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Abstract—Lightning is one of the main causes of voltage 
sags, and it is of great significance for subsequent analysis and 
governance to accurately evaluate the severity of the sag events 
caused by lightning. There are many uncertain factors between 
lightning fault events and voltage sag events. To evaluate the 
severity of voltage sag events caused by lightning, a data-driven 
self-learning evaluation method for voltage sag severity is 
proposed. According to a large number of online monitoring data 
of lightning positioning system and power quality monitoring 
system, the association rule mining algorithm based on incre-
mental learning is used. And the rules are kept updating through 
the accumulation of historical data, which may give it the abilities 
of self-learning. The empirical analysis is carried out based on 
the monitoring data of a regional power grid. The results show 
that the method in this paper can accurately mine more valuable 
rules in reality and solve the problem of low efficiency of mining 
algorithm when the database changes dynamically.

Index Terms—Association rule, lightning, lightning location 
system, power quality monitoring system, self-learning, voltage 
sag severity.

I. Introduction

VOLTAGE sag has become one of the most concerned 
problems due to the huge economic losses. The common 

cause of voltage sag is the sudden appearance of a large current 
in the system, such as a short circuit caused by a lightning strike 
[1], [2]. It is of great significance for subsequent governance to 
accurately assess the severity of sag events caused by lightning.

The traditional voltage sag severity evaluation methods 
[3]-[6] are mainly divided into three categories: the measured 
statistical method, the stochastic prediction method and the 
state estimation method. The measured statistical method refers 
to online monitoring at selected sites in the system, and the 
monitoring data is analyzed and calculated to determine the sag 
level of the measured points. But this method is only applicable 
to the situation where the system topology and parameters 

are determined and cannot assess the sag level of the whole 
system. The accuracy of the evaluation results depends on the 
length of monitoring time. The stochastic prediction method is 
based on stochastic modeling. The probability model is used to 
simulate the voltage sag randomly, and the sag level evaluation 
of the whole system can be achieved without long-term online 
monitoring in the system. However, the historical statistical 
data used by the random prediction method is affected by 
factors such as weather and maintenance conditions, and 
changes greatly every year; on the other hand, if the system is 
rebuilt or expanded, the historical statistical data will no longer 
be applicable. The state estimation method is a combination 
of the above two evaluation methods, which can accurately 
evaluate the sag level of the system over time using limited 
monitoring data. However, the accuracy of this method is 
based on the configuration method of the monitoring device.

In recent years, the massive monitoring data stored in 
the power grid monitoring system provides a new way for 
voltage sag evaluation. The basic idea of the data-driven 
voltage sag evaluation method is to obtain the correlation 
between the parameters and the sag indexes to realize the 
system voltage sag evaluation. In [7], based on the data of the 
power quality monitoring system, data mining technology is 
used to predict power quality disturbance levels. In [8], the 
improved correlation rule algorithm is used to evaluate the 
fault level of sensitive equipment caused by voltage sag from 
the perspective of the power grid. Reference [9] proposes a 
data-driven prediction method for the characteristics of voltage 
sags based on fuzzy time series. Reference [10] studies the 
propagation characteristics of voltage sag based on data driven 
method. Reference [11] proposes a residual voltage data-driven 
pridiction method for voltage sag. References [7]-[11] do 
not depend on the network topology and have high practical 
applications in certain historical databases. 

However, with the accumulation of data in the power grid, 
the timeliness of association rules is constantly changing. 
The above algorithm is difficult to apply to a dynamic data-
base, and the database needs to be rebuilt and scanned when 
the database changes, and the algorithm efficiency is too 
low. To solve the above problems, this paper proposes a 
data-driven self-learning evaluation method of voltage sag 
severity. Where self-learning means that the rule base can be 
updated based on the association rules that have been mined 
in the face of the dynamic changes of the database, thereby 
improving the efficiency of the algorithm and the accuracy of 
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the rules. The novelties of this paper are as follows. First, a 
mapping relationship between known inputs and the severity 
of voltage transients is constructed based on a large amount 
of historical data, which is more applicable when dealing 
with different types of lightning activities. Second, the pro-
posed method achieves continuous correction of the rules 
through the accumulation of historical data, thus continuously 
improving its decision-making accuracy or efficiency in 
practical applications. In addition, based on the actual data in 
the lightning location system and power quality monitoring 
system, the correctness and validity of the proposed method 
were verified.

II. Mining Parameter Selection

When lightning strikes tower top, lightning conductor, or 
phase line, the potential for the struck points will rise suddenly 
due to lightning current. If the voltage difference exceeds the 
flashover voltage of the insulator string, the insulator string 
will flashover and the transmission line may occur short circuit 
fault. Then, the voltage of other lines, which are closing to the 
faulty line, will also be correspondingly reduced. 

Since there is a strong correlation between lightning data and 
voltage sag data, but it is not a one-to-one mapping or a simple 
causal relationship, it is necessary to analyze and mine the data 
of multiple monitoring platforms in the power grid. Lightning 
Location System (LLS) can provide real-time and historical 
lightning data [12], including lightning strike location, time, 
peak current, polarity, and number of strikes back. Power 
Quality Monitoring System (PQMS) stores sag information 
[13], including sag start and end time, location, voltage level, 
etc. In China, each lightning trip accident has been analyzed 
on a case-by-case basis. By observing the lightning strike point 
or arc trajectory of the struck tower, engineers determine the 
lightning location. Therefore, according to the line trip record 
and the sag event record, the lightning parameters causing sag 
events can be determined, and a single lightning-sag event can 
be obtained.

The power quality monitoring system can obtain the ma-
gnitude and duration of sag. Combined with the voltage 
tolerance curve (VTC) corresponding to the equipment type of 
the node, this paper uses the IEEE 1564 standard to calculate 
the severity of a lightning-sag event.

1
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Where Vcurve(d) is the corresponding voltage magnitude on 
the VTC when the duration is d, and V is the actual voltage 
sag magnitude. To obtain the voltage sag severity at the 
unmonitored nodes of the system, the electrical distance is 
selected as one of the mining parameters in this paper. The 
electrical distance is the geometric distance between the 
lightning location and the concerned node. In summary, the 
parameters selected in this paper are shown in Table I.

III. Self-learning Evaluation Method of Voltage Sag 
Severity

A. Association Rule Mining Algorithm

As a classical association rule mining algorithm, the basic 
idea of AprioriTid algorithm [14] is to obtain the set of frequent 
items and mine the association rules based on the threshold 
value set by the user. Let DA = {t1,t2…,tn} be an event database, 
where each event ti is a set of items. Items are the values taken 
for a single parameter in a single event, and the set of these 
items is IT. For the set of items T, T ∈ IT, if there are k items 
in T, then T is also called a k-item set. For a k-item set T, if its 
computed support is higher than the support threshold (min_
sup), then it can be called a frequent k-item set. 

The frequent item set represents an association rule, and the 
association rule is an implication of X ⇒ Y, where X ⊆ IT, Y ⊆ 
IT and X ∩ Y = Φ. To reflect the correlation between X and Y, 
the user sets a confidence threshold (min_conf) to determine 
whether the rule is a strong association rule, and the support 
and confidence of the rule are calculated as shown in (2) and 
(3), respectively.

| |( )
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X Y∩sup X  ⇒ Y
U

=                             (2)

X  ⇒ Y | |( )
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X Yconf
X

=                             (3)

Where | X | and | X ∩ Y | represent the number of events of the 
set X and | X ∩ Y | in the original database DA, respectively. 
The support represents how frequently the event appears in the 
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Fig. 1.  Characteristics of voltage sags caused by lightning.

TABLE I 
Selected Parameters

   
  
  

  

  

 

 

Parameters identifier
C1
C2
C3

C4

C5

D

Parameter Meaning
date of a lightning-sag event
time of a lightning-sag event

location of lightning

maximum current during lightning
distance between the lightning location

and the concerned node
event Indicators Se

 
date 
time 
lightning location 
lightning peak
current 

sag distance 
sag severity 
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database, and the confidence represents the confidence of the rule.
The AprioriTid algorithm improves the computational 

efficiency by using the k-level TID table instead of the original 
database when generating frequent k-item sets, which reduces 
the amount of scanning. Since the k-level TID table stores all 
the generated frequent k-item sets, the number of events stored 
in the table will be higher than the original database when k is 
small. To further improve the efficiency of the algorithm, this 
paper uses the decision table instead of the TID table, and each 
scan only needs to delete the rows in the decision table where 
the events without frequent k-item sets are located to get a new 
decision table.

1 2 3 4 5

1
. . . . . . .
. . . . . . .

C C C C C DNo. V V V V V V

J

n

         (4)

Where Vci is the identifier of the i-th parameter Ci, the first 
column of the decision table is the number of the event, and the 
i-th row indicates the value of each parameter in the i-th event.

B. Incremental Update Algorithm

The data in the actual power grid is dynamically changing and 
the timeliness of the association rules is constantly changing. 
As time changes, new events are added to the lightning-sag 
event database. The incremental update algorithm is to mine 
new association rules and delete old association rules that do 
not satisfy the conditions based on the rules already acquired in 
the case of database changes, which avoids repeated scanning 
of decision tables and realizes the update of the association rule 
base.

Assuming that the original database is DA and the added 
event database is da, the updated database is DA+da, and the 
new support is calculated as

( )×         + ×sup | | sup( ) |
sup( )

| | | |
DA DA da da

DA da
DA da

+ =
+

       (5)

where | DA | denotes the number of events in the original 
database DA, and | da | denotes the number of events in 
the added database da. When updating the database, let the 
set of frequent items of the database be L(DA) and L(da), 
respectively, then there are four cases as follows.
1) If the itemset T ∈ L(DA) , and T ∈ L(da) , then the itemset T 

must be a frequent itemset.
2) If the itemset T ∈ L(DA) , and T ∉ L(da) , then you need to 

scan DA to calculate the support of T.
3) If the itemset T ∉ L(DA) , and T ∈ L(da) , then you need to 

scan DA to calculate the support of T.
4) If the itemset T ∉ L(DA) , and T ∉ L(da) , then the itemset T 

is not a frequent itemset.
When calculating the support of each set T in the newly added 

database da, sup(T) is calculated based on the size of the database 
da. Let T be the frequent itemset in DA, if  sup(T) ≥ min sup, 
then T is the frequent itemset after the database change, else, it is 
calculated according to (5) to determine whether it is the frequent 
itemset. Let T is not a frequent itemset in DA, if sup(T)≥  min 
sup, then it is calculated according to (5) to determine whether 
it is a frequent itemset; else, T is not a frequent itemset after 
database changes. After obtaining the frequent itemset by the 
association rule mining algorithm based on incremental learning, 
let the voltage transient severity be Y, the remaining parameters 
be the set X, and the rule form be X ⇒ Y , whose confidence is 
calculated by the following formula.

		

∩
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conf X Y
X Y DA da
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              (6)

where supDA(X) and supda(X) denote the support of the item set 
X in the databases DA and da, respectively.

C. Association Rule Matching

The X of the actual scenario cannot be same as the filtered 
strong correlation rules, so the similarity between the actual 
scenario and the rules in the rule base needs to be calculated. 
The rule with the highest similarity is used as the matching 
result for the voltage sag severity. Y is affected by each 
parameter in X to a different degree, so the parameters in X are 
given weights before matching. Combining the advantages of 
the subjective and objective assignment methods, this paper 
uses a comprehensive assignment method combining the 
Analytic Hierarchy Process (AHP) [15] and the entropy weight 
method [16].

The hierarchical analysis method is based on the importance 
of the parameters according to a certain scale to obtain the 
weight. According to the requirements of experts or users of the 
importance of the parameters for two comparisons, the scale 
matrix R is built. After consistency testing for R, the weight Cj 
of the parameters βj is calculated.

		

       (7)

where rji denotes the element i of the jth row of the matrix R.
The entropy weight method is based on the fuzzy transformation 

theory to obtain the fuzzy evaluation matrix, then the entropy 
value ej of the parameter Cj is calculated. The higher the 
parameter entropy value represents the lower the importance, 
so 1-ej is used to calculate the weight wj of the parameter.

		

       (8)
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Then combined weight is calculated by the following.
		

       (9)

After the comprehensive weights are obtained, the distance 
between the actual scene x and the association rule r is calculated 
by the weighted Euclidean distance. A smaller distance indicates 
a higher similarity, and the calculation formula is as follows.

		

                (10)

where αj is the combined weight of parameter Cj, and Vcx
j and 

Vcr
j are the values of parameter Cj in the actual scenario and 

association rules, respectively. 
The flowchart of this paper is shown in Fig. 2. First, the 

monitoring data of LLS and PQMS are matched by spatio-
temporal correlation to construct the database. Second, discrete 
the continuous data in the database by clustering algorithm. 
Subsequently, the association rules are mined by the AprioriTid 
algorithm based on the incremental update algorithm. Finally, 
the actual scenarios and rules are matched based on weighted 
Euclidean distance to obtain the voltage sag evaluation result.

IV. Case Study

Since lightning activities are seasonal, the measured data 
of LLS and PQMS from June to September 2016-2020 of a 
regional power grid are used as an example, and 127, 141, 139, 
103, and 98 lightning-strike-temporary fall events are matched 
year by year, respectively. The events in 2016 are used as the 

original database, the events in 2017-2019 are used as the 
incremental training set, and the 98 events in 2020 are used as 
the test set for validation.

A. Data Processing

The AprioriTid algorithm can only handle discrete attributes, 
so it is necessary to discretize the continuous attributes. Among 
the six mining parameters selected in this paper, the lightning 
location is expressed in latitude and longitude, and a lightning 
– sag event record in the order of lightning date, time, location, 
peak lightning current, electrical distance and voltage sag 
severity is shown as 2019-06-06, 00:16:28.779, [102.5204, 
28.3845], -67.9 kA, 35.78 km, 1.129. The lightning date and 
time need to be converted into numerical data. In this paper, the 
lightning date is converted into a variable value of 1-122 with 
a period of years, and the time is converted into a continuous 
value of 1-144 with a unit of every 10 min. The date of 2019-
06-06/00:16:28.779 is 6 and the time is 1.6. The data types of 
lightning location, peak lightning current, electrical distance 
and voltage sag severity are continuous numerical data.

The K-means algorithm is a classical discrete algorithm [17], 
[18], but its number of discrete intervals relies on subjective 
experience. To avoid the artificial selection of the number of 
discrete intervals affecting the subsequent association rule 
mining, Silhouette Coefficient (SC) [19] is selected in this 
paper to determine the optimal number of clustering intervals.

The calculation steps of SC are as follows: 1) Calculate the 
average distance m(a) between the data value a and the rest 
of the data in the interval, reflecting the degree of closeness 
within the interval; 2) Calculate the minimum value n(a) of the 
distance from the data value a to the other intervals, reflecting 
the degree of dispersion between the intervals; 3) Calculate 
the contour coefficient of the data point a with the following 
formula.

		

       (11)

The SC reflects the discrete validity of individual data, and the 
larger s(a) is, the more reasonable the discrete result is. The 
average value of the contour coefficients of all data is used as 
the dispersion evaluation index of the algorithm. With different 
numbers of dispersion intervals set, the changes of SC values 
of the six parameters are shown in Fig. 3.

According to Fig. 3, the number of discrete intervals for 
parameters C1, C2, C3, C4, C5, and D are 3, 3, 2, 2, 3, and 4, 
respectively. The discrete results of the parameters are shown 
in Table II.

B. Rule Mining

The initial decision table is constructed based on the original 
database and discrete results, and the TID table is replaced 
using the decision table. Set the minimum support to 0.01 and 
the minimum confidence to 0.5, then 13 association rules are 

No.

Fig. 2.  Association rule mining flow chart.
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mined. Considering the space factor, some of the rules are 
given, as shown in Table III.

Analysis of the rules can yield valuable information. For 
example, rule 1 indicates that when lightning occurs in June, 
the time is between [0:00, 8:00], the location is in the south, the 
peak lightning current is between (-150)-(-100) kA, and the 
electrical distance is between 0-35 km, the voltage sag severity 
of the concerned node is low; the confidence of 1 indicates that 
the rule is completely plausible. The incremental training set is 
processed by discrete results and added to the original database. 
When the minimum support and minimum confidence are 
set to 0.01 and 0.5, respectively, the rules are mined using the 
Apriori algorithm, the AprioriTid algorithm and the algorithm 
in this paper, respectively. The consumption time of algorithms 
are shown in Table IV.

As shown in Table IV, the efficiency of the algorithm used in 
this paper is significantly better than the traditional algorithms. 
Based on the database of 2016-2019, the computation time of 
the algorithm in this paper is 0.4684 of the Apriori algorithm 
and 0.6216 of the computation time of the AprioriTid algorithm. 

It is because this paper uses decision tables instead of TID 
tables, which avoids the problem of generating too many item 
sets. Moreover, when the database is updated, the association 
rule update is implemented based on the already mined rules. 

C. Rule Matching

The minimum support and minimum confidence are set to 
0.01 and 0.5, respectively. 13, 22, 32, and 40 strong association 
rules are mined using the algorithm of this paper based on four 
databases (i.e. 2016, 2016-2017, 2016-2018, and 2016-2019). 
In addition, the rules are mined using the Apriori algorithm and 
the AprioriTid algorithm under the same minimum support and 
minimum confidence. The rules mined based on the Apriori 
algorithm and the AprioriTid algorithm are the same as the 
rules mined by the algorithm in this paper. It indicates that 
the algorithm in this paper can improve the mining efficiency 
without reducing the quality of the mined rules. Therefore, the 
algorithm in this paper is more suitable for dynamic databases.

 The weighting results of each parameter using the integrated 
assignment method are as follows: the weights of electrical 
distance, peak lightning flow, geographic location, date, and 
moment are 0.31, 0.24, 0.18, 0.15, and 0.12, respectively. the 
accuracy and validity of the mined rules are verified using the 
test set. Due to space limitation, this paper shows 20 actual 
scenarios with rule matching results, as shown in Fig. 4.

The 1 in Fig. 4 represents a correct matching result. In all 
test sets, the rule matching accuracy based on the database 
obtained for 2016, 2016-2017, 2016-2018, and 2016-2019 
is 55%, 60%, 75%, and 87%, respectively. Thus, the rule 
matching accuracy has improved with the increase of rules. In 
practice by continuously expanding the database in order to 
improve the accuracy of the evaluation.

Fig. 3.  The SC values of the 6 parameters under different intervals.

Fig. 4.  Matching results based on four rule bases.

TABLE II 
The Discrete Results of the Parameters

TABLE III 
The Discrete Results of the Parameters

TABLE IV 
The Consumption Time of Algorithms

No. Rule
VC1=1, VC2=1, VC3=1, VC4=1, VC5=3 => VD=1
VC1=2, VC2=1, VC3=1, VC4=1, VC5=3 => VD=2
VC1=3, VC2=2, VC3=1, VC4=1, VC5=3 => VD=1
VC1=1, VC2=1, VC3=1, VC4=2, VC5=3 => VD=1
VC1=1, VC2=1, VC3=1, VC4=1, VC5=1 => VD=4

......

Conf
1

0.5
1

0.5
0.5

.

1
2
3
4
5
.

Database

738 ms
1176 ms
1456 ms
1834 ms

568 ms
682 ms
1010 ms
1382 ms

265 ms
354 ms
558 ms
859 ms

2016
2016  2017
2016  2018
2016  2019

Apriori
algorithm

AprioriTid
algorithm

Algorithm in this
paper

Parameter

C1

C2

C3
[Latitide, 
Longitude]

C4 (kA)

C5 (km)

D

Interval
6.1 6.30
(VC1 = 1)

67.1 7.31
(VC1 = 2)

8.1 8.31
(VC1 = 3)

16:00 24:00
(VC2 = 3)

8:00 16:00
(VC2 = 2)

0:00 8:00
(VC2 = 1)

0 0.6
(VD = 1, excellent)

0.6 1.0
(VD = 2, good)

1.0 1.6
(VD = 3, Medium)

1.6 2.0
(VD = 4, poor)

0 35
(VC5 = 1)

35 80
(VC5 = 2)

>80
(VC5 = 3)

( 150) ( 100)
(VC4 = 1)

( 100) 150
(VC4 = 2)

[(260, 330), (99, 105)]
(VC3 = 1, South)

[(300, 330), (105, 108)]
(VC3 = 2, North)



333S. LIU et al.: A DATA-DRIVEN SELF-LEARNING EVALUATION METHOD OF VOLTAGE SAG SEVERITY

V. Conclusion

Making full use of the lightning and voltage sag data stored 
in the existing monitoring system, this paper proposes a self-
learning evaluation method of voltage sag severity based on the 
improved association rule mining algorithm, which can obtain 
the voltage sag severity of the concerned nodes without the 
network topology. The following conclusions can be drawn.
(1) The proposed method has the ability of self-learning, 

which overcomes the disadvantage of the inefficiency 
of the AprioriTid algorithm when the dynamics of the 
database changes. Compared with traditional methods, 
it can improve the computational efficiency of the al-
gorithm through continuous self-learning during long-
term utilization. Therefore, it is more suitable for dynamic 
databases.

(2) The matching accuracy will improve with the accumulation 
of the number of rules. The method proposed in this paper 
can be trained by continuously accumulating voltage sag 
events and continuously updating the association rule base, 
and its matching accuracy will improve. The rule matching 
accuracy based on the database obtained for 2016, 2016-
2017, 2016-2018, and 2016-2019 is 55%, 60%, 75%, and 
87%, respectively. 
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