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ABSTRACT In this paper, we present our investigation of a latency-minimization offloading problem
for internet of things (IoT) terminals in multiple access edge computing (MEC)-enabled heterogeneous
networks (HetNets), which jointly optimizes computation and communication resource allocation. Different
from related works, the inter-user interferences caused by computation offloading demonstrate effective
management in this paper. We also consider the limited battery capacity for IoT terminals for an energy-
limited network. Then, we formulate a joint computation offloading and resource allocation optimization
problem to minimize the weight-sum delay of users under the constraint of inter-user interference and
energy consumption. Since the problem we formulated is a mixed integer non-linear programming (MINLP)
problem, the optimal solution can’t be easily obtained. Thus, we decompose the problem into multiple
sub-problems. First, we obtain the optimal close solution for local CPU frequencies for each user. Then
we propose a low complexity algorithm by using the CVX tool and the successive convex approximation
approach (SCA). Finally, we propose a distributed computation offloading algorithm. The simulation results
compare the performance of the proposed offloading scheme with different algorithms. We also analyze the
influence of network parameters on the network latency and obtain some interesting conclusions.

INDEX TERMS MEC enabled HetNets, computation offloading, resource allocation, Internet of Things.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Over the past few years, more and more smart mobile devices
and computing-intensive applications have accelerated the
development of the internet of things (IoT) [1]. Due to the
exponential growth of mobile data traffic, merely relying on
the traditional cloud computing is not enough to the latency
requirements of IoT devices and applications, which may
also cause a severe computation and communication load
on the cloud computing center. Consequently, the emergence
of multi-access edge computing (MEC) has been considered
to be a promising solution to this challenge. MEC offers
the computation capability for offloading computation tasks
from mobile devices and applications at the edge of the net-
work [2], [3]. Moreover, MEC technology can be combined
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with heterogeneous networks (HetNets). Each base station
(BS) is placed by a MEC sever to execute offloading tasks
from its accessed mobile devices in HetNets, which has
enabled the creation of new, potential network architecture
in the 5G/B5G communication era [4], [5]. Thus, the end to
end user experience and overall spectrum efficiency of the
network can be further improved, simultaneously.

However, the task offloading decision and resource alloca-
tion for IoT devices are a key research problem in MEC sys-
tems [6], [7]. InMEC systems, IoT users (UEs)may choose to
offload their generated tasks to the edge server for execution
due to the inherently limited computing capacity and battery
power of MEC systems. This may result in a large end-to-
end delay for UEs. Furthermore, it may not be able to serve
all UEs that have limited wireless and computation capacity
for the edge server. Therefore, it is essential to propose an
appropriate task offloading decision and resource allocation
method for multi-users based on the system revenue and UEs’
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quality of services (QoS) requirements of mobile devices [8].
Specifically, the offloading decision and resources occupied
by IoT devices need to be optimized by considering the local
computing capacity, the channel environment, the energy
consumption, and the task execution delay requirement.

Different from traditional MEC systems, in the
MEC-enabled HetNets, the task offloading decision may
cause inter-user interference in the process of task upload-
ing to the MEC server. And the interference may become
more severe and complicated especially in the case of dense
deployment of small BSs (SBSs). Interference from other
UEs in the same layer and cross-layer will exist in the
network. Therefore, the computation offloading decision
and resource allocation problem in MEC-enabled HetNets
must consider the effective interference management form
other UEs. The energy-limited characteristic of IoT devices
should also be considered when addressing the research
problem. In this paper, we consider the interference and
energy constraints in the process of task execution, and we
focus on proposing an appropriate computation offloading
and resource allocation method.

B. RELATED WORKS
In recent years, the problem of computation offloading
and resource allocation has attracted the attention of many
researchers. Most of the related works focus on the single-
user scenario [9]–[11] and the multi-user scenario. In [12],
the authors propose a partial offloading decision and resource
allocation algorithm to minimize UEs’ energy consumption
in multi-user time division multiple access (TDMA) and
frequency division multiple access (FDMA) MEC systems.
In [13], the authors consider an MEC system combined
with non-orthogonal multiple access (NOMA) technology
(NOMA-MEC) for multi-users’ task uploading and down-
loading. Then, the total system energy consumption is min-
imized by optimizing the transmit power, transmission time
allocation, and task offloading decision. In [14], the authors
optimize the task offloading decisions by minimizing the sum
of all UEs’ delay in the multi-user NOMA-MEC system.
In [15], the authors combine the multi-user NOMA-MEC
system with multi-antenna technology for task offloading.
Then, different UEs can offload their computing tasks to
the multi-antenna BS at the same time and with the same
frequency resource. Each BS can also use the Successive
Interference Cancellation (SIC) method to effectively decode
and perform the UEs’ offloading tasks. In [16], the authors
minimize the network energy consumption for the multi-user
system by jointly optimizing the UEs’ task offloading deci-
sion, spectrum, power, and computing resource allocation in
a densely deployed small cell network scenario. However,
these studies did not consider the problem of interference
avoidance between UEs.

The execution latency and energy consumption are usu-
ally two important metrics for the evaluation of computa-
tion offloading and resource allocation. In [17], all UEs’
offloading decision and resource allocation are optimized to

minimize the end-to-end delay of the UEs for the multi-user
TDMAMEC system, but the UEs’ energy consumption is not
considered. In [18], the method of UEs’ task offloading and
multi-user scheduling for NB-IoT edge computing system is
proposed to minimize the long-term average weighted sum
of UEs’ delay and energy consumption under the assump-
tion of random traffic arrival, and Markov decision process
model is adopted. In [19], the authors focus on the trade-off
between the UEs’ delay and energy consumption in the prob-
lem of joint optimization of UEs’ task offloading decision,
communication and computing resource allocation and the
residual energy of the terminal is introduced as the weight.
In [20], the authors propose a joint management method for
online wireless and computing resources for multi-user MEC
systems to minimize the long-term average weighted power
consumption of mobile devices and MEC servers. In [21], all
UEs’ energy consumption is minimized with the constraint
of execution delay by optimizing task allocation offloading
decision, wireless and computing resources allocation for
UEs in the NOMA-MEC system.

Different from the related works, we deploy the MEC
system in HetNets and consider the problem of inter-user
interference management during task offloading. Finally,
we simultaneously optimize the UEs’ task offloading deci-
sion, computation, and communication resource allocation.
While execution latency is very important to UEs in IoT,
especially for latency-sensitive UEs, the amount of energy
for each IoT device is limited. Therefore, how to reduce the
execution latency within the constraints of limited energy
consumption is still an issue. In this paper, we focus on
finding the optimal task offloading decision and resource
allocation to decrease UE delay due to the constraint of
energy consumption.

C. MAIN CONTRIBUTION
In this paper, we investigate the joint computation offloading
and resource allocation optimization for IoT UEs in energy
constrained MEC enabled HetNets. Our main contributions
are summarized as follows:

(1) In the scenario of MEC-enabled HetNets, we first cal-
culate the execution latency and energy consumption for each
UE who chooses either local computing or edge computing.
We also propose an appropriate interference management
model for all UEs in the network in order to address the inter-
user interference problem. Then, the weighted-sum execu-
tion latency of UEs is adopted as the performance metric,
which can address the cost of execution latency at different
nodes in MEC-enabled HetNets. The computation offloading
decision and available resources management in the network
are jointly optimized, including the CPU-cycle frequencies
for each UE, the sub-channel and transmit power allocation
for computation offloading, and the task offloading deci-
sion for each UE.

(2) Since the joint optimization problem we formulated
is a mixed integer non-linear programming (MINLP) prob-
lem, the optimal solution can’t be easily obtained. Thus,
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FIGURE 1. System model.

we decompose the problem into multiple sub-problems,
including optimal local computing resource allocation, joint
sub-channel and power allocation optimization, and the task
offloading decision. First, we obtain the optimal close solu-
tion for the local CPU-cycle frequencies for each UE. For the
sub-problem of joint sub-channel and power allocation opti-
mization, we propose a low complexity algorithm using the
CVX tool and the successive convex approximation (SCA)
approach. Finally, combining the two sub-problems men-
tioned above, we propose the task offloading algorithm for
each UE.

(3) We conduct a performance analysis of the proposed
algorithm and we compare it with other related algorithms.
The simulation results show that the proposed algorithm
has better performance in execution latency. Moreover,
the impact of the various parameters is determined, includ-
ing the interference threshold, the sub-channel bandwidth,
the weight coefficient, etc. Some interesting results are found,
and the conclusion can offer valuable guidelines for real
deployment.

D. ORGANIZATION OF THE PAPER
This paper is organized as follows. Section I introduces the
research background, motivation, related works and the main
work presented in this paper. Section II describes the system
model and problem formulation. Section III demonstrates the
proposed algorithm. Section IV presents the results of the
simulation and the analysis. Section V presents the conclu-
sion and suggestions for our future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we present the equations used to calculate
execution latency and energy consumption for the local exe-
cution and the MEC server execution model, respectively.
Then, we discuss the interference management model we
proposed to eliminate the inter-user interference in the net-
work. Finally, we formulate the joint computation offloading
and resource allocation optimization problem for IoT UEs in
MEC-enabled HetNets.

As shown in Fig.1, we consider a two-tier HetNets scenario
that consists of the macro-BS (MBS) and small BSs (SBSs)

in the network. The SBSs and UEs are randomly distributed
within the coverage area of the MBS. Each BS is equipped
with an MEC server for executing the tasks offloaded by the
connected UEs. All the UEs can be connected to the core
network through the MBS. The backhaul link between each
SBS and the MBS can be regarded as an ideal link. For pre-
sentation, the set of BSs is denoted as J = {0, 1, 2, . . . , J},
where index 0 represents the MBS and index 1− J represent
the SBSs. The set of UEs is defined as

{
Kj, j ∈ J

}
, whereKj

denotes the set of UEs associated with the BS j . The available
system bandwidth W is divided into N sub-channels and the
set of sub-channels is denoted as N = {1, 2, . . . ,N }.

The computation tasks are generated by UEs and let ci,j ={
bi,j, si,j, li,j,Tmax

i,j

}
denotes the computation task generated

by the UE i associated with the BS j. Here, bi,j and si,j rep-
resent the number of computation tasks and the size of each
task generated by UE i associated with the BS j. li,j denotes
the number of CPU cycles required to execute an one-bit
task, which may vary with different applications. Tmax

i,j is the
maximum execution latency required by each computation
task. There are two ways that each UE task can be executed:
local execution and MEC server execution by the offloading
process. The execution latency and energy consumption are
different in these two options. The execution latency and
energy consumption for the Local Execution and the MEC
Server Execution Model are discussed below.

A. LOCAL EXECUTION MODEL
We assume the CPU frequency of eachUE is fixedwhen com-
puting, but it may vary over the UEs. Moreover, we ignore
the effect of the stochastic task queue model on computation
latency [22]. Let f Li,j denote the local CPU frequency of the
UE i associated with the BS j. Then the execution latency
and energy consumption for local execution model can be
calculated as shown in the Eq. (1) and Eq. (2), respectively.

tLi,j =
bi,jsi,jli,j
f Li,j

, i ∈ Kj, j ∈ J (1)

eLi,j = κmob,i.j
(
f Li,j
)2
bi,jsi,jli,j, i ∈ Kj, j ∈ J (2)

Here, κmob,i.j is a coefficient related to the chip archi-
tecture of devices [23]. According to Eq. (1) and Eq. (2),
the local CPU frequency f Li,j may affect the execution latency
and energy consumption simultaneously. The local CPU fre-
quency of UEs can be adjusted using dynamic voltage and
frequency scaling technology [24].

B. MEC SERVER EXECUTION MODEL
Apart from the local execution, the UEs can also choose
to offload the computation task to MEC servers at the
MBS or the SBSs. The computation offloading process
mainly contains three phases: 1) uploading data to the associ-
ated MEC server through the allocated sub-channels, 2) com-
puting the task on the MEC server, and 3) downloading the
computation results from the MEC server to the UEs. The
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execution latency for the proposed MEC Server Execution
Model is shown in Eq. (3).

tCi,j = tULi,j + t
CP
i,j + t

DL
i,j ≈ tULi,j + t

CP
i,j (3)

Here, tULi,j denotes the uplink transmission latency for the UE i
associated with the BS j. tCPi,j is the computation latency on the
MES server. tDLi,j represents the downlink transmission delay
from the MEC server to the UEs. Due to the small size of
the computation result and the higher downlink transmission
rate, the downlink transmission delay can be ignored [6], [25].
Next, we calculate the task uploading latency and computa-
tion latency on the MES server.

We assume that the sub-channel n is allocated for upload
phase by the UE i associated with the BS j. According to
Shannon theory, the available uplink transmission rate for the
UE i associated with the BS j on the sub-channel n can be
expressed as shown in the Eq. (4).

ri,j,n = Blog2

1+
pi,j,nh

j
i,j,n

Ii,j,n + Bσ 2

 (4)

Here, B denotes the bandwidth of the sub-channel n and it has
B = W

/
N . pi,j,n is the transmit power for the UE i associated

with the BS j on the sub-channel n. hj
′

i,j,n represents the
channel gain from the UE i associated with the BS j to the BS
j′ on the sub-channel n. σ 2 is the density of noise power. Ii,j,n
denotes the interference from the other UEs associated with
the neighboring BSs, which is calculated in the interference
management model.

Then, the uplink transmission rate and latency are given as
shown in the Eq. (5) and Eq. (6), respectively.

ri,j =
∑
n∈N

ai,j,nri,j,n (5)

tULi,j = bi,jsi,j
/
ri,j (6)

Here, ai,j,n ∈ {0, 1}, and ai,j,n = 1 denotes the sub-channel
n is allocated to the UE i associated with the BS j, otherwise,
ai,j,n = 0.
Let f C denote the CPU frequency for the MEC server,

which can be regarded as the fixed value for the duration of
the computation phase for the tasks [26]. The computation
latency on the MES server can be calculated as shown in the
Eq. (7).

tCPi,j = bi,jsi,jli,j
/
f C , i ∈ Kj, j ∈ J (7)

Moreover, the energy consumption of the UEs for the
MEC Server Execution Model can be calculated as shown in
Eq. (8).

eCi,j =
N∑
n=1

ai,j,npi,j,n
bi,jsi,j
ri,j

(8)

Here, we assume the data transmission time over all the
sub-channels is the same.

C. INTERFERENCE MANAGEMENT MODEL
Themain reason for inter-user interference is that UEs upload
the computation tasks to the MEC server on the same sub-
channel. Due to the heterogeneity of HetNets, the interfer-
ences include cross-tier interference and co-tier interference.
Appropriate sub-channel allocation and power control for
UEs can effectively mitigate the interference [27].

We adopt the underlay mode for spectrum reuse to manage
the cross-tier interference [28]. The mode allows the UEs
associated with the MBS and the UEs associated with SBSs
to share the sub-channels, but the interference to the UEs
that is associated with the MBS generated by the UEs that
is associated with the SBSs cannot exceed a threshold Ith,n,
which is shown in Eq. (9).∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,npi,j,nh0i,j,n ≤ Ith,n, n ∈ N (9)

Furthermore, the sub-channel allocation within the UEs of
each cell and the SBSs are orthogonal, in order to avoid the
interference among the UEs of each cell and the small cells,
as shown in Eq. (10) and Eq. (11).∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,n ≤ 1, n ∈ N (10)

∑
i∈K0

ai,j,n ≤ 1, n ∈ N (11)

Therefore, Ith,n can be calculated as shown in the Eq. (12).

Ii,j,n =


J∑

j′=1,

∑
i′∈Kj′

ai′,j′,npi′,j′,nh
0
i′,j′,n, if j = 0∑

i′∈K0

ai′,0,npi′,0,nh
j
i′,0,n, if j 6= 0

(12)

D. PROBLEM FORMULATION
Let λi,j denote the computation offloading decision variable
for the UE i associated with the BS j. λi,j ∈ {0, 1}. If the UE
i decide to offload its computation task to the MEC server,
λi,j = 1. Otherwise, λi,j = 0. Then, the execution latency
and energy consumption for the computation offloading deci-
sion can be calculated as shown in Eq. (13) and Eq. (14),
respectively.

tPi,j = λi,jt
L
i,j +

(
1− λi,j

)
tCi,j, i ∈ Kj, j ∈ J (13)

ePi,j = λi,je
L
i,j +

(
1− λi,j

)
eCi,j, i ∈ Kj, j ∈ J (14)

In the paper, the computation offloading decision and the
available radio and computational resources allocation are
jointly optimized for IoT UEs in MEC-enabled HetNets,
including the CPU-cycle frequencies for each UE, the sub-
channel and transmit power allocation for computation
offloading, and the computation offloading decision for each
UE. The weighted-sum execution latency of the UEs was
adopted as the performance metric, which can address the
cost of execution latency at different nodes in MEC-enabled
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HetNets. Then, the problem is formulated as shown in P1.

P1 :

min{
λi,j,f Li,j,ai,j,n,pi,j,n

}∑
j∈J

∑
i∈Kj

ωi,jtPi,j (15)

s.t. C1 : 0 ≤ tPi,j ≤ T
max
i,j , ∀i ∈ Kj, j ∈ J (16)

C2 : 0 ≤ ePi,j ≤ E
max
i,j , i ∈ Kj, j ∈ J (17)

C3 : f Li,j,min ≤ f
L
i,j ≤ f

L
i,j,max, i ∈ Kj, j ∈ J (18)

C4 :
∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,npi,j,nh0i,j,n ≤ Ith,n, n ∈ N

(19)

C5 :
∑
n∈N

ai,j,npi,j,n ≤ pmax
i,j , i ∈ Kj, j ∈ J (20)

C6 : 0 ≤ pi,j,n ≤ pmax
i,j,n, i∈Kj, j∈J , n ∈ N

(21)

C7 :
∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,n ≤ 1, n ∈ N (22)

C8 :
∑
i∈K0

ai,j,n ≤ 1, n ∈ N (23)

C9 : ai,j,n ∈ {0, 1} , i ∈ Kj, j ∈ J , n ∈ N
(24)

C10 : λi,j ∈ {0, 1} , i ∈ Kj, j ∈ J (25)

Here, ωi,j is the weight factor of the UE i associated with
the BS j, which is introduced to represent variations in the
different preference degree for different UEs. C1 denotes
that the computation tasks needs to be executed within the
required execution latency Tmax

i,j . C2 denotes that the energy
consumption for the execution can’t exceed the maximum
value Emax

i,j . C3 denotes a constraint that the local CPU fre-

quency should be limited within a range of
[
f Li,j,min, f

L
i,j,max

]
.

pmax
i,j and pmax

i,j,n are the maximum transmit power of the UE i
over all sub-channels and its power mask on sub-channel n,
respectively.C4,C7 andC8 are the constraint of interference
management model. C9 and C10 indicate the variables of
sub-channel allocation and offloading decision variables are
0− 1 binary variables, respectively.

III. JOINT COMPUTATION OFFLOADING AND RESOURCE
ALLOCATION ALGORITHM
In this section, we introduce the joint computation offload-
ing and resource allocation algorithm for IoT UEs in
MEC-enabled HetNets. Since the joint optimization problem
we formulated is an (MINLP) problem, the optimal solution
can’t be easily obtained. Thus, we decompose the problem
into multiple sub-problems, including optimal local comput-
ing resource allocation, joint sub-channel and power allo-
cation optimization, and the task offloading decision. Next,
we propose a corresponding solution for each sub-problem.

A. OPTIMAL LOCAL COMPUTING RESOURCE ALLOCATION
Tominimize the weight-sum execution latency, the local CPU
frequency can be scheduled dynamically. Considering the
constraints ofC1−C3 inP1,P2 can be formulated as follows.

P2 : min{
f Li,j

}∑
j∈J

∑
i∈Kj

ωi,jtLi,j
(
fL
)

(26)

s.t. C1 : 0 ≤ tLi,j ≤ T
max
i,j , i ∈ Kj, j ∈ J (27)

C2 : 0 ≤ eLi,j ≤ E
max
i,j , i ∈ Kj, j ∈ J (28)

C3 : f Li,j,min ≤ f
L
i,j ≤ f

L
i,j,max, i ∈ Kj, j ∈ J (29)

Here, fL =
{
f Li,j, i ∈ Kj, j ∈ J

}
.

According to the constraints of C1 and C2, the variable f Li,j
needs to satisfy Eq. (30).

f Li,j ≥
bi,jsi,jli,j
Tmax
i,j

= f L,downi,j

0 ≤ f Li,j ≤
3

√
Emax
i,j

κmob,i.jbi,jsi,jli,j
= f L,upi,j (30)

Combined with the constraint of C3, we have f L,downi,j ≤

f L,upi,j and f L,downi,j ≤ f Li,j,max, which ensures P2 has the
nonempty feasible domain. It is noted that the function
tLi,j
(
fL
)
is monotonically decreasing on the domain. Hence,

we obtain the optimal close solution for the local CPU-cycle
frequencies for each UE, which is shown in Eq. (31).

f L∗i,j = min
(
f L,upi,j , f Li,j,max

)
(31)

B. ITERATIVE JOINT SUB-CHANNEL AND POWER
ALLOCATION ALGORITHM
To solve P1, we propose a joint uplink transmission
power and sub-channel allocation optimization algorithm for
each UE.

According to the MEC Server Execution Model, the exe-
cution latency of the computation task can be expressed as
tCi,j = tULi,j + t

CP
i,j . By combining this with the Eq. (7), we can

reformulate the problem P1 into the problem P3, because tCPi,j
can be regarded as the fixed value and it has nothing to dowith
the uplink transmission power and the sub-channel allocation.
And the problem P3 is shown as follows.

P3 : min
{ai,j,n,pi,j,n}

∑
j∈J

∑
i∈Kj

ωi,jtULi,j (32)

s.t. C1 : 0≤ tULi,j ≤T
max
i,j − t

CP
i,j , i ∈ Kj, j ∈ J

(33)

C2 : 0 ≤ eCi,j ≤ E
max
i,j , i ∈ Kj, j ∈ J (34)

C4 ∼ C9 (35)

According to Eq. (8), we can obtain that the uplink
transmission latency is inversely proportional to the
available rate of uplink transmission. The objective
function in P3 can be transformed into the objective
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Algorithm 1 Iterative Joint Sub-Channel and Power Alloca-
tion Algorithm
1: Initialize p (0) and l = 1.
2: repeat
3: given value of p (l − 1), calculate optimal sub-

channel allocation a (l) by solving the problem P(3− 2);
4: with the fixed value of a (l), calculate the optimal

transmit power p (l) by solving the problem P(3− 3);
5: Update l = l + 1 and ξ l ;
6: until ξ l ≤ σ1
7: Return the optimal solution by p∗ = p (l) and a∗ = a (l)

in P(3 − 1), with the definition of ω̂i,j = 1
/
bi,jsi,jωi,j.

We also make some changes to the constraints of C1, C2
and C5, with the definition of rui,j = bi,jsi,j

/(
Tmax
i,j − t

CP
i,j

)
and πmax

i,j = min
(
pmax
i,j ,E

max
i,j ri,j

/
bi,jsi,j

)
. Furthermore,

the constraint C4, C6−C9 in P3 is the same as the constraint
C4, C6 − C9 in P(3 − 1). To sum up, for the optimization
variables

{
ai,j,n, pi,j,n

}
, the problem P(3− 1) is equal to P3.

P(3− 1) : max
{ai,j,n,pi,j,n}

∑
j∈J

∑
i∈Kj

ω̂i,jri,j (36)

s.t. C1 : ri,j ≥ rui,j, i ∈ Kj, j ∈ J (37)

C2 :
∑
n∈N

ai,j,npi,j,n ≤ πmax
i,j ,

i ∈ Kj, j ∈ J (38)

C4 ∼ C9 (39)

To solve the problem in P(3−1), the iteration optimization
algorithm for sub-channel and power allocation is adopted,
which is shown in Algorithm 1. In Algorithm 1, p (l) and a (l)
denote the set of variables related to transmit power and sub-
channel allocation for UEs in the lth iteration, respectively.
Specifically, each iteration can be divided into two steps.
In step 1, the optimal sub-channel allocation of iteration l
is derived from the given value of p (l − 1). Then, with the
fixed value of a (l), the optimal transmit power is obtained.
The iterative algorithm is repeated until it converges, then
we can obtain the optimal solution of the sub-channel and
power allocation for P(3 − 1). The iterative algorithm will
converge until ξ l ≤ σ1 and the ξ l can be defined as the
Eq. (40) or Eq. (41).

ξ l =
∑
j∈J

∑
i∈Kj

ω̂i,jri,j (l)−
∑
j∈J

∑
i∈Kj

ω̂i,jri,j (l − 1) (40)

ξ l = ‖p (l)− p (l − 1)‖ (41)

As shown in Algorithm 1, we need to solve P(3 − 2)
and P(3 − 3) to obtain the optimal sub-channel and power
allocation, respectively. The problem P(3 − 2) is shown as
follows.

P(3−2) : max
{a(l)}

∑
j∈J

∑
i∈Kj

ω̂i,jri,j (a (l) ,p (l − 1)) (42)

s.t. C1 :
∑
n∈N

ai,j,n (l) ri,j,n (p (l − 1)) ≥ rui,j (43)

C2 :
∑
n∈N

ai,j,n (l) pi,j,n (l − 1) ≤ πmax
i,j (44)

C4 :
∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,n (l) pi,j,n (l − 1) h0i,j,n

≤ Ith,n (45)

C7 :
∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,n (l) ≤ 1 (46)

C8 :
∑
i∈K0

ai,j,n (l) ≤ 1 (47)

C9 : ai,j,n (l) ∈ {0, 1} (48)

Here, ri,j (a (l) ,p (l − 1)) and ri,j,n (p (l − 1)) is shown as
follows.

ri,j (a (l) ,p (l − 1))

=

∑
n∈N

ai,j,nri,j,n (p (l − 1)) (49)

ri,j,n (p (l − 1))

= log2
(
1+ hji,j,npi,j,n (l − 1)

/
Ii,j,n (l − 1)+ σ 2

)
(50)

Due to the existence of the integer variable of a (l), P(3−2) is
a non-convex integer programming problem, it is difficult to
obtain a closed expression for the optimal solution.Moreover,
this problem will cause high computational complexity when
using an exhaustive search method. Realistically, we need
to propose a low computational complexity algorithm to
solve the problem P(3 − 2). Toward that end, we convert
the discrete variables ai,j,n (l) ∈ {0, 1} into continuous vari-
ables ai,j,n (l) ∈ [0, 1] approximately, which refers to the
proportion of time allocated to the UE on each sub-channel,
and then obtain the suboptimal solution for P(3 − 2). Thus,
P(3 − 2) is transformed into a convex problem and it can
be solved by utilizing available online optimization software,
e.g., the CVX tool [29]. With the fixed value of a (l), P(3−1)
can be transformed into P(3 − 3), which can be shown as
follows. Due to the rate function ri,j,n (p (l)) is a highly non-
concave function, P(3−3) is obviously not a convex problem.
In order to solve this problem, we use the SCA approach [30]
to propose the power allocation algorithm with logarithmic
approximation.

P(3− 3) : max
{p(l)}

∑
j∈J

∑
i∈Kj

ω̂i,jri,j (a (l) ,p (l)) (51)

s.t. C1 :
∑
n∈N

ai,j,n (l) ri,j,n (p (l)) ≥ rui,j (52)

C2 :
∑
n∈N

ai,j,n (l) pi,j,n (l) ≤ πmax
i,j (53)

C4 :
∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,n (l) pi,j,n (l) h0i,j,n≤ Ith,n

(54)

C6 : 0 ≤ pi,j,n (l) ≤ pmax
i,j,n (55)
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Instead of directly dealing with the highly non-concave rate
function, we apply the logarithmic approximation method to
convert the rate function into r̂i,j,n

(
p
(
lp
))
, which is shown in

Eq. (56).

r̂i,j,n
(
p
(
lp
))
= αi,j,n

(
lp
)
+ βi,j,n

(
lp
)
log2

(
γi,j,n

(
p
(
lp
)))
(56)

Here, αi,j,n
(
lp
)
and βi,j,n

(
lp
)
are the parameters for approx-

imation, which can be calculated as seen in Eq. (57) and
Eq. (58), respectively. r̂i,j,n

(
p
(
lp
))

denotes the low bound of
the original rate function ri,j,n (p (l)).

αi,j,n
(
lp
)
= log2

(
1+ γi,j,n

(
p
(
lp − 1

)))
−βi,j,n

(
lp
)
log2

(
γi,j,n

(
p
(
lp − 1

)))
(57)

βi,j,n
(
lp
)
= γi,j,n

(
p
(
lp − 1

))/(
1+γi,j,n

(
p
(
lp−1

)))
(58)

Due to the existence of logarithmic function
log2

(
γi,j,n

(
p
(
lp
)))

, the function r̂i,j,n
(
p
(
lp
))

is still a non-
concave function. Let p̂ = log2p, then, the logarithmic
function can be converted into a log−sum−exp function and
the problem P(3 − 3) can be reformulated into the problem
P(3−4), which can be easily proved as a convex problem [31].
The problem P(3− 4) is shown as follows.

P(3−4) : max
{p̂(lp)}

∑
j∈J

∑
i∈Kj

ω̂i,jr̂i,j,n
(
ep̂(lp),α(lp),β

(
lp
))

(59)

s.t. C1 :
∑
n∈N

ai,j,n (l) r̂i,j,n
(
ep̂(lp),α

(
lp
)
,β
(
lp
))
≥rui,j

(60)

C2 :
∑
n∈N

ai,j,n (l) ep̂i,j,n(lp) ≤ πmax
i,j (61)

C4 :
∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,n (l) ep̂i,j,n(lp)h0i,j,n ≤ Ith,n (62)

C6 : 0 ≤ ep̂i,j,n(lp) ≤ pmax
i,j,n (63)

Here, α
(
lp
)
=

{
αi,j,n

(
lp
)∣∣ i ∈ Kj, j ∈ J , n ∈ N

}
and

β
(
lp
)
=

{
βi,j,n

(
lp
)∣∣ i ∈ Kj, j ∈ J , n ∈ N

}
. In HetNets

without a central processing unit (e.g., when the MBS and
SBSs belong to different service providers), it is more desir-
able for UEs to distribute and control the transmit power. Uti-
lizing Lagrangian duality, we propose the SCA-based power
allocation algorithm based on the logarithmic approximation
method. The Lagrangian duality of the problem is defined as
Eq. (64).

L
(
p̂
(
lp
)
,λ, µ, ν

)
=

∑
j∈J

∑
i∈Kj

ω̂i,jr̂i,j,n
(
ep̂(lp),α

(
lp
)
,β
(
lp
))

+ λi,j
(
lp
)[∑

n∈N
ai,j,n (l) r̂i,j,n

(
ep̂(lp),α(lp),β

(
lp
))
−rui,j

]

−µi,j
(
lp
) [∑

n∈N
ai,j,n (l) ep̂i,j,n(lp) − πmax

i,j

]

− νn
(
lp
) ∑

j∈J ,j 6=0

∑
i∈Kj

ai,j,n (l) ep̂i,j,n(lp)h0i,j,n − Ith,n


(64)

Here, λi,j
(
lp
)
, µi,j

(
lp
)
and νn

(
lp
)
are the Lagrangian multi-

pliers associated withC1,C2 andC4 of the problem P(3−4),
respectively. The dual problem of P(3 − 4) can be shown as
follows.

D (λ, µ, ν) = max
{p̂(lp)}

L
(
p̂
(
lp
)
,λ, µ, ν

)
(65)

λ,µ, ν ≥ 0,C6 (66)

After solving the stationary condition of the Eq. (64) by
∂L

(
p̂
(
lp
)
,λ, µ, ν

)/
∂p̂
(
lp
)
= 0 and transforming the result

to the p-space, we can obtain the Eq. (67), as shown at the
bottom of the next page.

Then, the solution of the dual problem min
{λ,µ,ν}

D (λ, µ, ν)

can be determined by a subgradient method as shown in
Eq. (68)-(70).

λi,j
(
lp, t + 1

)
=

[
λi,j

(
lp, t

)
+ ελ

(
rui,j − Cλ

(
lp, t

))]+
(68)

µi,j
(
lp, t + 1

)
=

[
µi,j

(
lp, t

)
+ εµ

(
Cµ

(
lp, t

)
− πmax

i,j

)]+
(69)

νn
(
lp, t + 1

)
=
[
νn
(
lp, t

)
+ εµ

(
Cv
(
lp, t

)
− Ith,n

)]+
(70)

Here, [x]+ representsmax (x, 0), andCλ
(
lp, t

)
,Cµ

(
lp, t

)
and

Cv
(
lp, t

)
can be represented as Eq. (71)-Eq. (73).

Cλ
(
lp, t

)
=

∑
n∈N

ai,j,n (l) r̂i,j,n
(
p
(
lp, t

)
,α(lp),β

(
lp
))

(71)

Cµ
(
lp, t

)
=

∑
n∈N

ai,j,n (l) pi,j,n
(
lp, t

)
(72)

Cv
(
lp, t

)
=

∑
j∈J ,j 6=0

∑
i∈Kj

ai,j,n (l) pi,j,n
(
lp, t

)
h0i,j,n. (73)

Asmentioned above, the SCA-based power allocation algo-
rithm based on the logarithmic approximation method is
given as shown in Algorithm 2.

C. DISTRIBUTED COMPUTATION
OFFLOADING ALGORITHM
In MEC enabled HetNets without a central processing unit
(e.g., when MBS and SBSs belong to different service
providers), it will be more desirable for UEs to distributedly
make the computation offloading decision. Moreover, we can
obtain the correspondingly optimal execution latency for the
local execution and MEC server execution model by Eq. (31)
and Algorithm 1, which can be denoted by tL∗i,j and tC∗i,j ,
respectively. Then, each UE can choose the model with less
execution latency to complete the tasks. The corresponding
computation decision variables and the weight-sum execution
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Algorithm 2 SCA-Based Power Allocation Algorithm Based
on Logarithmic Approximation
1: Initialize α (0) ,β (0).
2: repeatto solve P(3− 2)
3: repeatto solve P(3− 3)
4: According to the Eq. (67), calculate pi,j,n

(
lp, t

)
;

5: According to the Eq. (68)-(70), update λ, µ, ν;
6: until λ, µ, ν converges;
7: Let pi,j,n

(
lp
)
= pi,j,n

(
lp, t

)
;

8: According to the Eq. (57) and Eq. (58), calculate
αi,j,n

(
lp + 1

)
and βi,j,n

(
lp + 1

)
;

9: Update lp = lp + 1;
10: until p converges;

latency for the network can be calculated as shown in Eq. (74)
and Eq. (75), respectively.

λ∗i,j =

{
1, tL∗i,j < tC∗i,j
0, tL∗i,j ≥ t

C∗
i,j

(74)

T ∗ =
∑
j∈J

∑
i∈Kj

ωi,jtP∗i,j

=

∑
j∈J

∑
i∈Kj

ωi,j

{
λ∗i,jt

L∗
i,j +

(
1− λ∗i,j

)
tC∗i,j
}

(75)

As mentioned above, the joint computation offloading and
resource allocation algorithm can be given as shown in
Algorithm 3.

D. DISCUSSIONS
1) ANALYSIS OF OPTIMALITY
As shown in Algorithm 3, we propose a low complexity
algorithm to solve the problem of computation offloading
in energy-constrained MEC-enabled HetNets, which aims to
minimize the weighted-sum delay over the users.
Proposition 1: For a feasible problem of P1, Algorithm 3

will obtain a local optimum for P1.
Proof: Algorithm 3 is primarily composed of three main

procedures: optimal local computing resource allocation,
joint optimization for sub-channel and power allocation (as
shown in Algorithm 1), and computation offloading decision
making. For the problem P1, if tL∗i,j < tC∗i,j , the optimal
offloading decision should be determined as λ∗i,j = 1. Oth-
erwise, λ∗i,j = 0. According to Eq. (1) and Eq. (3), tL∗i,j and
tC∗i,j can be obtained by the optimal CPU frequency and the

Algorithm 3 Joint Computation Offloading and Resource
Allocation Algorithm

Input: bi,j, si,j, and h
j′

i,j,n.
Output: λ∗i,j, f

L∗, p∗ and a∗.
1: According to Eq. (31) and Eq. (1), calculate the optimal

local CPU frequency fL∗ and the correspond execution
latency tL∗i,j , respectively

2: According to Algorithm 1 and Eq. (3), calculate the
solution of the sub-problem P3 (p∗ and a∗) and the
corresponding execution latency tC∗i,j , respectively;

3: According to Eq. (74) and Eq. (75), calculate the compu-
tation offloading decision and the corresponding execu-
tion latency λ∗i,j, respectively;

wireless resource allocation, respectively. The optimal CPU
frequency for each user can be calculated by the close expres-
sion of Eq. (31). For the problem of joint sub-channel and
power allocation optimization, the Algorithm 1 will converge
to give a local maximum. the proof is shown as follows.

U (a (l) ,p (l)) =
∑
j∈J

∑
i∈Kj

ω̂i,jri,j (a (l) ,p (l))

= max
p

U (a (l) ,p)

≥ U (a (l) ,p (l − 1))

= max
a
U (a (l) ,p (l − 1))

≥ U (a (l − 1) ,p (l − 1)) (76)

This means that Algorithm 1 gives a non-decreasing objec-
tive function as the iterations continue. When the sequence
of iterations converges, the related solution is feasible and a
local maximum is obtained. Nevertheless, it should be noted
that the algorithm often empirically achieves the globally
optimal solution. Finally, the sub-optimal computation deci-
sion can be obtained.

2) COMPUTATIONAL COMPLEXITY
In this section, we discuss the computational complexity
of the proposed joint computation offloading and resource
allocation algorithm presented in this paper. According to
Algorithm 3, the proposed algorithm can be divided into
three parts, including the optimization of local CPU fre-
quency, joint user sub-channel and power allocation, and
the computation offloading decision. To optimize the local

pi,j,n
(
lp, t

)
=



[√(
ω̂i,j + λi,j

(
lp
)
ai,j,n (l)

)
β(

µi,j
(
lp
)
ai,j,n (l)

)
In2

]pmax
i,j,n

0√√√√ (
ω̂i,j + λi,j

(
lp
)
ai,j,n (l)

)
β(

µi,j
(
lp
)
ai,j,n (l)

)
In2+νn

(
lp
)
ai,j,n (l) h0i,j,n

p
max
i,j,n

0
(67)
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CPU frequency, we need to traverse through all the UEs
to obtain the optimal local CPU frequency; the computa-
tional complexity of this procedure is O

(
|J |

∣∣Kj
∣∣), where

|x| denotes the cardinality of the set of x. The joint sub-
channel and power allocation issue can be addressed using
CVX to solve the sub-channel allocation problem and using
SCA to solve the power control problem. The computa-
tional complexity of the sub-channel allocation using CVX is
approximately O

(
log

(
|J |

∣∣Kj
∣∣N )) [31]. The computational

complexity using SCA to solve the power control problem is
O
(
|J |

∣∣Kj
∣∣N )×O (2 |J | ∣∣Kj

∣∣+N ). Here, the power alloca-
tion is derived from Eq. (67), leading to the computational
complexity of O

(
|J |

∣∣Kj
∣∣N ), and O (2 |J | ∣∣Kj

∣∣+N ) is the
computational complexity of updating dual variables accord-
ing to Eqs. (68-70). Ultimately, we need to traverse through
each UE’s task offloading decision according to Eq. (74); the
corresponding computational complexity is O

(
|J |

∣∣Kj
∣∣).

3) IMPLEMENTATION AND SCALABILITY
Algorithm 3 consists of three key steps: (i) compute the local
CPU frequency via Eq. (15), (ii) solve a joint optimization
problem for the subchannel and power allocation through
Algorithm 1, and (iii) make the computation offloading deci-
sion. To implement Algorithm 1, channel state information
(CSI) is most likely needed for the system. The MBS and
SBSs measure the CSI between their users and the interfer-
ence CSI of the other users to their receivers on the uplink.
Then, the SBSs send all the obtained CSI to the MBS. More-
over, a central processing unit in the MBS is most likely
needed to collect all the network information and perform
the proposed Algorithm 1 to obtain the tC∗i,j . Then, each
processing unit in an SBS can compute the optimal local
CPU frequency and obtain the tL∗i,j . With tL∗i,j and tC∗i,j , each
processing unit in the system can make the corresponding
computation offloading decision for each task.

Note that multiple-antenna devices are a new trend for
meeting the significantly higher traffic demands in the
beyond 5G era [32]. The systemmodel proposed in this paper
considers single-antenna devices. However, the systemmodel
can be extended to the case of multiple-antenna devices
with some modifications. The system model for the case
of multiple-antenna devices is similar to the one formulated
for single-antenna devices; however, in the system model
for multiple-antenna devices there are some differences in
the channel gains and uplink transmission rate. Therefore,
the major modifications include replacing Eq. (4), presented
in this paper, with Eq. (1), presented in [32]. Finally, the cor-
responding computation offloading decision and resource
allocation can be obtained using the proposed Algorithm 3.

IV. SIMULATION RESULTS
In this paper, we consider a coverage area of 1km × 1km for
MEC-enabled HetNets, which includes an MBS and several
SBSs. The MBS is located at the origin while the SBSs
are randomly distributed in the area. UEs are randomly dis-
tributed within the coverage area of the associated BS. The

TABLE 1. Simulation parameters.

number of computation tasks generated by each UE follows a
Poisson distributionwith a mean of 400. The data size of each
computation task is 1KB and each computation task requires
109 CPU cycles to complete. The local CPU frequency of
each UE ranges from 0.2GHz to 2 GHz and the CPU fre-
quency of each MEC server is set as 4 GHz. The channel
gain from each UE to each BS refers to Model A.2.1.1.2-3
for the outdoor RRH or hotspot area model 1 [33] in the
3GPP specifications. Other required parameters are shown
in Table 1.

The numerical experiments are performed using the
Monte Carlo method. We compared the proposed algorithm
with five baseline algorithms. The term, ‘‘Optimal offload-
ing’’, denotes the proposed joint computation offloading
and resource allocation algorithm in this paper. The terms,
‘‘All local’’ and ‘‘All MEC’’ represent all the computation
tasks executed locally and by the MEC servers, respectively.
The term, ‘‘Exhaustive search’’, means the computation
offloading and resource allocation are optimized using the
exhaustive search algorithm. The optimal solution is obtained
by an exhaustive search algorithm; it adopts the enumerator to
generate all feasible solutions, and then it selects the optimal
one, which minimizes the weighted-sum delay in P1. ‘‘RC’’
and ‘‘RP’’ indicate a random sub-channel allocation strategy
and random power allocation, respectively. All the simula-
tions are performed on a desktop computer with an Intel Core
i7-8700U 3.2 GHz CPU and 24 GB memory.

Fig. 2 shows the convergence of Algorithm 1 and
Algorithm 2, respectively. Here, |1p (l)| =

∑
i,j,n

(
pi,j,n (l)−

pi,j,n (l − 1)
)

and
∣∣1p

(
lp
)∣∣ =

∑
i,j,n

(
pi,j,n

(
lp
)
−

pi,j,n
(
lp − 1

) )
. It can be seen from Fig.2 that both

Algorithm 1 and Algorithm 2 can converge with limited
iterations.

Fig. 3 shows the performance of the weighted-sum exe-
cution latency and compares the proposed algorithm and
other algorithms (including All MEC, All local, RP, RC, and
Exhaustive search) as the number of small cells increases.
From the information presented in Fig. 3, we can conclude

VOLUME 8, 2020 47517



L. Tang, H. Hu: Computation Offloading and Resource Allocation for the IoT in Energy-Constrained MEC-Enabled HetNets

FIGURE 2. The convergence of proposed Algorithm 1 and Algorithm 2.

FIGURE 3. The performance of the weighted-sum execution latency under
different algorithms.

that the weighted-sum execution latency increases linearly
as the number of small cells increases. This is because the
number of UEs increases linearly in the network, and the
fixed sub-channels resource limits the UEs’ available uplink
transmit rate, which leads to a linear increase in execution
latency. As seen in Fig. 3, we compare the performance of
the proposed algorithm with the exhaustive search algorithm.
The results demonstrate that the execution latency perfor-
mance of the proposed algorithm is similar to that of the
exhaustive search algorithm. It is important to note that we
can only prove that the solution obtained by the proposed
algorithm is feasible and has a local maximum. Nevertheless,
it should be mentioned that the algorithm often empirically
achieves the globally optimal solution, as is seen in Fig. 3. The
exhaustive search algorithm has a computation complexity of
O
(
2|J ||Kj|N

)
. As is shown in Fig. 2, the proposed algorithm

has a faster convergence speed than the exhaustive search
algorithm, and the computation complexity of each iteration

FIGURE 4. The effects of different of sub-channel bandwidths on network
latency.

FIGURE 5. The effects of the maximum transmit power of different UEs
on network latency.

process can be approximated to O
(
|J |

∣∣Kj
∣∣N ). The average

execution time of the proposed algorithm and the exhaustive
search algorithm is about 88.24s and 2.39e-2s, respectively.
As the number of UEs and sub-channels increase, the pro-
posed algorithm becomes more efficient than the exhaustive
search algorithm. Moreover, the proposed algorithm has a
better execution latency performance than the All MEC,
All local, RC, and RP algorithms. It can be concluded that
appropriate computation offloading decision and sub-channel
and power allocation play an important role in the optimiza-
tion problem of the weighted-sum execution latency.

Fig. 4 and Fig. 5 show the effects of different sub-
channel bandwidths and maximum transmit power of UEs
on the network latency obtained by the All MEC algo-
rithm, the All local algorithm, and the proposed algo-
rithm. It can be concluded that the sub-channel bandwidths
and the maximum transmit power of UEs only have a
significant impact on the weighted-sum execution latency
obtained by the All MEC algorithm and the proposed algo-
rithm. As the bandwidth of sub-channels increases, the
weighted-sum execution latency obtained by these two algo-
rithms decreases significantly. This is because the UEs’
uplink transmit rate can be significantly improved with
increased bandwidth. Moreover, as the maximum transmit
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FIGURE 6. The impact of the interference threshold on network latency.

power of the UEs increases, the weighted-sum execution
latency can be further reduced. However, when the maximum
transmit power reaches a certain threshold, the impact on
network latency will decrease. This is because a high level
of transmit power can improve the uploading rate. However,
excessive transmit power can cause severe inter-user interfer-
ence and limit the uploading rate for UEs.

Fig. 6 shows the impact of the interference threshold on
the network latency obtained by the All MEC algorithm,
the All local algorithm, and the proposed algorithm. As the
interference threshold improves, the network latency of the
All local algorithm does not change, but the network latency
obtained by the All MEC algorithm and the proposed algo-
rithm initially decrease and then remain unchanged. This is
because the increase in the interference threshold improves
the tolerance of co-channel interference generated by the
UEs associated with the SBSs. Then, these UEs can increase
the transmit power to improve the uploading rate. However,
as the interference threshold is further improved, excessive
co-channel interference limits the UEs’ uploading rate.

Fig. 7 shows the effect of the number of macro-UEs
on the network latency obtained by the All MEC algo-
rithm, the All local algorithm, and the proposed algorithm.
It can be concluded that, as the number of macro-UEs
increases, the growth trend for the network latency obtained
by the three algorithms will increase. However, the All MEC
algorithm shows a faster growth trend than the All local
algorithm. This is mainly because the average number of
sub-channels obtained by the UEs decreases when the sub-
channel resources are limited.

Fig. 8 shows the effect of the weight coefficients on the
network latency obtained by the All MEC algorithm, the All
local algorithm, and the proposed algorithm. To analyze the
effect of the weight coefficients on network latency, we con-
sider the case of two macro-UEs with ω0,1+ω0,2 = 1 and no
small cell UEs in the network. As seen in Fig. 8, the weight
coefficients have no effect on the network latency obtained by
the All local algorithm. For the All MEC algorithm and the
proposed algorithm, fairness and priority between the UEs
can be achieved by adjusting ω0,1 and ω0,2. In comparison to

FIGURE 7. The effect of the number of macro-UEs on network latency.

FIGURE 8. The effect of the weight coefficients on network latency.

FIGURE 9. The effect of maximum local CPU frequency on the network
latency.

the AllMEC algorithm, the proposed algorithm can adjust the
priority between UEs and also control the UEs’ delay within
a certain range, which depends on the local execution latency.

Fig. 9 and Fig. 10 show the results of the analysis of
the effect of maximum local CPU frequency on the network
latency and energy consumption. From the information pre-
sented in Fig. 8, we can conclude that the maximum local
CPU frequency has no effect on the network latency obtained
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FIGURE 10. The effect of maximum local CPU frequency on the network
energy consumption.

by the All MEC algorithm, and it only affects the network
latency obtained by the All local algorithm and the proposed
algorithm. As the maximum local CPU frequency increases,
the network delay obtained by the All local algorithm gradu-
ally decreases, and eventually stabilizes. This is because the
increase in themaximum local CPU frequency can drivemore
UEs to choose the local computing model. As seen in Fig. 9,
as the maximum local CPU frequency increases, the overall
energy consumption of the network tends to decrease at first,
and then increase. There exists an optimal value. The reason
for the decrease is that the increase in the maximum local
CPU frequency can prompt more UEs to choose the local
computing model. The increase in the local CPU frequency
results in more energy consumption for each UE. As shown
in Fig. 8 and Fig. 9, the appropriate maximum local CPU fre-
quency needed for network latency and energy consumption
is still an issue.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a joint computation offloading and
resource allocation algorithm for IoT UEs in MEC-enabled
HetNets. The simulation results demonstrate that the pro-
posed algorithm has better network latency performance and
computational complexity than the other evaluated algo-
rithms. Moreover, the effects of the network parameters
on network latency are analyzed using different algorithms.
In future work, the network architecture of AI-enabled MEC
systems deployed in HetNets will be further explored, and
the optimal computation offloading decision for AI-enabled
MEC systems will be also studied.
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