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a b s t r a c t

This paper endeavors to solve a novel complex single-machine scheduling problem using two different
approaches. One approach exploits mathematical modeling, and the other is based upon genetic algo-
rithms. The problem involves earliness, tardiness, and inventory costs and considers a batched delivery
system. The same conditions might apply to some real supply chains, in which delivery of products is
conducted in a batched form and with some costs. In such delivery systems, the act of buffering the prod-
ucts can have both positive effects (i.e., decreasing the delivery costs and early jobs) and negative ones
(i.e., increasing the number of tardy and holding costs). Accordingly, the proposed solution takes into
account both effects and tries to find a trade-off between them to hold the total costs low. The sugges-
tions are compared to existing solutions for older non-batched systems and have illustrated
outperformance.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, manufacturers endeavor to schedule their produc-
tion activities in the best possible way in order to be able to meet
the due dates of their customers’ orders. This enables them to
consider not only delay penalties, but also the penalty of jobs
completed before due date in the form of inventory costs. The
other issue accounted for in scheduling is the delivery costs of
the jobs or batches of jobs. In other words, manufacturers try to
minimize the total tardiness/earliness costs besides the delivery
costs of the customer orders. Since problems that consider the total
tardiness/earliness are closer to real conditions than the problems
taking into account the number of tardy/early jobs, here the former
type of problems is investigated.

In minimizing the total tardiness/earliness in a single-machine
context, it is assumed that in each point of time only one job could
be processed. Furthermore, each job has a particular processing
time, due date, and weight, which is its earliness/tardiness penalty.
A job is called tardy when it is delivered after its due date, and it is
called early if its delivery occurs before its due date. This paper
aims at solving the problem of minimizing the total tardiness/ear-
liness costs of weighted jobs plus their batched delivery costs
when all the jobs are available at time zero and preemption is
ll rights reserved.
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not allowed. The simple form of this problem is considered in
many literatures, but here a batched delivery system, in which
the jobs of a customer could be delivered to it in one or many
batches, is assumed. In such a delivery system, a job might have
different completion and delivery/rendition times (always, rendi-
tion time is greater than or equal to the completion time). Each
batch might contain at least one or at most all of the jobs of a par-
ticular customer, so the number of batches would be equal to at
least the number of customers and at most the total number of
jobs.

As mentioned above, rendition of a job always occurs after its
completion. For investing whether a job is earliness or tardiness,
its rendition time should be compared with its due date, and for
questing the time needed to hold a job in manufacturer’s store,
one should take completion time into account with rendition time.
Although using the batched delivery system decreases delivery
costs considerably, it should be noted that in this method all the
jobs assigned to a specific batch should wait until the last job of
that batch to be completed before they would be ready for delivery.
Naturally, this rule increases the probability of tardiness and so
adds to the delay costs.

Accordingly, a batched delivery system decreases the delivery
costs while increasing the delayed/early delivery penalties and
inventory costs. This paper is an effort to establish a balance
between these two factors while holding their sum as small as
possible through an appropriate scheduling. For this aim, two dif-
ferent approaches are provided and compared. One is a traditional
integer programming solution, and the other is a genetic algorithm
solution.

http://dx.doi.org/10.1016/j.cie.2011.08.014
mailto:amir.hamidinia.iust@gmail.com
mailto:sahand. cs82@gmail.com
mailto:sahand. cs82@gmail.com
mailto:mazdeh@iust.ac.ir
mailto:jafari@iust.ac.ir
http://dx.doi.org/10.1016/j.cie.2011.08.014
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


Table 2
Various possible cases for a job.

Relation between
C, d, and R

Earliness
penalty

Tardiness
penalty

Holding
penalty

d = C = R 0 0 0
d < C = R 0 a � (R � d)a 0
d < C < R 0 a � (R � d) h � (R � C)b

C < d = R 0 0 h � (R � C)
C = d < R 0 a � (R � d) h � (R � C)
C < d < R 0 a � (R � d) h � (R � C)
C = R < d b � (d � R)c 0 0
C < R < d b � (d � R) 0 h � (R � C)

a a indicates the tardiness penalty the manufacturer should pay to the customer
for each time unit.

b h indicates the cost of holding the job in manufacturer’s store for one time unit.
c b indicates the earliness penalty the manufacturer should pay to the customer

for each time unit.
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The remaining of this paper is organized as follows. The next
section provides some primary definitions and a review on the lit-
erature about the field. The third section is dedicated to the pro-
posed approaches, and the forth one describes the experiments
comparing the proposed solutions. The paper concludes in the fifth
section.

2. Definitions and literature review

In this section, first, the problem of the paper is described in
detail. Second, a review on the current integer programming ap-
proaches for solving similar problems is provided. Furthermore,
there could be found a brief description of the concept of genetic
algorithm. Finally, the state-of-the-art literature on genetic algo-
rithm approaches to the problem under investigation is reviewed.

2.1. The problem

There are N jobs without any ready time and available at the
time zero. The jobs belong to F customers each of which has nj

(1 6 j 6 F) orders (i.e., jobs). Each job has a processing time Pij, a
completion time Cij, a delivery deadline or due date dij, a rendition
time Rij, a delay penalty (i.e., cost) aij, a cost of holding in manufac-
turer’s store hij, and earliness penalty bij, in all of which i indicates
the job number and j refers to a customer (see Table 1 for more de-
tails). A job is called early when its rendition time is before its due
date (i.e., Rij 6 dij) and on time when it is delivered in its due date
(i.e., Rij = di). Otherwise, it is called a tardy or delayed job. In this
problem, no preemption or setup times are considered. Each job
can be submitted to the customer as soon as it is processed or its
delivery can be postponed to be conducted in a batch of other jobs
from the same customer. Deciding between these two options re-
quires simultaneous consideration of amounts of delivery, earli-
ness, tardiness, and holding costs. Moreover, it should be noted
that the rendition time of a job is equal to the rendition time of
the batch containing that job, because the delivery of all jobs of a
batch is postponed to the completion of the last job of that batch.
Therefore, the rendition for each job is greater than or equal to its
completion time (i.e., Rij P Cij).

With respect to above, there are three types of penalty consid-
ered in this paper. These are costs of holding products in manufac-
turer’s stores, earliness costs, and tardiness costs. The first type of
penalties is taken into account when the job is completed before it
is rendered or Cij < Rij. The second type is for when the job is deliv-
ered before its due date or Rij < dij. The last type of penalties applies
to jobs delivered after their due times (i.e., dij < Rij). Thus, a job may
impose one of these types of penalty or two of them simulta-
neously regarding its completion, due, and rendition times. Please
refer to Table 2 to find different possible cases for a job to take
penalties.
Table 1
Description of variables of the problem.

Variable Description Values
taken

F Total number of customers
nj The number of orders of the jth customer 1, 2, 3, . . .

N Total number of all ordered jobs
PF

j¼1nj ¼ N
� �

aij Delay cost of the ith job of the jth customer 1, 2, 3, . . .

bij Earliness cost of the ith job of the jth customer 1, 2, 3, . . .

hij Holding (inventory) cost of the ith job of the jth
customer

1, 2, 3, . . .

Pij Process time of the ith job of the jth customer 1, 2, 3, . . .

dij Delivery time of the ith job of the jth customer 1, 2, 3, . . .

Cij Completion time of the ith job of the jth customer 1, 2, 3, . . .

Rij Rendition time of the ith job of the jth customer 1, 2, 3, . . .
In addition to these penalties, there is a delivery cost for each
batch, which depends on the receiver customer and is unique for
each customer. This delivery cost for customer j is identified by
variable Dj.

To conclude, this paper aims at minimizing the sum of delivery,
delay, earliness, and holding costs. This summation can be shown
as 1k

P
aijTij þ bijEij þ hijHij þ DjYjk regarding the common form

introduced by Graham, Lawler, Lenstra, and RinnooyKan (1979).
In this term, the following new items could be seen:

Tij: max{0,(Rij � dij)}.
Eij: max{0,(dij � Rij)}.
Hij: Rij � Cij.

Yik: a binary variable indicating whether the kth batch is dedi-
cated to the jth customer or not.

2.2. Integer programming approaches to the problem

In some of the papers in the area of minimizing the total earli-
ness/tardiness, it is assumed that earliness and tardiness should be
of degree one and two, respectively, because when a job is early,
the customer only misses the inventory costs of the early products,
but when it is tardy, not only the production plan of the customer
is delayed and interrupted, but also the prestige of the manufac-
turer is damaged. Gupta and Sen (1983), Sen, Dileepan, and Lind
(1995), Su and Chang (1998) and Schaller (2002) are some exam-
ples of researchers with this viewpoint to the earliness and tardi-
ness costs, which consider the problem

P
Ej þ T2

j

� �
, where Ej is

the amount of the earliness of the jth job and Tj is the amount of
its tardiness.

In other papers, both the tardiness and the earliness are sup-
posed of degree one, and instead, a specific penalty is assigned to
each of them. For example, Ying (2008) investigates problem
1jdj ¼ dj

P
ðajEj þ bjTjÞ. Furthermore, Garey, Tarjan, and Wilfong

(1988), Kim and Yano (1994), Feldmann and Biskup (2003) and
Schaller (2007) consider problem 1k

P
ðEj þ TjÞ. Baker and Scudder

(1990) provide an excellent survey of the initial work on early/tar-
dy scheduling.

Generally, in the problem surveyed in this paper, two states are
assumed: (1) earliness is not acceptable for the customer and is
charged by a penalty (i.e., Just-In-Time Logistic) and (2) earliness
is fruitful for customer and is promoted by donating a prize regard-
ing the amount of earliness. While the proposed solution is able to
cover both the cases (i.e., the second case could be invested easily
by assigning minus weights to early jobs), in this paper the second
case is not attended.

Another novel aspect of the problem suggested in this paper is
the consideration of batched delivery system in it. Potts and
Kovalyov (2000) have provided a comprehensive review on the
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scheduling problems when the jobs are processed or delivered in
batches. They specifically have focused on the dynamic program-
ming approaches to this type of problem. Furthermore, Mason
and Anderson (1991) have investigated the weighted flow time
minimization problems in batch delivery systems and proposed a
branch and bound solution for those. Hall and Potts (2003) have
provided dynamic programming solutions for a range of schedul-
ing problems with batched delivery systems. Finally, Mah-
daviMazdeh, Sarhadi, and Hindi (2007) have suggested branch
and bound algorithms for weighted sum of flow times in a batched
delivery system, when all jobs are available at the time zero and in
the presence of ready time (MahdaviMazdeh, Sarhadi, & Hindi,
2008). They have compared their solutions with Hall and Potts’s
(2003) ones.

The only issue that is not considered in this paper is setup time.
Setup time is ???. For examples of works involving this issue,
reader is referred to Suriyaarachchi and Wirth (2004) and
Supithak, Liman, and Montes (2010).

Since the problem of minimizing the total earliness/tardiness
costs is NP-Hard (Hall, Kubiak, & Sethi, 1991), the under investiga-
tion problem, which is even more complicated, is NP-Hard too. So,
evolutionary optimization solutions would be appropriate for
approaching such problems. The next sections give insight into
the genetic algorithms provided in the literature for resolving these
NP-Hard scheduling problems.

2.3. Genetic algorithm: a brief definition

Genetic algorithm is an evolutionary algorithm, which is based
upon Darwin’s theory about evolution. It evolves an initial set of
solutions in order to reach an optimized solution. ‘‘Algorithm is
started with a set of solutions (represented by chromosomes)
called population. Solutions from one population are taken and
used to form a new population. This is motivated by the expecta-
tion, that the new population will be better than the old one. Solu-
tions which are selected to form new solutions (offspring) are
chosen according to their fitness – the more suitable they are,
the more chance they have to involve in the reproduction. This is
repeated until some condition (e.g., reaching the maximum num-
ber of populations or no improvement in the fitness of the best
solution) is satisfied’’ (Obitko, 1998). Accordingly, a genetic algo-
rithm can be overviewed as a four-step process: initialization,
selection, reproduction, and termination. Each of these steps and
other significant concepts of a genetic algorithm (i.e., representa-
tion scheme and fitness function) are elaborated in Section 3.

2.4. Genetic algorithm approaches to the problem

Scheduling problems belong to the class of strongly NP-Hard
problems (Pinedo, 1995). According to this fact and because genet-
ic algorithms (GA) are proven appropriate for diverse optimization
problems (Davis, 1991; Goldberg, 1989), some researchers have
exploited these algorithms to solve different types of scheduling
problems including earliness/tardiness problems.

For example, in (Valente & Gonçalves, 2009), this type of sched-
uling problem is attended and the tardiness cost is considered in
power of two. A genetic algorithm based upon a random key alpha-
bet U(0,1) (by Bean (1994)) is proposed for this problem in that
paper. Furthermore, several genetic algorithms based on this
approach are presented, which differ on the generation of the ini-
tial population, as well as on the use of local search. The proposed
procedures are compared with existing heuristics and with optimal
solutions for the smaller instance sizes.

Moreover, Koksalan and BurakKeha (2003) used a GA to solve
two bi-criteria scheduling problems: minimizing flow time and
maximum earliness, and minimizing flow time and number of
tardy jobs. Furthermore, Hallah (2007) applied hybrid of SA and
GA to minimize total earliness and tardiness on single machine,
and he tested the capability of the proposed algorithm. Jolai et al.
(2007), also, proposed a genetic algorithm for bi-criteria single
machine scheduling problem of minimizing maximum earliness
and number of tardy jobs. For this problem, they developed a
genetic algorithm by exploiting its general structure that further
improves the initial population, utilizing a heuristic algorithm on
the initial population.

Besides single machines, GA is also applied by Cheng, Gen, and
Tozawa (1995) for scheduling in identical parallel machine sys-
tems. They are aimed at minimizing the maximum weighted
absolute lateness.

In most of these researches, it is assumed that the products are
delivered to customers instantly after they are processed or they
are buffered in batches with pre-specified sizes, which are deliv-
ered to customers after being completely filled. In this paper, some
new and different assumptions are considered. Here, it is supposed
that each job might be delivered to the corresponding customer
instantly after completion of its process, or it might be buffered
in batches with flexible sizes, each of which belongs to a particular
customer. Therefore, the number of batches could vary between
the number of customers and the total number of jobs. In other
words, this paper aims at holding a trade-off between delivery, tar-
diness, earliness, and holding costs and finally minimizing the sum
of them.
3. Proposed solutions

This section contains two parts, each of which presents one dif-
ferent solution to the discussed problem. The first part is dedicated
to the suggested integer programming approach, and the second
one elaborates on the proposed genetic algorithm.
3.1. Proposed integer programming solution

Before proposing the mathematical model, the chief idea of the
solution is described generally. Initially, N (i.e., the total number of
jobs) empty batches are supposed, each of which has a number
showing their position in the sequence of batches. In other words,
the jobs of batch number k � 1 are processed and delivered earlier
than the kth batch’s jobs.

Since each batch should only contain the jobs of a particular
customer and a customer might have all of its orders inside a single
batch, the number of jobs at each batch could be at most equal to
the maximum number of jobs belonging to a customer, which we
name m here. Accordingly, each batch is divided into m parts. For
example, if there are two customers with 3 and 5 orders, then
3 + 5 = 8 batches each with 5 = max{3,5} parts should be supposed
initially (see Fig. 1).

In addition to the batches, each part inside a batch has a priority
number, which indicates the order of processing the job inside it. In
other words, the order of processing the jobs inside a particular
batch is determined by the order of insider parts. For example, in
Fig. 1, the second order of customer 1 is processed after its first or-
der, because it is assigned to part 4 of the first batch, while the first
order is assigned to the first part of that batch. This order of pro-
cessing is important because the difference between job’s comple-
tion and rendition times determines its holding (i.e., inventory)
costs.

After the number of batches and parts inside them is decided,
the jobs are assigned to the parts randomly but controlled by some
constraints. These constraints prevent jobs of different customers
to be assigned to the same batch, which is one of the rules of job
allocation. Naturally, at last some of the initial hypothetical empty



Fig. 1. A sample job allocation.
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batches would remain empty with no jobs assigned to them (e.g.,
batches 5–7 in Fig. 1). These would be eliminated from the list of
batches. Fig. 1 illustrates the overall process of a sample job alloca-
tion for the mentioned example.

After the assignment step, regarding the batch and part num-
bers, that reveals the order of processing and rendering the jobs,
the completion and rendition times of the jobs and consequently
whether each job is tardy, early or on-time would be identified.
As addressed earlier, the rendition time of each job equals the com-
pletion time of the batch in which that job is placed, because each
job should wait for the last job belonging to the same batch to be
completed. After identifying the tardy and early jobs, the total
costs, including the delivery, delay, earliness, and holding costs,
can be calculated.

With respect to above description, the following integer pro-
gramming model is proposed:

Min
X

i

X
j

aij �maxf0;Rij � dijg þ
X

i

X
j

hij � ðRij � CijÞ

þ
X

i

X
j

bij �maxf0;dij � Rijg þ
X

j

X
k

Dj � yjk þ
X

k

M � Qk

ð1Þ

ST:X
k

X
k0

xijkk0 ¼ 1 8i 2 ð1;2; . . . ;njÞ; 8j 2 ð1;2; . . . ;mÞ ð2Þ

�ð
P

i

P
j

xijkk0 �
P

i
xijkk0 Þ þM � Q k P 0

ð
P

i

P
j

xijkk0 �
P

i
xijkk0 Þ þM � ð1� QkÞ > 0 8j 2 ð1;2; . . . ;mÞ;

8k 2 ð1;2; . . . ;nÞ; 8k0 2 ð1; . . . ; lÞ

8>>>><
>>>>:

ð3Þ

�
P

i
xijkk0 þM � yjk P 0P

i
xijkk0 þM � ð1� yjkÞ > 0 8j 2 ð1;2; . . . ;mÞ;

8k 2 ð1;2; . . . ;nÞ; 8k0 2 ð1; . . . ; lÞ

8>>><
>>>:

ð4Þ

Ck ¼
Pnj

i¼1

Pm
j¼1

Pl

k0¼1

xijkk0 � Pij þ Ck�1 8ðk > 1Þ 2 ð1;2; . . . ;nÞ

C1 ¼
P

i

P
j

P
k0

xij1k0 � Pij

8>><
>>:

9>>=
>>; ð5Þ

Rij ¼
Xm

k¼1

xijkk0 � Ck 8i 2 ð1;2; . . . ; njÞ; 8j 2 ð1;2; . . . ;mÞ;

8k0 2 ð1; . . . ; lÞ ð6Þ
if xijkb0 ¼ 1

then Cij ¼ Ck�1 þ
P

i

P
j

Pb0
k0¼1

xijkk0 � pij 8i 2 ð1;2; . . . ;njÞ;

8j 2 ð1;2; . . . ;mÞ; 8k 2 ð1;2; . . . ;nÞ; 8b0 2 ð1;2; . . . ; lÞ

8>>>><
>>>>:
C0 ¼ 0

8>>>>>>><
>>>>>>>:

ð7Þ

xijk; yjk;Q k : Binary 8i 2 ð1;2; . . . ;njÞ; 8j 2 ð1;2; . . . ;mÞ;
8k 2 ð1;2; . . . ;nÞ ð8Þ

Table 3 provides a reference for the variables found in the above
model.

As addressed earlier, there should be some constraints prevent-
ing jobs of different customers to be assigned to the same batch.
This constraint is exerted by adding relation number (3) to the
model. On the other hand, the batches that remain empty after
the allocation process are discarded regarding relation number
(4). More precisely, the proposed model consists of the following
equalities/inequalities (please refer to the numbers in the model
to see the corresponding constraint):

(1) This equation is the objective function of the problem. The
first term sums the delay costs, the second one is the holding
costs of the completed jobs in the manufacturer’s stores, the
third term indicates the sum of earliness penalties, and the
fourth one shows the total delivery costs. The last part of
the objective function adds a penalty to this function and
is described in paragraph number (3) below.

(2) This equation ensures that each job is assigned only to one
part of one particular batch. For example, if the 2nd job of
the 1st customer is placed in the 1st part of the 3rd batch
or x2131 = 1, consequently all x21kk0 when k – 3 or k0 – 1 is
equal to 0.

(3) If a job belonging to a particular customer is assigned to a
specific batch, that batch cannot include any jobs belonging
to other customers. In other words, each non-empty batch
should be dedicated to only one customer. This constraint
is applied using a big penalty, such that if the kth batch is
related to more than one customer, then the variable Qk

equals 1 and the mentioned penalty (i.e., big number M) is
considered in the objective function. Naturally, according
to greatness of this penalty, the solutions including it would
be discarded during the optimization process.

(4) Regarding that the initial number of batches equals the total
number of jobs (i.e., N), there might remain some empty
batches after the job assignment step. Thus, in this con-
straint, the binary variable yjk is defined such that its value



Table 3
Description of variables of the proposed mathematical model.

Variable Description Values taken

nj The number of orders of the jth customer 1, 2, 3, . . .

l The greatest nj (l = max{n1, n2, . . . ,nF})
N Total number of all ordered jobs

PF
j¼1nj ¼ N

� �
aij Delay cost of the ith job of the jth customer 1, 2, 3, . . .

bij Earliness cost of the ith job of the jth customer 1, 2, 3, . . .

hij Holding (inventory) cost of the ith job of the jth customer 1, 2, 3, . . .

Dj Delivery cost of batches belonging to the jth customer 1, 2, 3, . . .

xijkk0 Equals 1 if the ith job of the jth customer is in k’th part of the kth batch and equals 0 otherwise 0, 1
yik Equals 1 if there is a job belonging to the kth batch which relates to the jth customer and is equal to 0 otherwise 0, 1
Qk Equals 1 if some jobs from different customers are assigned to the kth batch and is equal to 0 otherwise 0, 1
Pij Process time of the ith job of the jth customer 1, 2, 3, . . .

dij Delivery time of the ith job of the jth customer 1, 2, 3, . . .

Ck Completion time of the kth batch 1, 2, 3, . . .

Cij Completion time of the ith job of the jth customer 1, 2, 3, . . .

Rij Rendition time of the ith job of the jth customer 1, 2, 3, . . .

M A big number
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is 1 if there is any job belonging to jth customer in the kth
batch and, otherwise, it equals 0. This variable helps putting
empty batches away when calculating costs.

(5) This equation computes the completion time of each batch,
which is equal to the sum of the processing times of the jobs
assigned to that batch plus the completion time of the previ-
ous batch. The order of batches is indicated by their
numbers.

(6) Regarding that each job assigned to a specific batch should
wait for all of the jobs belonging to that batch to be com-
pleted before it could be delivered, the rendition time of
each job is set equal to the completion time of the corre-
sponding batch.

(7) This relation computes the completion time of each job,
which is the completion time of the previous batch plus
the processing time of this job and every jobs in the same
batch which are assigned to it before the current job.

(8) This constraint introduces the variables xijkk0, yik, and Qk as
binary.

3.2. Proposed genetic algorithm

In designing every genetic algorithm, several concepts should
be declared carefully. These include chromosome structure, fitness
Fig. 2. Proposed chromosome structure: In this figure, it is assumed that the number
supposed that the summation of numbers of all of the orders equals b, which is the init
function, selection method, and genetic operators (i.e., mutation
and crossover functions). The following sections introduce the
methods we have exploited in our research regarding each issue.
Finally, the steps of the proposed genetic algorithm are described.

3.2.1. Chromosome structure
The representation scheme, which is the most important aspect

of a GA, should be able to capture every aspects of a possible solu-
tion for the corresponding problem. For the problem of this re-
search, a chromosome should determine the products included in
each batch and the order of completing them, which would reveal
the order and time of delivering the batches. Also, the chromosome
representation should consider the limitation that each batch only
must contain products belonging to one customer.

With respect to above, we propose the structure illustrated in
Fig. 2. As it could be seen, each chromosome consists of a general
batch permutation string besides an index vector and an order pri-
ority vector for each customer.

In the batch permutation string, each gene points to a particular
batch by its number. The repeated batch numbers are not allowed
in this string as the name, ‘permutation’, indicates. Furthermore,
the string is constituted by several substrings, each of which is
dedicated to a specific customer. The length of each substring
equals the number of orders of the corresponding customer. For
of customers is I and the number of ith customer’s orders is oi. Furthermore, it is
ial number of batches.
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example, if the first customer has o1 orders, then the first o1 cells of
the permutation string belong to it and the batches pointed to by
these cells could be used for packing this customer’s orders. Then
comes the substring of the second customer and so on.

In addition, there is an index vector for each customer. Like the
substrings, the length of each index vector equals the number of
the corresponding customer’s orders. Gene number one is dedi-
cated to order number one, gene number two is dedicated to order
number two, and so on. Moreover, each gene in the vector ad-
dresses a cell in the customer’s substring in the batch permutation
string. The batch pointed to by that permutation string cell deter-
mines the batch in which that particular order (to which the index
vector belongs) should be delivered. The index vector could also
contain repeated indexes, which mean that two different orders
are places in the same batch.

The third component of the proposed structure is called order
priority vector. There is an order priority vector per each index vec-
tor with the same length as the corresponding index vector. Each
order priority vector is a permutation of numbers between 1 and
the length of that vector. Each number belongs to one order of
the customer to whom the order priority vector is related and indi-
cates that orders priority in processing. The first cell indicates the
priority of the first order, and the second cell indicates the priority
of the second order. When two orders of a particular customer are
assigned to two different batches, they are processed regarding the
priority of their batches. But, when two orders fall in the same
batch, it is needed to refer to the order priority vector of the corre-
sponding customer to find the order of processing them. The smal-
ler the amount of the order priority vector cell, the higher the
priority of the corresponding job/order.

The next section describes how to interpret a chromosome and
translate it to a solution.

3.2.2. Fitness function
Before calculating the fitness of a chromosome, first it should be

interpreted and the solution that it suggests should be derived. As
stated in the previous section, there is an index vector for each cus-
tomer in each chromosome with the length of that customer’s or-
ders. For finding each order’s corresponding batch regarding the
values stated in the chromosome, first we should refer to the gene
of that order in the index vector of the customer who has made it.
The value of that gene leads us to a cell in the batch permutation
string. Finally, the number of batch assigned to the order could
be read from that cell in the batch permutation string.

When there are more than one job assigned to a particular batch,
all of which should belong to one specific customer, all one has to do
to find the sequence of processing them, is to refer to order priority
vector of that customer in the chromosome. Regarding the values of
cells in order priority vector related to those jobs (i.e., orders), the
processing priority of each job could be found as stated earlier in
Section 3.2.1 (smaller cell value means higher priority). If the pro-
cessing of a job in a batch is completed earlier than that batch’s
completion time, which means that it possesses higher priority
than at least one job in that batch, it adds some holding (inventory)
costs to the total costs (refer again to Fig. 2).

Now that the jobs and customers of each batch are determined,
it is possible to construct a solution. For doing this, first empty
batches are excluded from the batch sets. Then, the occupied
batches are sorted regarding their numbers, and the jobs inside
each batch are ordered with respect to their priority. The resulted
sequence indicates the order of completing the jobs and delivering
the batches. Consequently, the delivery and delay costs can be cal-
culated as described in Section 2, and the total cost is the fitness of
the current individual. Fig. 3 provides an example of a chromosome
and its fitness, which represents a solution for a 3-customer 6-job
problem.
Now that the way of interpreting a chromosome is described we
return back to the requirements and restrictions stated in Section 2
to see whether the designed structure satisfies them or not. First, in
this structure, some of the batches might be filled while the others
are empty, so the occupied batches are declared and we ignore the
empty batches in our calculations. Second, it is exactly determined
that which batch is dedicated to each job/order as described above.
Third, since the order of executing the batches is as their numbers
indicate (e.g., batch number 10 would be completed after batches
number 1–9), we know the order of completing and/or delivering
each batch at the end. Finally, since we partition the batch permu-
tation string and dedicate each substring to a particular customer,
no customer can use the batches of others and, consequently, no
batch will contain jobs from more than one customer. So the pro-
posed structure satisfies all the conditions and constraints besides
providing the possibility to cover the whole search space.

3.2.3. Selection method
Selection methods are generally grouped into four categories:

Roulette Wheel, Rank, Steady-State, and Elitism (Obitko, 1998).
Among these, our method is more close to Steady-State method.
In this method, the big part of individuals survives to the next gen-
eration. Then, a few of the best (i.e., fittest) chromosomes are se-
lected for generating new offspring through genetic operators
described in the next section. Then, the weaker individuals (i.e.,
with lowest fitness) are replaced with the better newly generated
individuals.

In our proposition, after sorting the chromosomes regarding
their fitness in ascending order, top b

ffiffiffi
n
p
c individuals are selected

for crossover. By selecting this number of the best chromosomes,
it is possible to generate about n new offsprings, which increases
the exploration of the algorithm by providing more inputs to the
mutation operator, besides augmenting the size of generated pop-
ulation. Then, every new chromosome will be mutated with chance
of 50%. Consequently, the size of current population will increase
to about 2.5n (i.e., n initial + n offsprings of crossover +n/2 off-
springs of mutation). Among these individuals, n fittest ones are
transferred to the next iteration. Please refer to Section 3.2.5 to
view the overall description of the proposed GA and the selection
method.

3.2.4. Genetic operators
There exist two kinds of genetic operators for reproduction. One

of them is crossover function, which combines two selected chro-
mosomes in order to generate two new offspring containing some
of the features of their parents. There have been many types of
crossover functions proposed in the literature (e.g., one point,
two point, uniform, etc.). The detailed description of these types
is out of the scope of this paper. Here, the simplest type of them,
the one-point crossover, is chosen for combining index vectors.
In this function, first, both of the parent chromosomes’ index vec-
tors are divided into two equal parts. Then, the first parts from the
first parent and the first parts from the second parent are copied
into the first parts of the first and second offsprings, respectively.
Then, the second parts from the first parent and the second parts
from the second parent are copied to the second parts from the
second and first offsprings, respectively. Fig. 4 illustrates this type
of crossover function.

Regarding that the batch permutation string and order priority
vectors are permutation and should not contain repeated numbers,
a crossover operator designed for permutation-based representa-
tions should be exploited for them. One of the well-known meth-
ods for this aim is position-based crossover, which is proposed by
Syswerda (1989). A slightly modified version of his method is used
in the proposed genetic algorithm. This crossover operator consists
of three main steps:



Fig. 3. An example of a problem and one of its possible solutions encoded in a chromosome.

Fig. 4. Crossover operator for index vectors.

Fig. 5. Crossover operator for permutation string and order priority vectors.
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1. Divide the parent strings into two halves and copy the second
halves of them to the second halves of the offsprings.

2. For filling in the first half of the first offspring, refer to the sec-
ond parent and find the values not included in the first off-
spring’s second half currently and copy them into the empty
genes in their original order in the second parent.

3. Execute step 2 for the second offspring too, but, this time, refer
to the first parent instead of the second one.

Going through these three steps guarantees that there is no
duplicate values in the offspring batch permutation strings. Fig. 5
depicts this operator with a simple example. The only difference
between the proposed method and Syswerda’s one is that he
utilize uniform crossover while we use a one-point crossover
function. This does not damage the rationale, because in fact
one-point crossover is an especial form of uniform crossover.

The second kind of genetic operators is mutation. Mutation in-
creases the algorithm exploration by adding randomly changed
individuals to the current population. In the genetic algorithm,
when the fitness of the best individual remains the same for sev-
eral generations, it means being trapped in a local optimum. In
such situations, increasing the exploration of algorithm, which de-
pends on the mutation function, might be useful for approaching
the globally optimum solution. There has been several mutation
functions proposed in the literature, including single-point, dou-
ble-point, multi-point, inversion, swap, etc. Innovatively, here,
we utilize a dynamic mutation for all batch permutation string, in-
dex vectors, and order priority vectors. Our experiments show a
better performance for this mutation compared with static one-,
two- or multi-point operators.
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A multi-point mutation mechanism in which the number of
mutation points (i.e., p) depends on the number of consecutive
generations for which the fitness of the best solution found so far
remains the same is used. The amount of p for batch permutation
string is calculated through Eq. (9) in which g shows the number of
consecutive generations for which the algorithm solution has not
improved and b is the number of batches (the length of permuta-
tion string):

p ¼
ffiffiffi
b
p

; g
50

� �
>

ffiffiffi
b
p

g
50 ; otherwise

(
ð9Þ

For order priority vectors and index vectors, the same strategy
is used, but here p is limited to l/2 instead of

ffiffiffi
b
p

, where l is the
length of corresponding vector. For index vectors, the p mutation
points are selected randomly and the value of the chosen genes
is replaced with random values in the valid range. For the batch
permutation string and order priority vectors, a swap mutation
function is utilized, in which two random distinct genes are se-
lected and their values are swapped. This swapping process, which
ensures non-repeating values in the arrays, is repeated p times for
each array.
3.2.5. Overview of the genetic algorithm
Every genetic algorithm includes four chief steps, namely ini-

tialization, selection, reproduction, and termination. The following
pseudo-code depicts these main steps.

Inputs: the orders of customers, n (the number of initial
individuals), I (the number of iterations), p (mutation
probability)

Outputs: the best solution
//Initialization
create n chromosomes
for each chromosome
set values of ‘Batch Permutation Strings’ of the chromosomes

to random permutations
set values of ‘Index Vector’ cells of the chromosomes to

random amounts between 1 and oi

set values of ‘Order Priority Vectors’ of the chromosomes to
random permutations

construct a solution for each chromosome based on its values
using train set and measure itsfitness

//Iterations
for i from 1 to I do

//Selection
sort the individuals based on their fitness
select top b

ffiffiffi
n
p
c chromosomes for crossover

//Reproduction
for each pair in b

ffiffiffi
n
p
c selected individuals

conduct the crossover operator to generate two offsprings
select p percent of new chromosomes randomly for
mutation

mutate each individual selected for mutation
for each about (1 + p) � n new individuals

construct the solution
calculate the fitness of the solution

sort all the (2 + p) � n chromosomes regarding their fitness
and select the top n of them for the next generation

//End of iteration
select the fittest individual as the output of algorithm
//End of Genetic Algorithm
The output of this genetic algorithm would be a chromosome

with a low total cost, which represents a solution for the schedul-
ing problem described in Section 2.1.

4. Experiments

Initially, the performance of the proposed genetic algorithm
was to be compared with that of integer programming. The pro-
posed algorithm is implemented with C#, and the integer pro-
gramming is executed using Lingo software application. Although
simple examples were used to evaluate algorithms, not oddly,
the Lingo was unable to provide an answer to these examples, even
when it was ran for a local optimum, because regarding the num-
ber of constraints the complexity of the integer programming mod-
el was too high. The Lingo took more than 10 h to give outcome
and crashed with an error message at last, even for simple example
problems. Consequently, it was decided to evaluate the proposed
method toward other genetic algorithm proposed for scheduling
non-batched delivery system in order to both evaluate the benefits
of batched delivery system and the performance of the proposed
algorithm. It goes without saying that in this type of problems
(i.e., non-batched delivery) there would be no consideration of
holding costs, while earliness, tardiness, and delivery costs are ap-
plied yet.

In the experiments, two comparison criteria are considered: run
time and outcome (i.e., total cost of the final solution). To solidify
the experimental results, the approaches are examined in different
situations, namely simple and complicated cases. For each case, the
genetic algorithm was executed 20 times with different random
initializations and the average performance is recorded. The error
of genetic algorithm approaches is computed through Eq. (10). In
this equation, soli is the solution of genetic algorithm in its ith exe-
cution. Furthermore, optimum refers to the best solution of the ge-
netic algorithm among 20 different outcomes.

error ¼ 1=20
X20

i¼1

soli � optimum
optimum

ð10Þ

While it is not guaranteed that the genetic algorithm results in
the global optimum, but according to the minuscule amount of er-
rors in outcomes and enough time let to the algorithms to run, it
could be concluded that the resulted solutions are close to the glo-
bal optimum. Next sections describe the cases and their results.

4.1. Simple cases

For the simple experiment, two 2-customer 8-job problem was
designed. The delivery cost, process time, due date, delivery cost,
delay cost, earliness cost, and holding cost of each customer’s or-
ders could be seen in Tables 4 and 5. Tables 6 and 7 illustrate the
results of running both the proposed and traditional genetic
algorithms for these problems. As seen in these tables, the novel ge-
netic algorithm has surpassed the traditional method very signifi-
cantly. While the time it takes for the proposed algorithm to
reach the answer is several times it takes for non-batched delivery
genetic algorithm, which is natural regarding the high number of
constraints in the batched delivery scheduling problem, it results
in less total costs than the non-batched delivery scheduling.
Furthermore, the errors of the both algorithms are zero, which indi-
cates that the algorithms would output the best solutions presented
in the table each time they are ran. This error is reached by custom-
izing genetic population size and iteration numbers to the cases.

From the results, it is recognized that batched delivery system
causes considerable amounts of saving. Moreover, the proposed
genetic algorithm reaches the solution in a reasonable time.
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Table 4
Specifications of the simple case a.

Customer No. 1 2

Job No. 1 2 3 4 1 2 3 4

Process time 10 12 8 10 5 18 13 9
Due date 40 28 80 10 25 32 85 110
Delivery cost (D) 70 50
Delay cost (a) 10 14 15 9 8 12 10 9
Earliness cost (b) 4 3 5 5 4 4 6 5
Holding cost (h) 5

Table 5
Specifications of the simple case b.

Customer No. 1 2

Job No. 1 2 3 4 1 2 3 4

Process time 20 15 18 17 15 18 24 20
Due date 40 68 140 102 25 45 85 125
Delivery cost (D) 140 170
Delay cost (a) 6 8 5 6 4 6 7 5
Earliness cost (b) 8 6 5 9 4 6 10 7
Holding cost (h) 1

Table 6
Results of experiments on the simple case a.

Algorithm Run time (s) Best solution’s cost Error

Non-batched delivery 0.05 1049 0
Batched delivery 1.05 1007 0

Table 7
Results of experiments on the simple case b.

Algorithm Run time (s) Best solution’s cost Error

Non-batched delivery 0.03 1514 0
Batched delivery 1.14 1378 0
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4.2. Complicated cases

As a complicated example, a problem with three customers and
20 orders was used. Tables 8 and 9 exhibit the results for these
cases. Again in these cases, the proposed genetic algorithm pro-
duces a better solution compared with traditional algorithm,
which indicates the profits of batched delivery system. But, espe-
cially in complicated case b, the difference is not remarkable, be-
cause the delivery costs are assumed to be low in these cases.
Furthermore, the holding costs are not as small as the previous
cases here. Another point is the ignorable amount of error of the
Table 8
Results of experiments on the complicated case a.

Algorithm Run time (s) Best solution’s cost Error

Non-batched delivery 1.99 7599 0
Batched delivery 331.6 7528 0.012

Table 9
Results of experiments on the complicated case b.

Algorithm Run time (s) Best solution’s cost Error

Non-batched delivery 4.24 6293 �0
Batched delivery 55.31 6277 0.032
proposed algorithm, which indicates its reliability. Looking at the
run times, it is understood that the proposed algorithm takes rea-
sonable time to finish considering the traditional algorithm and
regarding the complexity of batched delivery system.
5. Conclusions

After introducing a new type of scheduling problem with bat-
ched delivery system, which is an NP-hard problem, two different
solutions are proposed for it. The first is an integer programming
approach, and the second is a genetic algorithm. The results of
experiments indicate that the current applications, such as Lingo,
are unable to implement the proposed integer programming model
due to the high number of constraints. Accordingly, it is impossible
to compare the proposed genetic algorithm with global optimum
or even local optimum resulted from that model. Thus, in order
to exhibit the advantages of batched delivery system besides
evaluating the performance of proposed genetic algorithm, a
traditional genetic algorithm approach to simple (non-batched)
delivery scheduling problems is used as the benchmark. Experi-
ment results lead to some conclusions.

First, although in all cases the novel genetic algorithm would
outperform (or at least be the same as) the traditional one regard-
ing the total costs, it could be understood that the amount of this
outperformance completely depends on the specifications of the
problem. That is the higher the delivery costs compared with hold-
ing costs, the better the batched deliver scheduling. In other words,
batched delivery system would yield more economic savings in cir-
cumstances with higher delivery costs and lower holding costs.

Second, it can be seen that the proposed genetic algorithm pro-
vides an appropriate tool for scheduling production lines with
batch delivery systems, since it reaches reasonable answers in
acceptable amounts of time. Furthermore, regarding the low com-
putation time required by the proposed genetic algorithm, it seems
suitable for simple real-time applications with similar properties.

As a topic for further research, interested researchers can exam-
ine the efficiency of the proposed method in real-time applications
such as rocket navigation and CPU scheduling. Moreover, other
restricting conditions, such as batch-specific delivery deadlines
and limited batch capacity, could be challenging problems that real
situations encounter with. So, they are suitable for pondering and
examining in future researches too. Another point is the efficiency
of other types of selection, cross-over, and mutation operators or
other parameter settings such as mutation probability and selec-
tion rate compared with the ones chosen in the current research.
Finally, one might be interested in providing a more efficient chro-
mosome structure for solving this optimization problem.
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