(a(P)3b(P)), 

must be a morphism of algebraic varieties, we see that projecting onto 
either factor, we have morphisms (regular functions), 

PI 	C 

	

p 	a(p) 

and 

p 1-4 b(p). 

But because 111" admits no non-constant regular functions, both regular 
functions a and b are constant functions. But then both are zero functions: 
The point (a(p), b(p)) is supposed to lie on the line in C2  corresponding to 
p, and the only point of C2  that lies on all lines through the origin is (0, 0) 
itself. Thus the tautological bundle over IP' admits only the zero section. 
The obvious extension of this argument shows that the tautological line 
bundle over any projective variety (which is not just a finite collection of 
points) has no nonzero global sections. 
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The sheaf of sections of the tautological line bundle over X is often de-
noted by Ox  (-1). Implicit in such notation is the existence of a particular 
embedding of X in Pn. 

The hyperplane bundle: The hyperplane bundle H on a quasi-projective 
variety is defined to be the dual of the tautological line bundle: The fiber 
7r -1 (p) over a point pE X c Pn is the (one-dimensional) vector space 
of linear functionals on the line C Cn+ 1  that determines p in Pn •  The 
formal construction of H as a subvariety of  (C+1)*  x Pn parallels that of 
the tautological bundle. 

This line bundle has many global sections. Indeed, let Ein o  a.,x i  be any 
linear functional on Cn+ 1 . For a point p -= Pto : : ... : An ] E X, this linear 
form can be restricted to the line -= {(tAo,t)i, • • • ,tAn) t  E CI c Cn+ 1 

 corresponding to p. This gives a well-defined global section 

X 	H, 
P 	(P, 	 o aixi), 

of the hyperplane bundle. In fact, one can check that the global sections 
of the hyperplane bundle on Pn are precisely the linear polynomials in 
CIxo, • xnl. 

The sheaf of sections of the hyperplane bundle on a subvariety X of 
Pn is usually denoted by Ox (1). Again, implicit in this notation is the 
existence of a specific embedding of X in a projective space IF".  For a 
different embedding, a different line bundle may become the hyperplane 
bundle. 

Square of the hyperplane bundle: The square 112  of the hyperplane 
bundle on a projective subvariety X of Pn associates to each p E X the 
vector space of all quadratic homogeneous polynomials on the line P c Cn+ 1 

 determining p E Pn•  The sheaf of sections of the square of the hyperplane 
bundle is denoted by Ox (2). For example, the global sections of Op(2) 
are precisely the homogeneous polynomials of degree 2 in CPC-0, .. • X.  
Like the hyperplane and tautological bundles, H2  depends on a particular 
embedding of X in Pn. 

Duals and products in general: All the standard linear algebra con-
structions for vector spaces are also valid for vector bundles. For example, 
if E —> X is a vector bundle with fiber over p denoted by E„, then there 
exist vector bundles 

Et —> X 

whose fibers are the dual spaces (4)-, and 

A E  X 
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whose fibers are the exterior products (A t  .E9 ). If F —> X is another vector 
bundle over X, then there exists a vector bundle 

E0E---> X 

whose fibers are (E9  0 Fp ), and 

EeF-4 X 

whose fibers are  E9  Fi,.  We leave the careful construction of these bundles 
as an instructive exercise for the reader. 

The line bundle H2  above is the tensor product H 0 H, where H is 
the hyperplane bundle on X. More generally, one can define the rth power 
E®r  of any vector bundle E to be the r-fold tensor product of E with itself. 
On Pn, the rth power of the hyperplane bundle, whose sheaf of sections 
is denoted by Or, (r), has fibers described as follows: The fiber over a 
point P E Pn  consists of all degree-r homogeneous polynomials on the one-
dimensional vector space corresponding to .e in Cn+ 1 . Each homogeneous 
polynomial of degree-r in C[xo, , x n] determines such a function when 
restricted to any line in Cn+ 1  and therefore gives rise to a global section. 
In fact, the space of all global sections of Op. (r) can be identified with the 
space of all homogeneous degree r polynomials in CIxo, • • • , xrd• 

We caution the reader that we write Op', (r) for the r-fold tensor product 
of Op. (1) with itself, but algebraic geometers do not mean the r-fold prod-
uct of E when they write E(r) for some vector (or line) bundle E. Rather, 
the notation E(r) means E  Ø  Op.  (r). 

The tangent bundle and its relatives: Let X be an irreducible smooth 
quasi-projective variety of dimension n. Associated to X are several natural 
vector bundles and line bundles arising from the tangent space. 

The tangent bundle is a rank-n vector bundle TX  X such that the 
fiber over any point p G X is the tangent vector space TpX. The total space 
of the tangent bundle was introduced in Section 6.2. The cotangent bundle 
T* X -4 X is its dual: The fiber over any point p E X is the cotangent 
space (TpX)*. The sections of the cotangent bundle are called differential 
one-forms. The sheaf of sections of the tangent bundle is often denoted 
by ex , while Slx frequently denotes the sheaf of sections of the cotangent 
bundle. 

Unlike the tautological and hyperplane bundles, the tangent bundle and 
its dual are independent of the embedding of X into projective space, al-
though this is not obvious from our description of it. In other words, if 

X 	Y is an isomorphism, then the tangent bundle on Y pulls back to 
the tangent bundle on X, and similarly for the cotangent bundle. Thus the 
tangent and cotangent bundles are intrinsically defined objects attached to 
X. 
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If we fix a local trivialization of the tangent bundle, so that over an open 
set U C X the tangent bundle is isomorphic to U x V', then we can denote 
the "linear functionals" 

{p} x Cn 
(P, (Ai, • • • , An))  

by dp x,. As we vary over all p in U, we get a section dx, of the cotangent 

bundle over U because U -154 U x Cn* is a regular map and for each point 
dp x, 

p G U it defines a linear functional TX = Cn 	C. Because they form 
a basis for (TpX)*, every section of the cotangent bundle can be written 
locally on U as 

dxi + • • + dxn, 

where the fi  E Ox (U) are regular functions and dx, acts on a vector A in 
the tangent space at p by dp (x)(A). In algebraic, differential, and complex 
geometry, differential forms have similar local descriptions. In algebraic 
geometry the fi  are regular (polynomial) functions, in complex geometry 
the fi  are holomorphic, and in differential geometry the fi  are smooth 
functions. 

The canonical line bundle: The most frequently encountered line bundle 
in algebraic geometry (with the exception of the trivial bundle Ox) is the 
canonical bundle. If X is a smooth irreducible variety of dimension n, then 
the canonical line bundle is the highest exterior power of its cotangent 
bundle 

A T*X ' 

The sheaf of sections of the canonical bundle is denoted by wx . As in the 
previous example, its sections over a sufficiently small open set U can be 
written as 

fdxi A • • • A dxn) 

where f is a regular function on U. The canonical bundle is important 
because it and its powers are the only line bundles on an algebraic variety 
that are intrisically defined. 

Exercise 8.4.1. Let P 1  -- 	be the Veronese embedding of P 1  as a 
rational normal curve Cn  of degree n in Pn. Prove that the tautological 
bundle on Cn  pulls back under vn  to the nth power of the tautological 
bundle on P1 . This example shows that the "tautological bundle" depends 
on the embedding in projective space. 
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8.5 Line Bundles and Rational Maps 

Our next goal is to illustrate how line bundles and their global sections 
govern all rational maps of varieties to Pn •  An understanding of all the 
possible ways in which a variety may be mapped to projective spaces is 
tantamount to a complete understanding of all line bundles on the variety. 

Let X be a quasi-projective variety and let L 	X be a line bundle 
over X. Let us choose a set {s0 , 	, sn }  of linearly independent sections of 
the C-vector space of its global sections. The vector space spanned by these 
sections is called a linear system on X; if this vector space consists of all 
the global sections of L, it is called a complete linear system. A complete 
linear system is often denoted by ILI. Using these sections, we define the 
rational map 

X --+ 

	

x 1-4 [S o (x): 	: s(x)j. 

We consider an example before clarifying the meaning of this map. 

Example: Consider the hyperplane bundle H on  P. A basis for its global 
sections is xo, xi, 	, xri , where the x i  are the homogeneous coordinates of 
Pn. Consider the (incomplete) linear system spanned by xo , 	, xr,_ 1 . The 
associated rational map is 

	

pn 	pn- 1 ,  

	

[x0: • • : x r ] 	1—* [xo : • • • : 

This map is defined everywhere except at the point p = [0 :  O:  • • • :  0:  lj. 
As we have seen before, the map is simply projection from the point p onto 
the hyperplane V(x) pn-1 in  ipn .  

We now discuss in detail the meaning of the expression [so  : • • • : sn [ 
where si are sections of a line bundle. First of all, the sections s z  are not 
functions, so the meaning of s t (x) must be interpreted so as to make the 
(n + 1)-tuple [s0 (x) : • • • : s n (x)] an actual point in Pn . Choosing a local 

trivialization for L X, we have an identification of 7 -1 (U) C L with 
U x C in a neighborhood U of x. This allows us to identify the section 

	

7 -1 (U) 	U x C, 
si (x)  

with the regular function U —> C sending x to .it (x). When we write the 
(n+1)-tuple [s 0 (x) : • • : s n (x)], we really mean the (n+1)-tuple of complex 
numbers P0(x) : • - • : §n (x)]. Now, how do we know that this n + 1 tuple 
does not depend on our choice of local trivialization? We do not know this, 
and in fact, it is not true: A different choice of a trivialization produces a 
different vector. But because the local trivializations of a line bundle are 
compatible with linear changes of coordinates, it is easy to check that up to 
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nonzero scalar multiple, the vector 1.50 (x) : • • • : sn (x)] is well-defined. That 
is, if one local trivialization produces the (n + 1)-tuple [§0(x) : - • : gn (x)] 
of complex numbers and another produces 14(x) : • • • : ".;"n (x)], then there 
exists a regular function A in a neighborhood of x such that A(x) is a 
nonzero complex number and for all i, 

I(x) = A(x) Mx). 

That is, 

• • • In] = 	• • • 

and the notation [s o (x) : • • • : s n (x)j represents a well-defined element of 
Fn .  

The only remaining problem occurs when the sections st  all vanish at x, 
so that [80(x) : • • • : .s,i (x)] is the zero (n + 1)-tuple. Unfortunately, there is 
nothing to prevent the s, from simultaneously vanishing, which is why the 
map 

X ---> 
x 	[so(x) : • • : S(X)I, 

is only a rational map and not an everywhere defined morphism of varieties. 
The rational map is defined on the open set in X complementary to the 
common vanishing set of the sections si . 

The rational map X --/ Er' depends on the choice of the basis 

{So,...  sn } for the linear system, but the reader will quickly verify that 
different bases produce maps that can be transformed to each other by an 
automorphism of Pn. 

The construction can be reversed: Every rational map X --+ Pn is deter-
mined by some linear system of some line bundle over X. Indeed, the line 
bundle on X will be the pullback of the hyperplane bundle on Pn , and the 
si will be the pullbacks of the coordinate functionals xi on Pn. We leave 
this as an exercise for the reader. 

It is easy to verify that the common zero set of a set of global sections 
{si} of a line bundle is a closed subvariety of X, called the base locus of 
the linear system spanned by the s i . For example, the base locus of the 
projection discussed in the previous example is the single point {p}. If we 
are dealing with a complete linear system, we call this zero set the base 
locus of the line bundle L. In the best possible scenario, the base locus is 
empty, and the resulting rational map is a morphism. Such a linear system 
is called base-point free, and the associated line bundle is said to be globally 
generated. Because globally generated line bundles determine morphisms 
to projective space, the identification of globally generated line bundles is 
an important area of research. 

Example: Consider the the nth power of the hyperplane bundle on  1F'1, 
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H' 1L- >. X.  The fiber over the point x = (Ao : Ai] E 1lJ 1  consists of all 
degree-n homogeneous polynomials on the line L  = {(Aot,Ait) I t E 
in C2 . To see this, first note that the sheaf of sections Or (n) is just the 
n-fold tensor product Or (1) ... Or (1), where Or (1) is the sheaf of 
sections of the hyperplane bundle. Recall that the global sections of  Dpi  (1) 
are spanned by the basis {xo, x 1 }, that is, they are the linear functionals 
aoxo + aixi. Likewise, the global sections of  Dpi  (n) are the n-fold tensor 
products of these, which are all degree-n homogeneous polynomials of two 
variables. So the monomials 4, 	 , x form a basis for the space 
of global sections of the nth power of the hyperplane bundle. For example, 
if n = 2, the corresponding rational map is 

[xo : xi] 	[xS : xozi xi]) 

the second Veronese embedding of P1  in P2 •  In general, the rational map 
given by the complete linear system of the nth power of the hyperplane 
bundle on an arbitrary variety X is simply the Veronese map vn . Because 
the sections 4.; and  x do not simultaneously vanish, the line bundle II" is 
globally generated, and as we have seen before, the rational map it defines is 
an everywhere defined morphism of algebraic varieties, the Veronese map. 

Example: The embedding of a smooth projective curve into projective 
three-space constructed in Section 8.1 can be understood in this context. 
Let X be a smooth curve in Pn, where n > 4, and let p be a point of Pn 
not on the tangent or secant varieties of X. Choosing any set of n linear 
functionals, sj,... ,sn , vanishing simultaneously precisely at p, we have a 
rational map 

Eon _ 
1—> [si (x) : • • • : sn (x)], 

corresponding to the linear system {si, 	, sn }  of the hyperplane bundle 
on Pn. Restricting to X, we have a linear system that is base-point free on 
X (as p V X), and hence determines a morphism 

X 
x 1—> [s i (x): • • • : 

After iterating this procedure, we wind up with a rational map Pn 	P3  
determined by a base-point-free linear system spanned by four global sec-
tions so, Si, 82,83  of the hyperplane bundle on X. Thus the corresponding 
restriction map X —> P3  is a morphism. 

The previous discussion indicates the importance of the zero sets of 
sections of line bundles. 

Definition: The zero set of a nonzero global section of a line bundle is 
called a divisor of the line bundle. 
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By fixing a local trivialization, a section of a line bundle can be locally 
identified with a regular function on the variety. Thus a divisor of a line 
bundle is defined locally by a single equation, that is, it is locally princi-
pal, and so it has codimension one in the ambient variety. Of course, two 
different nonzero global sections of a line bundle will usually have different 
zero sets, so the divisor of a line bundle is not unique. 

Examples: Consider the hyperplane bundle on Pn. Its global sections are 
the linear forms aoxo anxn . Thus its divisors are the zero sets of 
these linear forms, the hyperplanes, in Pn. The collection of all divisors of 
the hyperplane bundle in Pn is the same as the collection of all hyperplanes 
in Pn. 

Consider the square of the hyperplane bundle on P'1 . Its global sections 
are the quadratic forms xixi. Thus its divisors are the zero sets of 
these forms, the quadric hypersurfaces in Ir. Note, for example, that the 
divisor associated to the section x,3 should be considered as the "double 
plane" 2H, where H is the hyperplane defined by x o  = O. 

As this example indicates, a divisor should really be considered as a zero 
set with multiplicities, which we can represent as a formal linear combi-
nation of irreducible codimension-one subvarieties with integer coefficients. 
For example, consider the fourth power of the hyperplane bundle on Pn  
whose global sections are the homogeneous quartic (degree 4) forms in n+ 1 
variables. The divisors associated to this are the irreducible hypersurfaces 
in Pn  of degree 4, but also divisors defined as the zero sets of, say, Faxo, 
where F3 is an irreducible cubic. The zero set of F3x0 is the union of the 
irreducible cubic hypersurface C defined by F3 and the hyperplane H de-
fined by xo. This divisor can be written in additive notation as C + H. 
Similarly, the zero set of the section xSx  can be written as 2H -I- 2H', 
where H (respectively H') is the hyperplane defined by xo (respectively 
X ) • 

It is also possible to define divisors associated to line bundles that do not 
have any global sections by considering the "zeros and poles of a rational 
section." For example, because the tautological bundle on Pr' is dual to 
the hyperplane bundle, it stands to reason that its divisors ought to be of 
the form —H, where H is a hyperplane in Pn . These are called "virtual 
divisors" in the older literature. 

Given any divisor of a line bundle, it is possible to reconstruct the line 
bundle up to isomorphism. Two divisors are linearly equivalent if they are 
associated to the same line bundle, and the equivalence class of all divisors 
associated to a fixed line bundle is called the divisor class or the Chern 
class of the line bundle. Thus, the theory of line bundles (up to isomor-
phism) is equivalent to the theory of divisors (up to linear equivalence). The 
Chern class of the canonical bundle is especially important and is called 
the canonical class of the variety. 
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Although a complete understanding of line bundles requires a thorough 
understanding of divisors, we do not continue with this important topic 
here. See [37, Chapter III, Section I] or [20, Chapter II, Sections 6 and 7] 
for the basic theory of divisors and line bundles. 

Exercise 8.5.1. Let X C P2  be a smooth projective cubic curve, and let H 
denote the hyperplane bundle on X. Show that every set of three collinear 
points on X determines a divisor associated to H. To what extent is the 
converse true? 

Exercise 8.5.2. Assume that the smooth projective cubic curve X C P2  
is given by an equation of the form zy 2  = f(z,x), where f is a homogeneous 

degree-three polynomial in x and z. Show that there is a morphism X 
Pl  given by [x : y : z] 0--> [x : z], and that this is a two-to-one cover of P l  
except at three points of P1  (called ramification points). What is the linear 
system determining this map? 

Exercise 8.5.3. Let X CP.' be an irreducible projective variety. Describe 
the divisors associated to the hyperplane bundle on  X. 

8.6 Very Ample Line Bundles 

Line bundles determine rational maps to projective space. The very am-
ple line bundles determine embeddings in projective space. Let X be any 
projective variety. 

Definition: A line bundle L X is called very ample if the rational map 
determined by its complete linear system ILI, 

is an everywhere defined morphism that defines an isomorphism onto its 
image. 

Let X Pn  be the embedding of X in projective space determined by a 
basis so, , sn  of the global sections of a line bundle L on  X.  Under this 
morphism, the sections s i  become the coordinate functions xi. Thus, after 
embedding X in Pn this way, the line bundle L has become the hyperplane 
bundle on X c Pn. So we may think of a very ample line bundle as one that, 
for some embedding of X in projective space is the hyperplane bundle on 
X. The term "very ample" suggests that a line bundle has very many global 
sections. Recall that even to make the the map given by ILi an everywhere 
defined morphism, the line bundle L must be globally generated— it must 
admit enough global sections so that for each point of  X,  there is some 
global section of L that does not vanish there. But even in this case the 
morphism is usually not an isomorphism onto its image, nor even one-to-
one. To make the map given by ILi one-to-one, we need even more sections: 
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For any two points of X, there should be a global section of L that vanishes 
at one but not the other (L must "seperate points"). But a very ample 
line bundle requires still more global sections, since not every one-to-one 
morphism is an embedding; see the Example in Section 2.5. To be very 
ample, a line bundle must "separate tangent vectors" as well. 

Example: The positive powers of the hyperplane bundle on a projective 
variety are very ample line bundles. Indeed, the maps they determine are 
the Veronese maps, which we proved to be embeddings in Section 5.1. 

It follows from the preceding example that if L is a very ample line bundle 
on V, then every positive power of L is also very ample. However, there 
are non-very-ample line bundles L with the property that some power L" 
is very ample; we will construct an example in the exercises. A line bundle 
with the property that some positive power is very ample is said to be 
ample. 

An ample line bundle L has the following important property: Given 
any line bundle M, the bundle M Ln is very ample for all sufficiently 
large n. An active area of research today is the investigation of how large 
is "sufficiently large" in this context, especially for the so-called adjoint 
bundles co Ln , which play a prominent role in the classification problems. 
In particular, it is most interesting to find a uniform N, depending only on 
X, that works for all ample line bundles L. 

Open Problem: Let V be a smooth projective variety with canonical 
bundle w. Is there a uniform N such that for all n > N, the line bundle 
w Ln is very ample, where L is any ample line bundle on V? What is the 
best possible such N? 

Fujita's conjecture predicts that the best possible value for N is dim V 
2 in general. For curves, the conjecture follows from the Riemann-Roch 
theorem, and for complex surfaces, it has been proved by Reider. There 
is little progress on the three-fold case. This and related questions, such 
as finding bounds such that w Ln is globally generated, occupy a large 
number of researchers today. See [29] for an overview of recent progress. 

The rational map associated with the canonical line bundle is known 
as the canonical map. The canonical bundle and its powers are the only 
intrinsic line bundles on an algebraic variety, and so they provide the only 
intrinsic maps to projective space. A good way to compare two varieties 
is to map each to projective space using the canonical maps and then 
compare the images. It is especially useful to know whether the canonical 
line bundle—or some specific power of the canonical line bundle—is very 
ample. For example, this is helpful in classifying algebraic curves. 

Let X be a smooth projective curve, and consider the canonical line 
bundle wx of X, consisting of differential one-forms on X. Hodge theory 
tells us that the dimension of the space of global sections of the canonical 
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line bundle wx is 

dim(wx (X)) = genus(X) = g, 

where g is the topological genus of X considered as a compact Riemann 
surface (that is, the dimension of (X, Q)). Thus the canonical map takes 
the form 

X --+ 1Pg 

For genus-zero curves, we see that cox has no nonzero global sections at 
all, so the canonical map is not defined. 

For genus-one curves, the space of global sections of 44.)x has dimension 
one, so the canonical map X -4 P° simply collapses X to a point. 

For genus-two and higher curves, the canonical map is more interesting. 
It is a fact that on a curve X of genus g > 2, the canonical bundle is always 
globally generated (see [20, page 3411), so the canonical map 

X P9-1  

is an everywhere-defined morphism of algebraic varieties. Now, there are 
two possibilities. The canonical bundle is either 

• very ample, in which case the canonical map X 	Pg-1  is an 
isomorphism onto its image set, or 

• not very ample, in which case X -4 Pg-1  is not an embedding. How-
ever, this is an exceptional case. If this happens, the image set will 
be isomorphic to Pl and the map will be generically 2-to-1, meaning 
that with a finite number of exceptions, or "ramification points," the 
map is 2-to-1. In this case, the curve X is said to be hyperelliptic. 

Every curve of genus 2 is hyperelliptic, since the canonical map X -> Pl  is 
obviously not an embedding. More generally, the hyperelliptic curves form 
a (2g- 1)-dimensional subvariety in the moduli space Mg  of all smooth pro-
jective curves of genus g, which is of dimension 3g - 3. Thus a generic curve 
of genus greater than two will be nonhyperelliptic, and so its canonical bun-
dle is very ample. In this case, the curve admits a canonical embedding into 
projective space such that the hyperplane bundle is the canonical bundle. 

Because it is not always possible to canonically embed a curve, we seek 
other natural embeddings in projective space. It turns out that for any 
curve of genus greater than two, the square of the canonical bundle is 
always very ample. Thus we have a completely intrinsic way to embed any 
such abstract curve in projective space. More generally, one can look at 
pluricanonical maps, that is, maps induced by the complete linear system 
associated to a power of the canonical bundle. 

The intrinsic nature of the pluricanonical maps gives rise to the following 
important property. Let X be a k-canonically embedded variety in Pn . 
This means that the inclusion X C Pri  is induced by the complete linear 
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system of the kth power of the canonical bundle, or, put differently, that 
the hyperplane bundle on X is the same as co® k . Now, if Y is another 
k-canonically embedded variety in Fri, then X and Y are isomorphic if 
and only if they are projectively equivalent. This is not difficult to prove, 
provided that one observes that any isomorphism of curves must preserve 
the vector space of differential k-forms. So any isomorphism X -> Y is 
actually a projective equivalence, that is, a mere change of coordinates in 
the ambient projective space Pn. 

From this point of view, one gets an idea of how Mumford constructed 
his famous moduli spaces. For example, fix a genus g > 3, and let us 
sketch the idea of the construction of Mg . In this case, the square of the 
canonical bundle of any smooth curve of genus g is very ample. The classical 
Riemann-Roch theorem is a formula to compute the space of global sections 
of any line bundle on any smooth curve (see [20, IV, Section 1]); it can be 
used here to show that the dimension of the space of global sections of the 
square of the canonical bundle is 3g  -3. Thus, every smooth curve of genus 
g>  3 embeds in 11139-4  via the so-called bi-canonical map. 

Now, again using the Riemann-Roch theorem, one computes that the 
Hilbert polynomial of such a curve in P3g" is P(n) = (4g - 4)n - g + 1. 
Thus every smooth curve of genus g will be represented by a point of 
the Hilbert scheme of smooth curves in P3g-4  with Hilbert polynomial P. 
Conversely, it can be checked that every smooth curve in p39-4  with Hilbert 
polynomial P is a curve of genus g. Furthermore, because the curves are 
bi-canonically embedded, any two such curves are isomorphic if and only if 
they are projectively equivalent. The group PGL(39  -3)  of automorphisms 
of 1[139-4  acts on the Hilbert scheme, taking a point representing a curve 
X to the projectively equivalent (isomorphic) curves. In other words, the 
isomorphism classes of smooth curves of genus g can be interpreted as 
the orbits of the natural PGL(3g - 3) action on the Hilbert scheme of 
bicanonically embedded curves of genus g. Put differently, the quotient of 
the Hilbert scheme by the action of PGL(3g - 3) ought to be a parameter 
space for the set of smooth curves of genus g. The only remaining difficulty 
is to equip this quotient with the structure of an algebraic variety. In order 
to solve this difficult problem, Mumford developed a method for defining 
quotients in algebraic geometry, which he called geometric invariant theory 
(or "GIT"), and applied it to construct the moduli spaces 02  [16]. It turns 
out that in order to effectively carry out this program, it is not sufficient to 
consider bi-canonically embedded curves—we must look at k-canonically 
embedded curves for some very large k—but the same ideas apply. 

This is only a very small taste of the rich ideas of how line bundles, 
and especially the canonical line bundle, can be useful in understanding 
algebraic varieties. Lazarsfeld's monograph [30] is a good place to begin 
further reading on the topic of linear systems, whereas Harris's recent book 
gives a more complete account of the construction of Hilbert schemes and 
moduli spaces [18]. An elementary account of the Riemann-Roch theorem 
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for curves can be found in Fulton's book [14]. Like the rest of this book, 
our exposition is merely intended as an advertisement for the deep and 
beautiful mathematics of algebraic geometry. 

Exercise 8.6.1. Prove that k-canonically embedded curves are isomorphic 
if and only if they differ by a projective automorphism (that is, a linear 
change of coordinates). Hint: Any isomorphism between curves must take 
the canonical bundle to the canonical bundle. 



Appendix A 
Sheaves and Abstract Algebraic 
Varieties 

A.1 Sheaves 

Let X be a topological space. For each open set U C X, consider the set 
.F(U, C) of all C-valued functions on U. This set naturally forms a C-algebra 
under pointwise addition and multiplication of functions. 

Definition: A sheaf R. of C-valued functions on X assigns to each open set 
UcXa subalgebra R(U) c .F(U, C) in a way that is "compatible with 
both restriction and gluing," that is, 

• For any open sets U1 C U2 C X and f E R(U2), the restriction of f 
to Ui is in R(U1)• 

• If {Ua },„ E A is an open cover of an open set U C X and  f €  Y(U,C) 
is such that flu,. E R.(U) for all a, then f G 7?,(U). 

The functions f E R(U) are called the sections of the sheaf R. over the 
open set U C X. 

If R. is a sheaf of C-valued functions and if f E TZ(Ui UU2), then note that 

flu, and f 1u2 both have the same restriction to U1 n  U2,  namely flUinU2. 
Conversely, if h c R(U 1 ) and g E R(U2) are such that hlu i nU2  91U1nU2/ 

then the map f  E  Y(Ui  u U2 , C) given by 

f(x) 	Ift(x) if  X E Ul, 
g(x) if  X E U2, 
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is well-defined. Clearly, fi ui =-- h and fl u, = g. So by property (2), f E 

TZ(Ui U (J2). We say that h and g glue together to give f.  

In a similar way, we can define a sheaf of R-valued functions, or a sheaf 
of functions with values in any ring, or even in any set. 

Examples of sheaves of functions: 

• Regular functions on a quasi-projective variety V form a sheaf Ov of 
C-valued functions. The sheaf associates to each open set U C V the 
C-algebra Ov(U) of regular functions on U. 

• Continuous R-valued functions on a topological space form a sheaf of 
R-valued functions. 

• C'-functions on a smooth manifold form a sheaf of R-valued 
functions. 

• Holomorphic functions on a Riemann surface form a sheaf of C-valued 
functions. 

Definition: The sheaf Ov of regular functions on a quasi-projective variety 
V is called the structure sheaf of the variety. 

The structure sheaf Ov determines V (up to isomorphism), even if we 
have only limited information about Ov. For example, in Section 4.3, we 
proved that for an affine variety, the ring of global sections of Ov is the 
coordinate ring C[V], which in turn recovers the affine variety up to iso-
morphism. In other words, an affine variety is determined by the global 
sections of its structure sheaf. Only slightly more difficult is the fact that 
every quasi-projective variety is determined by the rings of sections of 
the structure sheaf on any affine cover, together with the restriction maps 
Ov(U.,) Ov(u,n u; ), which recover for us the way these affine pieces are 
glued together. Later in this appendix we will define an abstract variety, 
which will be determined by partial information about its structure sheaf 
in a similar way. This situation is unique to algebraic geometry: A manifold 
is not determined by such limited information about its sheaf of continuous 
(or differentiable, or complex holomorphic) functions. 

For each open set U c X, a sheaf TZ has a natural restriction R.lu to U. 
The sections of R.lu over an open set U' C U are just the sections 72.(U') of 
the original sheaf. Some caution is in order: The ring of sections R(U) and 
the restriction sheaf 'Mu are two different objects; R(U) is a ring, while 
R.I u is a sheaf (assigning rings to open sets of U). For an open subset V 
of a quasi-projective variety W, the structure sheaf Ov agrees with the 
restriction of the sheaf Ow to the open set V. 

A topological space, together with a sheaf of C-valued functions on it, is 
an example of a ringed space. An understanding of ringed spaces is essential 
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for eventually mastering the definition of a scheme, so we introduce the 
definition here. 

Definition: A sheaf of rings R. on a topological space X assigns to each 
open set Uc.)Ca ring  R(U) in such a way that the following axioms are 
satisfied 

• If U1  C U2 then there is a ring homomorphism 1Z(U2 ) R.(U1 ). This 
map is called "the restriction map from U2  to U1," and the image of 
any element f  E  R(U2) under this map is denoted by flu'. 

• If  U1  C U2 C  U3,  then the restriction map  7Z(U3) ---+ 	) is the 
composition of the restriction maps R(U3) 	R(U2) —> R,(171)• 

• If {U a} ctE A is an open cover of an open set U C X and {g.}.EA is 
a collection of elements go, E 7Z(U) such that for all indices ce, 
galu,:.nuo = go l unuo , then there exists a unique g G R(U) such that 
gl uo, = ga  for all a. 

A topological space X, together with a sheaf of rings on X, is called a 
ringed space. 

The rings 'R.(U) in the definition above are just abstract rings: They need 
not be rings of functions on the set U. In particular, the word "restriction" 
above should not be interpreted literally as the restriction of functions. 

Our sheaves of C-valued functions are examples of sheaves of rings on the 
corresponding spaces. In fact, they are all sheaves of C—algebras, since each 
ring 'R.(U) is actually a C—algebra. Although an abstract sheaf of rings is 
not necessarily a sheaf of functions, one should think of every sheaf of rings 
as very much like a sheaf of functions. The third axiom in the definition of 
a sheaf of rings—also called the sheaf axiom—guarantees that the elements 
of R(U) really behave like functions: They are uniquely defined by their 
values on any open cover of U. It is easy to check that every sheaf of 
C-valued functions is a sheaf of rings. 

We could also define a sheaf of Abelian groups, a sheaf of sets, a sheaf of 
algebras, or even a sheaf of objects in almost any category. Just strike out 
all occurrences of the word "ring" in the preceding definition and replace 
it by the word "group," "set," or "algebra." 

A topological space may come equipped with several different sheaves of 
rings or algebras. For example, on Cn with its usual Euclidean topology, 
we have not only the sheaf of continuous functions, but also the sheaf 
of holomorphic functions. We can also equip the set CI' with the Zariski 
topology, where we have the sheaf of regular functions. 

Definition: Let R. and S be two sheaves of rings on a space X. A map of 
sheaves of rings 

--> S 
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consists of a ring map 

7Z(U) G—(-Lj)  S(U) 

for each open set U c X such that whenever U1 C U2, the following 
diagram commutes: 

G(U2) 

	

R(U2) 	 S(U2) 

	

R(Ui ) 	 S(U1 ) 
G(Ui) 

where the vertical maps are the restriction maps. If the sheaves of rings 
are actually sheaves of C-algebras, the maps are furthermore required to 
preserve the C-algebra structure, that is, each 

R(U) 	S(U) 

must be C-linear. 

It does not make sense to speak of maps of sheaves when the sheaves 
are on two different topological spaces. However, given a continuous map 
X -3 Y of topological spaces, there is a way to define a sheaf of rings on 
Y from any sheaf of rings on X. 

Definition: Given a sheaf R on a topological space X and a continuous 
map X 	Y of topological spaces, the push-forward L.72. of R is the sheaf 
on Y defined as follows. For each open U c Y, 

L.R.(U)  

If R is a sheaf of rings on X, then f,,,R, is a sheaf of rings on Y. 

Definition: A map of  ringed spaces (X, Ox)  -> (Y, Oy) is a pair  (F, F#)  

consisting of a continuous map of topological spaces X 24 Y and a map 
F* 

	

of sheaves of rings on Y, Oy 	F.Ox • 

Example: Let V -F->,  W be a map of quasi-projective algebraic varieties. 
Then there is a naturally induced map of ringed spaces 

(V, O) (W, Ow) 

where Ov (respectively Ow) is the sheaf of regular functions on V (respec- 
tively W). The map of topological spaces is F, and the map Ow -> F.Ov 
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of sheaves of rings is defined by the pullback: For each open set U c W, 

Ow(U) —r  
g _F#(g)=goF.  o 

This idea works more generally, as the next example shows. 

Example: If X 	Y is any map of topological spaces, there is always a 
morphism of ringed spaces 

(X, F) —r (Y, Ty), 

where .Fx is the sheaf of C-valued functions on X and .Fy is the sheaf 
of C-valued functions on Y. Indeed, the map of sheaves Fy F.Tx is 
defined using the pullback, 

(U) —r  
g 1—r g o F. 

If ,Fx and .Fy instead denote the sheaves of continuous C-valued functions 
on X and Y and the map F is continuous, then (X, Tx) -4 (Y,.Fy) will be 
a morphism of these ringed spaces. More generally, if X and Y have some 
more refined structure of ringed spaces via sheaves of functions Ox and 
Oy, it is often possible to define a map of ringed spaces in the same way. 
There is always a pullback map 

0y(U)  

where .Fx is the sheaf of all C-valued functions on X. One must check only 
that the pullback of a function in Oy(U) lies in the subring of functions 
Ox(F-1 (U)) C Tx(F -1 (U)). For instance, if X and Y are smooth mani-
folds and Ox and Oy are the corresponding sheaves of smooth functions 

on X and Y, then any smooth map X --F24 Y induces a morphism of ringed 
spaces: 

(F,F#) 
(X, Ox) -4 (Y, Oy ). 

Here, F# is completely determined by F in a natural way. In dealing with 
abstract ringed spaces, where the sheaf of rings may not be a sheaf of 
functions on X, things sometimes get more complicated. This more abstract 
point of view is necessary, however, in laying the foundations of scheme 
theory (see, for instance, [20, Chapter II, Sections 1 and 2]). 

(F,F#) 
Definition: A morphism of ringed spaces (X, Ox)  —r (Y, 0y) is an 
isomorphism if it has an inverse. More precisely, we require the existence 
of a morphism of ringed spaces 

(Y, 0y) (G4') (x,ox) 
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such that X 	Y 	X is the identity on X and 

F# Ox -4 Gs Oy  (G 0 	= Ox 

is the identity map of sheaves, and similarly Y 	X -±4 Y and 

F* 
Gy 	E,Oy 	(F o G).0y = Oy 

are identity maps. 

Working with morphisms of ringed spaces requires a considerable amount 
of notation, but is really quite natural and becomes easy with practice. A 
detailed exposition for beginners struggling with the notation can be found 
on the web at 

http://www.math.lsa.umich.edu/-kesmith/inverse.ps.  

A.2 Abstract Algebraic Varieties 

An abstract algebraic variety is a topological space that has an open cover 
by sets that are homeomorphic to affine algebraic varieties—possibly in 
ambient affine spaces of different dimensions—glued together by transition 
functions that are morphisms of affine algebraic varieties. The easiest way 
to make this precise is to use the sheaf of regular functions of an affine 
variety. 

Definition: A complex abstract algebraic variety is a ringed space (V, Ov) 
that has an open cover V = U (IA where each (U,.,  Ov iuÀ )  is isomorphic as 
a ringed space to some affine algebraic variety (WA, Ow, ), together with 
its structure sheaf Ow,• 

Explicitly, each UA admits a homeomorphism 	WA with an affine 
variety WA such that the pullback mapping lit induces an isomorphism 

11,\*OCIA 

of sheaves of C-valued functions on WA. That is, for each open set U c WA, 
the map 

Ow, (U) 
H# 
-24 11),Ou,(U) =  

go Hx, 

is an isomorphism of C-algebras. Of course, we may replace C here by any 
algebraically closed field k to define an abstract algebraic variety over k. 

The sheaf Ov is called the structure sheaf of the variety V, and its sec-
tions over an open set U are called regular functions over U. The definition 
of an abstract variety is similar to the definition of abstract geometric 
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objects in other categories. For example, a smooth manifold can be de-
fined as a ringed space (M, C') that has an open cover U U), such that 
(U)„ 	is isomorphic as a ringed space to (B, Cr), where B c 
is an open ball and Cit.°  is the sheaf of smooth functions on B. Likewise, 
a complex manifold can be defined as a ringed space (M,  7-1) that has an 
open cover U  LIA   such that each (UA,1-ilu,) is isomorphic as a ringed space 
to (B,  B), where B C C" is a complex open ball and  7-LB  is the sheaf of 
holomorphic functions on B. 

A morphism of abstract varieties (V, 0 v) 	(W, Ow) is simply a 
morphism between the corresponding ringed spaces. An isomorphism of 
varieties is defined in the obvious way. 

Quasi-projective varieties, together with their structure sheaves, are ex-
amples of abstract algebraic varieties. These form a large class of interesting 
objects, and they are the only varieties considered by many algebraic 
geometers. Abstract algebraic varieties arise naturally in the study of quasi-
projective (or even affine or projective) varieties. For example, they appear 
as moduli spaces of quasi-projective varieties, such as the moduli space ng  
of genus-g projective curves mentioned in Sections 7.6 and  Al.  In these 
cases it may be useful to know that the abstractly defined variety is in fact 
quasi-projective, but often it is not so important whether or not the variety 
is quasi-projective. 

Usually, an additional property, called separatedness, is included as part 
of the definition of an abstract algebraic variety. A complex abstract alge-
braic variety as defined above is separated if it is Hausdorff in the Euclidean 
topology. For varieties defined over fields other than C, the definition of 
separatedness is somewhat more technical (see [20, page 95]). All quasi-
projective varieties are separated. An example of a non-separated variety 
is a line with a doubled origin, also known as the "bug-eyed line": Two 
copies of A 1  identified at all points except at 0. See [37, Chapter V, page 
44]. 

As we have seen, the spectrum (or at least the collection of closed points 
in the spectrum) of a finitely generated reduced C—algebra can be identified 
with an affine algebraic variety. Abstract varieties are just ringed spaces 
admitting an open cover whose associated rings R(U) are all finitely gener-
ated reduced C-algebras. By relaxing these conditions on the rings R(U), 
for instance by allowing R(U) to have nilpotents or even dropping the 
restriction that it be a C-algebra, we arrive at the definition of a scheme. 

A scheme is a natural generalization of an abstract algebraic variety. A 
scheme is also defined as a ringed space, but the open sets in the cover 
are modeled on affine schemes, instead of on affine algebraic varieties. We 
earlier defined an affine scheme as the prime spectrum Spec(R) of some ring 
R, considered as a topological space with its Zafiski topology. There is a 
natural way to define a sheaf of rings  Ron the topological space Spec(R), in 
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such a way that the global sections of this sheaf recover R. (This requires 
some slightly technical algebra, so we do not go into this here.) So the 
precise definition of a scheme can be stated as follows: A scheme is a ringed 
space (X, Ox)  that admits an open cover U UA such that each (UA,  Ox  UA)

is isomorphic as a ringed space to some a ffine scheme SpecRA with its 
natural sheaf of rings kA. The rings RA may be completely arbitrary: They 
need not be sheaves of functions or any kind of finitely generated reduced 
C-algebras, as would be the case for algebraic varieties. 

The theory of schemes is a beautiful subject, fundamental to modern 
algebraic geometry. For the basic theory of schemes, the reader should 
consult [37, Chapter V], [20, Chapter 2], or [10]. 
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